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SYNOPSIS
Superconductivity is a striking example of macroscopic quantum behaviour driven by attractive

interaction between electrons. While the ideas of pairing and phase coherence that emerged from
the Bardeen-Cooper-Schrieffer (BCS) theory continue to be relevant to later discoveries in super-
conductivity, many of their specific predictions need to be modified when one encounters situations
involving (a) strong interaction between electrons, (b) the presence of significant potential scatter-
ing, leading to a superconductor-insulator transition (SIT), (c) the coupling to magnetic impurities,
and, for example, (d) the proximity to other ordered phases. Quite generally, these may require
us to handle inhomogeneous ground states (which in principle can occur within the BCS scheme
itself) and quantum and thermal fluctuations of the ‘order parameter’.

The primary focus of this thesis is on understanding the role of strong disorder in supercon-
ducting systems, in particular the thermal fluctuation effects that occur on the inhomogeneous
background. We would want to study these effects in the presence of ‘scalar’ disorder as well
as magnetic impurities. However, to get to these relatively less explored problems we needed to
first benchmark our method in the context of a well studied problem - the BCS to BEC crossover
with increasing pairing interaction in a fermi system. Following this logic, the chapters of the thesis
are organised as below.

Chapter 1. presents a review of the experimental situation. It starts with a quick summary of
superconductivity and disordered metals. We then review the experimental results on disordered
superconductors, in the context of materials like (i) thin films of Be and NbN, (ii) amorphous films
of InOx and TiN and, (iii) three dimensional NbN films. We focus on:

• Resistivity and its dependence on temperature, disorder and magnetic field.

• Spectral functions, as inferred from scanning tunneling spectroscopy (STS) and their detailed
evolution with temperature and disorder.

• More recent tunneling spectroscopy results, hinting at the inhomogeneity of the underlying
superconducting state.

This is followed by a brief description of available data on magnetic impurities in superconductors
including a short summary of results on the gapless phase and spectral functions.

Chapter 2. reviews the theory tools available, and our own method. It starts with a general review
of ‘post BCS’ theoretical methods and a discussion of their results in the context of the BCS-BEC
crossover. We then move to disordered superconductors, classifying the theory work into three
groups:

v



• ‘Fermionic’ theories, which include Coulomb repulsion and explore the destruction of super-
conductivity due to suppression of the effective pairing interaction.

• Bosonic theories, which assume ‘preformed’ bosonic pairs and study how phase fluctuations
can drive a superconductor-insulator transition.

• Numerical approaches, which start with an attractive fermion lattice model and use methods
like Hartree-Fock-Bogoliubov-de-Gennes (HFBdG) mean field theory, quantum Monte Carlo
(QMC), etc., without assuming any preformed pairs.

We then discuss the appropriateness of the attractive Hubbard model (AHM) in treating the problem
of SIT. We go beyond mean field theory by using an auxiliary field approach, using a pairing field
�i and a ‘charge’ field �i, that retains all the thermal fluctuations in the problem. Our AHM derived
effective model has the look:

Heff = H0 +
X

i

(�ic
†
i"c

†
i# + h.c.)�

X

i�

�ic
†
i�ci� +

1

U

X

i

(|�i|2 + �2
i ) +Hdis

H0 above is the kinetic energy and Hdis incorporates the disorder in the system. For non-magnetic
disorder, Hdis =

P
i Vic

†
i�ci�, where Vi is a random number between [�V, V ]. Magnetic impurities

are included via Hdis = J
P

i Si.�i, where �i is the electron spin and Si are classical moments
modelling impurity spins. We describe in detail the Monte Carlo algorithm that generates the equi-
librium configurations {�i,�i} in the disordered background, and the computation of electronic
properties thereon.

Chapter 3. revisits the well studied BCS-BEC problem. This is a prototype of weak to strong
coupling evolution in many body physics. While extensive numerical results are available, and
several approximate methods have been developed, none of these schemes are formulated in real
space and as a result cannot handle spatial inhomogeneity. We solve the BCS-BEC problem in
two dimensions using our auxiliary field based Monte Carlo. Our approach reproduces the HFBdG
ground state, and leads to a Tc scale that agrees with quantum Monte Carlo estimates to within a
few percent. We discuss results on the Tc, amplitude and phase fluctuations, density of states, and
the momentum resolved spectral function, over the entire interaction and temperature window. We
compare our results to those from full QMC and other semi-analytic approaches whenever possible.

Chapter 4. discusses the ‘global’ properties of a superconductor as it is driven towards the SIT.
While the evolution of the superconducting ground state with disorder is now well understood,
thermal effects and transport have remained mostly out of reach. Using our auxiliary field based
MC we describe the disorder driven SIT at finite temperature. We track the Tc, the resistivity, the
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global density of states (DOS) and the optical conductivity with increasing disorder. Our results
on the resistivity suggest that beyond moderate disorder the low temperature superconducting state
can arise out of an ‘insulating’ normal state. We observe a prominent pseudogap in the normal
state DOS that deepens with increasing disorder, and a divergence of the Tc and the gap vanishing
temperature beyond moderate disorder. We also find that the low frequency weight in the density of
states and optical conductivity are non monotonic in disorder, with a maximum near critical disor-
der, and their high temperature value correlate with the superconducting fraction in the disordered
ground state. We compare our results to recent experimental data.

Chapter 5. describes the spatially resolved response of the disordered superconductor near the
SIT. Advances in scanning tunneling spectroscopy have revealed the presence of superconducting
nanoregions well past the bulk thermal transition in strongly disordered superconductors. We first
discuss how the disorder landscape provides ‘favourable’ regions where superconductivity can ex-
ist, interspersed with ‘unfavourable’ regions where it is suppressed. We use our method to study
the spatially differentiated amplitude and phase fluctuations in this background and establish spa-
tial maps of the coherence peak as the superconductor is driven through the thermal transition.
Analysis of the local density of states reveals that superconducting regions shrink and fragment
with increasing temperature, but survive in small clusters to a temperature Tclust � Tc. The gap
(or pseudogap) in the spectrum survives in general to another independent scale, Tg, depending
on the strength of interaction. We discuss the physical origin of these multiple scales, suggest a
Ginzburg-Landau scheme that provides a phenomenological classical description of the situation,
and compare our results in detail to experiments.

Chapter 6. investigates the effect of magnetic impurities on superconductivity. Magnetic impuri-
ties break time reversal invariance, and hence can suppress and eventually destroy superconductiv-
ity even at very small concentration. The presence of such impurities can create subgap levels in
a superconductor, eventually closing the gap completely, leading to the famous gapless phase. We
investigate the problem at fixed interaction for various impurity spin coupling J . We present phase
diagrams showing the gapped, gapless and non-superconducting phases in the J � T window, and
analyze their dependence on J . We provide detailed results on the density of states showing the
formation of subgap impurity levels. Our results reveal that the gapless phase increases in size
with increasing J . Additionally, we find that at large J , the lowest energy wavefunctions are con-
centrated near the impurity positions, which also act as nucleation centres for the loss of SC with
increasing temperature.
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The latter clearly shows the sharpness of the transition, and the insulating

nature of the critical curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.11 Magnetoresistance of InOx [46] at a fixed disorder and varying temperatures

and of T iN films [52] at fixed temperature close to the critical point. The

saturation resistance at high field ⇠ RQ, and the overall behaviour is very

similar in the superconducting and insulating samples (shown for T iN films). 19
1.12 The evolution of density of states of three TiN films with increasing disorder

[55]. The plots show a very deep pseudogap which survives to an increasingly

large temperature at strong disorder. . . . . . . . . . . . . . . . . . . . . . . 19
1.13 The top figure [47] shows the contrasting thermal evolution of the local density

of states of two regions in an InOx film at strong disorder. Bottom [56] left

shows the inhomogeneities in a map of the gap �, while bottom right shows

the variation in spectra measured along a straight line in disordered TiN films. 20
1.14 Left: Intensity plots [60] of tunneling spectra for 6 samples with increasing

disorder. With increasing disorder, the depression in the middle survives to a

disorder independent scale T ? ⇠ 7K. Right: Phase diagram [60] showing the

superconducting, normal, pseudogapped and insulating states extracted from

the tunneling data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.15 Thermal evolution [61] of the zero bias tunneling conductance in a disordered

sample with Tc ⇠ 2.9K, showing the shrinking of the superconducting regions,

which finally disappear at Tclust ⇠ T ?. . . . . . . . . . . . . . . . . . . . . . 23
1.16 Schematic figure [6] showing the intragap impurity state formed due to the

presence of a single impurity in the density of states. The features at positive

and negative parts show the respective weights of the elctronic and hole com-

ponents of the states respectively. Depending on the density, the contributions

could in general be di↵erent, explaining the asymmetry of the diagram. . . 26
1.17 Local density of states far from (top) and over an isolated magnetic Mn impu-

rity in a single crystal Nb(110) sample used by Yazdani et. al. [71] .While the

top plot is perfectly fitted by the BCS form, the bottom figure clearly shows

the presence of intragap features, reflecting the intragap state formed due to

the presence of the impurity. . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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1.18 Left: Schematic picture [6] of the quantum phase transition, showing the un-

polarized initial ground state, and the polarized final ground state beyond the

transition, where a spin is extracted from the condensate to form a singlet

with the impurity spin. Right: The level crossing between the initial ground

state  0 and the final one,  1 with increasing coupling W . . . . . . . . . . 28
1.19 Left:Comparison of the dependence of Tc with impurity concentration nimp

of several samples [76]. with the theoretical curve, showing a close match.

Right: The evolution of the density of states [6] with increasing impurity

scattering time ⌧�1
s ⇠ nimpJ2 according to the Abrikosov-Gorkov theory [77].

The impurity states are always produced at the gap edge and below the critical

point, there is always a hard gap in the system. . . . . . . . . . . . . . . . . 29
1.20 The contrasting evolution of the density of states for weak coupling (right) and

strong coupling (left) with increasing concentration [6]. At weak coupling, the

extra subgap states are formed close to the gap edge and slowly close the

density of states until it is gapless. At strong coupling, the impurity states

form a band inside the gap, and if the coupling strength is large enough,

the bottom of the band reaches the Fermi surface before the top reaches the

continuum to the right, and the gapless regime is enhanced. . . . . . . . . . 30

2.1 Basic thermal scales of the BCS-BEC crossover [4]. Left: Schematic diagram

for the crossover in continuum, from a Fermi liquid to the left to a Bose liquid

to the right, where the Tc increases initially and gradually saturates as pairs

form with mass 2m. The dashed line shows the evolution of the pairing scale

T ?. Right: BCS-BEC crossover on a lattice, where Tc / (1/U) at strong

coupling (see text). Basic physics arises due to the competition between two

scales, the pairing scale Tpair = T ? and the sti↵ness scale Tphase. . . . . . . . 35
2.2 Schematic diagram of the self consistency loop [112]. An initial guess of the

Green’s function provides the susceptibility �, which is then used to calculate

the T-matrix T , which leads to the self energy ⌃, which is used to calculate

the Green’s function again, completing the loop. DFT is discrete Fourier

transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 Left: Tc and other thermal scales calculated using the method of Ref [114]. in

two dimensions. Right: Density of states data calculated using the method of

Ref [113] , showing accurate match with QMC data (dashed lines). . . . . . 40
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2.4 Schematic diagram [121] of the physics of the competition between the Coulomb

repulsion and the attractive interaction induced by electron-phonon interac-

tions in a clean superconductor. The repulsive interaction (red dashed line)

is defined at the Fermi energy EF and is renormalized down. The attractive

interaction (blue dashed dotted line) is defined at the Debye energy !D and

its strength increases with decreasing energy, diverging at a nominal tempera-

ture T a
c . The combined interaction (orange line), if attractive at !D, becomes

stronger under further renormalization until it diverges at the true Tc of the

system. Disorder changes this physics, strengthening the Coulomb interaction,

and hence decreases the overall attraction. . . . . . . . . . . . . . . . . . . . 44
2.5 Left: Results from perturbation calculations in Ref. [122], showing the strong

decrease at large disorder (x axis is proportional to R⇤. Right: Renormaliza-

tion group calculations of Ref. [123] compared to experimental data, showing

a very good match. Note the slower fall at stronger disoder, contrary to the

perturbation calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6 Schematic figure [131] of the evolution of superconductivity with increasing

disorder as postulated by the fermionic mechanism. The superconductor con-

sists of coherent pairs with finite order parameter � and sti↵ness Ds. With

increasing disorder both � and Ds decrease due to increasing Coulomb repul-

sion, until they vanish at the critical point. Beyond this, all pairs are broken,

and the system properties are determined by free fermions in a disordered

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.7 Left: Schematic resistivity from bosonic mechanism [133], showing the hori-

zontal critical line, along with the universal value, and other resistivity lines

diverging from it. Right: Experimental data from Ref. [132] , in agreement

with this theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.8 Schematic picture of optical conductivity calculated from Mattis-Bardeen the-

ory (left) [136] and results from QMC calculation using the quantum XY model

in Ref. [134] (right). Top right plot is at weak disorder, far from the critical

region, middle right is near the critical region, clearly showing enhanced low

frequency weight, which again decreases as one goes beyond it into the insula-

tor (bottom right). This is in contrast to the mean field theory results, which

show zero conductivity between ! = 0 and the single particle gap 2�. . . . 49
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2.9 Schematic figure [131] of the evolution of superconductivity with increasing

disorder as postulated by the bosonic mechanism. The superconductor con-

sists of coherent pairs with finite order parameter � and sti↵ness Ds. With

increasing disorder, increasing phase fluctuations results in a decrease in Ds,

while the gap parameter � remains the same. The disoder causes the bosonic

pairs to lose long range coherence, and increased phase fluctuations among

these pairs drives the system insulating. In the insulating regime, the bosonic

pairs are incoherent, but the single particle gap reimans (the variation shown

in the single particle gap is determined from calculations using fermionic mod-

els,see numerical methods section). . . . . . . . . . . . . . . . . . . . . . . . 50
2.10 Left: Map of�i at strong disorder from BdG calculations [85], showing clusters

with large�i embedded in regions with very small�i. Right: Density of states

at T = 0 at three di↵erent disorder strengths [85], showing the persisting gap

even at high disorder, and decreasing coherence peaks with disorder. . . . . 51
2.11 Phase correlation between edges (red) and order parameter � with increasing

magnetic flux �/�0 at weak disorder (top) and strong disorder (bottom) [87].

While the top shows a suppression of both the order parameter and phase

correlation, both of which vanish at the transition point, the bottom one shows

that the order parameter remains finite, but enhanced phase fluctuations drive

the transition, causing the phase correlations to vanish. . . . . . . . . . . . 52
2.12 Phase diagram from QMC calculations [88]. Blue line shows the Tc degradation

with disorder V , vanishing at Vc ⇠ 1.6t. Single particle gap !dos persists

through the transition, while a two particle correlation gap !pair vanishes as

one goes from the insulator to the superconductor. . . . . . . . . . . . . . . 53

3.1 (a). Temperature dependence of the q = {0, 0} component of the pairing

field correlation for di↵erent U/t. The onset locates the superconducting Tc.

(b). The Tc inferred from the structure factor result. This is compared to QMC

results at the end of the paper. (c). Ratio of T = 0 gap 2�0 to Tc. In the BCS

limit the ratio would be ⇠ 3.5. (d). The ‘phase diagram’ in terms of the low

frequency behaviour of the density of states. The high temperature normal

state has three regimes, ungapped (UG), pseudogapped (PG) and gapped (G),

while for T < Tc the system is a gapped superconductor (SC) exact definitions

of these phases are given in the text. . . . . . . . . . . . . . . . . . . . . . . 77
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3.2 Maps of amplitude fluctuation and phase correlation for single configurations

at U/t = 2 (top), U/t = 6 (middle) and U/t = 10 (bottom) at three tem-

peratures: T = 0.1Tc, T = Tc and T = 2Tc (left to right). For each set, the

upper row shows the amplitude |�i| (normalised by the T = 0 mean field value

�0) for a MC configuration, while the lower row shows the phase correlation:

�i = cos(✓i � ✓0), where ✓0 is the phase at a site R0 near the center. . . . . 79
3.3 (a)-(c). The distribution P (|�|) of the magnitude, |�|, of the pairing field.

The x-axis is normalised by the mean field value �0 at T = 0. The results are

for T = 0.1Tc, 0.5Tc, 1.0Tc, 2.0Tc. (a). U/t = 2, (b). U/t = 6, (c). U/t = 10.

At U/t = 2 there is a prominent increase in the mean and width of P (|�|)
with T . This T dependence weakens with growing U/t. (d). The growth of

the mean value h|�|i and width !� with T . Both are normalized by the T = 0

mean value of �. The firm lines denote the mean |�|, while the dot-dashed

lines show the corresponding width. . . . . . . . . . . . . . . . . . . . . . . 80
3.4 Temperature dependence of the DOS, N(!) at di↵erent couplings. Panels (a)-

(c) have the same legends. (a). U/t = 2, (b). U/t = 6, and (c). U/t = 10.

The oscillations in the DOS in panel (a) are finite size artifacts (even on a

24 ⇥ 24 lattice). At U/t = 2 the gap essentially vanishes at T ⇠ Tc, while

at U/t = 6 a small ‘hard gap’ persists to Tc and above, although lorentzian

broadening gives the impression of a pseudogap at the highest T . For U/t = 10

a ‘hard gap’ persists to T ⇠ 0.5 although with a clear reduction with increasing

temperature. (d). Variation in the single particle gap, normalised by its T = 0

value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.5 Plot of A(k,!). The rows, left to right, are for U/t = 2, 6 and 10. Columns,

top to bottom, correspond to 0.1Tc, Tc and 2Tc. The momentum, on the x-

axis, is scanned as (0,0) ! (0,⇡) ! (⇡,⇡) and back through (⇡/2,⇡/2) to (0,0)

along the diagonal. These points are labelled as A, B, C and D respectively.

The gaps are lowest around (⇡/2, ⇡/2) and (⇡, 0), where the Fermi-surface of

the free system intersects our path in k-space. Increasing temperature causes

broadening and a decrease of the gaps, which close in the case of U = 2t.

The increasing symmetry of the low T graphs with increasing U signals the

participation of states far from the FS in pairing. . . . . . . . . . . . . . . . 82
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3.6 Spectral function A(k,!). The panels in the top row are for k = {⇡, ⇡}.
(a). U/t = 2, (b). U/t = 6, (c). U/t = 10. Bottom row, k = {⇡/2, ⇡/2}, and
interaction strengths: (d). U/t = 2, (e). U/t = 6 and (f). U/t = 10. For each

U we show data at T = 0.5Tc, Tc and 2Tc. The frequency axis is normalised

by the k dependent mean field energy E0
k at T = 0. For k = {⇡, ⇡}, which

is outside the non interacting Fermi surface, the basic structure consists of

large peak at positive energies ! ⇠ E0
k, a broad negative energy feature at

! & �E0
k, and for T < Tc a remnant of the quasiparticle peak at ! = �E0

k.

Beyond weak coupling the survival of a two peak structure even for T > Tc

indicates ‘incoherent pairs’. For k = {⇡/2, ⇡/2} the features are similar to

what we observe at k = {⇡, ⇡}, except the quasiparticle peak is no longer

separately visible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.7 (a) Comparison of our Tc (labelled SAF) with QMC [165] on a 10 ⇥ 10 lattice,

and the semi-analytic method employing the fluctuation exchange approxima-

tion (FEA) [151] . DMFT results [166] overestimate the Tc significantly, and

also the location of peak Tc, and have not been included in the same plot.

(b) Size dependence of our result, showing that the Tc estimate is almost size

indepenedent beyond L = 16. . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.8 Parameters defining the phenomenological model. (a) The parameter a(T, U),

(b). the parameter b(T, u), and (c). the sti↵ness J(T, U) of the e↵ective XY

model for the phase degrees of freedom. a and b are normalised to their T = 0

values. Notice the essential flatness of a(T ) and b(T ) at U = 10t, the weak

T dependence at U = 6t, and the dramatic variation with T at U = 2t. J

similarly is only weakly T dependent for U & 6t and varies strongly with T at

weak coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.9 (a) Comparison of Tc with and without � fields and corresponding QMC results

at size 10 ⇥ 10 [165]. Inclusion of � fields brings Tc in closer correspondence

with QMC. (b), (c) and (d) compare the density of states for the same two

cases at U/t = 2, 6 and 10 respectively, at T/Tc = 0, 1.0 and 2.0 respectively.

The firm lines show the two fields results, while the circles of same colour show

the single field results. There are small di↵erences, but on the whole, they are

very similar to each other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
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4.1 The disorder dependence of resistivity calculated using QMC [141] for U/t = 3,

4 and 6. Shows that d⇢/dt changes sign at the critical disorder Vc at all coupling

values, going from metallic (d⇢/dt > 0) to insulating (d⇢/dt < 0). Does not

manage to capture the interesting behaviour at intermediate disorder seen in

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2 (a): Phase diagram for U = 2t showing the superconducting (SC), and the

following non superconducting phases: gapped (G), ungapped (UG) and pseu-

dogapped (PG). The SC Tc is determined from the behaviour of S(q = 0),

whose temperature dependence at various disorder is shown in (b). We take

the critical disorder Vc ⇠ 2t. The tail shows the exponentially small super-

conducting Tc surviving beyond Vc. A normal state pseudogap shows up for

V & 0.25Vc and for V & 0.75Vc the T & Tc phase actually has a hard gap. The

crossover between pseudo-gapped and notionally ungapped phase is shown by

the green area. The blue dashed line shows the transition from an ‘insulating’

(d⇢/dT < 0) to ‘metallic’ regime, which lies within the broad crossover. . . . 98
4.3 (a) The resistivity, ⇢(T ), measured in units of ⇢0 = ~/(⇡e2), evolving from

metallic to insulating behaviour in the normal state with growing disorder. For

V . 0.25Vc, it is metallic, between 0.25Vc . V . 0.75Vc, it is mixed, showing

a thermal transition from ‘insulating’ at low T to weakly ‘metallic’ at larger

T . Beyond V = 0.75Vc, the low T behaviour is exponential ⇢(T ) / e�g/T ,

with �g increasing with V . This is highlighted in (b), where we see that such

a fit ceases to be valid below V ⇠ 0.75Vc. . . . . . . . . . . . . . . . . . . . 99
4.4 Density of states at U = 2. (a) The DOS at low temperature, showing the

persistence of a gap at all V , while the coherence peaks are di�cult to discern

beyond V ⇠ 0.75Vc. (b) Temperature dependence of the DOS for V = 0.5Vc,

already showing a noticeable pseudogap for T > Tc. (c) Same as (b) but for

V ⇠ Vc, where the system is insulating at all temperature. (d) Temperature

dependence of N(0), the DOS at the Fermi level, for di↵erent disorder. . . . 101
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4.5 Optical conductivity and low frequency optical spectral weight. (a) The be-

haviour of �(!), measured in units of �0 = ⇡e2/~, over a wide frequency range

for disorder varying across the SIT. The temperature is T = 0.2T 0
c . (b) The

low frequency behaviour of �(!) for varying V (same legends as in panel (a)),

at T = 0.2T 0
c . (c) Same as in (b), now at T = 0.7T 0

c . Notice the absence

of any gap, and the low frequency upturn, in samples with V = 0.25Vc and

V = 0.5Vc which are still below their respective Tc. (d) Disorder dependence

of the low frequency optical spectral weight, w(V,⌦), see text, at di↵erent T .

Inset shows low frequency weight of the single particle spectrum. . . . . . . 103
4.6 (a): Size dependence of clean resistivity. (b), (c) and (d): Dependence on the

averaging interval �! at weak (V = 0.25Vc), moderate (V = 0.5Vc) and strong

(V = 0.75Vc) respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.7 E↵ective disorder V eff

i = Vi � �i with increasing disorder. . . . . . . . . . . 107
4.8 Vortex density and structure factor with temperature for (a):U/t = 2 and

(b):U/t = 10. The black lines denote the results from our calculations while

the red lines denote corresponding XY model results with the same Tc. . . . 108

5.1 Maps of the tunneling conductance integrated over a narrow frequency window

around the coherence peak feature in the LDOS (see text). Rows, top to

bottom, V = 0.2Vc, 0.5Vc, 0.9Vc. Columns, left to right, T/Tc(V ) = 0, 0.5, 1.0.

Thermal average over 100 configurations. . . . . . . . . . . . . . . . . . . . 116
5.2 Spatial maps at V = 0.9Vc. 1st row: h|�i|i, 2nd row: phase correlation

�i, 3rd row: tunneling conductance T gap
i , 4th row: T coh

i . The notation is

explained in the text. Columns, from left to right, are for T = 0, Tc, 2Tc. The

interpretation of these patterns is discussed in the text. . . . . . . . . . . . 119
5.3 Spatial maps at U = 2 and V = 0.5Vc. First row: h|�i|i, second row: phase

correlation �i (see text), third and fourth rows show the tunneling conductance

averaged over two frequency (or bias) windows !gap and !coh. Along the row:

temperatures T = 0, 0.4Tc0 and 0.8Tc0. h|�i|i at low T forms phase correlated

clusters, which shrink in size as T is increased. h|�i|i is weakly inhomogeneous

at low T , and smoothens with increasing T . �i decrease with T and vanishes

almost homogeneously at Tc (not shown, but between 0.5Tc0 and Tc0.) The

subgap region lights up with increasing T , due to the transfer of spectral weight

to low frequency, while the plot for !coh loses intensity. . . . . . . . . . . . . 120
5.4 Thermal evolution of the gap and coherence peak height distribution. Top:

Gap distribution for V = 0.2Vc (left) and 0.9Vc (right). Bottom: Coherence

peak height distribution at same V . T/Tc(V ) = 0, 0.5, 1.0. . . . . . . . . . . 121
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5.5 Local DOS on a typical ‘plateau’ site (top) and ‘hill’ site (bottom). The

left panels (a) & (c) are at V = 0.2Vc, the right panels (b) & (d) are for

V = 0.9Vc. In each panel the low energy DOS is shown for four temperatures

T ⇡ 0, 0.5Tc, Tc, 2.0Tc. The curve at 0.5Tc has been omitted in (b) for clarity. 122
5.6 Gap maps for 3 cases, T = 0. Left: Original calculation, showing patches with

low gaps, idential to the correlated patches. Middle: With Vbare, scaled to

lie between (�V � 2,V ), showing low gap patches with same basic structure;

Right: with Veff , increasing the contrast of the original V , gives similar map,

with gaps of the insulating regions raised substantially. . . . . . . . . . . . . 124
5.7 Comparison of location of ‘plateau’ sites (see text) inside superconducting

clusters (left) with the same outside clusters (middle) at V = 0.9Vc, T =

0. Right figure shows the spatial plot of |�i| for reference. ‘Pleateau’ sites

form a backbone over which the superconducting clusters are formed. In the

insulating area, ‘hill’ or ‘valley’ sites (see text) predominate, ruling out the

formation of SC clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.8 Left: Distribution of nearest neighbour Jij at di↵erent disorder, showing suc-

cessive broadening with disorder, but even at strong disorder, a finite number

of sites have J ⇠ O(J0). Right: Spatial map of Jij, at V = 0.9Vc, showing

that the large values of Jij correspond to the centres of the SC clusters. . . 125
5.9 Comparison of correlated patches for V = 0.8Vc for successive T points using

the full Monte Carlo (top) and the simplified XY model (bottom). The basic

phenomenon of an island pattern at low T , and shrinkage of these clusters

with increasing temperature is well captured by the simplified model. . . . . 126
5.10 Phase diagrams showing superconducting (SC), gapped (G), pseudogapped

(PG) and ungapped (UG) phases, and the cluster vanishing scale Tclust (green

dashed lines) at U = 2 and 4 (see text). . . . . . . . . . . . . . . . . . . . . 128

6.1 Top row: Spatial maps of left: |�| and right: Phase correlation Pi (see text)

at J = Jc = 1.2. Below Jc both are uniform, while after the phase transition

has taken place, |�| at the impurity site decreases in magnitude and changes

phase by ⇡. Bottom row shows the density of states for di↵erent J . As J

increases, impurity level moves from edge of gap inwards, crosing ! = 0 at Jc. 132
6.2 Superconducting order parameter S(q = 0) -vs- T at J = 0.5, 0.75 and 1.0

at various concentrations ⌘, demonstrating the suppression and eventual de-

struction of superconductivity. The critical concentration ⌘sc(%) is ⇠ 70, 40

and 30 for the three J values respectively. . . . . . . . . . . . . . . . . . . . 134
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6.3 ⌘ � T phase diagrams for J = 0.5, 0.75 and 1. G-SC, GL-SC/GL and N de-

note the gapped superconducting, gapless superconducting and normal phases

respectively. As we increase J , ⌘c decreases from around 80% for J ⇠ 0.5 to

30% for J ⇠ 1. The gapless fraction increases substantially from ⌘g/⌘c ⇠ 0.83

for J = 0.5 to 0.25 at J = 1. Bottom right shows a J vs. ⌘ phase diagram

at low T , using data from the three J points and extrapolating them to the

limits J ! 1 and ⌘ ! 100 respectively. . . . . . . . . . . . . . . . . . . . . 135
6.4 Density of states for J = 0.25,0.5, 0.75 and 1 at various concentrations ⌘

at T = 0. At J = 0.25, there is a very small narrowing of the gap with

increasing ⌘, impurity levels are at the edge. As J increases, impurity levels

move inwards and with increasing ⌘, close the gap at some ⌘g(J) to form a

gapless superconducting phase.⌘g decreases from 60% at J = 0.5 to only 8%

at J = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.5 Spatial plots for for J = 1 at ⌘ = 2%,12% and 30% at T = 0. Upper panel

shows the impurity positions. Middle panels show the thermally averaged

|�i|, while bottom panels show the phase correlation (see text). At ⌘ = 2%,

the system is a uniform superconductor. At 12%, �i are depressed in many

impurity positions, however, the phase correlation seems uniform except for

three sites. At ⌘ = 30% ⇠ ⌘c, �i is small at most sites, while the phases are

randomly oriented, signalling the transition to a non superconducting metal. 138
6.6 Spatial plots for for J = 0.5 at ⌘ = 12%,44% and 70% at T = 0. Panels same

as Fig.6.6. Shows much more homogeneous behaviour than J = 1, with the

system being largely homogeneous and phase coherent even around ⌘ ⇠ 60%,

where the system becomes gapless. However, the eventual destruction at ⌘ =

70% is brought about by almost complete suppression of all �i, just like at

J = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.7 Density of states for J = 0.5 and 0.75, at two values of ⌘, 32% and 60%,

and 12% and 24% respectively. Four temperature values are given by 0.1Tc0,

0.5Tc0, Tc0 and 1.5Tc0, where Tc0 ⇠ 0.07t is the clean transition temperature.

The evolution is along expected lines starting from the T = 0 values, with no

outstanding features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
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6.8 Spatial signatures of thermal evolution for J = 1 (top two rows) and J =
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CHAPTER1
INTRODUCTION

Superconductivity is a fascinating example of correlated quantum behaviour driven by an effective
attractive interaction between electrons [1]. When cooled below a critical temperature Tc, which is
usually very low, these materials show a remarkable set of properties, including vanishing electrical
resistance and perfect diamagnetism. These fascinating properties have ensured that superconduc-
tivity has continued to be an active field of research since its discovery in 1911 by Kammerlingh
Onnes.

The basic characteristics of a superconducting state are (i) the pairing of two electrons to form
a bound state called a Cooper pair, and (ii) the condensation of these Cooper pairs to form a macro-
scopic, coherent quantum state. While the first phenomenon shows up as a finite gap in the single
particle density of states, the formation of a coherent state leads to a finite phase stiffness, that is, a
finite amount of energy is required to twist the phase of the condensate.

Decades of theoretical effort culminated in the development of the famous Bardeen-Cooper-
Schreiffer (BCS) theory [2], which provided a satisfactory explanation of conventional supercon-
ductors. While the mean-field ideas of BCS continue to be relevant to later discoveries in super-
conductivity, many of their specific predictions need to be modified when one encounters situations
involving

1. Strong interaction between electrons. This causes the well known BCS to Bose-Einstein
condensate (BEC) crossover [3, 4], where the system evolves from the BCS state (of large
overlapping pairs) to a BEC of strongly bound pairs that act as effective bosons.

2. Presence of significant potential scattering, which can suppress superconductivity and de-
stroy it eventually, causing a superconductor-insulator transition (SIT) [5]. This is further
accompanied by a metallic to insulating crossover in the high temperature resistivity, a sup-
pression (pseudogap) in the single particle density of states near the Fermi energy, and con-
siderable inhomogeneity in the underlying superconducting state.
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3. Coupling to magnetic impurities [6], which can cause a rapid suppression and destruction of
superconductivity, along with the presence of a window of gapless superconductivity.

4. Proximity to other ordered phases.

Quite generally, these may require us to handle inhomogeneous ground states (which in prin-
ciple can occur within the BCS scheme itself) and quantum and thermal fluctuations of the ‘order
parameter’.

This motivates the primary focus of the thesis: understanding the role of strong disorder in
superconducting systems, in particular the thermal fluctuations that occur on the inhomogeneous
background. We would want to study these effects in the presence of ‘potential’ disorder as well
as magnetic impurities. However, to get to these relatively less explored problems we first bench-
mark our method on a well studied problem - the BCS to BEC crossover with increasing pairing
interaction in a Fermi system.

In this chapter we first provide a basic review of superconductivity. This is followed by a discus-
sion of disorder in metals, and a heuristic discussion of the phenomenon of Anderson localization.
Finally, we move on to our main topic, disordered superconductors, and review the extensive body
of experimental results that exists on the subject. We focus mainly on potential disorder, in view of
the large body of work in this field, and considerable current interest driven by recent advances in
scanning tunneling spectroscopy (STS) [7]. At the end, we provide a brief description of available
data on magnetic impurities in superconductors.

1.1 Basic concepts of superconductivity

1.1.1 Zero resistivity

A superconductor is characterized by the unique property of zero resistance in the superconducting
state. This was the basis for the discovery of superconductivity by Kammerlingh Onnes in 1911 [8].

While studying the resistance of Hg at very low temperatures, he observed the abrupt vanish-
ing of the resistance at around T ⇠ 4.2K, as shown in Fig.1.1. In the ensuing decades, the same
signature was observed in a number of materials, including Pb, NbB2, MgB2 etc. While the critical
temperature for the older superconductors was very low the discovery of ‘unconventional’ super-
conductivity in the cuprates increased the scale considerably. For mercury based cuprates it can be
as high as 130K.
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Figure 1.1: The resistivity of Hg [8] as measured by Kammerlingh Onnes, showing a supercon-
ducting transition at 4.2K.

1.1.2 Meissner effect

The other important property of all superconductors is perfect diamagnetism, that is, the ability to
expel all magnetic field from its interior when placed in an external magnetic field. This was first
noticed by W. Meissner and R. Ochsenfeld in 1933 [9]. As shown in Fig.1.2, when a supercon-
ducting material is cooled below its transition temperature in a small magnetic field, all the field
lines inside the material are ejected outside. The magnetic field induces surface currents in the
superconducting state, and the internal field produced by these exactly cancel the externally ap-
plied field inside the material, thus displaying a kind of perfect diamagnetism. The magnetic field
is not strictly expelled from the whole body though, and manages to penetrate a small distance �
into the material, known as the penetration depth. The Meissner effect is an additional attribute of
superconductors. A ‘non-superconducting’ perfect conductor (which also has zero resistivity) will
not show this effect.

Figure 1.2: A cartoon illustrating the Meissner effect. The magnetic field lines penetrating the
material at T > Tc are expelled ouside the body for T < Tc [10].
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While a superconductor shows perfect diamagnetism at weak fields, strong enough fields can
destroy the superconducting state. Once the magnetic field reaches a critical value (say, Hc), the
superconducting state is destroyed abruptly in most elemental superconductors. This also gives us a
measure of the energy of stability of the superconductor; since an external magnetic field increases
the energy of the system by an amount H2/8⇡ per unit volume, it follows that the energy of the
superconducting state is lower than that of the normal state by H2

c /8⇡.

1.1.3 London equations

The London brothers provided the first phenomenological explanation of the twin properties of
zero resistivity and perfect diamagnetism [11]. They proposed the equations

@Js/@t = (nse
2/m) ~E

~r⇥ Js = �(nse
2/m) ~B

Here, Js is the superconducting current, ~E and ~B are the electric and magnetic fields inside the su-
perconductor, e and m are respectively the electron charge and mass and ns is a phenomenological
‘superfluid density’ characterizing the number density of superconducting carriers. Intuitively, the
first equation simply says that the change in the supercurrent is proportional to the external electric
field, as it should without any resistance in the superconducting state. The second, when combined
with Maxwells’ equation ~r⇥ ~B = µ0Js, gives

r2 ~B = ~B2/�

where � = (m/µ0nse2)1/2. The solution of this equation, B ⇠ B0exp(�x/�), provides an ‘expla-
nation’ of the Meissner effect and an estimate of the penetration depth �.

1.1.4 Flux penetration

The abrupt destruction of superconductivity with increasing magnetic field happens for most ele-
mental superconductors, but there is another important class of superconductors (comprised mainly
of alloys and compounds) in which the process happens very differently. Here, the material shows
perfect diamagnetism upto a lower critical field, Hc1, but beyond this the magnetic field starts to
penetrate the material, giving rise to a unique vortex state where superconducting and normal re-
gions exist side by side. As the field is increased further, the superconducting regions shrink, and
beyond a second critical field, Hc2, superconductivity is destroyed completely. These two types are
called Type I and Type II superconductors respectively. Fig.1.3 shows the contrasting behaviour of
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the two classes under an external magnetic field.

Figure 1.3: A schematic diagram illustrating the different response of Type I and Type II super-
conductors to an external magnetic field [12].

Coherence length

The difference in the two types of superconductors is caused by the relative magnitude of two funda-
mental length scales, namely, the penetration depth � that we discussed earlier, and the coherence
length ⇠, introduced first by Pippard [13] in a non-local generalization of the London equations.
Pippard argued that the superconducting current at a point should depend on the superconducting
wave function over a length scale ⇠. He also provided a crude estimate for ⇠: With �E ⇠ kTc, we
get, for the momentum uncertainty, �p ⇠ kTc/vF (vF is the Fermi velocity), which gives a length
scale �x ⇠ ~vF/kTc. With the definition ⇠ ⇠ a�x, where a ⇠ O(1), Pippard managed to fit his
theory to a lot of experimental data that could not be understood from a local picture.

The two scales, � and ⇠ provide us with an intuitive understanding of the contrasting behaviour
of Type I and Type II superconductors. Fig.1.4 shows the interfaces for two cases, � ⌧ ⇠ and
� � ⇠. The first, corresponding to Type I superconductors, turns out to have positive interface

Figure 1.4: Interfaces of Type I (� ⌧ ⇠) and Type II (� � ⇠) superconductors. The first has
positive interface energy, favouring a uniform state, while the second, with negative energy, favours
the mixed vortex state of Type II superconductors [14].

5



energy which favours a uniform state until it is destroyed by the magnetic field, while the second
has negative energy, which favours as many such interfaces as possible, resulting in the intermediate
state of Type II superconductors.

1.1.5 Landau-Ginzburg theory

While the London equations provided an intuitive understanding of the Meissner effect and the
infinite conductivity, it could not provide insight into the evolution of the superconducting prop-
erty of the system in situations other than those involving electric and magnetic fields. Landau
and Ginzburg developed a phenomenological theory [1, 15], based on Landau’s concept of an or-
der parameter, which was able to provide several results about the superconductor under varying
conditions of temperature, field, etc.

The theory starts by defining an order parameter, a superconducting wavefunction  (x), so that
the superconducting electron density is given by

ns = | |2

Now, in the regime where the order parameter value is small ( ⌧ 1) and it varies slowly in space,
the superconducting free energy of the system, in the presence of a magnetic field, can be written
as an expansion in powers of the order parameter and its gradients:

f = f0 + ↵| |2 + �| |4 + (1/2m?)|(�i~~r� e? ~A) |2 +B2/8⇡

Here, m? and e? are the effective mass and charges of the ‘particle’ corresponding to the wave
function, which would turn out to be equal to twice those of an electron due to the formation of
Cooper pairs. Here, as is usual for a Landau theory of second order transitions, � is assumed
positive throughout while ↵ changes sign at the transition temperature Tc:

↵ = ↵0(T/Tc � 1)

The minimization of energy with respect to  and B provide the Landau-Ginzburg equations.
Since the functional incorporates the energy cost associated with a slowly varying wavefunction,
this theory is especially suited for application to situations which involve inhomogeneities in the
order parameter, corresponding to, for example, interfaces between superconducting and non-
superconducting regions. Hence, one can work out the two basic length scales, � and ⇠ in terms
of the phenomenological parameters ↵ and � and thus also study the phenomena of Type I and II
superconductors. In fact, the most remarkable achievement of this theory was the prediction by
Abrikosov [16] of a vortex lattice in Type II superconductors. The deep intuition and success of
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this theory was recognised by the award of the Nobel Prize to Ginzburg and Abrikosov in 2003.

1.1.6 BCS theory

While the London equations provided an intuitive understanding of zero resistivity and the Meiss-
ner effect, a satisfactory microscopic understanding was only achieved in 1957 with the BCS the-
ory [2]. This triumph was built upon the crucial earlier work of many other scientists. The isotope
effect [17] showed the importance of the electron-phonon interaction, which led to the work by
Frohlich [18], showing that an effective attractive electron electron interaction can result from the
electron phonon coupling in the material. Also, the presence of a critical field and experimental re-
sults [19] showing the exponential temperature dependence of the specific heat at low temperature
pointed to the presence of a gap in the excitation spectrum [20], hinting at some form of binding in
the superconductor. This focussed the attention on building a theory which included bound states
between pairs of electrons, and macroscopic coherence among these states. This led to many un-
successful attempts [21], including using the concept of Bose-Einstein condensation (BEC), before
finally culminating in the development of the BCS theory.

Basic concepts

The basic ingredients of the BCS theory are the following:

1. There is an attractive interaction between electrons in the narrow range (✏F � !D, ✏F + !D),
where !D is the Debye frequency, mediated by electron phonon interactions. Cooper showed
that the presence of such an interaction always causes a bound state, so that the Fermi sea
becomes unstable to the formation of such bound pairs. The lowest energy states are made
of pairs with zero total momentum, between states k " and �k #.

2. BCS argued that the large number of particles involved in the process in most real materials
validates the use of a mean-field theory, where the occupancy of any pair depends only the
average occupation of the other energy levels (in pairs), and fluctuations can be neglected.
This leads to the BCS ground state wavefunction

| 0i =
Y

k

(uk + vkc
†
k"c

†
�k#)|0i

3. The fact that opositely paired bound states have lowest energies motivates the reduced BCS
Hamiltonian:

HBCS =
X

k�

⇠knk� +
X

kl

Vklc
†
k"c

†
�k#c�l#cl"

.
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Solution and results

The parameters uk and vk can be determined via a variational approach. It also determines the
order parameter�, whose value characterizes the superconducting state. Since, the relevant energy
range of the interaction is small, ⇠ O(2!D) << EF , Vkl is assumed to be a constant, V , in this
range. The important results are the following:

1. The T = 0 state is superconducting, and characterized by u2
k = (1/2)(1� ⇠k/Ek), v2k = 1�

u2
k, with Ek =

p
(⇠2k +�

2), where� is an order parameter characterizing the superconduct-
ing state, obtained from a self consistency condition. At T = 0, � ⌘ �0 ⇡ 2~!De�1/N(0)V

in the so called ‘weak coupling’ regime where N(0)V << 1.

2. The superconducting ground state is lower in energy than the corresponding normal state
by an amount (1/2)N(0)�2

0. An elementary excitation requires a minimum energy � to be
formed, impying a gap in the single particle spectra.

3. The single particle spectrum has square root singularities (called coherence peaks) at the gap
edge, and this is a characteristic feature of BCS systems.

4. The transition temperature, where �(T ) ! 0, is given by kTc = 1.13~!De�1/N(0)V . This
implies �0/kTc ⇠ 1.76, another characteristic of BCS systems.

Bogolyubov-Valatin canonical transformation

To gain more insight into the physics of the mean field theory, we analyse the BCS solution from a
slightly different, more modern, approach that does not require a variational ansatz for the ground

Figure 1.5: The temperature dependence of the order parameter � and the density of states,
according to BCS theory (from the internet).
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state. This method was first utilized for the BCS case by Bogolyubov and Valatin [22], and empha-
sizes the mean field concept of ‘factorizing’ the interacting part of the Hamiltonian into an effective
field times a quadratic combination of fermionic operators. We have,

HBCS =
X

k�

⇠knk� +
X

kl

Vklc
†
k"c

†
�k#c�l#cl"

.
Since the ground state is a coherent superposition of pairs |k "i and |�k #i, one expects that the

expectation values hc�k#ck"i will be non-zero, and the mean field treatment would further assume
that the fluctuations would be small. This motivates us to express the product as

c�k#ck" = bk + (c�k#ck" � bk)

Here bk denotes the non zero average of the product of the operators, while the term in paranthe-
sis denotes the fluctuations. Since these fluctuations are small, one neglects terms ⇠ O((c�k#ck" �
bk)2) in the final expression. Thus, we have

HBCS =
X

k�

⇠knk� +
X

kl

Vkl(c
†
k"c

†
�k#bk + c�l#cl"b

?
k � b?kbl)

Now, with the substitution �k = �
P

l Vklbl, one gets

HBCS =
X

k�

⇠knk� +
X

k

(�kc
†
k"c

†
�k# +�

?
kc�k#ck") +

X

k

�kb
?
k

Thus, the interacting part of the Hamiltonian is ‘factorized’ into a product of a mean field (�k

here) and a quadratic combination of fermionic operators. This Hamiltonian, being quadratic, can
now be solved by a canonical transformation to yield the BCS solution for a uniform, single �.

Apart from successfully predicting all the basic characteristics listed above, BCS theory has
also been applied to other situations [1], including acoustic and electromagnetic attenuation, nu-
clear spin relaxation, and a number of tunneling results. However, as mentioned earlier, it begins to
fail when the coupling is comparatively large, or, more interestingly, when the system is highly dis-
ordered. Before describing disordered superconductors, however, we provide a basic introduction
to disorder and its effects on normal metals in the next section.

1.2 Disorder in metals

A fundamental classification of materials is as metals or insulators. Metals have d.c conductivity,
�dc, finite as T ! 0, while for insulators �dc ! 0 as T ! 0. At finite T , metals have d�dc/dT < 0,
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while for insulators d�dc/dT > 0. An ideal metal has infinite conductivity at T = 0 and is a
perfect conductor. At finite temperatures, Umklapp processes can provide a scattering mechanism,
resulting in a finite T dependent conductivity. However, real materials always contain disorder
in the form of dislocations, impurities etc., that induce random scattering and can have profound
implications on the conductivity of the material, especially when quantum interference effects are
taken into account. This section presents a brief summary of disorder and its effects, including
Drude’s classical theory, the concept of localization and, finally, modern scaling theory arguments.

1.2.1 Drude theory

The first comprehensive theory of electrical transport in disordered metals was provided by Paul
Drude in 1900 [23]. In his theory, electrons are assumed to be classical objects that are scattered
randomly by the heavier immobile ions present in a solid. The collisions impart an instantaneous
retarding force, and on an average, the electron travels through the material with a velocity vav.
The average time between collisions is ⌧ . Using this, Drude obtained

~J = (ne2⌧/m) ~E

Here, ~J is the current due to an external electric field ~E, n, e and m denote the number density,
electronic charge and mass respectively. This implied that the conductivity �, defined as J = � ~E,
is given by � = (ne2⌧/m).

1.2.2 The quantum approach

With the deveopment of quantum mechanics, the idea of electrons as balls bouncing off heavy ions
was invalidated. The perfect lattice structure of an ideal solid permits the classification of electronic
eigenstates in terms of Bloch states [24], and a perfect lattice should have infinite conductivity.
However, there is always disorder, in the form of impurities, dislocations and other irregularities in
the crystal structure. When such disorder is low, the problem can be analysed in terms of scattering
of Bloch waves by impurity potentials, and the concepts of Drude’s theory can be carried over with
a suitably defined ⌧ . This is true as long as the mean free path, l, of electrons in the material is
much greater than the Fermi wavelength �F = 2⇡/kF . In typical metals, where l ⇠ (104�106)�F ,
Drude’s theory works very well. With increasing disorder, however, l decreases, and when l ⇠ �F ,
the quantum effects become crucial. This condition, which can be re-expressed as kF l ⇠ O(1), is
known as the Ioffe-Regel criterion. Further increase in disorder leads ultimately to localization of
the electronic states.
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1.2.3 Anderson localization

The concept of localization was first put forward by P. W. Anderson in 1958 [25,26], to explain the
absence of spin diffusion in certain disordered lattices. He showed that sufficiently strong disorder
can profoundly alter the nature of the electronic wavefunctions in the material, and ultimately local-
ize them completely, so that the modulus of the wavefunction decays exponentially with distance,
| (r)| ⇠ exp(�r/⇠), where ⇠ is a localization length.

An intuitive understanding of localization effects can be provided from an analysis of the path
of an electron which starts from and returns to a given point r. From the principle of quantum me-
chanics, the total amplitude is given by the sum of all such paths. Now, since there is time reversal
symmetry, the time reversed counterpart of any given path has the exact same magnitude and phase,
and thus they interfere constructively, increasing the amplitude to return twofold compared to what
we would expect classically. This is known as weak localization, and calculations reveal that the
total conductivity is given by

� = �0(1� (1/2⇡kF l)ln(⌧0/⌧))

Here, ⌧0 is a cutoff provided by either inelastic scattering or the system size.
As the disorder is increased, we enter the regime of strong localization. In this situation, the

electron eigenstates at the extremeties of the band are localized, bound by deep fluctuations in the
random potential profile. However, at moderate disorder, states near the centre of the band can be
extended (in three dimensions), separated from the localized states by a mobility edge. With further
increase of disorder, eventually, all states would get localized.

1.2.4 Scaling theory

The first ideas on scaling theory were advanced by Thouless [27], who considered putting blocks of
a material of size Ld to build one of size 2Ld, where d is the number of dimensions. He reasoned that
the nature of the eigenstates in the final block will depend on (i) the level spacing �W in the initial
blocks, and (ii) the overlap integral �E, typically equal to the band spread of an energy level when
the original block is extended in one direction to form a periodic chain. Depending on whether
the ratio �E/�W is large/small, the eigenstates of the final block will be extended thoughout the
system/localized in one of the original blocks, and thus determine the transport properties of the
larger block. Thouless related this to the dimensionless quantity g = G/(e2/~), where G is the
conductance. This says that g is the single parameter that determines the behaviour of the system
under scaling.
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Figure 1.6: The scaling function �(g) for d = 1, 2 and 3 [26, 28]. Shows the existence of a critical
conductance signalling a metal-insulator transition (MIT) in 3D, while for d  2, � < 0 always,
showing that all states are localized.

Inspired by this, Abrahams, et al. [28], provided a single parameter scaling relation for g:

(d ln g(L)/d lnL) = �(g)

The nature of the scaling function �(g) can be determined from the limiting behaviour of the
system. When conductance is large, one can use the Drude relations to get

�(g) = (d� 2)

In the opposite regime of small conductance, since g(L) ⇠ exp(�L/⇠), we have

�(g) = � ln g

Using the two limits, one can get an idea of the behaviour of �(g), shown in Fig.1.6. It shows
the presence of a metal-insulator transition at a critical conductance gc in 3D, above which the
scaling function is positive (and hence the eigenstates are extended), while it is negative (eigenstates
localized) below. On the other hand, for d  2, all states are localized by arbitrary values of
disorder.
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1.3 Disordered superconductors

The contrasting transport properties of superconductors and disordered systems makes the problem
of disordered superconductors an intriguing one. The inevitable presence of disorder in all materials
also makes this a natural problem to study, and hence, this problem has been studied for a long time
now. Depending on the type of disorder, the effect it has on superconductivity varies sharply. While
superconductivity seems robust to moderate amounts of potential disorder, magnetic impurities can
destroy superconductivity even at low concentration.

In this section, we provide a review of disordered superconductors, concentrating on the large
body of experimental data that exists on the subject. In the first part we focus mainly on potential
disorder, and describe the experimental results on the subject. We follow this up by a brief de-
scription of available data on magnetic impurities in superconductors including a short summary of
results on the gapless phase.

1.3.1 Historical overview

The first experiments on disordered superconductors date from around the same time as the original
discovery of superconductivity. These concluded that the effects of such disorder was negligible
on the thermodynamic properties of the superconductor such as Tc. Several experiments down
the line also seemed to lead to the same conclusion, hinting at a remarkable robustness of the
superconducting state to non-magnetic disorder [29].

The first theoretical explanation was provided by Abrikosov and Gorkov [30], and followed
up by an intuitive argument by Anderson [31]. He explained that one could redo the whole BCS
pairing theory in terms of the exact eigenstates of the disordered material and their time reversed
counterparts. While the exact nature of these complicated eigenstates cannot be determined, the
average effect on thermodynamic properties such as Tc were shown to be negligible, as long as the
superconducting order could be assumed to be uniform.

However, these were followed up by a large number of experiments over the last few decades
which demonstrated the suppression and eventual destruction of superconductivity by strong disor-
der. They also revealed a metallic to insulating crossover in the normal state resistivity, a pseudogap
in the density of states, and spatial inhomogeneity (inferred from scanning tunneling spectroscopy
measurements [5]).

We expand on these observations below, in the context of materials like (i) thin films of Be
[32–37] and NbN [38], (ii) amorphous films of InOx [39–48] and TiN [49–56] and, (iii) three
dimensional NbN [57–62] films, focusing on:

• Resistivity and its dependence on temperature, disorder and magnetic field.
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• Tunneling density of states, as inferred from STS, and their detailed evolution with tempera-
ture and disorder.

• More recent STS maps, hinting at the inhomogeneity of the superconducting state.

1.3.2 Thin films of Be and NbN

Thin films of a substance can be prepared by depositing it on a substrate material by several meth-
ods, including magnetron sputtering. One can typically perform this process in several steps, re-
sulting in an array of films of different thicknesses, and make measurements on them. It is seen that
as the thickness decreases, so does the mean free path l, and thus the effective disorder increases.
This represents one of many different ways to control the disorder of a material. Other methods,
including formation of vacancies in the deposited material, will be discussed separately. Depending
on whether the thickness d is less than or greater than the coherence length ⇠, the system can be
considered effectively 2 or 3 dimensional, respectively. Here, we will consider Be and NbN thin
films and mainly concentrate on the results in 2 dimensions (even though one can study the effect
of dimensional crossover in these systems).

There is no conventional superconducting transition in two dimensions, following the Mermin-
Wagner theorem [63]. However, there is a different type of transition called a Berezinski-Kosterlitz-
Thouless (BKT) transition [64] at a temperature TBKT , where the system enters into a state with
algebraically decaying correlations instead of true long range order. This requires a little more
care in determining the transition temperature from transport data or measurements of superfluid
stiffness.

Transport

We begin with the electrical transport, one of the most important indicators of the properties of the
underlying state. Fig.1.7 shows the zero magnetic field resistance R for different thicknesses of
Be [35] and NbN [38] films respectively. All the Be films (thickness . 1nm) and the NbN films
with d . ⇠ ⇠ 5nm can be considered 2 dimensional. We find that

(i) Both films display a suppression of the superconducting Tc and ultimately Tc ! 0, and a si-
multaneous crossover from metallic (or weakly insulating) to insulating behaviour. This constitutes
the most basic evidence of a disorder driven SIT.

(ii) The transition from superconducting to insulating is sharp, and there is almost certainly no
metallic phase in between. The slight non-monotonicity in the curves near the critical disorder for
Be are probably due to specific experimental factors like overheating of the sample, etc.

(iii) The insulating Be films show simple activated behaviour R(T ) / exp(Ta/T ), which
crosses over to Efros-Shklovskii R(T ) / exp(Tes/T )1/2 at higher temperatures. The low tem-
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Figure 1.7: Resistivity R(T ) with increasing disorder for Be [35] and NbN films [38] respectively.

perature fitting parameter Ta increases with increasing disorder.

While these observations point to a direct transition from a superconductor to an insulator due
to increasing disorder, it does not provide any insight on the nature of the superconducting or
insulating state close to the transition, apart from the activated nature of the transport. For more
information, we show a magnetic field driven superconductor-insulator transition in Fig.1.7. (a) and
(b) show R(T ) curves for different magnetic fields B for Be [36,37] and NbN [38] respectively, on
the superconducting side very near to the critical disorder, while (c) plots the variation of resistance
at a fixed T = 100mK on the insulating side very near to the critical point. The basic observations
are

(i) Both (a) and (b) show that the curves for different B begin to deviate from around the same
temperature and turn insulating when superconductivity is destroyed completely. This temperature
is slightly larger than the B = 0 Tc of the systems.

Figure 1.8: Resistivity R(T ) with increasing disorder for Be [36, 37] and NbN [38] films respec-
tively.
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(ii) In Be, the separatrix extrapolates to a value ⇠ RQ = 4k⌦ at T = 0, but the curves saturate
to a larger value ⇠ 10k⌦ at stronger magnetic fields.

(iii) A strong non-monotonicity is observed in the magnetoresistance in (c). This strongly
hints at the fact that superconducting correlations survive in the insulating state, where the loss of
phase coherence among superconducting regions leads to the initial increase, while the subsequent
destruction of pairing leads to the decrease thereafter.

Tunneling spectra

We have seen earlier that BCS theory has a characteristic density of states with a gap in the mid-
dle and two coherence peaks at the gap edge [1]. The strong suppression of superconductivity by
disorder also hints at major changes in the underlying state, and the density of states can provide
valuable information on that. STS data can be used to extract the required information by plotting
the differential conductance, dI(V )/dV vs. the voltage V [7]. Fig.1.9 shows such data from two
NbN films [38] with thickness 2.33nm and 2.16nm respectively, which are already at high disor-
der, compared to a clean film with thickness ⇠ 15nm. The salient features are:

(i) The density of states has small coherence peaks that decrease further with decreasing thick-
ness, along with the gap in the middle. The zero bias conductance has a finite value that increases
with disorder, suggesting a pair breaking mechanism. The overall profile is poorly fitted by a BCS
formula broadened by a Dynes parameter �.

(ii) The �/kTc ratio extracted from the fitting above show very little change for all the films.
However, it is unclear whether any firm conclusion can be drawn from this at strong disorder, since
BCS fitting is no longer very accurate in that regime.

(ii) The spectral function rides on a background feature with a wide depression at the centre,
probably caused by disorder enhanced Coulomb interactions. Thermal evolution causes further
decrease of the gap and coherence peaks, and for the 2.16nm film, there is a slight window above
Tc where a pseudo gap is observed.

(iii) The spatial maps of the spectra near the coherence peak regions reveal considerable varia-
tion, hinting at an inhomogeneous superconducting state.

(iv) While one finds robust vortex lattices at weak disorder, they weaken considerably with
increasing disorder, and vanish completely for the 2.16nm film. This effect suggest weakened
phase coherence in the films at strong disorder.

To summarize,the transport data provide strong hints that superconducting correlations are
present even in the insulating side of the disorder driven transition. Even in the superconduct-
ing side, magnetic field weakens phase coherence among superconducting regions first, suggesting
the presence of inhomogeneity at strong disorder. This is confirmed by tunneling data, which show
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Figure 1.9: Top: Thermal evolution of tunneling spectra [38] of two thin films with thickness
2.33nm and 2.16nm respectively, showing decreasing coherence peaks, smaller gaps, and a broad
Coulomb interaction induced background feature. Bottom: Spatial maps of tunneling conductance
near the coherence peaks of the same films, indicating considerable inhomogeneity in the super-
conducting state

considerable inhomogeneity at strong disorder and a pseudogap above Tc. All of this hint towards a
transition driven by possible phase fluctuations in an inhomogeneous superconducting background.
We next move on to consider results on amorphous InOx and thin TiN, where much recent work
has been done, to shed more light on these issues.

1.3.3 InO
x

and TiN films

In this section, we review the experiments on materials with variable compositions, such as found
in amourphous InOx and polycrystalline TiN films. The properties of these films depend not only
on the thickness, but also on the details of their formation and the chemical composition. Hence,
the disorder in such films can be controlled by a variety of methods sensitively dependent on the
procedure of formation.

Amorphous films of InOx [39, 40] with thickness in the range 20 � 40nm can be formed by
depositing high purity In2O3 on an SiO2 substrate by electron beam sputtering. These have a
deficit of oxygen atoms, which cause vacancies in the system. The amount of the deficiency can
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Figure 1.10: Resistance vs temperature curves for 3 films of InOx [45] and 4 films of TiN [51]. The
latter clearly shows the sharpness of the transition, and the insulating nature of the critical curve.

be controlled by a slow annealing process. The deficiency determines the concentration of active
electrons that do not participate in chemical bonding, which in turn changes kF l, the effective
disorder of the film. Similarly, TiN films [49] with thickness of a few nanometres are formed by
magnetron sputtering of a target from pure Ti in a nitrogen plasma. Here the resistivity depends
on the excess concentration of N in the final film. Besides this, the thickness can also be varied to
control the effective disorder. The form of disorder control doesn’t seem to affect the salient results,
and hence the experimental results are described in a unified manner, without worrying about the
source of disorder.

Transport

Fig.1.10 shows the transport results from two experiments done at zero magnetic field on InOx [45]
and TiN [51] respectively. The curves show qualitatively similar behaviour to that of the Be and
NbN films. The supercondutor-insulator transition (seen clearly in the TiN films) is sharp and
the insulating films (not shown for InOx here) follow a simple Arrhenius activation law at low
temperature, which crosses over to Efros-Shklovskii behaviour for TiN (similar to Be and NbN),
while the bulkier InOx films follow Mott’s hopping behaviour R(T ) / exp(TM/T )1/4. The TiN
films also clearly show the insulating behaviour of the critical curve, which also does not extrapolate
to the quantum of resistance for pairs, RQp ⇠ ~/4e2 expected from bosonic theories (discussed in
more detail in the next chapter).

The magnetoresistance behaviour [46,52,53] shown in Fig.1.11 is also very similar to the earlier
films, with a pronounced non-monotonicity at strong disorder, both on the superconducting and the
insulating side. However, we take note of certain details and deviations:

(i) The resistance shows activated behaviour at weak to moderate magnetic fields for both kinds
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Figure 1.11: Magnetoresistance of InOx [46] at a fixed disorder and varying temperatures and of
T iN films [52] at fixed temperature close to the critical point. The saturation resistance at high
field ⇠ RQ, and the overall behaviour is very similar in the superconducting and insulating samples
(shown for T iN films).

of films, R(T ) / exp(TB/T ), with TB following the non-monotonicity in the resistance.
(ii) At fixed disorder, the magnetoresistance peak decreases with increasing temperature, and

at fixed temperature, increases with disorder. This is again consistent with the overall picture of
inhomogeneous superconductivity at strong disorder.

(iii) The resistance at strong magnetic field saturates to a value much higher than the normal
state resistance at that disorder, close to the quantum of resistance RQ = ~/e2 ⇠ 4k⌦, indicating
the formation of a novel correlated quantum metallic state at large fields.

Figure 1.12: The evolution of density of states of three TiN films with increasing disorder [55].
The plots show a very deep pseudogap which survives to an increasingly large temperature at strong
disorder.
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Figure 1.13: The top figure [47] shows the contrasting thermal evolution of the local density of
states of two regions in an InOx film at strong disorder. Bottom [56] left shows the inhomogeneities
in a map of the gap �, while bottom right shows the variation in spectra measured along a straight
line in disordered TiN films.

Tunneling spectra

Fig.1.12 shows the tunneling spectra for TiN [55] at three different disorders with temperature.
Apart from the already observed trend of decreasing coherence peaks and suppressed gaps, one
not only finds a very deep pseudogap at strong disorder, but the temperature at which it vanishes
seems to increase with disorder. Thus at the strongest disorder shown, the suppression continues
to be visible even around T ⇠ 6.3K ⇠ 14Tc, while it is only seen up to T ⇠ 3K ⇠ 3Tc for the
sample in the middle. This is in contrast to earlier results on NbN films, which showed only a weak
pseudogap above Tc over a very small range of temperatures.

Now we turn to the local inhomogeneities at strong disorder. The top plot [47] of Fig.1.13
shows the thermal evolution of the density of states at two different positions in a disordered InOx

film. The two families show very similar evolution upto Tc, with similar magnitudes of gap and
a deep pseudogap. However, below Tc, one develops the characteristic coherence peaks of super-
conductivity, while the other doesn’t, providing evidence of the presence of superconducting and
non-superconducting regions at strong disorder.

The bottom [56] left shows a spatial map of the local�, clearly showing the formation of nano-
sized patches with larger gaps, interspersed with regions with smaller gaps. The right plot shows
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the tunneling spectra along a line, showing considerable variations, but also a robust non zero
gap everywhere. In fact, from the average �̄ at different disorder, one finds that the ratio �̄/kTc

increases to anomaously large values at large disorder, indicating that the transition at T = 0 takes
place in a gapped system.

In conclusion, the similar transport behaviour as seen with Be and NbN films, the presence
of a deep pseudogap in the spectral function at strong disorder, the considerable inhomogeneity
observed across the films and the increasing �/kTc ratio all indicate the formation of a highly
inhomogeneous ground state at large disorder, and an SIT driven by fluctuations among remnant
superconducting regions.

We turn our attention now to experiments on thick 3 dimensional NbN films.

1.3.4 3D NbN films

We have seen earlier that NbN films have a superconducting coherence length of ⇠ ⇠ 5nm, hence
films with thicknesses much larger than this would behave as three dimensional superconductors.
Three dimensional NbN can be prepared by sputtering a Nb target on oriented single crystalline
MgO substrates in a mixture of Ar/N2 gas [57,58,60]. Depending on the sputtering power and ratio
of N2, the number of Nb vacancies in the system can be controlled, and hence the effective disorder
can be changed. These films have a thickness ⇠ 50nm, much larger than the coherence length, and
the cleanest sample has a Tc ⇠ 17K.

Starting from the cleanest sample, increasing disorder suppresses superconductivity and Tc goes
below measurement resolution around kF l ⇠ 1. The transport characteristics are qualitatively
similar to earlier results, with a direct transition and a slightly insulating critical curve, and a non-
monotonic magnetoresistance at strong disorder in the insulating phase, so we skip these results
and move on to the spectroscopy measurements.

Tunneling spectra

The tunneling spectra at low temperature is, again, qualitatively similar to that observed in the InOx

and TiN films, with decreasing coherence peaks and gaps with increasing disorder, observations of
two distinct kinds of spectra in different parts of the sample, and large inhomogeneity along a line
in the sample. Thus, we concentrate on the thermal evolution and its change with disorder.

Fig.1.14, left, shows the intensity plots of tunneling spectra averaged over 32 points for 6 sam-
ples with increasing disorder [60]. We note that while the gap closes at Tc for the cleanest sam-
ples,with increasing disorder, it continues to persist beyond Tc to T ? ⇠ 7K, which remains roughly
constant with further increase in disorder. This data is organized into a phase diagram [60] shown
in Fig.1.14, right, which shows the superconducting, normal, pseudo-gap and insulating states in
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Figure 1.14: Left: Intensity plots [60] of tunneling spectra for 6 samples with increasing disorder.
With increasing disorder, the depression in the middle survives to a disorder independent scale
T ? ⇠ 7K. Right: Phase diagram [60] showing the superconducting, normal, pseudogapped and
insulating states extracted from the tunneling data.

the disorder temperature plane.
Fig.1.15 shows the corresponding spatial evolution of the superconducting state [61]. It shows

maps of the zero bias tunneling conductance (which was found to have an inverse correlation with
the coherence peak height at a given site) for a highly disordered sample (Tc ⇠ 2.9K) and their
thermal evolution. The low temperature state shows nano clusters of superconducting regions,
which shrink with increasing temperature and disconnect into independent clusters. However, these
disappear completely only at Tclust ⇠ T ?, and hence the authors concluded that the two scales were
equal.

In conclusion, results on three dimensional NbN films explicitly demonstrated the increasing
inhomogeneity with increasing disorder, and confirmed the existence of different thermal scales (Tc

diverging from T ? ⇠ Tclust).

1.3.5 Summary and discussion

We examined the transport and tunneling data of a variety of materials including thin films of
Be and NbN, amorphous films of InOx, polycrystalling TiN films, and 3 dimensional NbN films.
The disorder in these various materials is determined by various factors including the thickness,
chemical composition, vacancies, etc. The resultant disorder in all of them is homogeneous, varying
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Figure 1.15: Thermal evolution [61] of the zero bias tunneling conductance in a disordered sample
with Tc ⇠ 2.9K, showing the shrinking of the superconducting regions, which finally disappear at
Tclust ⇠ T ?.

on an atomic scale, with no granularity. Despite the differing microscopic origins of disorder,
several features seem to be ‘universal’, independent of such details. We list the most important
ones below again, for convenience.

(i) Large potential disorder suppresses superconductivity, ultimately causing a transition to an
insulating state. In most cases, the transition is direct and sharp, with no intervening metallic
phase in between. This distinguishes these materials from other studied materials like amorphous
NbxSi1�x, which show an intermediate metallic phase.

(ii) The resistivity shows activated behaviour at low temperature in the insulating phase, which
crosses over to Mott (InOx) or Efros-Shklovskii (Be, TiN) at higher temperatures. The separatrix
is not horizontal but slightly insulating in most films, and its T = 0 value does not necessarily
extrapolate to either RQp ⇠ ~/4e2 or RQ ⇠ ~/e2. The next chapter will discuss this in more detail
when comparisons with theory are done.

(iii) At strong disorder films on both sides of the transition show strong non-monotonic magne-
toresistance, hinting at surviving superconducting correlations beyond the transition and possible
inhomogeneities in the superconducting state at strong disorder.
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(iv) The average tunneling spectra show reduced coherence peaks and generally reducing gaps
at T = 0, while locally resolved spatial plots show increasing inhomogeneity with increasing
disorder, with formation of nano-sized superconducting clusters at high disorder. Nevertheless, the
local gap seems to persist through the disorder driven transition.

(v) The thermal evolution shows a persistent pseudogap whose vanishing temperature T ? di-
verges from Tc with increasing disorder. It seems to increase with disorder in 2 dimensional InOx

and TiN, but remains roughly constant in 3 dimensional NbN. Spatially resolved plots show thermal
shrinking of the clusters, which vanish finally at Tclust ⇠ T ? in 3 dimensional NbN.

The general lesson from these is that the high disorder superconducting state is inhomogeneous
in an essential way, and the T = 0 transition is driven by fluctuations without complete destruction
of supercondutivity, as evidenced by the non-monotonic magnetoresistance in the insulating side.
Clustering is seen at large disorder inspite of the disorder varying on an atomic scale. This dis-
tinguishes these materials from the so called granular superconductors, where the superconducting
material is deposited in small grains on the surface which go superconducting at a fixed temper-
ature, and the resultant properties of the system are determined by the coupling between these
grains.

We will discuss these issues in more detail, along with comparisons of these results with previ-
ous theoretical work, and our numerical work, in the subsequent chapters. For now, we move on to
a description of the existing results on magnetic impirities in superconductors.

1.4 Magnetic impurities in superconductors

When the condition of time reversal invariance does not hold, Anderson’s theorem of pairing exact
eigenstates and their time reversed counterparts is no longer valid. This is the case with magnetic
impurities in a material. Thus, a very small concentration of such impurities can considerably sup-
press or even completely destroy superconductivity. The impurities also influence other properties
profoundly, including the single particle density of states, resulting in the famous gapless phase of
superconductivity, where the single particle gap is closed [6]. This section will review some of the
basic physics of magnetic impurities in a superconducting material briefly, with emphasis on the
primary concepts involved, rather than an exhaustive summary of the existing literature.

This simple premise of magnetic impurities in a superconductor can be generalized to include
more important situations where the material can show both superconducting and magnetic order-
ing of some form. The interplay of the superconducting degrees of freedom and the magnetic ones
can potentially result in very interesting physics, and many such materials have been investigated
experimentally and theoretically. We will not describe these in any detail here, but later suggest
ways in which our work can be generalized to include some physical effects similar to these.

24



1.4.1 Single impurity

Theoretical picture

The first problem to illustrate the physics of magnetic impurities is to consider a single magnetic
impurity in a superconductor. The magnetic moment of the impurity can interact with the electrons
via either the orbital coupling or coupling with the electron’s spin, and the coupling can be ferro-
magnetic or antiferromagnetic. Furthermore, in the antiferromagnetic case, the quantum nature of
the spins placed in a metal results in the well known Kondo effect [65], and this is also expected to
have important consequences in a superconductor. However, the basic physics of the suppression
of superconductivity does not depend on these effects, and hence one can approximate the impurity
spins as classical.

With this setup, the BCS equations with a magnetic impurity with coupling strength J and spin
magnitude S were solved using various techniques by Yu, Rusinov, Shiba and others [66–69]. They
found that the presence of the impurity creates an intragap state in the system, which is localized
around the impurity site. The energy of the gap, E0, is given by

(E0/�0) =
1� (JS⇡N0)2

1 + (JS⇡N0)2
(1.1)

Here, �0 is the superconducting gap parameter and N0 is the normal density of states at the
Fermi energy. The above calculations also demonstrated that for a non-magnetic scattering poten-
tial there are no intragap states. Fig.1.16 shows a cartoon of the intra gap state in the overall density
of states of the system.

Experimental results

As explained in the context of disordered superconductors, STM methods are extremely valuable
in probing the system at a microscopic level and providing local information about the spectral
functions. Hence, such methods have proved very useful in studying the local changes in the
density of states of superconductors with magnetic impurities. While signatures of subgap states
were found in early planar junctions doped with magnetic impurites by Dumoulin, et. al. [70], a
direct observation using STM was found much later in 1997 by Yazdani, et. al [71]. They found
that in contrast to non-magnetic impurity atoms such as Ag, magnetic Mn and Gd atoms showed
intragap states localized around the impurity. Fig.1.17 shows their results for the local density of
states, comparing the plots for a site away from a magnetic atom to one over it, clearly showing the
presence of intragap states in the latter. A simple model of these states yielded results consistent
with the theoretical predictions discussed above.
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Figure 1.16: Schematic figure [6] showing the intragap impurity state formed due to the presence
of a single impurity in the density of states. The features at positive and negative parts show the
respective weights of the elctronic and hole components of the states respectively. Depending on the
density, the contributions could in general be different, explaining the asymmetry of the diagram.

Much theoretical and experimental work on intragap states [6] has been done on d-wave su-
perconductors such as the high Tc cuprates, where the different pairing order implies that even
potential scattering can cause resonance states around the impurities. However, since our focus
will be on s-wave superconductivity, we will not describe these results, and instead move on to
consider the effect of increasing coupling on these intragap states.

Evolution with impurity strength

From the Eq. 1.1, one can clearly see that with increasing coupling strength J , the intragap state
moves further inwards until at J = Jc = (1/⇡SN0), the intragap level goes to zero. This is associ-
ated with a quantum phase transition, whereby the original spin unpolarized ground state, with all
electrons paired, no longer remains the lowest energy state of the system [72]. Instead, the impurity
spin ‘removes’ an electron from the condensate to form a singlet (if the original interaction is an-
tiferromagnetic), leading to a ground state with non zero spin polarization. Fig.1.18 demonstrates
this effect with two cartoons showing the two states respectively, and the level crossing that takes
place with increasing coupling. This is accompanied by an ill understood phenomenon, where the
superconducting order parameter at the impurity site undergoes a phase change of ⇡. While the
reason behind this is not understood properly, it seems to be related to the ⇡-shift superconducting
junctions with tunneling barriers containing a magnetic impurity or a ferromagnetic layer [73].

Now we move on to the case of many impurities, and summarize the work done on this subject
below.
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Figure 1.17: Local density of states far from (top) and over an isolated magnetic Mn impurity in
a single crystal Nb(110) sample used by Yazdani et. al. [71] .While the top plot is perfectly fitted
by the BCS form, the bottom figure clearly shows the presence of intragap features, reflecting the
intragap state formed due to the presence of the impurity.

1.4.2 Many impurities

When the number of impurities is increased, multiple scattering effects from different impurities
come into effect. This can result in complex interference effects due to scattering from the different
impurity moments and cause considerable changes in the behaviour of the system. However, in
the limit of dilute concentration, when the impurities are located far apart from each other, such
interference effects are negligible (this is similar to the argument that quantum effects in transport
are negligible at weak disorder). The method for dealing with such situations was first developed
by Abrikosov, et. al. [74], who formulated the concept of impurity averaging, where the final result
of any calculation was to be performed by taking the averages of the results from a single impurity
distribution over all such possible configurations.

Abrikosov-Gorkov theory; gapless superconductivity

Abrikosov and Gorkov [75] applied this concept to the problem of non-magnetic impurities in su-
perconductors and found that to second order of perturbation in the impurity potential, the transition
temperature Tc did not change, which, as explained earlier, was reconfirmed by Anderson. In the
case of magnetic impurities, however, they found that the Tc was suppressed by increasing impurity
concentration until it was driven to zero when the characteristic energy scale associated with spin
flip scattering, ↵s, became equal to half the superconducting gap, �0/2. Thus, superconductivity
was destroyed when
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Figure 1.18: Left: Schematic picture [6] of the quantum phase transition, showing the unpolarized
initial ground state, and the polarized final ground state beyond the transition, where a spin is
extracted from the condensate to form a singlet with the impurity spin. Right: The level crossing
between the initial ground state  0 and the final one,  1 with increasing coupling W .

↵s = ⌧�1
s ⇠ nimpN0J

2S2 = ↵sc = �0/2 (1.2)

Here nimp is the impurity concentration. Even more remarkably, they found that a little before
this point, the single particle gap of the system vanished even though it was still superconducting.
This is the famous gapless phase, given by

↵s = ↵sg = �0exp(�⇡/4) (1.3)

Thus, in the narrow interval between ↵sg ⇠ 0.912↵sc and ↵sc the system showed gapless su-
perconductivity. This prediction, first verified by Reiff and Wolfe, has since been reconfirmed by
many experiments. Fig.1.19, left, shows a plot of the Tc dependence with nimp, comparing the
theory along with several experimental plots [76].

The evolution of the density of states that follows from this theory was studied in detail by
many workers [77]. Fig.1.20, right, shows their main results schematically [6]. With increasing
nimp, the gap edge gradually moves inwards and the gap becomes smaller, but a hard gap persists
until we reach the critical concentration for gapless superconductivity. This picture is contrary
to what we would expect from an extrapolation of the single impurity case, where we saw that
impurities created intragap states in the density of states. Below, we describe the limitations of the
Abrikosov-Gorkov method that leads to this discrepancy, and the subsequent work that has been

28



Figure 1.19: Left:Comparison of the dependence of Tc with impurity concentration nimp of several
samples [76]. with the theoretical curve, showing a close match. Right: The evolution of the density
of states [6] with increasing impurity scattering time ⌧�1

s ⇠ nimpJ2 according to the Abrikosov-
Gorkov theory [77]. The impurity states are always produced at the gap edge and below the critical
point, there is always a hard gap in the system.

done to resolve this and extend the results beyond the Abrikosov-Gorkov regime.

Generalization to stronger coupling

Inspite of the success of the Abrikosov-Gorkov theory in explaining the destruction of supercon-
ductivity and the presence of the gapless phase, it is only strictly valid in the weak nimp, weak J

regime. This stems from the fact that in the Abrikosov-Gorkov theory, the parameters nimp and J

enter through the single combination ⇠ nimpJ2, whereas in general they control different aspects
of the impurity scattering. More general calculations [67,68,78] using more sophisticated self con-
sistency methods (similar methods are described briefly in Chapter 2) were able to provide better
results. These yielded the following relations:

↵sc = �0/2

↵sg = 2✏20exp(�⇡✏20/2(1 + ✏0)) (1.4)

Thus the critical concentration for destruction of superconductivity remains the same, but the
condition for gaplessness depends on the position of the intragap state E0 = �0✏0. In the weak
coupling limit, this is very close to the gap edge, and the evolution of the density of states is very
close to the Abrikosov-Gorkov result. At stronger coupling, however, the intragap levels can be well
inside the gap, and hence, the critical point for gaplessness, ↵cg can be much smaller, resulting in
an enhancement of the gapless phase. As a result, hence the evolution of the density if states should
also be quite different. Fig.1.20 shows the contrasting evolution in the two cases schematically.
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Figure 1.20: The contrasting evolution of the density of states for weak coupling (right) and strong
coupling (left) with increasing concentration [6]. At weak coupling, the extra subgap states are
formed close to the gap edge and slowly close the density of states until it is gapless. At strong
coupling, the impurity states form a band inside the gap, and if the coupling strength is large
enough, the bottom of the band reaches the Fermi surface before the top reaches the continuum to
the right, and the gapless regime is enhanced.

1.4.3 Summary and further work

In this section, we summarize the results and achievements of the theoretical and experimental
results and comment on the limitations of the analytical approaches that have been described so far.
This sets the stage for our numerical analysis of the problem, the results of which will be described
in detail in a later chapter.

Summary

The main results of the studies described so far are:

1. In contrast to a non-magnetic impurity, an intragap level is formed in the density of states in
the presence of a magnetic impurity in an s-wave superconductor.

2. With increasing coupling, this level moves inwards, and causes a quantum transition from a
spin unpolarized ground state to a polarized one at a critical coupling Jc

3. With growing impurity concentration one first gets a ‘gapless’ superconductor, and then the
destruction of superconductivity at a critical concentration, nc. The window of gapless be-
haviour, and nc, depends on the coupling strength.

Inspite of these results, traditional methods have the following shortcomings:
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1. Many of these assume the order parameter �0 to be reasonably constant, while one expects
that strong coupling could change it considerably, which would feed back to change the
physics of the system, in particular, the range and extent of the gapless phase.

2. These theories are valid at weak concentration, and cannot deal with dense impurities because
they neglect the interference effects from different closely situated impurities

3. These methods cannot provide a sptially resolved picture of the system as well as a satis-
factory description at finite temperature where thermal fluctuations may play an important
part.

These limitations call for the use of numerical methods to analyse this problem. Some work
has been done using mean field methods with spin dependent disorder [79], where the authors
have investigated the role of spatial inhomogeneity in determining the gapless regime. On the
other hand, Sacramento, et. al. [80] have investigated the energetics of different magnetic domain
structures inside a superconductor using similar numerical methods. However, a consistent study of
the magnetic impurity problem over a large range of coupling strengths and temperature has been
lacking. Our numerical method, described in detail in then next chapter, will allow us to take up
this problem, whose results will be described in a later chapter.
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CHAPTER2
THEORETICAL WORK, MODEL AND

METHODS

The formulation of the BCS theory and its subsequent success in explaining a huge body of exper-
imental data [1,2] makes it one of the most remarkable achievements in condensed matter physics.
Nevertheless, as we saw in the previous chapter, there are certain situations, involving strong cou-
pling [3, 4] and strong disorder [5] where a mean field approach is no longer sufficient to explain
the underlying physics. This necessitates the development of theoretical approaches that modify
and/or extend the BCS formulation to include the effects of (i) broken translational invariance, and
(ii) fluctuations, within their framework. While the lack of translational invariance can be incorpo-
rated in the mean field framework itself [81], inclusion of fluctuations typically requires one to use
statistical many body tools [74], either analytically using perturbation theory, self consistency, etc.,
or numerically by simulation of model systems.

This chapter will provide a summary of such methods. We start with a brief review of these
methods in the context of the BCS-BEC crossover, leaving more detailed analysis to another chap-
ter. Then we move to disordered superconductors, where the theory work can be classified broadly
into three groups:

• ‘Fermionic’ theories, which include Coulomb repulsion and explore the destruction of super-
conductivity due to suppression of the effective pairing interaction [82].

• ‘Bosonic’ theories, which assume ‘preformed’ bosonic pairs and study [83] how phase fluc-
tuations can drive a superconductor-insulator transition.

• Numerical approaches, which start with an attractive fermion lattice model and use methods
like Hartree-Fock-Bogoliubov-de-Gennes (HFBdG) mean field theory, quantum Monte Carlo
(QMC), etc., without assuming any preformed pairs [84–88].
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After reviewing each of these methods and their results briefly, we introduce our model, provide
a description of the Monte Carlo algorithm we use for simulation, and describe the methods to
compute the important electronic properties of our systems.

2.1 From BCS theory to BCS-BEC crossover

BCS theory is a mean field theory that ignores fluctuations. This is unimportant in the weak cou-
pling limit, because fluctuations are suppressed by a factor Tc/✏F and are only important very close
to Tc, so that they are usually unobservable in experiments. However, for the situations described
above, one needs to include the effects of fluctuations at all temperatures. Below, we provide a
description of such methods in the context of the BCS-BEC crossover, using simple model systems
that capture the basic physics.

2.1.1 The BCS-BEC crossover

While the BCS equations provide a particular solution � that minimizes the Hamiltonian, the gen-
eral treatment of the system at finite temperatures should consist of fluctuations on top of the mean
field state. Such a situation is presented in the problem of the BCS-BEC crossover [4] with increas-
ing coupling U/t. At weak coupling, the system is a BCS superconductor, and as explained earlier,
fluctuations are suppressed by a factor Tc/✏F . The transition is determined by the temperature at
which these pairs form, and gives the BCS form for Tc. On the other hand, at strong coupling, the
system is composed of tightly bound local pairs which form at a much higher temperature T ?, re-
sulting in a gap in the single particle spectrum, while the superconducting transition is determined
by the coherence of these pairs.

With increasing coupling the system interpolates smoothly from one limit to the other. The
T = 0 evolution is captured by the BCS wavefunction itself, with suitably defined coefficients,
as shown by Leggett [89]. The thermal behaviour at arbitrary coupling is, however, governed by
fluctuation effects, and mean field theory is insufficient. It captures the pairing scale T ? but not
the real Tc. In the BCS limit, the Tc increases with increasing coupling U . In the BEC limit, it is
stationary in the continuum case (determined by twice the mass of an electron) while in a lattice it
goes as t2/U due to virtual ionization of the pairs. Thus, the lattice systems show an intermediate
coupling maximum in Tc, where the system consists of both bound pairs and fermions above Tc,
resulting in a ‘pseudo-gap’, a pronounced depression at the centre of the single particle density of
states. Fig.2.1 summarizes the basic physics and thermal scales for the continuum and lattice cases.

The realisation of BEC in ultracold Bose gases [90–92] opened a completely new avenue for
experimentally realizing and testing various simple models of quantum matter in a controlled en-
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Figure 2.1: Basic thermal scales of the BCS-BEC crossover [4]. Left: Schematic diagram for
the crossover in continuum, from a Fermi liquid to the left to a Bose liquid to the right, where the
Tc increases initially and gradually saturates as pairs form with mass 2m. The dashed line shows
the evolution of the pairing scale T ?. Right: BCS-BEC crossover on a lattice, where Tc / (1/U)
at strong coupling (see text). Basic physics arises due to the competition between two scales, the
pairing scale Tpair = T ? and the stiffness scale Tphase.

vironment. For ultracold Fermi gases, the interparticle interaction can be tuned via a Feshbach
resonance. For attractive interaction such systems exhibit superfluidity at low temperature and
in Li6, K40 etc [93–96], one could study the BCS-BEC crossover. Since this is a translationally
invariant system, the strong coupling Tc saturates to a value set by twice the atomic mass [97].

One can also generate optical lattices to mimic solid state systems [98]. Such systems provide
an ideal playground for testing simple lattice models like the Hubbard model. On optical lattices
one still has not attained temperatures that allow study of superfluidity [99]. Speckled laser patterns
can be used to generate ‘disorder’ [100–103] further expanding the wide range of phenomena that
can be studied in these systems.

2.1.2 Continuum and lattice

The BCS theory assumes a simple model where electron pairs have a constant attractive interaction
between them in a small energy range around the Fermi energy. This corresponds to the simplest
form of pairing, where the interaction acts between pairs at the same point in position space. Since
the qualitative physics of the fluctuations do not depend on the detailed nature of pairing, we take
this simplest form of pairing for our study of non-BCS effects. To this end, we introduce two such
models, one in continuum and the other on a lattice. The continuum model [4] is given by

H =

Z
ddr( ̄�(~r)(�r2 � µ) �(~r)� g ̄"(~r) ̄#(~r) #(~r) "(~r)) (2.1)
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Here the first term denotes the kinetic energy of free electrons, while the second denotes the
interaction term with a constant attractive constant g. The corresponding lattice model is given by

H = �
X

hiji�

t
⇣
c†i�cj� + h.c.

⌘
� µ

X

i

n̂i � U
X

i

n̂i"n̂i# (2.2)

This is the negative U Hubbard model [104], defined on a square or cubic lattice in two and
three dimensions respectively. The attractive coupling constant, denoted by U , acts on up and down
spins on the same site, while the first term denotes nearest neighbour hopping of the electrons on
the lattice with strength (�t). There are two independent parameters, namely, the filling f and the
coupling ratio U/t.

Since the basic form of the Hamiltonians is the same for both the continuum and the lattice
cases, we will treat these two in a uniform manner in the subsequent discussions, inspite of some of
the important physical differences between the two in specific limits. Furthermore, we will choose
the lattice description to demonstrate specific equations to explain the methods. First, we look at
the weak coupling BCS limit of these models, in which the lattice and continuum models behave
identically.

BCS limit

If we rewrite the negative U Hubbard model in k space, we get

H =
X

k�

(✏k � µ)nk� � U
X

kk0+q

c†k+q"ck0+q"c
†
�k#c�k0# (2.3)

where ✏k is given by the standard expression (�2t)
P

i cos(kiai). We get the same form with
the continuum case, albeit with a different expression for ✏k. The interaction term corresponds to
scattering of a pair of electrons with opposite spins and total momentum q. The attractive inter-
action favours the formation of Cooper pairs, causing an instability in the normal state, which is
reorganized to form a superconducting state of coherent Cooper pairs. The BCS reduced Hamilto-
nian retains only the terms with q = 0, since these give rise to the most stable pairs. As explained
above, the ground state ansatz and self consistent solution corresponds to a mean field decomposi-
tion in the so called ‘pairing’ channel, where terms like hc�k#ck"i are assumed to have a particular
non-zero value corresponding to which the energy is minimum. The self consistent equations are
given by

1 = (U/2N)
X

k

tanh(�Ek/2)/Ek

n = (U/N)
X

k

(1� ((✏k � µ)/Ek)tanh(�Ek/2)) (2.4)
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where Ek =
p
�2 + (✏2k � µ).

These two equations are solved simultaneously to yield the values of �(U, T ) and µ(U, T ). In
the BCS limit, the chemical potential is fixed at ✏F , and one gets the characteristic Tc by solving
the first equation alone.

2.1.3 Diagrammatic approaches

The partition function of the negative U Hubbard model can be written in the language of finite
temperature many body theory as [105]

Z =

Z
D( ̄, ) exp(

Z �

0

( ̄@⌧ +H))

where H is the Hubbard Hamiltonian and  s are Grassman variables. A standard way to treat
interacting systems where the interaction term is weak is to expand the expressions for relevant
observables in a perturbation series in U , keeping terms up to a specific order. However, in the
case of the attractive Hubbard model, even in the weak coupling BCS limit, the non-analytic form
Tc ⇠ !D exp(�1/(N(0)U) implies that the BCS state cannot be reached by considering any finite
order in perturbation theory in the interaction U . This neccessitates the summation of an entire
class of diagrams.

Pairing fluctuations

The relevant summation process is best phrased in the language of the T-matrix [6]. For the attrac-
tive problem, the T-matrix can be written in the following form [106]:

T (q, i!n) = �U/(1� U�0(q, i!n))

Here, �0(q, i!n) is a ‘band’ susceptibility. For the superconducting case, the most important phys-
ical effects are contained in pairing fluctuations, where a pair of electrons are scattered repeatedly
by the interaction potential U . This is given by the so called ‘pairing’ susceptibility [106]:

�0(q, i!n) =
1

�

X

k,m

G0(k, i⌦m)G0(q � k, i!n � i⌦m)

The superconducting instability is signalled by the divergence of the T-matrix at long wavelengths
and low frequecies, and hence, we have:

(1� U�0(0, 0)) = 0
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This equation amounts to the condition determining Tc, where the order parameter� vanishes. On
the other hand, the number equation is given by

n =
2

�

X

k,n

G(k, i!n)

Here, the Green’s function G(k, i!n) is given by the Dyson equation [105]

G(k, i!n)
�1 = G0(k, i!n)

�1 � ⌃(k, i!n)
�1

where the self energy ⌃(k, i!n) can be expressed in terms of the T-matrix as [106]

⌃(k, i!n) =
1

�

X

q,m

T (q, i⌦m)G0(q � k, i⌦m � i!n)

With increasing coupling, the chemical potential shift becomes noticeable, and one has to in-
clude the effects of fluctuations. This was first considered by Nozieres and Schmitt-Rink (NSR)
[107], who approximated the number equation by expanding the Green’s function to first order in
⌃:

G = G0 +G0⌃G0

They showed that the resultant equations implied a smooth crossover with coupling at finite tem-
perature in the continuum case in three dimensions, and the transition point was still given by the
divergence of the pairing susceptibility. On the other hand, the same procedure does not work for a
lattice system, as the inclusion of fluctuations causes an unphysical negative compressibility [108]
at low temperatures at strong coupling, even though a NSR like calculation starting from a Hartree
shifted ground state manages to get reasonably correct results for Tc in three dimensions [108]. It
is also not clear whether one can get pseudogaps correctly using such theories, even though feed-
ing back pairing fluctuations in the single particle propagator can generate pseudogaps in the NSR
scheme. Furthermore, this procedure is inapplicable in two dimensions, as it cannot capture the
physics of the BKT transition. Even though this process can be extended by a more general treat-
ment of the number equation above to provide more accurate results on the T > Tc state [109], the
above limitations have given rise to alternative approaches that introduce self consistency into the
equations. Some of these are described below.

Self-consistent methods

The self consistent method replaces the unperturbed Green’s functions G0 by the full G in the
equations above. This leads to a self consistent ‘loop’ of equations which can be solved for the
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Green’s function G and the other relevant quantities. Fig.2.2 shows this self consistency loop
schematically.

Figure 2.2: Schematic diagram of the self consistency loop [112]. An initial guess of the Green’s
function provides the susceptibility �, which is then used to calculate the T-matrix T , which leads
to the self energy ⌃, which is used to calculate the Green’s function again, completing the loop.
DFT is discrete Fourier transform.

The different ways to achieve this is primarily classified by the ansatz used for the susceptibility
�. Apart from the original ansatz � = �0 ⇠ G0G0 that we saw above, one can replace one [110]
(the ‘mixed’ or Kadanoff-Martin approach) or both [106,111] (the ‘fluctuation exchange’ approach)
of the Green’s functions G0 by G. The solutions of these equations provide more accurate results on
some aspects of the BCS-BEC crossover. In particular, the fluctuation exchange method has been
further generalized to include the effects of both particle-particle and particle-hole chain diagrams
[112], and can capture the non-monotonic Tc with U in lattice systems even in 2 dimensions.
Other non-perturbative methods not based on T-matrix approaches have also been developed [113].
For instance, Ref [113] develops a formalism which also incorporates vertex corrections that are
neglected by standard T-matrix approaches This successfully captures the behaviour of the spectral
function above Tc to great accuracy, even though it becomes progressively less accurate as one
moves closer to Tc. Fig.2.3 shows the Tc calculated using one such semi-analytic method [114] and
the accurate density of states data from the method in Ref [113].

A more rigorous classification of the above methods can be done by examining whether they
are ‘conserving’ or not, that is, whether, and to what extent, they satisfy the conservation laws in the
system. Theories that are phi-derivable in the sense of Kadanoff-Baym satisfy all Ward identities
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Figure 2.3: Left: Tc and other thermal scales calculated using the method of Ref [114]. in two
dimensions. Right: Density of states data calculated using the method of Ref [113] , showing
accurate match with QMC data (dashed lines).

and conservation laws in principle, while most T-matrix based methods generally do not [115].
Concrete examples of the second kind provided above include the Nozieres-Schmitt-Rink based
theories (using G0G0 in the susceptibility) and Kadanoff-Martin (G0G). On the other hand, the
fluctuation exchange method (FLEX), which can also be set up in the T-matrix language with GG

in the susceptibility, and the two particle self consistent method (2PSC) fall in the first category.
However, instead of analysing the formal correctness of these theories, we use the indicators listed
in Table 1 of Chapter 3 (that are nore relevant to our analysis) for comparing the usefulness of
different methods.

While these approaches provide much insight into the effect of fluctuations, functional methods,
based on a systematic expansion of the partition function, provide an organized way of including
the effects of fluctuations. The resultant models are also more amenable to numerical analysis
in more generalized situations (such as involving disorder, etc.), and are intimately related to our
numerical approach. We provide a description of the method below.

2.1.4 Functional methods

Functional methods provide an organized way of including the effect of fluctuations and allows one
to compare the successive orders of approximation efficiently. There are two steps to accomplish
this: first rewriting the Hubbard Hamiltonian by inserting ‘pairing’ fields�i(⌧) using the ‘Hubbard-
Stratonovich’ transformation [116], and second, reorganizing the resultant action using the Nambu-
Gorkov method [105]. We discuss this below.
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Hubbard-Stratonovich transformation

The Hubbard-Stratonovich transformation enables one to reformulate a problem with a quartic
interacting term into a quadratic one by inserting additional fields into the problem. Starting with
the expression for the partition function, we first insert the Gaussian identity relation

1 =

Z
D(�i(⌧), �̄i(⌧)) exp(�

Z �

0

X

i

(|�i|2/U))

into the expression for the partition function Z . Then, we make the substitution �i ! �i �
U i# i", and the quartic term in cancels the quartic interaction term of the original Hamiltonian,
while we get new terms involving products of one � and two  operators. The new action is

S =

Z �

0

✓X

i�

 ̄i�@⌧ i��t
X

hiji�

�
 ̄i� j� + h.c.

�
+
X

i

�
�i(⌧) ̄i" ̄i# + �̄i(⌧) i# i"

�
+|�i(⌧)|2/U

◆

The final partition function is given by

Z =

Z
D(�̄,�)D( ̄, ) exp(�S)

This action is quadratic in the fermion operators and these can hence be integrated out to give an
effective action containing only the� fields [105]. This can be subjected to further approximations
to yield effective models at the required level of accuracy. The various approximations can now be
applied systematically starting from this. For instance, the mean field theory is given by the ‘saddle
point’ of the corresponding action w.r.t. the variables � and µ:

�S/�� = 0

�S/�µ = 0

These yield the usual mean field equations. Expanding the action to quadratic order in the �
fields is equivalent [4] to the pairing fluctuations calculation of Nozieres and Schmitt-Rink. Further
expansion to fourth and higher order in � can be done to formulate an effective Landau-Ginzburg
theory [4]. On the other hand, by integrating out further degrees of freedom (such as amplitude
or phase of the � fields), one can formulate effective XY models that are valid in a restricted
parameter regime [114, 117]. These also manage to get the non-monotonicity in Tc, though their
results are severely limited due to the approximations involved.
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2.1.5 Summary and conclusions

In summary, we find that analytic methods that extend the mean field formalism to include the
effects of fluctuations can get several aspects of the BCS-BEC crossover correctly. In particular,
the continuum problem in three dimensions, where the Tc rises and then saturates with increasing
coupling is captured by the Gaussian fluctuations of Nozieres and Schmitt-Rink. However, to ac-
cess the pseudogap effects in the density of states correctly, as well as getting accurate results for
Tc in lattice systems on two and three dimensions, one needed more sophisticated self consistent
methods, both based on T-matrix approaches and without it. The reformulation of the problem
in terms of functional integrals, on the other hand allowed a systematic expansion in fluctuation
effects, capturing the mean field, NSR and effects beyond by successive approximations. It fur-
ther enables the construction of effective Landau-Ginzburg functionals or XY models in restricted
parameter regimes, which can also be used to study various aspects of the problem.

Inspite of the reasonably accurate estimates of Tc and some aspects of the spectral functions
that these methods provide, most of them have narrow regimes of validity. This has given rise to
other approaches such as numerical QMC to gain a better understanding of the problem. We will
discuss these issues in greater detail in the next chapter on the BCS-BEC crossover. For now, we
move on to disordered superconductors.

2.2 Disordered superconductors

The rich experimental history of disordered superconductors has also led to a parallel development
of theoretical and numerical methods to examine the problem in various ways and to understand
the experimental results. This section will provide a review of these methods and their connection
to experimental results. We start off with a discussion of methods that extend the BCS mean
field theory to disordered systems. Then we look at the two paradigms for understanding the
disorder induced superconductor-insulator transition: the so called ‘fermionic’ mechanism due to
Finkelstein, and the bosonic mechanism, due to Fisher et. al. Finally, we review the numerical
work done on this problem, and conclude by reviewing the overall situation in the field.

2.2.1 Extending BCS theory

As already discussed earlier, the first step in this direction was taken by Abrikosov and Gorkov, who
showed using perturbation theory that weak disorder had little effect on the thermodynamic prop-
erties of a superconductor, including its Tc, which remained unchanged to O(1/kF l) [30]. This
was followed up by the intuitive explanation of Anderson [31], as explained in the last chapter.
Nevertheless, other properties such as the coherence length, penetration depth, critical magnetic
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field, etc. are affected by disorder. Many of these were investigated using perturbative approaches,
often using the Landau-Ginzburg formulation of superconductivity, managing to successfully de-
scribe the properties of many superconducting alloys. These results are collectively known as the
classical theory of dirty superconductors [118], and are valid at weak disorder, kF l >> 1.

With increasing disorder, the eigenstates become localized, and the validity of the weak dis-
order theories become questionable. While it was originally thought that Anderson’s arguments
would cease to hold when the eigenstates of the disordered problem became localized, Ma and
Lee [119] demonstrated that Anderson’s pairing argument remains valid even beyond the mobil-
ity edge as long as (⇢Ld)�1 < �0, where ⇢, L and �0 denote the averaged density of states at
the Fermi energy, the localization length and the BCS order parameter respectively, and d is the
number of dimensions, if the superconducting parameter � is uniform over the whole system. In
fact, within mean field theory, they showed that superconductivity existed all the way to site local-
ization. However, one can expect that at high enough disorder, the � themselves would become
inhomogeneous, and the above arguments would no longer hold.

The BCS mean field theory can be generalized [81] to include such an inhomogeneous � dis-
tribution in a disordered system, and self consistent solutions of the corresponding mean field
equations can show considerable inhomogeneities at strong disorder. This method has often been
applied numerically, and hence, we will discuss it in more detail when we review the numerical
work. Below, we review the two primary analytic formulations of the SIT, the fermionic [82] and
the bosonic [83] mechanisms.

2.2.2 The ‘fermionic’ mechanism

An important ingredient of all materials is the Coulomb interaction, which acts as a long range
repulsive force between the electrons that make up the free carriers of the material. In a good
metal, this repulsive interaction is screened considerably due to the surrounding electron cloud,
and hence at comparatively long length scales (compared to ⇠ 1/kF , for example) or low energy
scales (compared to ✏F , the effect is weakened. On the other hand, the indirect electron-electron
interaction mediated by the lattice vibrations (as shown by Frohlich [18]) can provide an attractive
interaction at a low energy scale ⇠ !D. Due to the weakening effect of screening, the overall
interaction can be negative in a small range of energy, which gives rise to superconductivity. In
BCS theory and its extensions, the effect of the Coulomb repulsion is not considered explicitly,
and it is assumed that the effective attractive interaction is not influenced significantly by disorder.
Nevertheless, from the arguments provided above, we see that the overall nature of the interaction is
sensitively dependent on the efficacy of the screening process. Fig.2.4 illustrates the basic physics
[120, 121] of the competition of the two scales and their dependence on the energy scale.
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Figure 2.4: Schematic diagram [121] of the physics of the competition between the Coulomb
repulsion and the attractive interaction induced by electron-phonon interactions in a clean super-
conductor. The repulsive interaction (red dashed line) is defined at the Fermi energy EF and is
renormalized down. The attractive interaction (blue dashed dotted line) is defined at the Debye en-
ergy !D and its strength increases with decreasing energy, diverging at a nominal temperature T a

c .
The combined interaction (orange line), if attractive at !D, becomes stronger under further renor-
malization until it diverges at the true Tc of the system. Disorder changes this physics, strengthening
the Coulomb interaction, and hence decreases the overall attraction.

The ‘fermionic’ mechanism specifically includes the effect of disorder on the screening process
of the material. The effect of screening is provided by a dielectric function ✏(q), and the resultant
screened potential is given by Veff ⇠ V0/✏. If one investigates how disorder affects this screening
process, one finds that it becomes weaker with increasing disorder, strongly renormalizing the
effective Coulomb interaction. In particular, the repulsion of electrons with opposite momentum
and spins (that is, those that form the most stable Cooper pairs) corresponding to low momentum
transfer become enhanced. This leads to a decrease in the effective attractive interaction, and hence
the Tc. The first comprehensive results were derived by Maekawa and Fukuyama [122] . Their
perturbative calculations demonstrated that the Tc is suppressed by the following formula:

ln(Tc/Tc0) = (e2/3⇡2~)R⇤ln(1/Tc⌧0)
3

Here, R⇤ is the square resistivity of the system, which increases as the disorder increases. While
it matches the data at weak disorder, the rate of decrease is too fast at strong disorder, where this
theory is inapplicable. However, it can be extended to strong disorder using renormalization group
techniques [123, 124]. They demonstrated that at sufficiently large disorder, Tc can be suppressed
all the way to zero, leading to a non-superconducting Fermi system where no superconducting
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Figure 2.5: Left: Results from perturbation calculations in Ref. [122], showing the strong decrease
at large disorder (x axis is proportional to R⇤. Right: Renormalization group calculations of Ref.
[123] compared to experimental data, showing a very good match. Note the slower fall at stronger
disoder, contrary to the perturbation calculations.

pairs exist any more. Fig.2.5 shows the results from the Maekawa-Fukuyama theory and the renor-
malization group calculations compared to experimental data, clearly showing that the perturbative
theory fails at strong disorder, whereas the renormalization group calculations show a very good
match. We find that while the the initial decrease of Tc is linear with R⇤, it becomes slower at
larger disorder, and eventually goes to zero when the effective attractive interaction vanishes.

Since the pairing correlations weaken with increasing disorder, this theory predicts the weak-
ening of the T = 0 gap as well as the Tc of the system. The final state after superconductivity
is destroyed can be metallic or insulating depending on the localization properties of the system.
Hence, depending on the dimensionality of the system and the disorder strength where the transi-
tion occurs, one can have a S-M-I transition (primarily in 3 dimensional systems) or a direct S-I
transition. Nevertheless, the increasing disorder invariably increases the resistivity of the system,
and hence the Tc and resistivity/resistance always follow an inverse relation.

To summarize, the fermionic mechanism achieves the following:

1. Provides a viable mechanism for the suppression of superconductivity where the single par-
ticle gap vanishes, and where the strong disorder state can be metallic or insulating.

2. Provides detailed relationships between the resistivity R⇤ and the disorder with very few
fitting parameters that can be easily extracted from experiments.

Fig.2.6 shows a schematic plot demonstrating the basic physics of the fermionic mechanism.
These predictions are seen to be in agreement with experimental results on some materials such

as amorphous Pb and Sn [125] films, and alloys such as W-Re [126], Mo-Ge [127] and Nb3Ge
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Figure 2.6: Schematic figure [131] of the evolution of superconductivity with increasing disorder
as postulated by the fermionic mechanism. The superconductor consists of coherent pairs with
finite order parameter � and stiffness Ds. With increasing disorder both � and Ds decrease due
to increasing Coulomb repulsion, until they vanish at the critical point. Beyond this, all pairs are
broken, and the system properties are determined by free fermions in a disordered system.

[128], whose Tc dependence on disorder and sheet resistance Rs are in good agreement with those
from the theory. Three dimensional materials such as amorphous AuxSi1�x [129] or NbxSi1�x [130]
also show the expected S-M-I transitions. Nevertheless, from what we saw in the previous chapter,
many materials including thin films of Be, NbN, InOx and TiN, and three dimensional NbN show
a direct S-I transition, alongwith a seemingly robust gap at T = 0 in the single particle spectral
function, and surviving pairing correlations even in the insulating state. This calls for a completely
different theory, which brings us to the ‘bosonic’ mechanism.

2.2.3 The ‘bosonic’ mechanism

The bosonic mechanism provides an effective low energy description of the system where the
temperature scale is much smaller than the typical pairing scale in the problem. Thus, it assumes
the presence of pairs in the system, and investigates the effect of disorder on the effective bosonic
degrees of freedom that the pairs represent.

In the clean system, the superfluid state is characterized by a finite stiffness to phase twists.
The long range phase modes are gapless, corresopnding to the Goldstone modes of the system.
The presence of the long range electromagnetic field has far reaching consequences, however;
the Goldstone mode couples with the electromagnetic degrees of freedom, and in 3D results in a
massive transverse field corresponding to the exponential spatial decay inside the material, and a
high frequency plasmon mode corresponding to long range density oscillations in the system. Thus
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the long range phase modes acquire a gap of the order of the plasma frequency !p in normal metals
at T = 0. In 2D this plasmon mode has a dispersion ⇠ p

q and is still gapless.
The first comprehensive theory of the disorder induced S� I transition was provided by Fisher

et. al [83]. They considered a collection of bosons in two dimensions in a random potential with
a repulsive Coulomb interaction between them. As the disorder is increased, or the boson number
density is decreased, the system undergoes a transition from a superconducting state where the pairs
are condensed to a disordered Bose glass state below a critical density nc. In this state, the Cooper
pairs are localized and there is no coherence between these localized pairs. Thus, the system is no
longer superconducting, but since the pairs continue to exist, the single particle spectrum remains
gapped.

Another way to understand this transition is from the dual of the bosonic representation, which
is given by vortex configurations in the bosonic wave functions. In the superconducting state, the
vortices are bound into pairs and hence do not move. On the other hand, beyond the transition
these vortices are unbound and become mobile, and the resultant state can be interpreted as a
condensed state of vortices instead of bosons. The movement of vortices traversing the system
provides a mechanism for dissipation in the form of phase-slips. Right at the transition, where the
theory is self dual in two dimensions, both bosons and vortices are about equally mobile, and this
implies that there is a finite, universal resistivity RQp ⇠ ~2/4e2 at the transition point. Thus, this
theory provides the remarkable prediction that even in two dimensions, where all single particle
eigenstates are localized, the resistivity can have a finite, universal value at the superconductor-
insulator transition. Fig.2.7 shows a schematic figure of the resistivity as predicted by this theory,
and the corresponding experimental results from Ref. [132].

Since the bosonic theory emphasizes phase fluctuations of the bosonic variables with no changes
in their ‘amplitudes’, it falls in the same universality class as the quantum XY model. This simpler
problem has thus been studied to expand our understanding of the results of the bosonic mecha-
nism. A very recent QMC study [134] of the model concentrated on the low energy features of the
optical conductivity.

In a disordered superconductor, there are two energy scales corresponding to the inverse of
the mean free path ⌧�1 and the superconducting single particle gap �. Since the conductivity is
infinite in the superconducting state, the conductivity �(!) has a delta function at ! = 0 [1]. In a
system with weak disorder such that ⌧�1 >> �, one can use the BCS formalism to work out the
conductivity, as was done by Mattis and Bardeen [135]. In the absence of superconductivity, the
system shows a finite conductivity at ! = 0 that begins to fall off when ! becomes comparable
to the scattering rate, ⇠ ⌧�1. In a superconducting system, however, due to the absence of single
particle excitations inside the gap, the conductivity is zero upto ! = 2�, except for the delta
function. As with the normal metal, it drops off for ! & ⌧�1.
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Figure 2.7: Left: Schematic resistivity from bosonic mechanism [133], showing the horizontal
critical line, along with the universal value, and other resistivity lines diverging from it. Right:
Experimental data from Ref. [132] , in agreement with this theory.

Thus, mean field arguments imply that there can be no conduction for ! . 2� due to the
presence of the single particle gap. However, phase degrees of freedom can result in low energy
collective modes that lead to finite conductivity even inside this interval. The QMC study found that
at strong disorder, these modes contribute to enhance the low frequency conductivity, contrary to
expectations from naive mean field theory. In a realistic model with fermionic degrees of freedom
(to be described in detail later in connection with QMC work done on the negative U Hubbard
model) this behaviour can be explained from the presence of different energy scales for single
particle and two particle correlation functions. Fig.2.8 shows the results that one expects from
mean field theory contrasted with the QMC results, clearly demonstrating the presence of low
energy weight near the transition.

To summarize, the bosonic mechanism provides the following results:

1. A viable theory of the SIT due to phase fluctuations, where the single particle gap does not
close, in agreement with many recent experimental results.

2. The prediction of finite universal conductivity RQp ⇠ (~2/4e2) at the critical disorder.

3. Enhanced low frequency conductivity at strong disorder, due to low energy phase modes.

Fig.2.9 shows a schematic figure depicting the evolution of the superconductor with disorder as
predicted by the bosonic mechanism.
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Figure 2.8: Schematic picture of optical conductivity calculated from Mattis-Bardeen theory (left)
[136] and results from QMC calculation using the quantum XY model in Ref. [134] (right). Top
right plot is at weak disorder, far from the critical region, middle right is near the critical region,
clearly showing enhanced low frequency weight, which again decreases as one goes beyond it into
the insulator (bottom right). This is in contrast to the mean field theory results, which show zero
conductivity between ! = 0 and the single particle gap 2�.

2.2.4 Numerical methods

We have seen that the fermionic and bosonic mechanisms provide two different theoretical frame-
works for understanding the superconductor insulator transition. While both of them successfully
explain certain observations in different classes of materials, the bulk of results from recent exper-
iments on materials like Be, InOx, TiN and NbN (as mentioned above and reviewed in an earlier
chapter) seems to be compatible with the bosonic scenario, at least at low temperatures. Neverthe-
less, there are certain features of real systems that the bosonic theory cannot successfully capture:

1. The bosonic formulation, being a low temperature effective theory, assumes that the single
particle gap ! 1, while real materials in the BCS limit have a small gap and a large coher-
ence length. Thus, fermionic degrees of freedom are important in the thermal behaviour.

2. Experimental results do not seem to show a universal conductivity at the critical region,
further emphasizing the role of fermionic degrees of freedom.

3. The inhomogeneous clusters and their specific dependence on the background disorder can-
not be predicted by the theory.

These reasons have motivated the development and application of numerical techniques to this
problem. Motivated by the experimental results in favour of the bosonic scenario, these approaches
usually neglect the Coulomb repulsion between the fermions, and use simplified model Hamilto-
nians such as the negative U Hubbard model to investigate the physics. The applicability of such
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Figure 2.9: Schematic figure [131] of the evolution of superconductivity with increasing disorder
as postulated by the bosonic mechanism. The superconductor consists of coherent pairs with finite
order parameter � and stiffness Ds. With increasing disorder, increasing phase fluctuations results
in a decrease in Ds, while the gap parameter � remains the same. The disoder causes the bosonic
pairs to lose long range coherence, and increased phase fluctuations among these pairs drives the
system insulating. In the insulating regime, the bosonic pairs are incoherent, but the single particle
gap reimans (the variation shown in the single particle gap is determined from calculations using
fermionic models,see numerical methods section).

simple models to this problem will be discussed in more detail when we describe our model and
methods.

Inhomogeneous mean field theory

The first approach in this direction was taken by Ghosal et. al. [84, 85], who investigated the
problem at T = 0 using a mean field theory generalized to disordered systems. Their work differed
from earlier mean field generalizations (like Ma-Lee as discussed earlier) in that they allowed for
the variation of the local pairing amplitudes �i, which resulted in very important differences from
the earlier theories, as described below.

They started with the negative U Hubbard model in a two dimensional lattice with disorder
incorporated in the form of a random potential Vi. Their mean field model can be written as:

H = Hkin +
X

i

�ic
†
i"c

†
i# +�

?
i ci#ci" +

X

i�

(Vi � µi)c
†
i�ci� (2.5)

While the terms involving� arise from a usual mean field decomposition in the pairing channel
⇠ hci#ci"i, Ghosal et. al. also considered the mean field decomposition in the ‘density’ channel
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Figure 2.10: Left: Map of �i at strong disorder from BdG calculations [85], showing clusters
with large �i embedded in regions with very small �i. Right: Density of states at T = 0 at three
different disorder strengths [85], showing the persisting gap even at high disorder, and decreasing
coherence peaks with disorder.

⇠ hc†i�ci�i, giving rise to a term (U/2)hnii (the ‘Hartree’ term), which they absorbed into the
chemical potential by defining µi = µ+(U/2)hnii. This gives rise to the following self consistency
relations:

�i = Uhci#ci"i
ni =

X

�

hc†i�ci�i (2.6)

This is known as the Hartree-Fock-Bogolyubov-de-Gennes (HFBdG) mean field theory. This
Hamiltonian, being quadratic can be solved by a generalization of the Bogolyubov-Valatin ansatz
described before, and these equations can then be solved self consistently. Ghoshal, et. al. [85]
solved these for different values of disorder at U/t = 1.5 in lattices upto size 24⇥ 24.

The resultant solutions showed an increasingly inhomogeneous distribution of both �i and ni

with increasing disorder. While the ni variation essentially followed that of the random potential,
becoming stronger with increasing disorder, the �i distribution showed large clusters where �i

was comparatively large embedded in a background with � ⇠ 0 at strong disorder. This was the
first explicit demonstration of superconducting clusters at strong disorder starting from a fermionic
model. Additionally, they showed that the density of states remains gapped at arbitrarily strong
disorder, since the low energy excitations are confined to the superconducting clusters. This lent
further credence to the bosonic theory of the T = 0 transition, where the gap persists, but inde-
pendent quantum fluctuations between the clusters destroys the superconducting state. By using

51



Figure 2.11: Phase correlation between edges (red) and order parameter � with increasing mag-
netic flux �/�0 at weak disorder (top) and strong disorder (bottom) [87]. While the top shows a
suppression of both the order parameter and phase correlation, both of which vanish at the tran-
sition point, the bottom one shows that the order parameter remains finite, but enhanced phase
fluctuations drive the transition, causing the phase correlations to vanish.

a quantum XY model with coefficients extracted from the mean field calculation, the authors also
provided an estimate of the critical disorder Vc. Fig.2.10 shows the clusters at strong disorder and
the density of states from their BdG calculations.

Including thermal fluctuations

The mean field method outlined above provides a single �i at each site, neglecting amplitude and
phase fluctuations. Subsequent numerical techniques developed real space Monte Carlo methods
to incorporate some of the effects of thermal fluctuations [86, 87, 137–139] in various calculations
in the context of s-wave and d-wave superconductors. The effect of classical phase fluctuations in
a disordered s-wave superconductor in the presence of a magnetic field was investigated by Dubi,
et. al. [87]. They started with the disordered negative U Hubbard model in the presence of a
magnetic field, which added site dependent phase factors to the Fermi operators. After a Hubbard-
Stratonovich transformation in a single channel, they formulated a model with extra classical fields
�i and numerically solved it (this mechanism will be discussed in greater detail in the model and
methods section). They found that the suppression and destruction of superconducting order with
increasing magnetic field followed completely different mechanisms at weak and strong disorder.
At weak disorder, the destruction was accompanied by the destruction of�i everywhere. At strong
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Figure 2.12: Phase diagram from QMC calculations [88]. Blue line shows the Tc degradation with
disorder V , vanishing at Vc ⇠ 1.6t. Single particle gap !dos persists through the transition, while a
two particle correlation gap !pair vanishes as one goes from the insulator to the superconductor.

disorder, on the other hand, increasing magnetic field caused the inhomogeneous superconduct-
ing clusters to shrink and disconnect, and the resultant loss of phase correlation destroyed the
superconducting order. This also hinted towards a similar, phase fluctuation driven transition with
increasing temperature at zero magnetic field, and provided an explanation for the intial rise in the
non-monotonic behaviour of the magnetoresistance at strong disorder. Fig.2.11 shows their results
for the destruction of superconductivity with increasing magnetic field at weak and strong disorder.
Subsequent work [137–139] including both thermal phase and amplitude fluctuations have inves-
tigated the nature of the percolation transition at finite temperature [137], the resistivity near the
BKT transition [138] and the non-monotonic magnetoresistance [139] at strong disorder. While the
first implemented a single channel decomposition, the latter two [138, 139] used a double channel
decomposition very similar to our methods to study the transport features.

Quantum Monte Carlo

Quantum Monte Carlo (QMC) methods incorporate both dynamic and spatial fluctuations in the
Hubbard-Stratonovich fields (though they decouple the quartic term in the ‘density’ channel, which
incorporates the same physics as the full Hubbard model when all fluctuations are retained), and
hence are free of approximations in principle. QMC calculations on the disordered negative U

Hubbard model [88, 140, 141] have provided many benchmark results about the superconductor-
insulator transition. Fig.2.12 summarizes these results from Ref. [88] in the form of a phase diagram
at U/t = 4. It shows the disorder induced suppression of Tc, providing a benchmark for the critical
disorder Vc. While the superconducting regime is characterized by a non-zero superfluid stiffness
which vanishes at Vc, the insulating regime is characterized by a finite pair energy scale !pair,
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corresponding to the decaying of a Cooper pair in the insulator. This is different from the single
particle gap !dos, which remains finite throughout the transition at T = 0.

The two particle scale vanishes at the transition, and the vanishing of a similar quantity is related
to the anomalous behaviour of the optical conductivity as explained earlier in connection with the
QMC of the quantum XY model [134]. Fig.2.12 shows a phase diagram that describes the evolution
of the various scales, Tc, the single particle gap !dos and the two particle gap !pair with increasing
disorder.

These calculations also demonstrated a disorder induced pseudo-gap in the density of states at
finite temperature. Thus, QMC calculations provide important bechmark results about the disorder
dependent Tc, demonstrate different energy scales !dos and !pair, and show a disorder induced
pseudo-gap in the spectral function at finite temperature.

Summary and shortcomings

In summary, the numerical methods achieve the following:

1. Mean field methods successfully showed the T = 0 inhomogeneity in the superconducting
state at strong disorder, alongwith the persistence of the single particle gap for all disorder
values.

2. Inclusion of classical phase fluctuations further demonstrated the contrasting effect of mag-
netic field at weak and strong disorder, providing an explanation for the non-monotonic mag-
netoresistance at strong disorder.

3. Recent generalizations of this method have included both amplitude and phase fluctuations
and clarified certain aspects of the thermal transition and the corresponding transport be-
haviour, along with an explicit demonstration of non-monotonic magnetoresistance at strong
disorder.

4. QMC methods, on the other hand, provided results on the Tc and its suppression, and different
energy scales !dos and !pair for single particle and pair excitations, clarifying the physics of
the transition further.

Together, these methods have thus explained several aspects of disordered superconductors.
There are, however, inherent shortcomings to all of these methods that limit their applicability

to certain aspects of the problem, especially related to thermal behaviour and spatial resolution.
These are:

1. Mean field theories are incapable of capturing the thermal behaviour at strong disorder, where
the phase degrees of freedom are expected to play an important role.
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2. While the inclusion of thermal phase fluctuations yields qualitatively correct results at low
temperatures and moderate coupling, they ignore amplitude fluctuations, which are expected
to be important at weak coupling and higher temperature, and hence cannot capture the cor-
rect physics of the system. Even when thermal amplitude fluctuations are incorporated, meth-
ods based on a single channel decomposition neglect the contribution of the density channel.
Thus, they do not reproduce the HFBdG ground state. From the mean field results, we found
that the extra inhomogeneous term (U/2)hnii magnifies the effective disorder Vi�(U/2)hnii
considerably at strong disorder, where ni is highly inhomogeneous. Thus, the results of such
methods, though qualitatively correct, are expected to be quantitatively incorrect at strong
disorder.

3. Recent work has incorporated both amplitude and phase fluctuations in both pairing and
density channels, but have not yet studied the disordered problem exhaustively, in particular,
the disorder induced transport crossover or the spatial and spectral characteristics relevant to
the STM experiments.

4. QMC is computationally complex, limiting it to moderate coupling U/t ⇠ 4 and small lat-
tices O(10 ⇥ 10). This prohibits their application to ‘weak’ coupling systems which are
experimentally relevant. Furthermore, it provides data on variables in imaginary frequency,
requiring complicated numerical analytic continuation techniques such as the Maximum En-
tropy Method to yield results in real frequency, potentially reducing the accuracy of the re-
sults, for example, on the single particle spectral functions and response functions like the
resistivity. We shall discuss this aspect, particularly the difficulty in calculating transport
properties using QMC, in more detail in Chapter.4, where we will describe our own results
on the charge dynamics of our system. Finally, the size limitation prevents a spatially re-
solved picture of the system, providing no insight on the evolution of the inhomogeneities
with temperature.

Hence, to overcome these limitations and provide a comprehensive method to study the disor-
dered superconductor problem in detail, one requires a method with the following characteristics:

1. Inclusion of all thermal fluctuations necessary to capture the finite temperature behaviour
of the system, especially to capture the complex interplay of disorder and thermal degrees of
freedom at strong disorder.

2. Inclusion of both the ‘pairing’ and the ‘density’ channels, so that the T = 0 state is
identical to HFBdG, and the important effects of the feedback of the inhomogeneous number
density at strong disorder is correctly incorporated in the physics.
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3. Ability to access larger lattice sizes, and hence smaller coupling values to allow meaningful
comparisons with experimental results done at weak coupling. This also reduces finite size
effects and allows access to larger spatial scales that QMC cannot access due to its high
computational cost. QMC is implemented in an imaginary time formulation and extracting
dynamical information involves a difficult analytic continuation process. A method using
real frequencies would avoid these problems.

As we remarked earlier, generalizations of mean field methods to include classical thermal
fluctuations in such interacting models have been developed before [86, 87, 137, 138]. However,
none of them incorporated all the factors listed above and applied that to the problem of disordered
superconductors. Below, we will describe our method, which allows us to incorporate all the im-
portant features above, and explain the numerical protocol we follow for simulation and the recipe
for calculating various observables from that.

2.3 Model and methods

In this section, we describe our model and the numerical methods and Monte Carlo protocol that
we use to solve this model. We choose the negative U Hubbard model on a two dimensional lattice,
which we have already come across earlier as a model used both in the context of the BCS-BEC
crossover and numerical simulations of disordered superconductors. As is true with any model,
this simplifies the complicated actual forces in play in the real materials, substituting them with
a simplified constant attractive interaction. In this section, we discuss the appropriateness of this
model for studying the problem of disordered superconductors.

2.3.1 Choice of model

In traditional s-wave superconducting materials, the effective attractive interaction between pairs
arises from the competition between the repulsive Coulomb interaction and the indirect phonon-
mediated retarded attractive interaction (which we will call the ‘Frohlich’ interaction). We saw
from previous discussions that disorder can affect such superconductivity in two distinct ways, by
either decreasing the effective attractive interaction (the fermionic mechanism) or by increasing
inhomogeneities, which results in an increase of phase fluctuations (the ‘bosonic’ mechanism). As
many of the experimental results seem to support the bosonic mechanism whereby these inhomo-
geneities increase phase fluctuations, any candidate model should be able to reproduce this. From
the numerical results, we see that the negative U Hubbard model manages to capture this physics
very successfully. Thus, to a first approximation, it seems possible to neglect the complex interplay
of the Coulomb interaction with the Frohlich interaction. Even though there are visible signatures
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of the Coulomb interaction in the detailed behaviour of certain observables such as the density of
states, it does not seem to play an essential qualitative role in the basic physics.

With magnetic impurities, a model with an on-site interaction is relevant for studying its effects
on s-wave superconductors as we saw in Chapter 1. The magnetic moments tend to destroy the
singlet pairing in such materials, suppressing superconductivity. However, If the system has a fnite
range attractive interaction, an alternative is to form triplet pairing between neighbouring sites,
thus resulting in the formation of p-wave superconductors. A well known example of p-wave
superconductivity is He3 (though for a repulsive core rather than magnetic field). In the context of
magnetic superconductors, similar p-wave pairing is found in a range of materials including UGe2,
URhGe, UCoGe etc [142]. A model with on site interactions like the Hubbard model is clearly
inadequate to study these cases.

Taking all these factors into account, we also choose the negative U Hubbard model as our start-
ing model, neglecting the Coulomb effects and the retarded nature of the electron phonon induced
attraction. As explained earlier, our emphasis would be on capturing the non-trivial effect of the in-
terplay of thermal fluctuations and disorder on the electronic motion. Hence, in our formulation, we
will make further approximations by neglecting the quantum fluctuations of our ‘auxiliary’ fields
resulting in a considerable increase in computational efficiency compared to QMC, while being
reasonably accurate in the regimes of interest.

As discussed before, there are two parameters in this model, namely, U/t and the filling fraction
f , which determines the average number density n. As evident from the analysis on the BCS-BEC
crossover, this model shows a superconducting ground state at all coupling values U , but for all
n 6= 1. At that particular filling, both superconducting and charge density wave order co-exist,
which implies that there is no order above T = 0. We will discuss these properties again with more
emphasis in Chapter.3 while describing our results on the BCS-BEC crossover.

2.3.2 Auxiliary fields

We begin with the negative U Hubbard model in a two dimensional square lattice:

H = (�t)
⇣X

hiji

c†i�cj� + h.c.
⌘
� U

X

i

ni"ni# (2.7)

To incorporate the effect of both the pairing and the density channels (whose importance to
the disorder problem has been discussed earlier), we do a multi-channel Hubbard-Stratonovich
decomposition, as done in Ref. [143]. To begin with, we rewrite the interacting term as
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�Uni"ni# = �(U/4)(n2
i � s2iz)

Here, siz = (ni" � ni#)2.

As in the Hubbard-Stratonovich transformation in one channel, we insert Gaussian identity
integrals for three channels corresponding to the pairing operator ci#ci", the density operator ni,
and the spin operator siz respectively. Let us call these fields �i(⌧), �i(⌧) and �si(⌧). One can
then make the substitutions�i ! �i + ↵ci#ci", �i ! �i � �ni and �si ! �si � i�siz respectively.
The quartic fermionic terms that come from this exactly cancel the interaction term of the original
model provided ↵2 + �2 = 1. The final action is

Sf =

Z �

0

X

i�

⇣
 ̄i@⌧ i +Hkin +Hcl +Hint

⌘
(2.8)

Here, Hkin is the kinetic energy term, and

Hcl =
X

i

(|�i|2/U) + (�2
i /U) + (�2

is/U)

Hint =
X

i

⇣
↵(�ic

†
i"c

†
i# + h.c.) + �(�ini + i�sisiz)

⌘
(2.9)

This is an exact result and is valid in principle for all sets of ↵ and � satisfying the constraint.
However, at the mean field level, this very clearly does not recover the HFBdG ground state [144].
To recover this, we put ↵ = � = 1. As mentioned in Ref. [143], the spin channel fluctuations
decouple from the rest of the system and are hence ignored. We neglect the quantum fluctuations
in � and �, assuming that for many thermal properties of interest, these quantum effects would
not be important, as explained before. The resultant problem of interacting thermal classical fields
coupled to quadratic fermionic operators is described by the Hamiltonian

Heff = Hkin +
X

i

⇣
(�ic

†
i"c

†
i# + h.c.)� (µ+ �i)ni + (|�i|2/U) + (�2

i /U)
⌘

(2.10)

The assumption ↵ = � = 1, while making the ground state identical to HFBdG, causes an over-
counting of fluctuations, since this model does not integrate back to the original Hubbard model.
However, we expect that in the relevant temperature range, such effects will be weak. We will
discuss these issues in more detail later in the context of benchmarking our model.

To incorporate disorder in this Hamiltonian, we model potential disorder by a random on-site
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potential Vi, and magnetic impurities by randomly positioned and oriented classical spins ~S⌫ which
couple to the fermion spin operator ~�i with a strength J . Thus, our most general model is given by

Heff = Hkin +
X

i

⇣
(�ic

†
i"c

†
i# + h.c.) + (Vi � µ� �i)ni + (|�i|2/U) + (�2

i /U)
⌘
+
X

i⌫

J�i⌫ ~S⌫ .~�i

2.3.3 Bogolyubov transformation

Our model reformulates the effect of the Hubbard electron-electron interaction in terms of classical
auxiliary fields�i and �i coupled to the ‘pairing’ and ’density’ operators ci#ci" and ni respectively.
The partition function is given by

Z =

Z
D(�, �̄)D�Trc,c†e��Heff

As T ! 0, it is obvious that Z will be dominated by the saddle point configuration, i.e,�i, �i, that
minimise Heff , giving the same self consistency conditions as HFBdG. On the other hand, at finite
temperature, the problem will involve solving for the fermionic problem in a fluctuating {�,�}
background in contrast to HFBdG, which would involve solving the problem in a situation where
electrons would see only the average background at any temperature.

At finite temperature, the Boltzmann weight of a given configuration {�,�} is given by

P{�i,�i} / Trc,c†e
��Heff (2.11)

This is related to the electron free energy in a particular {�i,�i} background, given by

e��F ⇠ P{�i,�i}

For an arbitrary configuration of the auxiliary fields, the trace cannot be analytically calculated.
However, since the trace contains quadratic fermionic terms, it can be evaluated numerically by
diagonalizing Heff for a given {�i,�i} background. Hence, with the effective classical free energy
F , one can use classical Monte Carlo methods to simulate the system at a finite temperature.

General formulation with magnetic impurities

The effective Hamiltonian Heff can be diagonalized for a given configuration {�i,�i}, via the
following transformation:
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ci" =
X

n
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†
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⌘

ci# =
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†
n

⌘
(2.12)

Here, n is a complete set of states, un and vn are related to the eigenfunctions of Heff , and the
new fermionic operators �n are the quasiparticle operators. These are chosen such that in terms of
new operators,

Heff = E0 +
X

n

✏n�
†
n�n

Hence, we have,

[Heff , �n] = �✏n�n
⇥
Heff , �

†
n

⇤
= ✏n�

†
n (2.13)

Using these, one can solve for the coefficients ui
n� and vin� by solving a matrix eigenvalue

equation. Define the matrix A as:
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Here, K̂ denotes the kinetic energy matrix, with K̂ij = (Vi � (U/2)�i � µ)�ij � (t)�i+n,j ,
where the term �i+n,j is non zero only when hiji are nearest neighbours, �̂ij = �ij�i and ˆ̄� is
its hermitian conjugate, ˆJS cos(✓)ij = �ij�i⌫JS⌫ cos(✓⌫) etc, where ✓⌫ and �⌫ are the polar and
azimuthal angles of the spin vector ~S⌫ .

We further define the column vector  as

 =

0

BBB@

{un"}
{vn#}
{un#}
{vn"}

1

CCCA
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Then, the eigenvalue equation is given by

A = ✏n (2.14)

If we start with a lattice of dimensions L⇥L, then the dimension of each of the 4⇥ 4 blocks in
A is N⇥N , where N = L2. Hence, the total dimension of the matrix is 4N⇥4N , and the integer n
runs from 1 to 4N . Physically this quadrupling of the degrees of freedom is caused by considering
two different spin degrees of freedom and both electronic and its corresponding hole degrees of
freedom, originating from the structure of the transformation which contains both electronic �†n
and hole �n creation operators.

If there are no magnetic impurities, the matrix structure can be simplified considerably. This is
relevant to the study of superconductors with potential disorder. Since our primary topic of interest
in this thesis is investigating the effect of such disorder, we shall henceforth use this simplified
scheme to describe our method further. The full calculations with the spins will be taken up in a
later chapter, where we describe our work on magnetic impurities.

Formulation with potential scattering

When there are no magnetic impurities, the Hamiltonian acquires a block structure, where the upper
half and the lower half become decoupled. Thus, the matrix elements mix {un"} only with {vn#}
and {vn"} only with {un#}.

This enables us to consider only the upper or lower blocks of the matrix, and brings down the
degrees of freedom to 2N . Considering, say, the upper block only, one can remove the spin indices
from {un"} and {vn#}, calling them simply {un} and {vn}. The quasiparticle operators �n with
n running from 1 to 4N can now be reclassified as �n" and �n# respectively, with n now running
from 1 to 2N . This notation emphasizes the fact that in the absence of impurity magnetic moments
changing the spin quantization axes, the character of the spins remains the same. Thus, in this new
notation, the transformations can be rewritten as

ci" =
X

n

⇣
ui
n�n" � v?in �

†
n#

⌘

ci# =
X

n

⇣
ui
n�n# � v?in �

†
n"

⌘
(2.15)

and A and  can be redefined as
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A =

 
ˆ
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ˆ
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ˆ
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!
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{un}
{vn}

!

From the structure of the matrix, one can see that if ✏n > 0 is an eigenvalue with eigenvector
(un vn)

T , then (�✏n) is an eigenvalue with vector (�v?n u?
n)

T . Hence, the spectrum is symmetric
about ✏ = 0, and one can effectively use only the positive set of eigenvalues to calculate all averages
and expectation values.

To calculate the expression for F ({�i,�i}), we note that after the diagonalization, the Hamil-
tonian can be written as

Heff = E0 +
X

n�,✏n>0

✏n�
†
n��n�

To calculate the energy E0, we note that for the ground state  G, we have

h G |Heff | Gi = E0

Rewriting the terms in Heff in terms of the operators �n and �†n, and applying the relations
h G

���n�†n
�� Gi = 1, we get, for E0:

E0 = �
X

in,✏n>0

2✏n
��vin
��2

.
The second part of Heff is simply a collection of free fermions and its trace can be easily

calculated from elementary statistical mechanics. Thus, the free energy is given by

F ({�i,�i}) = �
X

in,✏n>0

2✏n
��vin
��2 � (2/�)

X

n,✏n>0

ln(1 + exp(��✏n)) (2.16)

2.3.4 Monte Carlo protocol

To simulate the thermal behaviour of the system, we use classical Monte Carlo methods. The
thermal weight of a particular configuration is given by P ({�i,�i}) ⇠ e��F . We use a Metropolis
based update mechanism, where, starting with an arbitrary random configuration of the auxiliary
fields at high temperature, we update their values at a given site ‘i’ randomly. We calculate the
difference of free energies Ffinal�Finitial between the two configurations. The ratio of the thermal
weights of the two configurations is given by r ⇠ e��(Ffinal�Finitial), and we would like the thermal
statistics to obey this ratio. To accomplish that, we define a random number x and accept or reject
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the update depending on whether x < / > r.
This update protocol, after being carried out on all sites of the lattice, provides one thermal

configuration {�i,�i}. This step is repeated for a large number of times at a given temperature,
generating different thermal configurations of the auxiliary fields at that temperature. The same
process is then repeated at the next, lower temperature, and so on, gradually letting the system
anneal through to a suitably low temperature at the end. Typically, half of the total number of
configurations at each temperature are disregarded to let the system equilibriate, and the rest are
used to calculate various thermally averaged quantities of interest.

The costliest part of this simulation process is the diagonalization of the matrix to calculate the
free energy F . For a given matrix N ⇥N , the computational cost to diagonalize it is ⇠ O(N3) per
update, or O(N4) per lattice sweep. This limits the accessible lattice sizes to 10 ⇥ 10. To access
larger lattice sizes in a reasonable amount of time, we use lattice based update methods [145],
where, instead of the full lattice, we only diagonalize a lattice of size Lc ⇥ Lc centred around the
update site ‘i’. This reduces the cost per update to ⇠ O(N3

c ) instead, where Nc = L2
c , and the cost

per sweep to ⇠ N ⇥O(N3
c ), which scales linearly with the lattice size N . This allows us to access

larger lattice sizes ⇠ 30 ⇥ 30, and hence coupling values as low as U/t = 2, that exact methods
like QMC cannot.

In the next subsection, we describe in detail how we calculate thermally averaged values of
observables from the configurations {�i,�i} that our Monte Carlo simulation provides at teach
temperature.

2.3.5 Calculating thermal averages

The quantities of interest that can be calculated from such a simulation can be classified into two
types, namely, quantities that depend on the auxiliary fields only, such as thermal averages of
various combinations of fields � and �, and quantities that depend on combinations of electronic
operators ci� or c†i�. Calculating quantities of the first type is trivial, but for the second type, one is
required to calculate a double average, first over the quantum degrees of freedom, and then, over
the different classical thermal configurations.

At a given temperature, the expectation value of any electronic operator f(ci, c†i ) is given sym-
bolically by hf(ci, c†i )i = Z�1

R
D(�̄,�) D� Trc,c†f(ci, c

†
i )e

��Heff . To compute this, we proceed
as follows. For each configuration {�i,�i}, the first step is to express the fermionic operators in
terms of the quasiparticle operators (�n�, �†n�), with the eigenvectors (ui

n, v
i
n) as coefficients. The

electronic trace over the resultant expressions in terms of the quasiparticle operators can then be
evaluated from the statistical mechanics of free fermions. This result is then averaged over equilib-
rium configurations {�i,�i} to give the final, thermally averaged result. For disordered systems,
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we average this further over a number of disorder realizations (typically 10, but this will be de-
scribed in detail in the relevant chapters) for global indicators, but typically choose a particular
realization to investigate the specific local properties. The next subsection describes the relevant
calculations in more detail.

2.3.6 Computing observables

The following are the quantities of interest that provide information on the properties of the system:

• Structure factor S(q) and correlation functions of the form h�i�ji, which provide informa-
tion about the local and global superconducting correlations in the system.

• Conductivity �(T ), or in general, the optical conductivity �(!, T ), providing information
about the transport properties of the system, especially the effect of disorder.

• Spectral functions such as the global density of states N(!), or the ‘site-resolved’/‘k-resolved’
spectral function Ni(!)/Ak(!), which reveals the nature of the single particle excitations and
provides information about the underlying state.

Structure factor

In the superconducting state, one expects that the pairs will be coherent throughout the system. This
long range order implies that the correlation function Mij = h(ci#ci")(c†j"c

†
j#)i will be non-zero even

at large distances |i� j|. Since the�i fields ‘mimic’ the behaviour of the electron operator (ci#ci")
on the average, one can expect the corresponding ��� correlation function h�i�ji to behave in
a similar manner.

Using an analogy with spin systems, this implies that the� values get aligned in the same direc-
tion, just like spins below a ferromagnetic transition. This will be indicated by the long range corre-
lation function as q ! 0. To this end, we define the structure factor S(q) = (1/N2)

P
ijh�i�?

jieiq.(ri�rj).
When S(q ! 0) ⇠ O(1), it implies that the pairing field has a non-zero spatial average and would
in turn induce long range order (power law correlation in 2D) in the Mij . Thus S(q = 0) provides
information on the long range superconducting order. In our calculations, we plot S(q = 0, T ) vs T ,
after duly averaging over different disorder realizations in the disordered problem, and determine
the Tc from the rise of the curve.

On the other hand, the short range spatial correlation function h�i�ji provides information
about the short range superconducting correlation between the sites ‘i’ and ‘j’. This will be impor-
tant in disordered systems, where superconducting regions break up into small clusters. Since these
probe specific local properties depending on one particular realization, these will be calculated on
specific disorder realizations.
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Spectral functions

The spectral functions are defined in general as the imaginary parts of corresponding correlation
functions [74, 146]. This relation can be symbolically written as N ⇠ �(1/⇡)Im(G), where G

denotes the retarded single particle Green’s function. The most fundamental Green’s function is
given by G�

ij(t� t
0
). The general definition of this is given by

G�
ij(t� t

0
) = �i⇥(t� t

0
)h[ci�(t)c†j�(t

0
) + c†j�(t

0
)ci�(t)]i

Here, the angular brackets indicate taking the thermodynamic average. Now, as shown in
Ref. [146], by inserting complete sets of eigenstates |ni, |mi of the total interacting problem, one
gets, for the time Fourier transformed function G�

ij(!):

G�
ij(!) =

1

Z
X

n,m

hn|ci�|mihm|c†j�|ni
e��En + e��Em

! + En � Em + i�

Now, by utilizing the BdG equations Eq. 2.15, one can express this in terms of the eigenoper-
ators of the problem, �†n�. The exact multiparticle states are then just Slater determinants of these
quasiparticle eigenstates, and one can reformulate the problem in terms of single particle levels n.
Further, since this system is spin-symmetric, G"

ij(!) = G#
ij(!) = Gij(!), and one can extract the

local density of states, Ni(!) from the imaginary part of Gii(!):

Ni(!) =
X

n

(
��ui

n

��2 �(! � ✏n) +
��vin
��2 �(! + ✏n)) (2.17)

Similarly, from the Fourier transform G(k,!), one can extract the k-resolved spectral fuction
Ak(!):

A(k,!) =
X

n

(
��uk

n

��2 �(! � ✏n) +
��v�k

n

��2 �(! + ✏n)) (2.18)

Here, uk
n and vkn are Fourier transforms of ui

n and vin respectively.
The total density of states is given by the sum

X

i

Ni(!) =
X

in

(
��ui

n

��2 �(! � ✏n) +
��vin
��2 �(! + ✏n)) (2.19)

Due to the finite size of our lattices, the eigenstates ✏n are not dense, and have finite intervals
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between them. Hence, we must resort to some approximations while incorporating the effect of the
delta functions. Thus, we approximate the delta function by a box of some suitable size a spanning
the energy values (! � a/2,! + a/2), then add the contributions of all energy states ✏n that lie in
this interval to the value of N(!), and finally divide by the interval width a to get N(!) per unit
interval. As usual, we first calculate this for a particular configuration {�i,�i}, and average over
the auxiliary field configurations to get the final thermally averaged result at a given temperature.
The final results are averaged over many disoder realizations for the global density of states, but for
the local density of states, we investigate specific realizations of disorder.

Optical conductivity �(!)

The optical conductivity of a system is related to the linear response of the system to an externally
applied electric field ~E. The electric field induces a current density in the system given by ~J , and
the conductivity �xx(q,!) is defined as:

jx(q,!) = �xx(q,!)Ex(q,!)

.
The long range transport properties of the system are given by �xx(q = 0,!). Henceforth, we

will simple call this �(q,!), which should always be taken to mean �xx(q = 0,!). Using linear
response theory, one can relate this to the current-current correlation function ⇤xx(q,!), which
gives [147]

�(q = 0,!) = �h�kxi � ⇤xx(q = 0,!)

i(! + i�)
(2.20)

Here, h�kxi is the kinetic energy of the system in the x-direction, and ⇤xx(q = 0,!) is the
fourier-frequency transform of a current current correlation function ⇠ hjx(x1, t1)jx(x2, t2)i. The
current operator jx is given by

jx = (�it)
X

i

(c†i+x�ci� � h.c.)

From Eq. 2.20, we see that the real part of �(q = 0,!) consists of a singular part �s(q = 0,!)

and a regular part �reg(q = 0,!) given by
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�s(q = 0,!) = D�(!),where, D/⇡ = h�kxi � ⇤xx(q = 0,!), and

�reg(q = 0,!) =
Im(⇤xx(q = 0,!))

!
(2.21)

The superconducting state is characterized by a non-zero superfluid stiffness Ds which is given
by

Ds/⇡ = ⇤xx(qx = 0, qy ! 0,! = 0)

For gapped systems, one can generally show that D = Ds [147], and hence the non-zero
superfluid stiffness shows up as the weight of the delta function in �s(q = 0,!). Since we determine
the superconducting correlations in our systems from the structure factor S(q = 0, we neglect this
part of �(q = 0,!) and concentrate on the regular part �reg(q = 0,!).

To proceed, we note that for any general bosonic operator B̄(t), the corresponding retarded
correlation function B̄ret(!) is given by [146]:

B̄ret(!) =
1

Z
X

n,m

hn|B|mihm|B†|ni e��En � e��Em

! + En � Em + i�

Utilizing this general expression, we can write the current-current correlation function ⇤xx(q =

0,!) as

⇤xx(q = 0,!) =
1

Z
X

n,m

|hn|jxx|mi|2 e��En � e��Em

! + En � Em + i�

where jx = (�it)
P

i(c
†
i+x�ci� � h.c.) is the current operator in the x direction, n and m

represent exact multiparticle states of the system.
Now, similar to the spectral function case, we write these in terms of the eigenoperators �n�

and �†n� and reformulate the problem in terms of single particle eigenstates. This gives
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�reg(!) =
X

a,b

�����
X

i

f1(i, a, b)

�����

2
(n(ea) + n(eb)� 1)

ea + eb
�(! � ea � eb)

+
X

a,b

�����
X

i

f2(i, a, b)

�����

2
(n(ea)� n(eb))

ea � eb
�(! � eb + ea)

+
X

a,b

�����
X

i

f3(i, a, b)

�����

2
(n(ea)� n(eb))

ea � eb
�(! � ea + eb) (2.22)

Here, a, b label single particle eigenstates of the system such that ✏a, ✏b > 0, and f1(i, a, b),
f2(i, a, b) and f3(i, a, b) are given by

f1(i, a, b) =
�
vi+x
a ui

b � viau
i+x
b + vi+x

b ui
a � vibu

i+x
a

�

f2(i, a, b) =
�
u?i+x
a ui

b � u?i
a u

i+x
b � vi+x

b v?ia + vibv
?i+x
a

�

f3(i, a, b) =
�
vi+x
a v?ib � viav

?i+x
b � u?i+x

b u1
a + u?i

b u
i+x
a

�

Interchanging a and b in the second term in Eq. 2.22, and defining F1(a, b) = |
P

i f1(i, a, b)|
2

and F2(a, b) = + |
P

i f2(i, a, b)|
2 + |

P
i f3(i, b, a)|

2, we get

�reg(!) =
X

a,b

F1(a, b)
(n(✏a) + n(✏b)� 1)

✏a + ✏b
�(! � ✏a � ✏b)

+
X

a,b

F2(a, b)
(n(✏a)� n(✏b))

✏a � ✏b
�(! � ✏b + ✏a) (2.23)

The resistivity of the system is given by ⇢(T ) = �(q = 0,! ! 0)�1. To calculate the conduc-
tivity, we again approximate the delta functions by box functions as explained earlier. In particular,
the ! ! 0 limit is taken by calculating the conductivity in an interval (0,!a) and taking the average
over that interval. The choice of these intervals and widths will be explained in more detail in the
respective chapters.

2.3.7 Approximations, benchmarking

In this subsection, we briefly summarize the aproximations used in our method and their primary
consequences, and the observables and quantities that we use for benchmarking our results with
respect to the system parameters that we have used, including system size, number density and
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coupling strength. Detailed discussions, including specific data, are left to the relevant chapters.

Consequences of approximations

The primary approximations that are employed in our model are:

1. Static approximation in the auxiliary fields �:
As seen before, these fields are time dependent in the most general case, but we approximate
them as classical fields. In the context of disordered superconductors, the time dependence
can be significant in the following regimes:

(a) The vicinity of the T = 0 SIT, where the dynamics of the bosonic fields provide low
energy modes that can affect the transport and low frequency optics significantly.

(b) Critical regime, close to Tc, where the Aslamazov-Larkin fluctuation corrections to
the transport, which involve the dynamics of the fields, can be important. These are
discussed in greater detail in Chapter 4, where we consider the transport and global
spectral features of the disordered system.

2. The neglect of Coulomb interactions:
As discussed earlier, this does not seem to be the driving force behind the disorder driven SIT
seen in many recently investigated materials. Nevertheless, Coulomb interaction can affect
the system in the following manner:

(a) Increase in phase fluctuations due to the long range nature of the Coulomb interactions,
which will result in effects that are phenomenologically similar to the ones we have
studied

(b) Characteristic wide dip in the density of states, that are seen in experiments, but are
absent from our results. More comprehensive discussions are found in Chapters 4 and
5.

3. Presence of both auxiliary fields: As mentioned earlier, the presence of both fields � and
� with coefficient of unity results in an overcounting. These extra fluctuations may have
significant effects at large temperatures. However, in the parameter regimes that we have
considered, they only result in a slight depression of Tc, while other parameters such as
transport and density of states are not changed significantly. A detailed discussion appears in
Chapter 3, where we examine these in the context of the BCS-BEC crossover.
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4. System size:
The bulk of our results are at a system size of 24 ⇥ 24. This implies that we cannot access
coupling values U . t, since the coherence length becomes comparable to system size. The
effect of magnetic impurities is studied on lattices of size 16⇥ 16.

5. Cluster approximation:
The cluster approximation implies that our method is not able to capture long range mod-
ulated phases. While this is not relevant in the systems we have investigated, it could be
relevant for systems with population imbalance, as well as magnetic superconductors.

Benchmarking

Our results are benchmarked to ensure that they are reliable in the parameter regimes we have used,
including coupling, number density and system size. Most of our results are on lattices ⇠ 24⇥ 24

with coupling values ranging from U/t = 2 to 10 and a number density of 0.9. To ensure their
robustness, we compare our results at various system sizes, various averaging intervals to ensure
that finite size effects are negligible and with results from single channel calculations to ensure that
overcounting effects are negligible in our parameter regime. This ensures the internal consistency
of our results. This is followed by comparisons, wherever possible, with established results from
QMC and other methods, to verify that the correct physics is captured by our method. Leaving
detailed discussion of the parameter regimes and numerical data and their comparison to other
methods to the relevant chapters, we briefly describe the quantities that we examine to benchmark
our results. These are

1. The structure factor S(q = 0), from which we extract Tc, which we compare at various lattice
sizes from 8 ⇥ 8 upto 32 ⇥ 32, for coupling values ranging from U/t = 2 to 10. Detailed
discussion and results are shown in Chapter 3.

2. Resistivity, at U/t = 2 for various lattice sizes, and various averaging intervals that we
have used to mimic the delta functions, as well as the frequency interval !a for calculating
�(q = 0,! ! 0). We elaborate on this, with detailed results, in Chapter 4.

3. Density of states, especially the behaviour at low frequencies, which we compare for the
single field and two fields cases respectively, in Chapter 3, to ensure that overcounting effects
are negligible in the regime under consideration.

These benchmarks establish the essential correctness of our calculations, and hence lend cre-
dence to our results that go beyond those captured by other methods.
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This concludes the experimental and theoretical summary of the literature, and the description
of our model and methods. The following chapters will describe the results of our work on thermal
fluctuations in superconductors in detail. We begin with an examination of the BCS-BEC crossover
in the context of our model in Chapter.3, which helps us to benchmark our model thoroughly. We
then shift our focus to disordered superconductors, the main topic of our thesis, in Chapters 4 and
5. Finally, we provide our results on magnetic impurities in superconductors in Chapter 6.
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CHAPTER3
THE BCS-BEC CROSSOVER

In this chapter we will describe our results on the BCS-BEC crossover in attractive fermion sys-
tems. Since this has been a topic of continued interest, our results and their comparisons with the
various other theoretical and numerical methods will help in establishing the key strengths and lim-
itations of our method. After benchmarking our method here, we will move on to consider the more
complex case of disordered superconductors, where fewer methods are available, in the subsequent
chapters.

The BCS to BEC crossover, describing the change in the properties of a Fermi system with
increasing attractive interaction between the fermions, has been a topic of active research for
the last few decades. With increasing interaction, the ground state of a weak coupling ‘BCS
superconductor’ [2], with pair size ⇠ much larger than the interparticle separation k�1

F , evolves
smoothly [4,89,107,148–150] into a ‘Bose-Einstein condensate’ (BEC) of preformed fermion pairs
with ⇠ . k�1

F . kF , above, is the Fermi wavevector. The ‘high temperature’ normal state changes
from a conventional Fermi liquid at weak coupling to a gapped phase at strong coupling. While
the zero temperature pairing gap increases with coupling strength, the superconducting Tc in lattice
systems reaches a maximum at intermediate coupling and falls thereafter. A striking consequence
of the separation of pairing and superconducting scales is the emergence of a (pseudo)gapped nor-
mal phase, with preformed fermion pairs but no superconductivity due to strong phase fluctuations.

The early work of Leggett [89] and Nozieres and Schmitt-Rink [107] provided the intuitive
basis for understanding this problem. It has since been followed up by powerful semi-analytic
schemes [108, 151–155], extensive quantum Monte Carlo (QMC) work [156–165], and most re-
cently dynamical mean field theory (DMFT) [166–171]. The efforts have established the non-
monotonic Tc, and the presence of a pseudogap in the single particle spectrum beyond moderate
coupling and temperature T > Tc.

While the success of multiple methods in capturing the crossover is remarkable, most of them
depend on translation invariance in the underlying problem. They do not naturally generalise to
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problems that involve the presence of disorder, or a confining potential, or the emergence of spon-
taneous modulation. These situations, for example, occur in the context of the disorder driven
superconductor-insulator transition [5], trapped fermions in an optical lattice [96, 98], and Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) states [173] in population imbalanced systems. Such prob-
lems, in general, require a real space approach. Our method provides such an implementation.

Our main results are the following:

1. We demonstrate the ability of our approach to quantitatively capture the Tc scale across the
BCS-BEC crossover, confirming its usefulness at all interaction strengths.

2. We quantify the crossover from an amplitude fluctuation dominated regime to a phase fluc-
tuation dominated regime, through the ‘high Tc’ intermediate coupling window where both
are important.

3. We present the thermal evolution of the single particle density of states with interaction and
temperature, and, more importantly, the momentum resolved spectral function A(k,!). We
compare our results to QMC data wherever available.

This chapter is organised as follows. In Sec.II we quickly compare the existing analytic and
numerical methods used to study the BCS-BEC crossover in lattice models. Sec.III presents our
model and describes the method used in detail. Sec.IV shows our results on thermodynamic indi-
cators, the nature of fluctuations, density of states, and A(k,!). Sec.V discusses the limitations of
our method and the scope for further work.

3.1 Earlier work

Since the BCS-BEC crossover is a prototype of weak to strong coupling evolution, several methods,
of increasing sophistication, have been brought to bear on it. These include mean field theory
(MFT) [89], MFT corrected by gaussian fluctuations [107], the self consistent T-matrix approach
(SC-TMA) [151, 152], a two particle self consistent (2PSC) scheme [153], the mapping to XY
models [154, 155], quantum Monte Carlo (QMC) [156–165], and recently dynamical mean field
theory (DMFT) [166–171].

Detailed descriptions of these methods are available in the original literature so we just provide
a table that compares the strengths and limitations of these methods in the light of a few crucial
indicators such as (i) thermodynamics: the estimate of Tc(U), (ii) single particle spectra, (iii) two
particle properties, e.g, conductivity, and (iv) handling inhomogeneity, e.g, disorder or trapping.
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Method Tc(U) Spectra at large
U/t

Transport at large
U/t

Handling inhomo-
geneity

MFT Correct only when
U/t . 1.

No gap/pseudogap
in the normal state.

No access to trans-
port.

Real space MFT is
reasonable at T =
0, can access size ⇠
40⇥ 40.

MFT+fluctuations Leads to unphysi-
cal negative com-
pressibility at large
U [108]

PG above mean
field Tc, inca-
pable of capturing
BKT physics in
2D. [149]

No results Not systematically
explored.

SC-TMA Accurate upto
intermediate cou-
pling; captures
non monotonic
behaviour correctly
to U/t ⇠ 8 . [151].

Shows a PG, but
quantitatively inac-
curate due to ne-
glect of vertex cor-
rections [149].

No results Not generalised.

2PSC Approach fails
close to the BKT
transition tempera-
ture and at strong
coupling [153].

Accurate upto
intermediate cou-
pling [153].

No results Not generalised.

XY models Captures non
monotonic Tc(U)
but not quan-
titatively accu-
rate [154, 155].

PG inferred from
different pairing
and Tc scales.

Not explored. Disordered XY
model needs to be
derived from the
Hubbard model.

QMC Accurate, sets
the bench-
mark [157, 165].

Accurate in prin-
ciple but involves
uncertainties due
to analytic con-
tinuation from
imaginary fre-
quency [158, 162].

Contains the rel-
evant physics but
dynamical proper-
ties are difficult to
extract due to ana-
lytic continuation.

Handles inho-
mogeneity [88]
but sizes limited
to ⇠ 12 ⇥ 12.
Associated U/t & 4.

DMFT Captures non
monotonic Tc(U)
but quantitatively
inaccurate when
used in the 2D
context [166].

Accurate [170]. Transport misses
bosonic contribu-
tion.

Requires ad hoc real
space generalisation.

SAF Accurate, matches
quantitatively with
QMC.

Accurate, com-
pares reasonably
with QMC.

Transport misses
bosonic contribu-
tion.

Handles inhomo-
geneity, O(N)
method, readily
accesses [174] size
⇠ 30⇥ 30.

Table 3.1: Comparison of available methods with our static auxiliary field approach for the two
dimensional attractive Hubbard model. The expanded title for each method is given in the text.
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3.2 Model and method

We briefly recap the model and methods that we use. We study the attractive two dimensional
Hubbard model (A2DHM),

H =
X

ij,�

(�t� µ�ij)c
†
i�cj� � |U |

X

i

ni"ni#

Here, t denotes the nearest neighbour tunneling amplitude on a square lattice. µ is the chemical
potential which fixes the average number density n. We set t = 1 and measure all other energies
in terms of it. U > 0 is the strength of onsite Hubbard attraction. We will focus on the density
n ⇠ 0.9 which is close to half-filling but avoids the density wave features of n = 1.

The model is known to have a superconducting ground state for all n 6= 1, while at n = 1 there
is the coexistence of superconducting and density wave (DW) correlations in the ground state. For
n 6= 1 the ground state evolves from a BCS state at U/t ⌧ 1 to a BEC of ‘molecular pairs’ at
U/t � 1. The pairing amplitude and gap at T = 0 can be reasonably accessed within mean field
theory or a simple variational wavefunction.

Mean field theory, however, assumes that the electrons are subject to a spatially uniform self-
consistent pairing amplitude hhc†i"c

†
i#ii. At small U/t this vanishes when kBT ⇠ te�t/U , but at large

U/t it vanishes only when kBT ⇠ U . The actual Tc at large U is controlled by phase correlation
of the local order parameter, rather than finite pairing amplitude, and occurs at kBTc ⇠ f(n)t2/U ,
where f(n) is a function of the density. The wide temperature window, between the ‘pair formation’
scale kBTf ⇠ U and kBTc corresponds to equilibrium between unpaired fermions and hardcore
bosons (paired fermions).

Our auxiliary field scheme applies a Hubbard-Stratonovich transformation in both the ‘pairing’
and the ‘density’ channels, as explained earlier. After the subsequent neglect of quantum fluctua-
tions, we have

Heff = Hkin +
X

i

(�ic
†
i"c

†
i# + h.c.)�

X

i

�ini +
X

i

|�i|2
U

+
X

i

�2
i

U

The mean field HFBdG equations are saddle points of this model w.r.t. the auxiliary fields.

�i = Uhci"ci#i, �i =
U

2
hnii

We will describe the indicators separately in detail in their respective sections.
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Figure 3.1: (a). Temperature dependence of the q = {0, 0} component of the pairing field corre-
lation for different U/t. The onset locates the superconducting Tc. (b). The Tc inferred from the
structure factor result. This is compared to QMC results at the end of the paper. (c). Ratio of T = 0
gap 2�0 to Tc. In the BCS limit the ratio would be ⇠ 3.5. (d). The ‘phase diagram’ in terms of
the low frequency behaviour of the density of states. The high temperature normal state has three
regimes, ungapped (UG), pseudogapped (PG) and gapped (G), while for T < Tc the system is a
gapped superconductor (SC) exact definitions of these phases are given in the text.

3.3 Results

3.3.1 Thermodynamic indicators

Fig. 3.1(a) shows our result for the structure factor corresponding to the growth of superconducting
order. We compute the thermally averaged pairing field correlation S(q) = 1

N2

P
ijh�i�?

jieiq.(ri�rj)

at q = {0, 0}. We locate the superconducting transition from the rise in S(0, T ) as the system is
cooled. The results are not reliable below U/t . 1, since the correlation length ⇠ becomes com-
parable to our system size, but compare very well with available QMC data for U/t & 2. We will
discuss the interpretation of the S(0, T ) results in detail at the end of the paper.

Fig. 3.1(b) shows the result for Tc(U) showing the clear peak around U/t ⇠ 5. We will compare
this to the result from QMC, and also discuss the system size dependence, at the end of the paper.

In Fig. 3.1(c) highlights the rapid rise in the ‘gap’ to Tc ratio with increasing interaction. In the
weak coupling limit this value is 3.5, at U = 2t it is already ⇠ 7, quite beyond BCS, and grows
roughly as (U/t)2 at large U . Needless to say, the T = 0 gap is not an indicator of the robustness
of the superconducting state once we go beyond weak coupling.

Fig. 3.1(d) shows the phase diagram, consisting of four distinct phases. When the density of
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states has zero weight over a frequency window around ! = 0 we call the system gapped. When
the weight is nonzero but depressed we call it pseudogapped. This feature typically has a strong
T dependence. Due to size effects a weak T independent depression is visible even at U = 2t,
we have not labelled this as a pseudogap. The large gap but low Tc leaves its imprint on several
physical properties, as this diagram highlights. At weak coupling the vanishing of SC order also
means the vanishing of the gap in the density of states. The high T regime at small U/t is ungapped
(UG). The regime U/t . 2 is a ‘renormalised BCS’ window, although the gap to Tc ratio is large.
For 2 . U/t . 4 the T > Tc phase has a pseudogap (PG), while for U/t & 4 the T > Tc regime
is gapped. Notice that the normal state gap appears before the peak Tc is reached, i.e, on the ‘BCS’
side of the crossover.

3.3.2 Background fields

To understand the spatial behaviour of the system and its evolution with U and T we examine the
variation of the background fields �i and ✓i. Fig. 3.2 shows single snapshots of |�i| (upper row in
each set), normalised by the T = 0 mean field value, and the phase correlation �i = cos(✓i � ✓0)

(lower row in each set), where ✓0 is the angle at fixed site R0 in the lattice.
Of the three sets in Fig. 3.2, the top set is for U/t = 2, which we will use as typical of ‘weak’

coupling, the middle set is for U/t = 6, typical of intermediate coupling, and the bottom set is for
U/t = 10, strong coupling. The rows are for T/Tc(U) = 0.1, 1, 2.

At T = 0.1Tc all the snapshots show almost uniform |�i| and perfect phase locking at all U/t.
This is almost the mean field ground state. As we move to higher T , however, we see a clear
difference in the amplitude fluctuations of the three systems. While the U/t = 2 plots show an
increasing inhomogeneity and a steadily rising value of� throughout the system, the U = 10t case
hardly shows any change. The U = 6t behaviour is intermediate. This shows that with increasing
U , the system moves smoothly from an amplitude fluctuation dominated regime to one in which
amplitudes are effectively constant, the transition being driven by the phase fluctuations.

The phase maps, on the other hand, show how the system breaks up into correlated patches with
temperature. The middle column corresponds to Tc, and show large correlated clusters, as expected
for a system close to criticality. As T is increased, the correlation length decreases, as evident from
the right column at 2Tc.

While it is phase fluctuations that ultimately destroy order at all U/t, the amplitude fluctuations
are quantitatively important at weak coupling. To highlight this, we plot the distribution of |�|
for the three U values at four temperatures T = 0.1Tc, 0.5Tc, Tc and 2Tc in Fig. 3.3(a),(b) and
(c). (d) shows the temperature dependence of the mean h|�|i and its variance for U = 2t, 6t

and 10t. We find that the distributions widen for each case with increasing T , but the increase is
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much more pronounced at weak coupling, and decreases systematically with increasing coupling.
The distribution is noticeably non gaussian at high temperature in the weak coupling case. The
temperature dependence of the mean and width of P (|�|) is shown in Fig. 3.3(d). A detailed
discussion is postponed to the end of the paper.

Figure 3.2: Maps of amplitude fluctuation and phase correlation for single configurations at U/t =
2 (top), U/t = 6 (middle) and U/t = 10 (bottom) at three temperatures: T = 0.1Tc, T = Tc

and T = 2Tc (left to right). For each set, the upper row shows the amplitude |�i| (normalised
by the T = 0 mean field value �0) for a MC configuration, while the lower row shows the phase
correlation: �i = cos(✓i � ✓0), where ✓0 is the phase at a site R0 near the center.

3.3.3 Density of states

Fig. 3.4 highlights the behaviour of the single particle density of states (DOS). We show results at
the ‘BCS end’ (U = 2t), near the peak Tc (U = 6t), and in the BEC regime (U = 10t). The T = 0

results in all cases are described by the canonical DOS, N(!) ⇠ 1/
p
!2 � |�0|2, where 2�0 is the

full T = 0 gap in the single particle spectrum. There is a gap in the spectrum at all U , a ‘coherence
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Figure 3.3: (a)-(c). The distribution P (|�|) of the magnitude, |�|, of the pairing field. The
x-axis is normalised by the mean field value �0 at T = 0. The results are for T =
0.1Tc, 0.5Tc, 1.0Tc, 2.0Tc. (a). U/t = 2, (b). U/t = 6, (c). U/t = 10. At U/t = 2 there is a
prominent increase in the mean and width of P (|�|) with T . This T dependence weakens with
growing U/t. (d). The growth of the mean value h|�|i and width !� with T . Both are normalized
by the T = 0 mean value of �. The firm lines denote the mean |�|, while the dot-dashed lines
show the corresponding width.

peak’ at the gap edges, arising from electron propagation in a perfectly pair correlated background,
and a featureless fall at high energies. The oscillatory pattern in the DOS at T = 0 for U = 2t is a
consequence of finite size, showing up even on a 24⇥ 24 lattice.

While the T = 0 DOS is just a mean field result, and the T dependence at U = 2t is expected,
the T dependence at U = 6t and U = 10t is not obvious. At U = 6t, the system has a ‘hard gap’
persisting to T ⇠ 3Tc ⇠ 0.5t. This is reflected in the phase diagram in Fig. 3.1. At both U = 6t

and 10t the transition to SC occurs from a gapped fermion state rather than a Fermi liquid. The
DOS indicates that down to U values around peak Tc (and even somewhat below) the qualitative
physics remains similar to the BEC end.

Another striking feature is the large transfer of spectral weight that occurs on a modest change
of temperature. For the U = 10t case, for example, at T ⇠ Tc ⇠ 0.09t there is weight transfer
over a scale O(U). The reason is fairly simple: the magnitude |�i| in this limit are almost T
independent, but the phase correlation between them is destroyed at a temperature T ⇠ t2/U . As
a result, over a small T window the system evolves from a state with perfectly ordered �i, to one
where these large amplitudes are randomly oriented. The strong ‘disorder’ in the �i lead to the
broadening of the density of states.
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Figure 3.4: Temperature dependence of the DOS, N(!) at different couplings. Panels (a)-(c) have
the same legends. (a). U/t = 2, (b). U/t = 6, and (c). U/t = 10. The oscillations in the DOS in
panel (a) are finite size artifacts (even on a 24⇥24 lattice). At U/t = 2 the gap essentially vanishes
at T ⇠ Tc, while at U/t = 6 a small ‘hard gap’ persists to Tc and above, although lorentzian
broadening gives the impression of a pseudogap at the highest T . For U/t = 10 a ‘hard gap’
persists to T ⇠ 0.5 although with a clear reduction with increasing temperature. (d). Variation in
the single particle gap, normalised by its T = 0 value.

The large size of |�i| even in the normal state preserves the gap feature, but the randomness
smears the band edges.

3.3.4 Spectral functions

Now we turn to the spectral functions. Fig. 3.5 shows intensity plots of the spectral function A(k,!)

for U/t = 2, 6, 10 (top to bottom) for T/Tc = 0.1, 1, 2 (left to right). Let us start with the low
temperature results, where mean field theory is a good starting point.

At density n ⇠ 0.9 the non interacting Fermi surface is almost a square, rotated by 45� with
respect to the Brillouin zone. The separation between the two branches of the mean field dispersion,
±
p

(✏k � µ)2 +�2
0, is smallest when ✏k = µ and for the k scan shown in Fig.5 it occurs for k near

(0,⇡) and (⇡/2,⇡/2). Within MFT the spectral function is given by A(k,!) = u2
k�(! � Ek) +

v2k�(! + Ek). In the BCS limit, v2k is either one or zero for k < kF or k > kF , with a small region
around kF where it crosses from one to the other.

At U = 2t, v2k ⇠ 1 for ✏k . µ, and u2
k ⇠ 1 for ✏k & µ, with significant mixing only near µ. As

a result A(k,!) shows either a lower branch or an upper branch, but not both - except for ✏k ⇠ µ.
The growing symmetry in the plots, about the horizontal ! = 0 line, with increasing U/t arises
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Figure 3.5: Plot of A(k,!). The rows, left to right, are for U/t = 2, 6 and 10. Columns, top to
bottom, correspond to 0.1Tc, Tc and 2Tc. The momentum, on the x-axis, is scanned as (0,0) ! (0,⇡)
! (⇡,⇡) and back through (⇡/2,⇡/2) to (0,0) along the diagonal. These points are labelled as A, B,
C and D respectively. The gaps are lowest around (⇡/2, ⇡/2) and (⇡, 0), where the Fermi-surface
of the free system intersects our path in k-space. Increasing temperature causes broadening and a
decrease of the gaps, which close in the case of U = 2t. The increasing symmetry of the low T
graphs with increasing U signals the participation of states far from the FS in pairing.

from the changing character of uk and vk. For U/t � 1, u2
k and v2k are both ⇠ 1/2 all over

the Brillouin zone, since ‘pairing’ is no longer limited to the vicinity of the non interacting Fermi
surface (FS). The cases U = 6t and U = 10t are already in this regime although some residual
asymmetry is visible. The large difference between weak and strong coupling in terms of the T = 0

pairing amplitude decides the finite T state.
At finite T , thermal fluctuations broaden the delta functions and the detailed lineshapes for

k = {⇡, ⇡} and {⇡/2, ⇡/2} are shown in Fig. 3.6. As expected, the gap closes for U = 2t, while it
does not for U = 6t and U = 10t, though there is a noticeable decrease in the former.

Quantum Monte Carlo work [162] had suggested the presence of non-trivial structure in the
spectral function near the zone boundary (⇡, ⇡). The top row in Fig. 3.6 shows the spectral function
at this k point for U/t = 2, 6, 10 at three temperatures, T = 0.5Tc, Tc, 2Tc. The energy is
measured in units of the T = 0 dispersion E0

k.
We start with the top row: k = {⇡, ⇡}. At high temperature the U = 2t case shows only

a single broad peak at positive energy, whereas U/t = 6, 10 show a second peak at a smaller
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Figure 3.6: Spectral function A(k,!). The panels in the top row are for k = {⇡, ⇡}. (a). U/t = 2,
(b). U/t = 6, (c). U/t = 10. Bottom row, k = {⇡/2, ⇡/2}, and interaction strengths: (d). U/t = 2,
(e). U/t = 6 and (f). U/t = 10. For each U we show data at T = 0.5Tc, Tc and 2Tc. The frequency
axis is normalised by the k dependent mean field energy E0

k at T = 0. For k = {⇡, ⇡}, which
is outside the non interacting Fermi surface, the basic structure consists of large peak at positive
energies ! ⇠ E0

k, a broad negative energy feature at ! & �E0
k, and for T < Tc a remnant of the

quasiparticle peak at ! = �E0
k. Beyond weak coupling the survival of a two peak structure even

for T > Tc indicates ‘incoherent pairs’. For k = {⇡/2, ⇡/2} the features are similar to what we
observe at k = {⇡, ⇡}, except the quasiparticle peak is no longer separately visible.

negative energy value. This two peak structure with a gap around ! = 0 is an indicator of pairing
without global coherence. The complete absence at U = 2t, and the increase in peak height from
U = 6t to 10t bolsters this interpretation.

We do not find any peak near ! ⇠ 0 for medium to large U . However from Tc downwards,
another peak becomes visible at negative energies, at ! ⇠ �E0

k. This peak is indicative of the
global coherence setting in below Tc. As T is decreased, this peak slowly gains weight while weight
in the ‘pairing feature’ becomes smaller, with its maximum shifts to larger negative energies as the
gap becomes larger.

Thus, we find some degree of consistency with the QMC work which mainly deals with tem-
peratures larger than Tc, and also find another peak, indicative of global coherence, that starts to
develop below Tc.

For k = {⇡/2, ⇡/2} and high temperature the spectral functions at U = 6t and U = 10t have a
gap at T > Tc, as before, while the U = 2t result is gapless. In contrast to k = {⇡, ⇡} however we
cannot disentangle the lower temperature coherence feature, at ! = ±E0

k from the overall broad
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band.

3.4 Discussion

Our model has been set up with the explicit constraint that it reproduce the standard mean field (or
HFBdG) result at T = 0. It ignores quantum fluctuations of the pairing field. The impact of these
fluctuations have been discussed using DMFT by Garg et. al. [168] and Bauer and Hewson [169].
They find that the qualitative results at T = 0 for the order parameter, spectral gap, occupation
probability and superfluid stiffness are all given correctly by the mean field method, though it tends
to overestimate the spectral gaps and order parameter values at intermediate coupling. For most
of the U window, however, the mean field results are reasonable. The results from our method
should get better at finite temperature as thermal fluctuations become more important than zero
point quantum fluctuations. A comparison of our Tc with QMC estimate bears this out.

3.4.1 Accuracy of T
c

estimate

Fig. 3.7(a) compares our Tc with different methods. We find that our results compare well with
QMC and sophisticated semi-analytic methods with a slight underestimate at medium to large
coupling. Fig. 3.7(b) shows the size dependence of the Tc estimate with data for L = 8, 16, 24.
We see that while the ‘critical temperature’ estimate decreases noticeably from L = 8 to 16, it does
not change significantly beyond L = 16. Thus, the estimate we obtain at L = 24 should be a fair
approximant to the bulk Tc.
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Figure 3.7: (a) Comparison of our Tc (labelled SAF) with QMC [165] on a 10 ⇥ 10 lattice, and
the semi-analytic method employing the fluctuation exchange approximation (FEA) [151] . DMFT
results [166] overestimate the Tc significantly, and also the location of peak Tc, and have not been
included in the same plot. (b) Size dependence of our result, showing that the Tc estimate is almost
size indepenedent beyond L = 16.
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Figure 3.8: Parameters defining the phenomenological model. (a) The parameter a(T, U), (b). the
parameter b(T, u), and (c). the stiffness J(T, U) of the effective XY model for the phase degrees
of freedom. a and b are normalised to their T = 0 values. Notice the essential flatness of a(T ) and
b(T ) at U = 10t, the weak T dependence at U = 6t, and the dramatic variation with T at U = 2t.
J similarly is only weakly T dependent for U & 6t and varies strongly with T at weak coupling.

3.4.2 Effective classical functional

The BdG framework involves fermions coupled to the fields �i and �i. For simplicity let us focus
on the �i since the �i do not play a crucial role in a translation invariant system.

The physics of fermions in an arbitrary �i background is not obvious. It is therefore helpful
to have an explicit classical functional involving only the �i since the minimum and possible
fluctuations in �i are easier to estimate.

If the �i are small compared to the kinetic energy, as would happen when U/t ⌧ 1, the
functional, H0

eff , can be obtained via a standard cumulant expansion:

H0
eff{�i} =

X

ij

aij�i�
⇤
j +

X

ijkl

bijkl�i�
⇤
j�k�

⇤
l +O(�6)

The superscript in Heff is to indicate U/t ⌧ 1 character. aij = ��0
ij/2 + (1/U)�ij , �0

ij being
the non-local pairing susceptibility of the free Fermi system, and bijkl can be computed from a
convolution of four free Fermi Greens functions.

If we had U/t � 1 then Heff would have to be expanded to higher order in �i. In that
situation it actually helps to extract the functional by expanding in powers of t/�, leading to the
strong coupling limit:

H1
eff{�i} ⇡ �t2/|�|

X

hiji

cos(✓i � ✓j) +
X

i

Hloc(|�i|)

Hloc(|�i|) can be obtained from the atomic problem. The leading intersite term is calculated per-
turbatively and connects only nearest neighbour sites.

85



While these BCS and BEC limits are easy, obtaining an usable functional at arbitrary U/t does
not seem possible. We have therefore tried a parametrisation of the (local) amplitude fluctuation
spectrum and the phase correlations in terms of the following phenomenological model. It is valid
at all U/t and over the temperature window of interest.

Hphen
eff = �

X

hiji

Jcos(✓i � ✓j) +
X

i

{a|�i|2 + b|�i|4}

The first term defines an effective XY model involving only the phases, but, as we will see, the
J needs to be temperature dependent to incorporate the effect of amplitude fluctuations. The am-
plitude part of Heff is purely local, and to that extent misses out on spatial correlation between
amplitude fluctuations.

The parameters a and b are extracted from a fit to the P (|�|) that we obtain from the full MC,
see Fig.3. With the moments of |�i| fixed by a and b, the J(U, T ) is obtained by imposing the
following equality:

h
X

ij

|�i||�j|cos(✓i � ✓j)iMC = h
X

ij

|�2|cos(✓i � ✓j)iphen

The left hand side is the MC based order parameter, Fig. 3.1(a). The right hand side computes the
same quantity within the phenomenological model (in which the |�| and ✓ averages factorise) by
using a Monte Carlo estimate of hcos(✓i � ✓j)i in the XY model.

Fig. 3.8(a)-(b) shows the T dependence of a and b for U = 2t, U = 6t and U = 10t. Because
of the large difference in scales between the weak and strong coupling we have normalized the
parameters by their T = 0 values.

The U = 2t parameters show large change with T . The normalized a quickly increases and
becomes positive, while b rapidly decreases from its T = 0. Both parameters tend to saturate for
T & Tc ⇠ 0.07t. The 6th order term in the expansion would be necessary to describe the U = 2t

case accurately.
With increasing U , the thermal change of the parameters slows down, and even at U = 6t the

parameters show a much weaker dependence on T . By U = 10t, they are essentially constant at
their T = 0 values, indicating that only phase fluctuations are relevant in this regime.

To gain more insight, we consider an expansion of the distribution about its mean value,
P (�) = K2(� � �0)2 + K3(� � �0)3 + K4(� � �0)4.., where the first term represents the
gaussian stiffness of the distribution and the other terms represent non gaussian contributions. At
strong coupling, the physics is driven completely by the phase fluctuation term, and the magnitude
of the amplitudes is almost fixed. Thus, the stiffness coefficient is very large. As the coupling
decreases, amplitude fluctuations increase, hence signalling a decrease in the stiffness. Apart from
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the increase in amplitude fluctuations, the mean value of � also shows a remarkable increase with
T at weak coupling, signalling the importance of the non gaussian terms in the expansion. We next
turn to examine the phase stiffness which is the crucial coupling at large U .

Fig. 3.8(c) shows the T dependence of J for the three couplings, again normalized by their
T = 0 values, J0(U). The U = 2t case shows a pronounced decrease with T , while the other
two are effectively constant. An XY description with a T independent coupling is reasonable for
U = 6t and 10t but inadequate at U = 2t.

3.4.3 Role of the ‘density’ field

An important addition in our model is the field �, coupling to the density operator. It serves a
twofold purpose: first, it is indispensable in a disordered system since it provides a site dependent
background field that renormalises the total disorder, and is crucial to get the correct scales; and
second, it incorporates fluctuations in the charge sector, which play an important role for n ⇠ 1.

At n = 1 the negative U Hubbard model can be mapped to its positive U counterpart, with the
components of the magnetization field, mi, of the positive U model corresponding to the �i and
�i. The symmetry the model is increased from O(2) to O(3), so there can be no superconducting
order at finite temperature in 2D. At T = 0, the superconducting state is degenerate with the charge
density wave state. This degeneracy is built into the structure of our model, and simulations at
n ⇠ 1 do actually show both superconductivity and charge density wave order at low T . The two
field decomposition captures the correct ground state and relevant fluctuations in the model.

However, as discussed before, our way of incorporating the fluctuations in both fields can lead
to overcounting effects. Fig. 3.9 shows how the Tc and density of states calculated with both
fields compare with the single field results. Fig. 3.9(a) shows that while the fluctuations in both
fields result in a decrease in the Tc, it actually brings the values in closer correspondence with
corresponding QMC results [165], increasing its accuracy. Fig. 3.9 (b), (c) and (d) compare the
density of states at three different coupling values, for three temperatures each, demonstrating that
overcounting effects are negligible in this regime.

3.4.4 Handling inhomogeneity

As remarked earlier, this method is particularly well suited to dealing with inhomogeneous systems,
including disordered systems and systems in a trap. We have extensively studied both of these, the
former in the context of the disorder induced superconductor-insulator transition [174,175], and the
latter in the context of superconductors in a harmonic trap [176]. In such inhomogeneous systems,
the Hartree feedback plays a crucial role in modifying the effective potential that the electronic
system sees. In the former, this is crucial in determining the correct critical disorder and moderate
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Figure 3.9: (a) Comparison of Tc with and without � fields and corresponding QMC results at size
10⇥ 10 [165]. Inclusion of � fields brings Tc in closer correspondence with QMC. (b), (c) and (d)
compare the density of states for the same two cases at U/t = 2, 6 and 10 respectively, at T/Tc = 0,
1.0 and 2.0 respectively. The firm lines show the two fields results, while the circles of same colour
show the single field results. There are small differences, but on the whole, they are very similar to
each other.

disorder charge transport properties [174], and plays a major role in the spatial fragmentation of
the system [175]. In a harmonic trap, the resultant inhomogeneous density profile can drastically
alter the spectral properties of the system [176], compared to a flat one. Similarly for FFLO phases
in imbalanced Fermi systems the real space treatment on large lattices allow access to a wealth of
non trivial modulated phases.

3.4.5 Quantum fluctuations

The major approximation in our model is the neglect of temporal fluctuations in the auxiliary fields.
We have already seen that our method captures the non-monotonic Tc(U) in the BCS- BEC problem
as well as the correct overall scale when compared with QMC, which, we believe, shows that the
thermodynamic properties at these scales are well captured. There are some effects in the spectral
function and optical conductivity that we miss as discussed below.

a) Single particle spectrum:

Our method neglects the interaction of the single particle propagator with dynamical particle-
hole and particle-particle fluctuations. The DMFT results for the k-resolved spectral functions
show that while the weak coupling results match with the mean field values, this interaction results
in the formation of an incoherent background (forming what the authors term a peak-dip-hump
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structure [169]) in addition to the quasiparticle peaks, which are also somewhat shifted from their
mean field values. This effect is absent at T = 0 in our approach. By the time T ⇠ Tc, however,
classical fluctuations capture most of the spectral features.

b) Optical conductivity:

Our method misses the contribution of the collective modes in the optical conductivity. The
contribution of these result in a finite contribution above the Higgs mass threshold mH . (in two
dimensions, the sub-Higgs mass weight is further suppressed to a weak !5 tail [177]). In a weak
coupling superconductor, mH ⇠ 2�, hence the Higgs mode rapidly decays into particle-hole ex-
citations and the normal Mattis-Bardeen results are valid. At strong coupling, however, we com-
pletely miss the contribution of the collective modes to the low frequency optical conductivity,
which are also relevant for T > Tc.

3.5 Conclusions

We have presented results on the BCS-BEC crossover in an attractive Fermi system in the context
of the two dimensional Hubbard model. We use an auxiliary field decomposition, treat these fields
as classical, and solve the resulting problem through a real space Monte Carlo technique. The
inclusion of all spatial thermal fluctuations allows us to capture the correct Tc all the way from
the BCS to the BEC end. It allows conceptual clarity about the amplitude and phase fluctuation
dominated asymptotes and the crucial intermediate coupling window where both these fluctuations
are relevant. We provide a detailed characterisation of the auxiliary field behaviour that dictates
fermion physics and access results on the density of states and angle resolved spectral features
without any need for analytic continuation. We lay the groundwork for the study of disordered
superconductors, trapping effects in superfluids, and spontaneous inhomogeneity in imbalanced
systems.
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CHAPTER4
CHARGE DYNAMICS ACROSS THE
SUPERCONDUCTOR-INSULATOR

TRANSITION

This chapter will be the first of two describing our work on disordered superconductors. In this
chapter we will study the global properties of the system, concentrating on the charge dynamics,
which determines the transport and optical conductivty, on which surprisingly little theoretical
work seems to exist inspite of extensive experimental results. This will be accompanied by results
on the transition tepmerature Tc and the global density of states, leading to a phase diagram of the
system in the disorder-temperature plane, as determined from these indicators. In the next chapter
we will concentrate on the local, i.e., spatial properties of the system, concentrating on the disorder
induced inhomogeneities and their effect on local indicators. Together, these results will provide a
comprehensive picture of the disoder induced evolution of a superconducting system.

This chapter is structured in the following manner: we will begin with a short recap of the
overall situation in the field, which has already been discussed in detail in the introductory chap-
ters. This will be followed by a more detailed discussion on the global characteristics, such as the
transport, optical conductivity and the density of states. Finally, we will describe our own work,
detailing our results and discussing their relevance in the context of available experimental and
theoretical results.

4.1 Background to the problem

While the historical background has already been reviewed in detail in Chapters.1 and 2, we provide
a basic summary of the same below, emphasizing the salient observations. This will be followed by
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a slightly more detailed discussion of the transport and optical data, along with the single particle
density of states, before we move on to our results.

4.1.1 Summary of experiments

As already discussed earlier, the problem of the disorder driven superconductor-insulator transition
(SIT) has been studied for a long time in condensed matter physics. Although early theoretical work
by Anderson [31] suggested that superconductivity (SC) should be insensitive to non-magnetic dis-
order, a large number of experiments over the last couple of decades [5] have revealed that super-
conductivity is actually suppressed and finally destroyed by increasing disorder. Simultaneously,
the normal state resistivity changes from metallic to insulating, and a pseudogap (PG) appears in
the single particle density of states.

The availability of high resolution scanning tunneling spectroscopy (STS) tools in recent times
has led to a significant advance in the field, as we have already described in detail in the context of
materials like Be, NbN, InOx and TiN in Chapter.1. The salient observations are:

1. The increasing fragmentation of the SC state with disorder [38, 47, 55, 56, 58–61].

2. Survival of an apparent (pseudo)gap in the disorder driven normal state [47, 55, 56, 60].

3. A change in the temperature dependence of the normal state resistivity from metallic to
insulating, without necessarily any universal temperature independent value at critical disor-
der [44, 52], and, additionally,

4. Observations of non monotonic magnetoresistance [34, 52, 53], and finite frequency super-
fluid stiffness at large disorder [43, 62], well past the SIT.

On the theoretical front, the fully self-consistent Hartee-Fock-Bogoliubov-de Gennes (HFBdG)
approach [84, 85] had already revealed that the strong disorder SC ground state is fragmented in
an essential way, and predicted the survival of a single particle gap across the SIT. Thermal effects
have been probed using quantum Monte Carlo (QMC) [88, 140, 141], providing an estimate of Tc

and the global density of states, as we saw before. Nevertheless, surprisingly, apart from an early
estimate [141] using the fermionic Hubbard model, and a very recent study using the quantum XY
model [134], there seem to be no results on the charge dynamics, i.e, the resistivity and optical
features, across what is essentially a transport transition. The limitation stems from the inability
of QMC methods to handle thermal fluctuations on a large spatial scale, and access real frequency
information. This makes it particularly difficult to treat the full problem with fermionic degrees of
freedom. Below, we elaborate on this in more detail.
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4.1.2 Summary of current theory

As we know, even without the attractive interaction, the disordered fermion problem is affected by
disorder induced scattering, leading to a nominally localized state at any disorder in two dimen-
sions, and a delocalization to localization crossover at a critical disorder in three dimensions, which
is accompanied by a metal to insulator transition. The addition of superconducting correlations on
top can lead to very interesting phenomena related to the interplay of the disorder induced scatter-
ing with that induced by the attractive interaction. The non-trivial behaviour can come from the
following physical effects:

1. The attractive interaction induces both elastic and inelastic scattering. The inelastic scattering
implies a finite length Lin beyond which interference effects causing Anderson localization
are cut off. Thus, this can lead to a weakening of localization effects with significant impact
at weak disorder.

2. At strong disorder, the disorder induced pseudo-gap and the inhomogeneous structure of
superconducting clusters above Tc can affect the transport properties in the fermionic channel,
i.e., transport caused by the thermally activated fermionic quasiparticles in the system.

3. On the other hand, at low temperatures close to the transition, the bosonic degrees of freedom
can contribute, as we found from the bosonic mechanism, leading to the universal finite value
at the transition.

4. Coulomb interactions can also affect the transport properties by contributing a negative cor-
rection similar to the quantum weak localization correction.

Thus, we see that the transport properties of the interacting disordered system are determined
by a complex set of physical effects. The inherent complexities of the problem and the number of
factors involved has resulted in very little theoretical work being done on the subject. As mentioned
before, we know of only one calculation using QMC (starting from a fermionic model) [141] that
has dealt with this problem in an approximate manner. Below, we describe their results quickly.

The QMC calculations were done on two dimensional lattices using the negative U Hubbard
model at coupling values U/t = (3 � 6) and density n ⇠ 0.875 with varying disorder. Starting
with the current current correlation function (see methods in Chapter.2) the authors applied an ap-
proximate scheme to calculate the transport. Fig.4.1 shows their main results. They found that the
resistivity ⇢ showed a transition from metallic to insulating for all coupling values used, with d⇢/dt

changing sign at the critical disorder where superconductivity is destroyed. While this established
the presence of the SIT and a concurrent metallic-insulating crossover in the transport, their calcu-
lations were not accurate enough to reproduce the complex behaviour of the resistivity, especially
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Figure 4.1: The disorder dependence of resistivity calculated using QMC [141] for U/t = 3, 4
and 6. Shows that d⇢/dt changes sign at the critical disorder Vc at all coupling values, going
from metallic (d⇢/dt > 0) to insulating (d⇢/dt < 0). Does not manage to capture the interesting
behaviour at intermediate disorder seen in experiments.

at intermediate temperatures found in experiments, that were described in detail in Chapter.1. To
remind ourselves of these, we list them below:

1. In most cases, the metallic-insulating crossover happens much before the transition, i.e., the
resistivity is weakly insulating over much of the phase diagram.

2. The critical curve is also insulating instead of horizontal as expected from the bosonic mech-
anism, without necessarily any universal temperature independent value at critical disorder.

3. The low temperature resistivity in the insulating regime is activated.

Thus, QMC results do not reproduce 1 and 2 at all, and are not accurate enough to ascertain
whether their strong disorder results follow 3. On the one hand, these shortcomings, as already
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mentioned before, stem from its inability to handle thermal fluctuations on a large spatial scale, and
access real frequency information. On the other hand, as discussed before and speculated in some
experimental papers, the Coulomb interaction might also play an important role in determining the
exact behaviour of the transport.

Hence, there has been no theoretical work that has successfully captured the basic transport
results in detail, especially the interesting behaviour at intermediate disorder. Similarly, there are no
results on the optical conductivity starting from a fermionic model like QMC, whose low frequency
behaviour is expected to show similar effects to the resistivity. While the existing QMC results
using the XY model [134] elucidate the predictions of the bosonic model close to the transition,
predicting non-trivial behaviour at low frequencies, we expect the fermionic degrees to be important
over much of the phase window away from the critical point. Thus, one needs an approach starting
with fermionic degrees of freedom to examine many of these questions. Furthermore, while the
exact treatment would also incorporate Coulomb interactions, it also makes this problem a very hard
one. Thus, in view of the lack of substantial results even without considering Coulomb interactions,
we feel that it is quite important to study such a model in detail, especially since it manages to
reproduce much of the phenomenology of strongly disordered superconductors correctly.

In this chapter we describe our approach to this problem using our method, that captures the
HFBdG ground state, fully retains the thermal amplitude and phase fluctuations, and locates the
correct disorder scale, Vc, for the zero temperature SIT.

4.2 Model, parameters, and main results

In this section, we will briefly describe our model and methods, and then explain the parameters
we have chosen and the reasons for that and finally summarize the main results of our work.

4.2.1 Recapitulation of method

Our model has already been discussed before in detail. We begin with the negative U Hubbard
model, with disorder incorporated in the form of a random potential Vi at each site. The Hubbard
Stratonovich transformation in both pairing and density channels, and the neglect of the temporal
fluctuations in the corresponding auxiliary fields � and � leaves us with the following model:

Heff = Hkin +
X

i�

(Vi � µ)ni� +Hcoup +Hcl (4.1)
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where

Hkin = �t
X

hiji�

c†i�cj�

Hcoup =
X

i

(�ic
†
i"c

†
i# + h.c) +

X

i

�ini

Hcl =
1

U

X

i

(|�i|2 + �2
i ) (4.2)

As mentioned earlier, the presence of the ‘density’ field � is important, especially in disordered
systems, since it captures the enhancement of disorder due to interaction effects.

We use a Metropolis algorithm to solve this model at various disorder, using a cluster based
approach that allows access to lattice sizes ⇠ 24 ⇥ 24. The disorder Vi is chosen from a box
normalised distribution between ±V , which sets the scale for the magnitude of disorder. Quanti-
ties calculated at finite disorder are averaged over at least ⇠ 10 different realisations at the same
magnitude. Below, we describe the parameters we choose for these calculations in more detail.

4.2.2 Parameters

The main parameters in the model that dictate the physical behaviour are the coupling U/t, the
chemical potential µ which determines the average density n and the range of disorder values used,
characterised by the range of V .

Since the experimental materials we have considered all lie in the weak coupling BCS limit, we
want the coupling values to be as small as possible in order to make meaningful comparisons. Since
our lattice size ⇠ 24 ⇥ 24, this fixes our lowest coupling value at U/t ⇠ 2, below which the clean
coherence length ⇠0 becomes comparable to the system size. Here, as we saw from the previous
chapter, even though the clean �0/Tc values ⇠ 8, much higher than the BCS value, the system
shows BCS like characteristics such as a vanishing gap above Tc, with a practically non-existent
pseudogap. Hence, even though this is ‘intermediate’ coupling in strict terms, one can expect to
make some meaningful comparisons at this coupling value (nevertheless, there are also differences
that will be highlighted later), and thus we adopt U/t = 2 for our calculations.

On the other hand, we choose our µ such that n ⇠ 0.9. This facilitates comparisons with
QMC which are done at similar densities, and ensures a high clean transition temperature Tc while
avoiding the charge density order at n = 1. We vary our disorder strength V/t from 0 � 3, which
allows us to access our nominal critical point Vc as well as points well inside the insulating regime.
As remarked earlier, we average our results over at least ⇠ 10 disorder copies at each disorder
strength which seems to be good enough to provide robust answers.
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4.2.3 Summary of main results

Our main results, at intermediate coupling, are the following:

1. For V ⌧ Vc the single particle gap closes at Tc, but beyond V ⇠ 0.25Vc there emerges a
pseudogap window above Tc, and when V > 0.75Vc a hard gap persists for T > Tc.

2. The normal state resistivity ⇢(T ) is ‘insulating’, with d⇢/dT < 0, already at V ⇠ 0.5Vc

so, for 0.5Vc < V < Vc one actually observes an insulator to superconductor transition on
cooling the system.

3. Increasing temperature leads to a growth in the low frequency single particle and optical
weight across Tc, over a window �T ⌧ Tc at weak disorder and �T & Tc at strong disorder.
The T � Tc weight correlates closely with the ‘superconducting fraction’ in the ground
state.

4. Increasing disorder leads to non monotonic behaviour of the low frequency single particle
and optical weight, with a peak around Vc(T ).

There is already experimental evidence for 1 and 2. The other predictions can be tested experi-
mentally and correlated with spatial data where available. Now, the detailed results.

4.3 Results

This section will describe our results on the transport, the density of states and the optical con-
ductivity in detail. After describing these results over the whole disorder window [0, Vc], we will
compare the single particle spectral characteristics and the two particle ones and try to understand
the connections between them as dictated by our model. We will also remark upon the connections
of these results to experiments and compare them with well known limits, such as the weak disorder
BCS limit. More comprehensive discussion on the specific features of our model that lead to these
results and their usefulness and limitations in the light of results from real systems will be left for
the Discussion section following this.

4.3.1 Phase diagram

We begin with the V�T phase diagram in Fig.4.2(a), detailing the degradation of Tc with increasing
disorder, and the different phases in terms of transport and spectral character. As discussed before,
we use the structure factor S(q = 0) to determine the transition temperature Tc from the rise of the
curve. The detailed behaviour of S(q = 0) with increasing disorder is plotted in Fig.4.2(b), which
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Figure 4.2: (a): Phase diagram for U = 2t showing the superconducting (SC), and the following
non superconducting phases: gapped (G), ungapped (UG) and pseudogapped (PG). The SC Tc is
determined from the behaviour of S(q = 0), whose temperature dependence at various disorder
is shown in (b). We take the critical disorder Vc ⇠ 2t. The tail shows the exponentially small
superconducting Tc surviving beyond Vc. A normal state pseudogap shows up for V & 0.25Vc

and for V & 0.75Vc the T & Tc phase actually has a hard gap. The crossover between pseudo-
gapped and notionally ungapped phase is shown by the green area. The blue dashed line shows
the transition from an ‘insulating’ (d⇢/dT < 0) to ‘metallic’ regime, which lies within the broad
crossover.

clearly shows how the superconducting Tc is suppressed. In the absence of disorder SC order is
lost at Tc = T 0

c ⇠ 0.07t, benchmarked with QMC results [165]. Increasing disorder leads initially
to a slow suppression of Tc which accelerates for V > 1.5t. Our method reduces to HFBdG at
T = 0 so the ground state within our scheme is in principle always superconducting. However,
the phase stiffness of the HFBdG state reduces quickly with increasing disorder and for V & 2t

we do not observe a transition down to ⇠ 0.05T 0
c . We indicate the disorder scale associated with

this resolution limit on Tc as Vc. Fig.4.2(a) also indicates the exponentially small Tc that survives
in principle beyond our Vc. This would be pushed to zero by quantum phase fluctuations in the �i.
T 0
c and Vc set the natural scales of temperature and disorder for us. Our observations are:

1. At weak disorder the fractional suppression of Tc is small, e.g, at V = 0.25Vc, Tc falls
less than 10% from T 0

c . This is qualitatively consistent with the ‘insensitivity’ to disorder
predicted by Anderson [31], but that approach fails to be useful beyond weak disorder. We
are not aware of analytic results on the suppression of Tc in this coupling regime, although
there are numerical results on the reduction of the phase stiffness [85]. Overall, the weak
disorder regime, 0 < V < 0.25Vc, corresponds to almost homogeneous |�i| in the ground
state, metallic resistivity above Tc, and no significant anomaly in the normal state density of
states (DOS).
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Figure 4.3: (a) The resistivity, ⇢(T ), measured in units of ⇢0 = ~/(⇡e2), evolving from metallic
to insulating behaviour in the normal state with growing disorder. For V . 0.25Vc, it is metallic,
between 0.25Vc . V . 0.75Vc, it is mixed, showing a thermal transition from ‘insulating’ at
low T to weakly ‘metallic’ at larger T . Beyond V = 0.75Vc, the low T behaviour is exponential
⇢(T ) / e�g/T , with �g increasing with V . This is highlighted in (b), where we see that such a fit
ceases to be valid below V ⇠ 0.75Vc.

2. The intermediate disorder window, 0.25Vc < V < 0.75Vc, resists easy characterisation. |�i|
in the ground state shows increasing fragmentation [84,85,175]. The resistivity is ‘insulating’
near Tc and crosses over to metallic behaviour at high T , while the T > Tc density of states
shows a pseudogap.

3. At strong disorder, V & 0.75Vc, the pairing amplitude |�i| is very inhomogeneous in the
ground state, a hard gap survives in the DOS even above Tc, and the resistivity shows ac-
tivated behaviour. This is a regime where the low T superconducting state emerges from a
high T insulating phase, suggesting that the Tc is no longer controlled by the low energy
DOS.

The different phase boundaries would depend on U/t. Apart from the change in T 0
c and Vc(T =

0), increasing U/t would lead to an increase in the ‘gapped’ region, while decreasing U/t would
decrease the gapped window in favour of the PG (and the UG to PG crossover could be pushed
to larger V/Vc). We will present some results in the next chapter on the dependence of the phase
boundaries and their evolution with coupling.
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4.3.2 Resistivity

We have described the method that we employ for calculating the resistivity and optical conductiv-
ity in Sec.2.3.6. Here, we recount them briefly before moving on to the main results.

⇢(T ) is computed using the Kubo formula, via the low frequency limit of the optical conduc-
tivity �(!). Formally �(!) = �!�1Im(⇤xx(q = 0,!)) where the current-current correlation
function is defined by

⇤xx(q = 0,!) =
1

Z
X

n,m

|hn|jxx|mi|2 e��En � e��Em

! + En � Em + i�

The |ni, |mi are many particle eigenstates of the system, jxx is the current operator. For the regular
part, �reg(!), i.e, excluding the superfluid response, it simplifies within our static auxiliary field
theory to:

�reg(!) =
X

a,b

F1(a, b)
(n(✏a) + n(✏b)� 1)

✏a + ✏b
�(! � ✏a � ✏b)

+
X

a,b

F2(a, b)
(n(✏a)� n(✏b))

✏a � ✏b
�(! � ✏b + ✏a)

where, now, the ✏↵, ✏� > 0, etc, are single particle eigenvalues of the BdG equations, the n(✏a), etc.,
are Fermi functions, and the F ’s are current matrix elements computed from the BdG eigenfunc-
tions. The dc resistivity is defined for T > Tc via ⇢�1 = !0

�1
R !0

0 �reg(!)d!, where !0 ⇠ 0.1t.
Fig.4.3(a) shows ⇢(T ) for different V . We use d⇢/dT > 0 to indicate a metal and d⇢/dT < 0

to indicate an insulator. Upto V ⇠ 0.25Vc the resistivity is metallic at all T , except very near
Tc. For 0.25Vc < V < 0.75Vc, however, the behaviour is mixed, with ‘metallic’ character at
high T and an ‘insulating’ window below. As the companion plot, Fig.4.3(b), shows the weakly
insulating behaviour cannot be characterised by a T independent gap in the DOS. Beyond 0.75Vc

the resistivity is insulating at all T , we have checked it upto T = 0.3t. The log plot in Fig.4.3(b)
shows that the resistivity can be modeled as ⇢(T ) / e�g/T , with a weakly disorder dependent
coefficient A and an activation scale �g ⇠ 2.5(V � 0.75Vc).

The large disorder regime admits a simple explanation in terms of the current paths. The low
energy excitations are localised in the superconducting clusters that form at T = 0. Since the SC
regions are ‘disconnected’ at T > Tc all current paths have to pass partly through the insulating
matrix, leading to an activation factor in the conductance. At weaker disorder the SC clusters have
a tenuous connection and the detailed frequency dependence of the DOS is important.

Overall, we observe that for our chosen U = 2t, superconductivity can arise out of a metallic or
an insulating normal state. Our calculation does not hint at any ‘universal’ temperature independent
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Figure 4.4: Density of states at U = 2. (a) The DOS at low temperature, showing the persistence
of a gap at all V , while the coherence peaks are difficult to discern beyond V ⇠ 0.75Vc. (b) Temper-
ature dependence of the DOS for V = 0.5Vc, already showing a noticeable pseudogap for T > Tc.
(c) Same as (b) but for V ⇠ Vc, where the system is insulating at all temperature. (d) Temperature
dependence of N(0), the DOS at the Fermi level, for different disorder.

resistance at V = Vc, apparently consistent with recent experimental analysis [53].

4.3.3 Density of states

Fig.4.4 shows the variation in the single particle DOS with disorder and temperature. If ✏n and
{ui

n, v
i
n} are the positive BdG eigenvalues and eigenvectors, respectively, in some equilibrium con-

figuration, the DOS is computed as

N(!) = h
X

i,n

(|ui
n|2�(! � ✏n) + |vin|2�(! + ✏n))i

where the angular brackets indicate thermal average.
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In Fig.4.4(a) we show the DOS plots at T = 0 for varying disorder, from V = 0 to V = 1.5Vc.
The following features are noteworthy.

1. The system is gapped for all V . The ‘gap’ shows a non-monotonic character, decreasing
upto V ⇠ Vc and increasing from thereon. These results match well with previous BdG [85]
and QMC [88] benchmarks.

2. The coherence peaks decrease with increasing V , and beyond V ⇠ 0.75Vc they are hard
to discern in the DOS. The ‘rise’ of the DOS at the gap edge is ideally sharp in the clean
limit, corresponding to the square root BCS singularity, but for V & 0.75Vc the rise is much
gentler.

Fig.4.4(b) shows the thermal evolution at V = 0.5Vc, intermediate disorder, while Fig.4.4(c)
shows the same at V = Vc. For V = 0.5Vc the coherence peak at the gap edge vanishes at T ⇠
Tc ⇡ 0.8T 0

c , the low frequency DOS grows steadily with increasing temperature, but a pseudogap
feature surives upto T ⇠ 2.5Tc. Fig.4.4 shows the result at V = Vc, where the system retains a hard
gap with increasing temperature till T ⇠ 0.5T 0

c and a deep pseudogap thereafter.
Figure Fig.4.4(d) shows the temperature dependence of N(0), the DOS at the Fermi level, for

a few V . At V = 0.5Vc, N(0) is essentially zero till T ⇠ Tc and then rises quickly and saturates
to a high T asymptote. With growing disorder the temperature interval �T (V ) over which the
rise occurs increases and the ‘asymptotic’ high temperature value reduces. We find that this high
temperature value at a given disorder roughly corresponds to the superconducting fraction in the
ground state [175] at that disorder.

4.3.4 Optical conductivity

Fig.4.5(a)-(c) shows aspects of the optical conductivity at two representative temperatures for var-
ious V , while Fig.4.5(d) shows the integrated low frequency weight as increasing disorder drives
the SIT.

In a disordered superconductor, the real part of the optical conductivity consists of a delta
function at ! = 0 (signifying dissipationless transport) and a ‘regular’ part �reg(!). Within a mean
field picture, �reg(!) at T = 0 is suppressed for ! . 2�, the gap scale. Beyond this �reg rises to a
peak and for ! � � tends to the disordered metal limit, �/(!2+�2), where � is the scattering rate.
Fig.4.5(a) shows the low T result at different V , consistent with this general expectation. The low
V curves have a gap, rise to a relatively sharp maximum and then fall off. Increasing V increases
� making the fall off broader. In what follows we use just �(!) rather than �reg(!) to denote the
regular part.
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Figure 4.5: Optical conductivity and low frequency optical spectral weight. (a) The behaviour of
�(!), measured in units of �0 = ⇡e2/~, over a wide frequency range for disorder varying across the
SIT. The temperature is T = 0.2T 0

c . (b) The low frequency behaviour of �(!) for varying V (same
legends as in panel (a)), at T = 0.2T 0

c . (c) Same as in (b), now at T = 0.7T 0
c . Notice the absence of

any gap, and the low frequency upturn, in samples with V = 0.25Vc and V = 0.5Vc which are still
below their respective Tc. (d) Disorder dependence of the low frequency optical spectral weight,
w(V,⌦), see text, at different T . Inset shows low frequency weight of the single particle spectrum.

It is useful to compare these results with that of Mattis-Bardeen (MB) theory [135], which is
formulated in the weak coupling limit. Qualitatively, within MB theory the thermal excitation of
quasiparticles to the gap edge, with a probability ⇠ e��(T )/T , leads to a ‘subgap’ feature in �(!) at
finite T . Due to the large DOS at the gap edge this contribution to �(!) is large at low !. Disorder
broadens the coherence peaks and makes this subgap ! dependence flatter.

Fig.4.5(b) shows the low frequency results for ! . 2�0 at T = 0.2T 0
c . In this frequency

range, �(!) decreases monotonically with decreasing frequency, forming a hard gap at a disorder
dependent frequency !g(V ). !g is lowest between 0.75Vc and Vc, which seems to match with the
critical disorder Vc(T ) at this T , see Fig.1. We do not find any discernible subgap feature at this
temperature. The thermal factor e��/T ⇠ e�4T 0

c /0.2T
0
c is too small.

At T = 0.7T 0
c , Fig.4.5(c), the cleaner samples do show an upturn reminiscent of MB theory.
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However, even here for V & 0.5Vc the low frequency peak is absent due to the disorder and
temperature induced broadening of the coherence peak.

In Fig.4.5(d), we show the the low frequency optical weight wopt(V, T,⌦) =
R ⌦

0 d!�(!, V, T )

with ⌦ = 0.2t. We find that the maximum in wopt(V, T ) at a given T occurs at a disorder Vmax(T )

that tracks the critical disorder Vc(T ). The inset shows the low frequency single particle weight
wdos(V, T ) =

R ⌦/2

0 d!N(!, V, T ) and its strong correspondence with wopt(V, T ). At T = 0 the
behaviour of wdos is consistent with earlier observation [85] that the gap is minimum close to Vc.
The resulting maximum in wdos persists, surprisingly, at finite T as well and also shows up in the
behaviour of wopt.

Since the weights are readily measurable, a qualitative explanation may be useful. Within our
scheme the optical spectrum arises as a convolution over the single particle Greens function, so
understanding wdos(V, T ) can shed light on wopt as well. Fig.4.4(d) provides a hint, where, crudely,
N(0, V, T ) rises from zero at T ⌧ Tc to its high T asymptote, N1(V ), say, across Tc. N1(V ) re-
duces monotonically with V . If we ignore the ‘width’ �T of the low to high temperature transition,
then N(0, V, T ) ⇡ 0 for T < Tc(V ) and N(0, V, T ) = N1(V ) / fSC(V ), the superconducting
fraction, for T > Tc. If we approximate wdos / N(0), then at a given T < T 0

c , the V < Vc(T )

samples have wdos ⇠ 0, and the V > Vc(T ) samples have wdos ⇠ N1(V ), with dN1(V )/dV < 0.
The peak would be obviously at V ⇠ Vc(T ). The real V dependence is of course smoother than
what the crude argument above suggests.

This observation ties together independent measurements on density of states, optical weight,
and the spatial character of the superconducting state over the complete disorder-temperature win-
dow.

4.4 Discussion

In this section, we discuss and clarify some aspects of our model and results which may not be
apparent from the description of our data that has been provided so far. We first begin by clarifying
some numerical aspects, examining the robustness of our transport results with system size and
frequency intervals used for averaging. Then, we shift our focus to some issues involving the
physics of the system as captured by our model, concentrating on:

1. The microscopic basis of our results, which are determined by the detailed behaviour of the
auxiliary fields �i and �i in the disordered background.

2. The effect of the attractive interaction on Anderson localization, and its subsequent modifi-
cation of transport properties.
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3. The nature of the superconductor thermal transition at Tc, which is expected to be in the
BKT class, and its indicators such as vortex physics, and finally,

4. Expanded discussion on previous observations on the limitations of our approach and the
connection of our results to experimental data.

4.4.1 Numerical checks on transport

The transport in our system is calculated on finite lattice systems of size ⇠ 24 ⇥ 24. Since our
system is finite, the energy eigenvalues are also separated by finite intervals, and this further forces
us to choose some arbitrary parameters, such as the averaging interval �! mentioned earlier to
approximate the limit �(! ! 0). To examine the robustness of our results w.r.t. the size and
the interval choice, we show, in Fig.4.6 the dependence of the resistivity on lattice size and fre-
quency interval. Fig.4.6(a) shows that beyond L = 16, the resistivity shows no further change with
increasing lattice size. Figs.4.6(b), (c) and (d) show the dependence on the averaging interval at
weak (V = 0.25Vc), moderate (V = 0.5Vc) and strong (V = 0.75Vc) disorder respectively. We find
that as long as the interval is much larger than the finite size gap and much smaller than the other
electronic scales in the problem, the results do not depend significantly on the particular value of
�!.

4.4.2 The microscopic picture

Within our approach the thermal properties are controlled by the mean value and thermal fluctu-
ations of the ‘pairing’ field �i and the ‘density’ field �i. Disorder creates inhomogeneities in ni

which are fed back via the Hartree shift �i leading to an amplified effective disorder V i
eff = Vi��i.

This is shown in Fig.4.7. For V/t ! 0 the bare and effective disorder are similar, while for
V ⇠ Vc ⇠ 2t, Veff ⇠ 1.7V .

Transport and spectral features are determined by the combined effect of V i
eff and scattering

from the �i. While the detailed local behaviour of these quantities will be taken up in the next
chapter, here we briefly borrow some of these results to explain our observations on the global
properties.

1. At weak disorder, V . 0.25Vc, the ground state has almost homogeneous ni and |�i|,
with perfect phase correlation. With increasing T , the h|�i|i increase and the ✓i randomise.
The growing amplitude and phase disorder lead to increased scattering and d⇢/dT > 0 for
T > Tc. The ni remain roughly homogeneous over the relevant T window and the potential
scattering just adds a constant contribution to the overall resistivity.
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Figure 4.6: (a): Size dependence of clean resistivity. (b), (c) and (d): Dependence on the averaging
interval �! at weak (V = 0.25Vc), moderate (V = 0.5Vc) and strong (V = 0.75Vc) respectively.

2. At intermediate disorder, 0.25Vc . V . 0.75Vc, ni is noticeably inhomogeneous in the
ground state, leading to a large V i

eff , but homogenize with increasing T . The |�i|, on the
other hand, grow with increasing T in the high temperature regime. The result is a crossover
in the resistivity with increasing T , with the T & Tc region showing d⇢/dT < 0 due to weak-
ening V i

eff , and the T � Tc region showing d⇢/dT > 0 due to growing scattering from the
�i. A prominent pseudogap starts to form below Tcorr . T 0

c , where strong local correlations
appear among �i, and deepens with decreasing T until Tc, where the bulk superconducting
transition takes place and a hard gap is formed.

3. At large disorder, V & 0.75Vc, the ni inhomogeneity is very large in the ground state and
SC clusters form only in ‘favourable’ regions [175] of this landscape. The insulating regions
have a larger effective gap than the SC clusters. The ni inhomogeneity, and the large V i

eff

survives to T � Tc and leads to the activated resistivity.

While this explains our results in terms of the behaviour of the auxiliary fields �i and �i, one
would still want to understand these in the context of the U = 0 problem, where Anderson local-
ization effects should be visible even at weak disorder in two dimensions. It seems, however, that
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Figure 4.7: Effective disorder V eff
i = Vi � �i with increasing disorder.

the interaction effects (encoded in the behaviour of the �i and �i) alter the localization behaviour
of the system considerably. Below, we consider this aspect in greater detail.

4.4.3 Interaction effects on localization

In view of the finite lattice size of our system, weak localization effects probably cannot be incor-
porated satisfactorily in our results. While the discussion above hinted at the substantial effect of
interactions on the behaviour of the observables, one can still ask whether our system size manages
to capture all the effects satisfactorily. Below, we attempt to answer this question and justify our
results.

We have already seen how the ‘density’ field �i amplifies the effective disorder and affects the
system properties. We found that for V/t ! 0, the bare and effective disorder are similar, while for
V ⇠ Vc ⇠ 2t, Veff ⇠ 1.7V . At weak disorder the localisation length ⇠loc in this 2D system (at the
band center) would be exponentially large. At V ⇠ Vc the ⇠loc is still larger than L = 24 that we
use [178], but these lengths are not relevant for the T > Tc transport due to the effect of electron
electron interactions.

Electron-electron interactions give rise to inelastic scattering at finite T , mimicked by the dis-
order in the �i in our model. The presence of a finite inelastic scattering length Lin would cut off
quantum interference effects, as we already discussed at the beginning of this chapter. A heuristic
estimate of the effective localization length can be made in the following way.

The perturbative scattering rate is �inel ⇠ U2N(✏F )h|�2|i, where we assume the phases ✓i
to be uncorrelated. The associated lengthscale is vF/�inel. Using U = 2t, N(✏F ) ⇠ 1/8t and
h|�2|i ⇠ 0.16, �inel ⇠ 0.08t. The associated lengthscale is ⇠ 12 lattice spacings, well within
system size.

The temperature dependence of the T > Tc resistivity at weak disorder is, thus, controlled not
by weak localization but by the ‘phase randomness’ in the �i. At stronger disorder the pseudogap
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Figure 4.8: Vortex density and structure factor with temperature for (a):U/t = 2 and (b):U/t = 10.
The black lines denote the results from our calculations while the red lines denote corresponding
XY model results with the same Tc.

induced by the pairing fields persists to T > Tc. This spectral weight suppression is only weakly
size dependent, as is the resulting fermionic contribution to conductivity.

Overall, the conductivity at U = 2t within our static approximation seems to be adequately
captured by a 24 ⇥ 24 lattice as a result of the effect of interactions. Thus, the weak disorder
results, especially the metallic regime (which probably should not exist in the U = 0 problem
in two dimensions) display the effects of interactions, and are not due to the failure to include
localization effects due to finite size restrictions.

4.4.4 Thermal transition and vortex physics

In two dimensions, the thermal transition from a superconducting to a metallic/insulating state is
a BKT transition, driven by the unbinding of vortex and antivortex pairs, since conventional long
range order is forbidden by the Mermin-Wagner theorem. While our finite size system doesn’t allow
us to directly confirm the algebraic scaling properties below Tc or to visualize individual vortices
above Tc, it nevertheless seems to capture the basic vortex physics correctly. To demonstrate this,
we calculate a vortex density by using the ‘site-vortex’ measure calculated in Erez, et. al. [137].

Fig.4.8 shows the vortex density in the clean limit at U/t = 2 and 10, comparing them with
the corresponding XY models (which undergo a BKT transition in two dimensions) that give the
same Tc. The proliferation of vortices before Tc and their subsequent saturation above the same
demonstrates that our model captures the basic aspects of vortex physics correctly. The deviation
of the detailed behaviour from the XY model at U/t = 2 is, of course, due to the fact that the weak
coupling transition, though in the XY class, is not identical to the XY model due to substantial
amplitude fluctuations, as discussed in the previous chapter.
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4.4.5 Limitations of our method

The primary approximations in our model has already been noted in Chapter.2. Out of these, the
effect of using both auxiliary fields has already been discussed in detail in the previous chapter. On
the other hand, the limitations of the cluster approximation are not valid in this case, since there are
no modulated phases. Hence, we consider the other three, namely, the static approximation in the
auxiliary fields, the finite size effects and the absence of Coulomb interactions, and describe their
effects in greater detail below.

1. The static approximation: the auxiliary fields are in principle time dependent and their tem-
poral (quantum) fluctuations can be significant in the following two regimes:

(a) The vicinity of the T = 0 SIT. As the electronic DOS becomes gapped due to pair
formation, the dynamics of these bosonic pairs can play a significant role in transport
and low frequency optics. In particular, the Higgs mode becomes soft and one can
presumably see its signatures in the optical conductivity [179] This has been empha-
sized in some theoretical studies that we have discussed before [134, 177]. However,
for the U/t = 2 that we have used, Fig.4.2(a) shows that the finite temperature SIT,
for V . 0.75Vc, occurs in the presence of a finite DOS at the fermi level. So, at weak
to moderate coupling, and across the finite temperature SIT, our approach should be
useful.

(b) In the critical regime, close to Tc, where fluctuation corrections (Aslamazov-Larkin and
Maki-Thompson) [180] are important. These also involve the dynamics of the pairing
fields, which are absent in our scheme. However, away from the immediate vicinity of
Tc the effects that we highlight, arising from a combination of the disorder and Hubbard
interaction, would dominate.

2. System size: weaker coupling, U/t . 1, is relevant experimentally, but difficult to access
with current size limitations since the coherence length grows as 1/�0. Our system size,
⇠ 24⇥ 24, is significantly larger than what is accessible within QMC but still much smaller
than the inhomogeneity scales observed experimentally. As a result, some of the predictions
we make are only of qualitative value in the experimental context. We discuss these in greater
detail when we compare our results with experimental data in the next subsection.

3. Coulomb effects: Coulomb interactions can affect superconductivity in two ways:

(a) weakening of the effective pairing interaction [181], and,

(b) an increase in phase fluctuations [182].
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The first effect can lead to an SIT driven by a vanishing gap. However, most recent experi-
ments suggest that the SIT is driven by phase fluctuations in a fragmented ground state, and
not so much by a vanishing gap. In this sense, our model captures the correct phenomenol-
ogy.

4.4.6 Comparison to experiments

When comparing with experiments, it must be kept in mind that U = 2t is already beyond the weak
coupling BCS regime, with 2�/kT 0

c ⇠ 8 instead of 3.5. Most real materials, explored in the SIT
context are however in the BCS window, so the relevant Ueff/t . 1. This is also borne out by the
rather low T 0

c ⇠ 10K of these materials [56, 60]. Additionally, Coulomb effects are neglected in
our model. For the different indicators that we have calculated, a comparison to experiments reveal
the following:

1. Resistivity: While our observation of a metal to insulator crossover in the normal state
transport is consistent with experiments, experimental resistivities are less insulating than
we observe [44, 52, 60]. For instance, at V = 0.75Vc, with Tc = 0.4T 0

c , our resistivity
already shows insulating behaviour, falling to one-fourth of its maximum value by T = 3T 0

c ,
while the two dimensional TiN sample in [56] only falls to 60% of its maximum value even
though Tc ⇠ 0.1T 0

c for that sample. Similar behaviour is seen in three dimensional NbN
samples [60].

2. Density of states: Pseudogap effects are more pronounced in our case, extending to larger
temperatures. For instance, at V = 0.5Vc, this scale is around T = 2.5T 0

c , and by V =

Vc, it extends beyond T = 4T 0
c . In contrast, experiments on three dimensional systems

[60] indicate that the pseudogap vanishes at a temperature T ⇤ that decreases initially with
increasing disorder, and finally becomes constant at T ⇤ ⇠ 0.5T 0

c at large disorder. Two
dimensional systems [55], on the other hand, do seem to show a qualitatively similar increase
as ours, though their relevant scales are much smaller (for instance at Tc = 0.1T 0

c , T ⇤ ⇠
1.4T 0

c , whereas our scale is greater than 4T 0
c .)

3. Optics: Low frequency features are sharply depressed, at low T , in our model at large
disorder, whereas there is a much more modest effect in experiments. Furthermore, some
recent experiments have shown signatures of collective modes close to the critical point.
[43, 62].

4. Spatial character: Our results for local indicators reveal significant similarity, but also points
of difference, in terms of spatial dependence and thermal variation, with recent experiments
[61]. They will be discussed in greater detail in the next chapter.
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5. Coulomb effects: Coulomb effects cause a characteristic wide dip in the DOS [183], which
is absent from our results. They also lead to a contribution similar to the weak localisation
correction to the conductivity [183, 184]. As noted earlier, this has led to proposals that the
moderate disorder weakly insulating behaviour is caused by Coulomb interactions. However,
we have shown an alternative way in which one can get the same qualitative effect from the
interplay of the disorder and attractive interaction alone.

4.5 Conclusions

We have studied the transport and spectral characteristics of a disordered s-wave superconduc-
tor over the complete disorder and temperature window relevant for the superconductor-insulator
transition. We have identified the metal to insulator crossover in the normal state with increasing
disorder and demonstrate a disorder window where the superconductor arises out of a high temper-
ature ‘insulating’ state. We map out the disorder and temperature dependence of the single particle
and optical spectra, discover that their low frequency weight is non monotonic with disorder, and
relate the weight to the superconducting spatial fraction in the disordered ground state.
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CHAPTER5
TUNNELING SPECTROSCOPY ACROSS
THE SUPERCONDUCTOR-INSULATOR

TRANSITION

This chapter will describe our work on the local properties of disordered superconductors and their
evolution with disorder and temperature. As we have described before, recent advances in scan-
ning tunneling spectroscopy reveal the presence of superconducting nanoregions well past the bulk
thermal transition in strongly disordered superconductors. The analysis of the thermal evolution
of this highly inhomogeneous state requires the inclusion of thermal fluctuations and high spatial
resolution to track the local properties. Our Monte Carlo tool allows us to capture the spatially
differentiated amplitude and phase fluctuations in such a material and establish spatial maps of the
coherence peak as the superconductor is driven through the thermal transition. Through our analy-
sis of the local density of states we provide a comprehensive description of the evolution of these
nanoregions, detailing how they shrink and fragment with increasing temperature, but survive in
small clusters to a temperature Tclust � Tc. The gap (or pseudogap) in the spectrum, on the other
hand, survives in general to another independent scale, Tg, depending on the strength of interac-
tion. This multiple scale description is consistent with recent measurements, and together with
the global results that we presented in the previous chapter, defines the framework for analysing
strongly disordered superconductors.

This chapter will be structured in the following way. First, we provide a brief summary of the
background work, focussing on the new insight provided by the STM results, and how our approach
overcomes these limitations. Then, we briefly recap the model and methods an the parameters we
have used, and summarize the main results. The next section describes our work on the spatial
characteristics and their evolution, focussing on the local DOS and gap, and their connection to the
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superconducting state. This is followed by a discussion section where we describe several aspects
of the problem, including the physics of cluster formation, understanding the physics using simple
models, and comparisons with experiments. Finally, we conclude.

5.1 Background to the problem

As we know, the bulk features of the superconductor-insulator transition (SIT) have been explored
experimentally for several decades. However, [39, 50, 53, 132], the recent use of high resolution
scanning tunneling spectroscopy (STS) [38, 47, 48, 55, 56, 59–61] has generated new questions
about the superconducting state near the SIT. These experiments allow two major advances.

1. They confirm the essentially inhomogeneous nature [38, 47, 48, 55, 56, 59–61] of the super-
conducting (SC) state, affirming that one does not have a homogeneous suppression of SC
order with disorder and temperature.

2. They highlight the presence of additional temperature scales in the problem, for example,
a cluster formation scale, Tclust, a pseudogap formation scale, Tpg, and, at strong disorder, a
possible gap formation scale Tg - all distinct from Tc.

3. In addition, STS measurements quantify the detailed behaviour of the local density of states
(LDOS) with disorder and increasing temperature [38,47,48,56,60,61] - posing a challenge
for theories that address only average properties.

Addressing these issues requires an approach that captures the increasing fragmentation in the
ground state and retains the crucial phase and amplitude fluctuations that dictate thermal proper-
ties. Neither the mean field Hartree-Fock-Bogoliubov-de-Gennes (HFBdG) theory [84, 85], which
reasonably describes the ground state but ignores phase fluctuations, nor quantum Monte Carlo
(QMC) [88, 140, 141] calculations, which retains all fluctuations but lacks spatial resolution, can
address these issues adequately. On the other hand, our auxiliary field scheme, which captures
the HFBdG ground state, and the correct Tc and critical disorder (Vc), incorporates these thermal
fluctuations. It allows a spatially resolved description of the thermal transition and an estimate of
the emergent scales in a strongly disordered superconductor.

5.2 Model, methods and main results

In this section, we briefly recap the model and methods and the parameters that we have used, and
summarize the main results of our work.
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5.2.1 Methods and parameters

The model methods and parameters have been described in Chapter.4. Here we restate them quickly
for completeness.

We study the attractive two dimensional Hubbard model (A2DHM) in the presence of a random
potential picked from a normalised flat distribution between ±V . µ is the chemical potential which
we fix so that the electron density n ⇠ 0.9 We choose the coupling value U/t = 2 for reasons
we have described before. A Hubbard-Stratonovich transformation in the ‘pairing’ and ‘density’
fields, and subsequent neglect of their quantum fluctuations leads to our model.

Heff = Hkin +
X

i�

(Vi � µ)ni� +Hcoup +Hcl (5.1)

where Hcoup =
P

i(�ic
†
i"c

†
i# + h.c)�

P
i �ini and Hcl =

1
U

P
i(|�i|2 + �2

i ).
We solve the coupled fermion-auxiliary field problem through a Monte Carlo [86, 87, 145] for

various disorder and temperature values. At finite T this allows us to consider electron propaga-
tion in an amplitude and phase fluctuating background, affording a dramatic improvement in the
handling of thermal physics.

5.2.2 Main results

Working at our ‘moderate’ coupling value U = 2t, we confirm the fragmentation of the supercon-
ducting ground state with increasing disorder, with SC islands surviving in an ‘insulating’ back-
ground. Our key results on thermal behaviour of the LDOS are the following:

1. At weak disorder increasing temperature (T ) leads to spatially homogeneous closure of the
gap at Tc. For V ! Vc the T = 0 gaps are lower in the SC regions than in the insulator,
increasing T reduces all gaps but they survive to a scale Tg � Tc, and a pseudogap is
observed to Tpg � Tg.

2. In the weakly disordered system the coherence peak in the LDOS vanishes throughout the
system at T = Tc. At strong disorder it survives on isolated clusters to a scale Tclust � Tc.

3. The scales Tg, Tclust, etc, have distinct physical origin. We establish their variation with
disorder and interaction strength. Finally, (iv) we suggest a simple lattice Ginzburg-Landau
model, with parameters extracted from the electronic problem, that reasonably describes the
complex thermal behaviour.

In the next section, we describe these results in detail.
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Figure 5.1: Maps of the tunneling conductance integrated over a narrow frequency window around
the coherence peak feature in the LDOS (see text). Rows, top to bottom, V = 0.2Vc, 0.5Vc, 0.9Vc.
Columns, left to right, T/Tc(V ) = 0, 0.5, 1.0. Thermal average over 100 configurations.

5.3 Results

This section will describe the main results of our work in detail.

5.3.1 Tunneling maps

The ‘clean Tc’ at U = 2t is T 0
c ⇡ 0.07t. Increasing disorder pushes our Tc below measurement

resolution (⇠ 0.005t) at V ⇡ 2t. We set this as Vc [186]. Based on the bulk transport and spec-
tral properties, we characterise [174] V . 0.25Vc as ‘weak’ disorder, 0.25Vc . V . 0.75Vc as
intermediate, and V & 0.75Vc as strong disorder. The weak disorder regime is characterised by
a featureless DOS and metallic transport for T > Tc, intermediate disorder involves a pseudo-
gap (PG) for T > Tc and a thermal crossover from insulating to metallic resistivity, while strong
disorder involves a hard gap over a window Tg > T > Tc and activated transport at high T .

Fig.5.1 presents a summary of the thermal evolution of the coherence peak map at weak, mod-
erate, and strong disorder. Our data shows the integrated tunneling conductance (TC) over the
window [!�

c ,!
+
c ], defined by T coh

i = h
R !+

c

!�
c
d!Nii(!)i, where Nii(!) is the local density of states at

site Ri. !�
c = 0.2t and !+

c = 0.45t are chosen so that they cover the coherence peaks in the global
density of state, and hence gives information about the local phase correlations in the system.

We make the following observations:
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1. At weak disorder the pattern remains almost homogeneous at all T , except for a few isolated
regions. Coherence peaks get suppressed with increasing temperature, and vanish by T = Tc.

2. At intermediate disorder the ground state is noticeably inhomogeneous and increasing T

causes further fragmentation. However, by the time T = Tc hardly any coherence peaks are
visible anywhere.

3. The high disorder regime shows tenuously connected clusters at T = 0, which shrink as T
is increased, but have a prominently visible but disconnected pattern at T = Tc. In fact at
V = 0.9Vc the clusters are visible to T ⇠ 2Tc. The ‘cluster survival scale’ at Vc is ⇠ 0.6T 0

c

and drops slowly with increasing disorder.

5.3.2 Spatial character at strong disorder

Fig.5.2 shows spatial maps of the pairing field and the tunneling conductance, averaged over 100
thermal configurations, at strong disorder (V = 0.9Vc) for a single realisation of disorder. The
next subsection below shows results at weaker disorder, V = 0.5Vc. The top row shows h|�i|i,
normalised by the clean T = 0 value �0. Next row: nearest neighbour averaged phase correlation
�i = h14

P
� cos(✓i � ✓i+�)i, where � refer to the four nearest neighbours of a site. Third row:

T gap
i = h

R !+
g

!�
g
d!Nii(!)i, the local tunneling conductance probed at subgap frequencies. Fourth

row: T coh
i . We set !�

g = 0, !+
g = 0.2t. Columns, left to right, correspond to T = 0, Tc, 2Tc.

Let us start with the patterns at T = 0, left column.

1. We see a pattern of regions with large � ⇠ 0.7�0 (coloured yellow) surrounded by
sites whose values decrease with increasing distance from these centres. Our chosen colour
scheme defnies � ⇠ 0.4�0 as the periphery of these regions. A different choice will change
the periphery somewhat, but keep the overall pattern the same.

2. The large� regions are phase correlated: �i is large in regions where h|�i|i is large. These
regions are the SC clusters.

3. T gap
i shows that the large h|�i|i phase correlated regions have large subgap TC, while

regions with poor SC correlation have virtually zero TC. This suggests a smaller local gap
in the SC clusters, as we will confirm later, and a larger gap in the non SC regions. The
behaviour is in contrast to homogeneous systems where larger h|�i|i would have meant a
larger gap and a smaller TC.

4. The map for T coh
i shows that the SC clusters in the ground state have a modest coherence

peak, while there is no CP in the larger gap non SC regions. Overall, at T = 0 the non
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SC regions have no noticeable spectral weight from ! = 0 to frequencies well beyond the
average CP location.

Now we come to the thermal evolution. By T = Tc, middle column, we observe the following.

1. There is significant homogenisation of h|�i|i. Non SC regions generate a strikingly large
h|�i|i while the SC clusters see a more modest growth from the T = 0 value. Temperature
leads to strong spatially differentiated amplitude fluctuation in the system.

2. �i shows thermal shrinking of the correlated regions. It is still large in parts of the regions
which had the large h|�i|i at T = 0. The clusters are internally correlated but disconnected.
The independent fluctuation of the phase of the different clusters leads to loss of global SC
order.

3. There is no noticeable change in T gap
i with T for regions that were non SC at T = 0. For SC

regions there is an increase in intensity. (d) For T coh
i , as we have already seen in Fig.1, areas

with strong CP feature shrink but are still clearly visible. Non SC regions do not respond to
temperature.

By T = 2Tc, 3rd column, we find that

1. The mean magnitude has homogenised, with traces of clustering apparently lost, and,

2. �i is virtually zero everywhere. The homogenisation of amplitude and phase variables may
suggest that any imprint of the T = 0 cluster pattern would be lost. However,

3. The subgap TC is still very inhomogeneous, but now uniformly large over regions that were
SC at T = 0. So, even at this “high temperature” the subgap TC reveals the granularity of
the ground state. Finally,

4. The high intensity regions in T coh
i shrink and the pattern tends towards a homogeneous

intermediate intensity with only small remnants of the high CP regions.

Below, we show the results at weaker disorder, V = 0.5Vc, which, in contrast to strong disorder,
shows much weaker correspondence of T i

gap with the background superconducting pattern.

5.3.3 Spatial character at moderate disorder

In the previous subsection, we discussed the strong disorder regime where the cluster pattern is
quite prominent. In this section, we show the same results at weaker disorder, V = 0.5Vc, where
we find that the correspondence of T i

gap with the background superconducting pattern is much
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Figure 5.2: Spatial maps at V = 0.9Vc. 1st row: h|�i|i, 2nd row: phase correlation �i, 3rd row:
tunneling conductance T gap

i , 4th row: T coh
i . The notation is explained in the text. Columns, from

left to right, are for T = 0, Tc, 2Tc. The interpretation of these patterns is discussed in the text.

weaker. T i
coh, however, continues to roughly track the superconducting order, both in the ground

state and at finite T , down to low disorder.
Ground state: The top left panel in Fig.5.3 is the T = 0 pattern of h|�i|i. In contrast to 0.9Vc

in the main text this has only small regions with suppressed amplitude, scattered in a background
with moderate to large h|�i|i. The corresponding nearest neighbour phase correlation �i is almost
saturated over the system, except for small regions which correlate with the small h|�i|i patches.

The subgap tunneling does not follow the trend observed at 0.9Vc: T gap
i seems to be larger

where h|�i|i is either weak or only moderately large. There is no direct correspondence with the
correlated regions. Local gaps in the correlated region can be larger as well as smaller than gaps in
poorly correlated regions, but we observe a partial recovery of the ‘large� ⌘ large gap’ rule. T coh

i

is large over most of the system, with larger intensity corresponding, roughly, to larger values of
h|�i|i.

Thermal evolution: The middle column in the right set of panels is for T ⇡ 0.5Tc and the right
column for T ⇡ Tc. The h|�i|i increase on an average with T and is uniform by T ⇡ Tc. The loss
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Figure 5.3: Spatial maps at U = 2 and V = 0.5Vc. First row: h|�i|i, second row: phase correlation
�i (see text), third and fourth rows show the tunneling conductance averaged over two frequency
(or bias) windows !gap and !coh. Along the row: temperatures T = 0, 0.4Tc0 and 0.8Tc0. h|�i|i
at low T forms phase correlated clusters, which shrink in size as T is increased. h|�i|i is weakly
inhomogeneous at low T , and smoothens with increasing T . �i decrease with T and vanishes
almost homogeneously at Tc (not shown, but between 0.5Tc0 and Tc0.) The subgap region lights up
with increasing T , due to the transfer of spectral weight to low frequency, while the plot for !coh

loses intensity.

of phase correlation is spatially differentiated, stronger phase correlation survives in regions where
the h|�i|i is larger. By Tc the h|�i|i has homogenised and phase correlations are lost throughout,
unlike the strong disorder case where correlated patches survived to ⇠ 1.3Tc.

The subgap tunneling does not have a forceful correspondence with the profile of h|�i|i or �i.
At T = 0.5Tc it seems to show low intensity (hence larger ‘gap’) roughly in regions which have
larger h|�i|i and stronger �i (roughly the ring like region excluding the center). At T ⇠ Tc the
intensity is large almost everywhere and no signature of any cluster can be seen. Large intensity
in T coh

i at T = 0.5Tc similarly has a rough correspondence with large h|�i|i and phase correlation
and only a tentative match with �i at T ⇠ Tc.
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Figure 5.4: Thermal evolution of the gap and coherence peak height distribution. Top: Gap
distribution for V = 0.2Vc (left) and 0.9Vc (right). Bottom: Coherence peak height distribution at
same V . T/Tc(V ) = 0, 0.5, 1.0.

5.3.4 Gap and coherence peak distributions

After analysing the spatial maps, we now consider the statistics of the gap and coherence peak
height and their evolution with disorder and temperature. This provides a slightly different way
of looking at the data and is often calculated by other researchers in the field. Fig.5.4 shows the
distributions of the coherence peak height P(h) and gap P(g) with temperature and disorder. In
practice, it was difficult to measure the heights, so we used the same measure as T coh

i to extract
P(h). The ‘gap’ is extracted from the local density of states plots by a suitable cutoff (Ni(!) <

0.005). The distributions are averaged over all sites and all thermal configurations, in contrast th
the spatial maps which were thermal averages at a given site. The results are for V = 0.2Vc and
0.9Vc, and T/Tc(V ) = 0, 0.5, 1.0. At 0.2Vc the P (g) has a mean ⇡ 2�0 at T = 0, with a narrow
width around it. With increasing T the mean ‘gap’ shifts to lower values while the width shows
a small increase. This suggests a homogeneous decrease throughout the system. At 0.9Vc P (g)

is wide at T = 0 with a large gap tail arising from sites with large positive or negative effective
potential (we call these hill and valley sites). Increasing T leads to shift in weight to lower g from
intermediate values while P (g) at large g remains unaffected.

Coming to P (h), panel (c) shows that the coherence peak distribution is also roughly uniform at
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Figure 5.5: Local DOS on a typical ‘plateau’ site (top) and ‘hill’ site (bottom). The left panels (a)
& (c) are at V = 0.2Vc, the right panels (b) & (d) are for V = 0.9Vc. In each panel the low energy
DOS is shown for four temperatures T ⇡ 0, 0.5Tc, Tc, 2.0Tc. The curve at 0.5Tc has been omitted
in (b) for clarity.

0.2Vc at all T . The peak at h & 0.4 at T = 0 narrows slightly and moves to lower values at higher
T but the mean remains finite since we have not subtracted the high T background. At 0.9Vc,
however, most sites have poor coherence features, defining the trunk of the distribution, except for
the tail with h & 0.4 arising from sites in the superconducting clusters. With increasing T as the
SC regions shrink the weight in this h & 0.4 region is lost.

5.3.5 Hills, valleys and LDOS

Fig.5.5 correlates the low energy features of local gap and coherence peak to spectral weight dis-
tribution over a wider frequency window. We plot the LDOS at two representative sites (‘plateau’
and ‘hill’) at low and high disorder. The plateau site involves an effective potential Vi � �i close
to the mean value, and a local density ni close to the average, nav ⇠ 0.9, while the hill site has
a large positive effective potential and ni ⌧ nav. At low disorder, Fig.5.5(a)-(b), both sites show
coherence peaks and similar gaps, with the hill site naturally having larger weight at ! > 0. The
thermal evolution is also similar, with both gaps decreasing and closing at T . Tc.
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At high disorder, Fig.5.5(c)-(d), the LDOS at the plateau site (part of a SC cluster) shows a
narrow gap at low T , moderate coherence peaks, and expected thermal behaviour. The hill site,
by contrast, shows a large gap (strongly suppressed low frequency spectral weight), no coherence
peaks, and is virtually insensitive to T .

5.4 Discussion

In this section, we expand on and clarify several aspects of our results. We first remark on the
relation between the clusters and the background disorder. Then we elaborate on the physics of the
multiple scales that emerge, and try to understand that using the framework of a simple Landau-
Ginzburg theory. This is followed by a comparison of our methods with experiments, highlighting
the similarities and differences. Finally, we examine the dependence of our results on coupling,
and discuss how some of the differences with experiments can be explained from them.

5.4.1 T = 0 cluster pattern

Fig.5.6 shows ‘gap-maps’ for a particular disorder realisation at V = 0.9Vc for three different
cases: (a) actual ground state, (b) ground state obtained with V eff

i = Vi � �i and (c) with Vi,
but the potential scaled to lie between (V � (U/2)nmin, �V � (U/2)nmax), with nmin = 0 and
nmax = 2. The ‘gap’ at a site ‘i’ is defined as the difference between the smallest energy !+ > 0

at which the LDOS Nii(!) & Ncut and the corresponding !� < 0, where Ncut is a suitably defined
cutoff.

All three show the same pattern of low gap areas (coloured red) even though the overall scales
change. Thus, superconducting clusters form in areas that are already defined by a small local gap
at the Fermi level. The Hartree field magnifies this effect, further increasing the local gaps in the
insulating regions, while the � open up a smaller gap on sites within the superconducting clusters.

Since regions with low local gap around the chemical potential decide the cluster pattern, this
pattern depends sensitively on the overall electron density in the system.

To understand the density distribution in the system we define ‘hill’ sites as those with ni . 0.4,
valley sites as those with ni & 1.6, and ‘plateau’ sites where ni is within 10% of navg ⇠ 0.9 The
rest are ‘moderate’ sites. Fig.5.7 shows the distribution of ‘plateau’ sites inside the SC clusters
(with � & 0.4�0) as well as outside at high disorder V = 0.9Vc. The plots clearly show that a
majority of the plateau sites lie inside the SC cluster region, providing a backbone for the formation
of the clusters.

These only account for 13% of the total number of sites, but combined with the 40% ‘moderate’
sites, they allow enough particle-hole mixing to favour the formation of SC clusters. The fact that
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Figure 5.6: Gap maps for 3 cases, T = 0. Left: Original calculation, showing patches with low
gaps, idential to the correlated patches. Middle: With Vbare, scaled to lie between (�V � 2,V ),
showing low gap patches with same basic structure; Right: with Veff , increasing the contrast of the
original V , gives similar map, with gaps of the insulating regions raised substantially.

47% of sites within the SC clusters are of the ‘hill/valley’ type shows that the SC regions are far from
being ‘flat’. On the other hand, in the insulating regions, 80% of the sites are of the ‘hill/valley’
type, surrounding the few isolated ‘plateau’ site.

Figure 5.7: Comparison of location of ‘plateau’ sites (see text) inside superconducting clusters (left)
with the same outside clusters (middle) at V = 0.9Vc, T = 0. Right figure shows the spatial plot
of |�i| for reference. ‘Pleateau’ sites form a backbone over which the superconducting clusters
are formed. In the insulating area, ‘hill’ or ‘valley’ sites (see text) predominate, ruling out the
formation of SC clusters.

5.4.2 Multiple scales

In the clean limit, weak coupling SC is characterised by only one scale, T 0
c (U), while strong cou-

pling brings into play two additional [187] scales T 0
g (U) > T 0

c (U) and T 0
pg(U) > T 0

g (U). This
paper focuses on the weak coupling end where there is no gap/PG above Tc at V = 0 but disorder
generates such scales. These scales emerge due to the fragmentation of the SC ground state with
increasing disorder (the nature of the patterns was discussed above, and also in [85]). The inho-
mogeneous state leads to a spatially varying phase and amplitude stiffness, whose distribution and
spatial correlation dictates the thermal response.
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Figure 5.8: Left: Distribution of nearest neighbour Jij at different disorder, showing successive
broadening with disorder, but even at strong disorder, a finite number of sites have J ⇠ O(J0).
Right: Spatial map of Jij , at V = 0.9Vc, showing that the large values of Jij correspond to the
centres of the SC clusters.

In the next subsection, we describe a method to extract a bond resolved phase stiffness, Jij ,
from the non local pairing susceptibility in the disordered ground state. Leaving the details of the
calculations to the corresponding subsection, we focus on the result. Fig.5.8 shows plots of the
distribution P (Jij, V ) for various disorder V , and a spatial map of Jij for nearest neighbour bonds
hiji at strong disorder, V = 0.9Vc.

We find that at small V the Jij are ‘large’, homogeneous, and ⇠ O(J0) ⇠ 0.023, the clean
value. The distributions broaden with increasing disorder, and their means shift to lower values, and
at large V they are strongly inhomogeneous, with a smaller mean value hJi ⌧ J0. Nevertheless, a
finite proportion of sites have J ⇠ J0. While hJi (on the percolative backbone) decides Tc(V ), the
presence of bonds with J ⇠ J0 � hJi, near the center of the SC clusters, leads to survival of local
SC correlations to Tclust � Tc as V ! Vc.

Although phase fluctuations destroy global order, the |�i| survive to T � Tc. At U = 2t this
sustains a gap to Tg > Tc and then a PG to a scale Tpg > Tg, ultimately closing due to amplitude
fluctuations. We will examine the dependence of these scales on the coupling later, showing results
at U = 2t, and U = 4t to allow extrapolation over a wider interaction window, allowing us to
compare our results more fruitfully with experiments and explain some of the differences between
the two (this will be discussed in greater detail in a separate subsection).
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Figure 5.9: Comparison of correlated patches for V = 0.8Vc for successive T points using the
full Monte Carlo (top) and the simplified XY model (bottom). The basic phenomenon of an island
pattern at low T , and shrinkage of these clusters with increasing temperature is well captured by
the simplified model.

5.4.3 Effective Landau-Ginzburg functional

The interplay of ‘amplitude’ and ‘phase’ fluctuations in our model is best understood in terms of a
simple lattice Landau-Ginzburg model:

F(�) =
X

i 6=j

Jij�i�
⇤
j +

X

i

(ai|�i|2 + bi|�i|4) (5.2)

The ai and bi, crudely, control the |�i| while Jij determine a bond coupling between the ‘i’ and ‘j’
sites (not necessarily nearest neighbours). These parameters are in general temperature dependent,
and the clean problem at U = 2t involves renormalisation of all these parameters with temperature.
We focus here on understanding the strong disorder regime V & 0.75Vc and the thermal evolution
of the superconducting clusters only over a small temperature window above the ground state (the
Tc here is small). Such a situation allows us to ignore the thermal renormalisation of the GL pa-
rameters as a first approximation.

We calculate Jij via a perturbative expansion of the energy in�i around the disordered ground
state. This leads to:

Jij ⇠
1

�

X

n

Gij(i!n)Gij(�i!n) (5.3)

where Gij(i!n) is the electronic Greens function computed in the background defined by Vi

and �i. We compute Gij exactly in the {Vi + �i} background. The ai and bi can be found by fitting
the local amplitude distributions to the given form, but we concentrate on Jij here.
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Fig.5.9 compares the phase correlations obtained from the bond disordered XY model, above,
with that from the full Monte Carlo at V = 0.8Vc. We find a reasonable match, demonstrating the
usefulness of this crude model.

5.4.4 Estimating the new scales

Fig.5.10 shows the phase diagrams for U = 2 and 4. The tails emphasize the fact that in principle,
the T = 0 state is always superconducting within our scheme. At U = 2t, while Tc ! 0 as
V ! Vc, Tclust remains roughly constant at ⇠ 0.5T 0

c , as does Tg. On the other hand, Tpg is much
larger than these scales. At U = 4t, the increased Hartree field increases the effective disorder
Vi � �i, leading to a smaller Vc. This also leads to a faster fragmentation with disorder, and a more
differentiated Jij distribution, which results in a faster decline in Tclust compared to that at U = 2.
The gap vanishing scale Tg, on the other hand, increases considerably with coupling and is greater
than the clean T 0

c at all disorder values considered here. Thus, at U = 4t, Tg � Tclust, so their
coincidence at U = 2t is accidental. Extrapolating downward we expect that when U ⌧ t, Tclust

will continue to be a finite fraction of T 0
c , with Tpg ⇠ Tclust. We will elaborate on this further when

we compare our results with experiments.

5.4.5 Comparison with experiments

Our main results, i.e, the emergence of a Tclust, Tg, etc, in addition to Tc, the shrinkage and fragmen-
tation of the SC pattern with increasing temperature, and the distinct thermal evolution of the STS
spectra in the SC and insulating regions, are all in agreement with recent experiments. However,
there are also important differences, arising from (a) our parameter choice, (b) our approximation,
and (c) the neglect of Coulomb interactions. We discuss each of them below.

1. Experimental spectra indicates a pseudogap [60], rather than a hard gap above Tc for V !
Vc. Our exploration of the U dependence suggests that at weaker coupling such a result would
emerge from our method as well. Another effect of the relatively ‘large’ coupling that we use
is the larger variation of local gaps between the SC and insulating regions, experimentally
these gaps are comparable [47].

2. The neglect of quantum fluctuations in our treatment of the attractive Hubbard model pre-
vents access to the correct asymptotic low temperature behaviour for V ! Vc. However,
apart from the immediate vicinity of Vc the thermal fluctuations seem to capture most of the
qualitative experimental features.

3. The recent observation [61] of enhanced zero-bias conductance in the insulating regions is
probably caused by additional interactions that are absent in our model. Also, the broad V-
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Figure 5.10: Phase diagrams showing superconducting (SC), gapped (G), pseudogapped (PG) and
ungapped (UG) phases, and the cluster vanishing scale Tclust (green dashed lines) at U = 2 and 4
(see text).

shaped background observed in the STS spectra possibly arises from Coulomb interactions,
and is absent in our results.

5.5 Conclusions

We have studied the spatial signatures of the thermal transition in a disordered s-wave supercon-
ductor as probed by tunneling spectroscopy. Our detailed spatial maps of the coherence and subgap
features in the local DOS allow us to identify the distinct evolution of the superconducting and ‘in-
sulating’ regions with temperature. We point out new thermal scales, Tclust, Tpg and Tg that come
into existence at strong disorder, identify their physical origin, and quantify their dependence on
disorder and interaction strength. Recent experiments have already indicated the existence of such
scales in 2D films, our results provide the broader framework within which these results can be
analysed.
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CHAPTER6
DENSE MAGNETIC IMPURITIES IN A

S-WAVE SUPERCONDUCTOR

This chapter describes our work on the effect of magnetic impurities in superconductors. We will
consider these impurities in an s-wave superconductor on a lattice at moderate coupling, for var-
ious values of impurity concentration and impurity-electron coupling. Our primary aim will be
to study the thermal and strong imourity coupling effects beyond those provided by the bench-
mark Abrikosov-Gorkov (AG) theory. In particular, we will study the transition temperature Tc,
the global density of states, and local properties. We examine the thermal behaviour to construct
phase diagrams at different impurity coupling strengths showing the superconducting (gapped and
gapless) phases. We compare and contrast our results to AG theory and explain how the increased
impurity coupling modifies the physics of the system.

This chapter is structured as follows. In the first section we provide a brief summary of the
problem and our model and methods (already reviewed in detail in Chapter 2). Section 2 considers
the single impurity case, benchmarking our results against existing results. In the next section
we present our main results for multiple magnetic impurities. We describe our phase diagrams at
various values of impurity coupling, and discuss the different phases with reference to AG theory.
Then we present our results on the global and local indicators, at T = 0 and finite temperature
respectively. The final section provides a discussion of these results and further explanation of the
deviations from AG theory in terms of the spatial location of the low lying eigenfunctions of the
system.
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6.1 Background and model

6.1.1 Earlier work and limitations

As we have already discussed before, the problem of magnetic impurities in a superconductor
has been studied for a long time now. The absence of time reversal symmetry in the problem
invalidates Anderson’s theorem in this case, and hence superconductivity can be greatly suppressed
and eventually completely destroyed by a relatively low concentration of such impurities.

The perturbative mean field treatment of Abrikosov and Gorkov [75] provided an estimate of the
critical concentration ⌘c and the striking prediction of the presence of a gapless superconducting
phase for ⌘c > ⌘ > ⌘g ⇠ 0.91⌘c. However, the AG results are valid only in the perturbative
regime and more sophisticated methods [67, 68, 78] demonstrated deviations from the AG theory,
in particular, an increase in the gapless regime. These semi analytic methods, however, have the
following limitations:

1. They are all derived in the limit of weak attractive coupling, that is the BCS regime, and do
not incorporate the non-BCS effect of stronger coupling on the system; further, most assume
the order parameter to be homogeneous, though their methods allow it to be spatially varying.

2. These (T-matrix) methods neglect complex interference effects from different impurities
and are strictly valid only at low impurity concentration.

3. They cannot provide any insight into the spatial nature of the system, especially at strong
impurity coupling, where there could be inhomogeneities.

4. They cannot incorporate the effect of thermal fluctuations, which can be non-trivial at large
U/t and impurity coupling.

Thus, these methods cannot provide a satisfactory picture of the system at strong attraction and
impurity coupling, where the possibility of spatial inhomogeneities and thermal fluctuations can
give rise to interesting effects and change the phase diagram non-trivially.

Numerical studies can overcome many of these limitations, but there has been little work on this
subject. Using a mean field BdG method, Nanguneri et.al. [79] considered spin dependent disorder
and investigated the resulting gapless phase and deviations from AG theory. Some other work
has been done [80] on the related and interesting problem of magnetic order in superconducting
materials, where they considered the stability of various one dimensional magnetic domains in a
superconductor. However, none have considered the full thermal problem of magnetic impurities
in a superconductor.
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An important reason for this is the inability of standard determinantal QMC methods to include
spin dependent disorder. QMC calculations incorporating non magnetic disorder in the negative U
Hubbard model are free of the sign problem, and hence such methods have been used extensively
to study the disorder induced SIT. However, these run into problems when spin dependent disorder
is included, and the determinant becomes negative. Hence, QMC methods cannot be applied to this
problem.

Our real space method can be easily generalized to include magnetic disorder at arbitrary con-
centration, and can be used on comparatively large lattices to provide global as well as spatially
resolved information at both zero and finite temperature. Below, we quickly summarize the model,
method, and parameters before going on to describe the results of our work.

6.1.2 Model and parameter space

Our model, as already described in detail in Chapter 2, is given by

Heff = Hkin +
X

i

⇣
(�ic

†
i"c

†
i# + h.c.) + (Vi � µ� �i)ni

⌘
+
X

i⌫

J�i⌫ ~S⌫ .~�i +Hcl (6.1)

Here, t denotes the hopping matrix element, U the attractive coupling, µ the chemical potential,
� and � the pairing and density channel auxiliary fields respectively, and J the impurity coupling
strength. ~S⌫ denotes the impurity spins situated at random sites R⌫ , that are coupled to the elec-
tronic spins by the usual exchange coupling term. We neglect the quantum nature of our spins,
modelling them as classical vectors of length unity and random orientation (✓,�). The neglect of
the quantum nature of S⌫ loses the effect of spin flip on these moments, and in particular the Kondo
effect at low temperature below the Kondo scale TK . Furthermore, the impurities are assumed to be
frozen, and thus, we do not consider the possibility of simultaneous magnetic and superconducting
order. The chemical potential µ is fixed so that the average density n ⇠ 0.9. We consider a moder-
ately strong regime of attractive coupling, U/t = 2, with a clean transition temperature Tc0 ⇠ 0.07t.
In the ground state, the ratio 2�0/kTc ⇠ 8, much greater than the BCS value of 3.53 (however, note
that in the context of non-magnetic superconductors, we classified this value as ‘weak’ in the sense
that in the clean problem, the gap vanished at Tc and there was no appreciable pseudogap window,
just like a BCS system. Our reason for calling this ‘strong’ in this context will be explained in more
detail below.) We vary the impurity coupling J from 0.25, which we term ‘weak’, to 1.0, which we
call ‘strong’. These names will be justified below, where we consider the effect of a single impurity
of varying strength in the superconducting system. As discussed in Chapter 2, this Hamiltonian
is annealed using classical Monte Carlo methods [86, 87, 137–139, 174, 175, 185] by employing a
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Figure 6.1: Top row: Spatial maps of left: |�| and right: Phase correlation Pi (see text) at J = Jc =
1.2. Below Jc both are uniform, while after the phase transition has taken place, |�| at the impurity
site decreases in magnitude and changes phase by ⇡. Bottom row shows the density of states for
different J . As J increases, impurity level moves from edge of gap inwards, crosing ! = 0 at Jc.

cluster approximation [145]. The primary cost of the calculation lies in diagonalizing a modified
BdG matrix, whose dimensions are increased from 2N ⇥ 2N to 4N ⇥ 4N , where N is the number
of sites, to incorporate the extra spin degrees into the problem. Our calculations are done in two
dimensions on lattices 16⇥ 16.

6.2 Single impurity

We begin with the effect of a single magnetic impurity on a superconductor at low temperature.
As remarked at the beginning, this allows us to benchmark our system in terms of the values of
the impurity coupling J , helping us define ‘weak’ and ‘strong’ impurity coupling regimes. The
evolution of a BCS superconductor with increasing J is a well studied problem [6]. At low J , the
impurity induced level lies at the gap edge, but with increasing J , it moves inwards. At a critical
value Jc, the impurity level touches zero, and the system undergoes a quantum phase transition,
where the impurity captures an electron from the condensate, resulting in a condensate with a non-
zero total spin equal to that of a single electron.

In Fig.6.1, we show the spatial indicators and the spectral functions at low temperature. The top
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row shows |�i| and the phase correlation Pi = (�i.�0)/(|�i||�0|) (where 0 is a reference site
chosen judiciously) respectively, averaged over 100 configurations, at the critical impurity coupling
value J = Jc = 1.2 We find a noticeable decrease in |�| at the impurity position and a correspond-
ing phase change by ⇡, as found in the literature [6]. The origin of the phase change is still not
completely understood, but it seems to be reproducible in our model. The bottom row shows the
evolution of the single particle density of states with increasing J . For J ⇠ 0.2, the impurity level
is at the gap edge and indistinguishable from the other levels. By J ⇠ 0.6, however, the level is
clearly recognizable, though it is still at the gap edge. Increasing J further, we find that the level
moves inwards, and crosses the zero mark by J ⇠ 1.2, where the QPT takes place. We roughly
identify the regime J ⇠ 0.2 as ‘weak‘, while J & 1 is in the very strong scattering regime. Hence,
we pick four J values, viz., J = 0.25, J = 0.5, J = 0.75 and J = 1.0 to investigate the effect of
multiple impurities on the superconducting system. These results, presented below, form the core
of our work.

6.3 Multiple impurities

Increasing the number of impurities increases the corresponding subgap impurity levels, and for fi-
nite impurity concentration in a thermodynamic system these levels form an impurity band. Many
of the assumptions employed by semi-analytic methods, such as weak attractive coupling, homo-
geneous order parameter, weak concentration, and neglect of thermal fluctuations are, however,
suspect in the regime of strong scattering at large impurity concentration. In such a situation strong
local changes due to the impurity can cause considerable inhomogeneity in the system, and the
short inter-impurity distance can increase the interference effects between scattering from different
impurities. Our numerics allows us to explore this regime in detail, while simultaneously visualiz-
ing the physics in the weak scattering regime.

In the Abrikosov-Gorkov theory, superconductivity is destroyed when the scattering rate ↵ ⇠
⌘J2N0 is equal to the gap parameter �0, where N0 is the normal density of states at the Fermi
level. In our theory, this translates to the condition ⌘J2/t ⇠ �0. Pure BCS superconductors have
a 2�0/Tc ratio of around 3.52. In this respect, the system with U/t = 2, having a ratio of ⇠ 8, is
already much outside the BCS window. As mentioned above, though, it lies to the left of the BCS-
BEC crossover [185] and the gap vanishes at Tc with no appreciable pseudogap window above it.
We may therefore think of it as within a ‘renormalized’ BCS regime, and we have treated it, in some
sense, as a ‘weak’ coupling point in our study of non-magnetic disorder. However, in the current
problem, where the critical concentration ⌘sc is linearly dependent on the superconducting order
parameter �0, such a system would require a much larger concentration of impurities to suppress
superconductivity compared to experiments, since the gap is much larger than in the experimental
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Figure 6.2: Superconducting order parameter S(q = 0) -vs- T at J = 0.5, 0.75 and 1.0 at various
concentrations ⌘, demonstrating the suppression and eventual destruction of superconductivity. The
critical concentration ⌘sc(%) is ⇠ 70, 40 and 30 for the three J values respectively.

materials that are in the BCS regime. So, multiple impurity and interference physics would be vital
for our U/t choice.

Below, we first show our phase diagrams at various J values, summarizing our results on the
gapped, gapless and non-superconducting phases of the system, and discuss their significance in the
context of existing results. We then consider our global and local signatures in detail to understand
and explain these observations.

6.3.1 Phase diagrams

This subsection shows the summary of our results in terms of phase diagrams in the ⌘ � T plane
for various impurity coupling values J , detailing the positions of the gapped, gapless and non-
superconducting phases as functions of these parameters. As has been described earlier, the super-
conducting Tc is determined from the rise of the structure factor S(q = 0) curve vs. T . Fig.6.2
shows the corresponding S(q = 0) curves for different concentrations ⌘ at three values of J , viz.,
0.5, 0.75 and 1.0.

We find that superconductivity is suppressed and destroyed by increasing concentration of im-
purities. The critical concentration decreases with increasing impurity coupling J , as is expected
from the single impurity picture generalized to that of a band. Thus, while even ⌘ = 100% fails
to destroy superconductivity at J = 0.25 (not shown here), at strong coupling J = 1 only 30%

impurities destroy superconductivity completely.
Fig.6.3 shows the overall phase diagrams summarizing our results. Here, we show the gapped

and gapless superconducting phases for J = 0.5, 0.75 and 1 respectively. At J = 0.5, we find that
the gapless phase is quite narrow, with ⌘g/⌘c ⇠ 0.83, even though this is already beyond the AG
regime. As J is increased, the gapless phase increases steadily, and by J = 1, the ratio is only
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Figure 6.3: ⌘ � T phase diagrams for J = 0.5, 0.75 and 1. G-SC, GL-SC/GL and N denote the
gapped superconducting, gapless superconducting and normal phases respectively. As we increase
J , ⌘c decreases from around 80% for J ⇠ 0.5 to 30% for J ⇠ 1. The gapless fraction increases
substantially from ⌘g/⌘c ⇠ 0.83 for J = 0.5 to 0.25 at J = 1. Bottom right shows a J vs. ⌘ phase
diagram at low T , using data from the three J points and extrapolating them to the limits J ! 1
and ⌘ ! 100 respectively.

0.25. As expected, ⌘c also decreases, going from 70% to only 30%. Thus, for all points in the data,
we are in a regime far away from the true AG regime, where we would have expected the gapless
phase to exist only in a tiny sliver in the phase diagram.

The ground state and its variation with J is summarized in the bottom right panel as a phase
diagram in the J � ⌘c space. There are two limits to be considered here, namely the ⌘c ! 100%

and the very strong scattering limit corresponding to J ! 1. These correspond to the right and
the left ends of the phase diagram respectively. Let us consider the right hand side first, i.e., the
⌘ ! 100% limit. As argued before, our coupling value dictates that we can never truly be in
the AG regime, corresponding to both weak concentration ⌘ and weak impurity coupling J . In
our case, at weak J , we would require a very large ⌘c to kill off superconductivity, and a dense
concentration would invalidate self-consistent T-matrix methods in principle, bringing in complex
effects of interference between scattering from different impurities. However, we expect the basic
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mechanism behind the formation of intra gap impurity levels to remain valid for arbitrarily weak J ,
and hence, the presence of a tiny gapless phase all the way up to ⌘c = 100%. This is shown as the
narrowing orange sliver in the diagram. As J is increased, ⌘c and ⌘g both decrease, but ⌘g decreases
faster, and the gapless regime increases. As we move towards the strong scattering limit, the intra
gap levels move closer to zero and hence, using the single impurity results, we expect the system
to be gapless beyond J ⇠ 1.2 for any ⌘. The destruction of superconductivity, on the other hand,
can never be accomplished with a vanishingly small concentration of impurities, however strong,
and hence the GL-N boundary is an asymptote to the y-axis.

Having summarized the key results in terms of the phase diagrams, we now consider the detailed
indicators such as the spectral function and the local behaviour and study their behaviour at T = 0

and their thermal evolution.

6.3.2 T = 0 results

This section will describe the global and spatial indicators at T = 0. We first begin with the global
density of states.

Density of states

We had already described the general formulation with magnetic impurities in Section 2.3.3. The
density of states for the case with non-magnetic disorder was calculated in Section 2.3.6. In a very
similar way, one can easily calculate the density of states for the case with magnetic disorder, from
the general spin dependent Green’s functions G�

ij(!). The resultant expression is simply the spin
dependent generalization of Eq. 2.17:

N(!) =
X

ni�,✏n>0

(
��ui

n�

��2 �(! � ✏n) +
��vin�

��2 �(! + ✏n)) (6.2)

Fig.6.4 shows the density of states at T = 0 with increasing concentration ⌘ at J = 0.25,
0.5, 0.75 and 1.0 respectively. The density of states preserves all the usual characteristics at large
frequencies and the impurity only affects the low frequency behaviour by forming intra-gap states.
At J = 0.25, we are truly in the ‘weak’ scattering regime, where the impurity induced levels are
right at the gap edge, and impossible to make out separately, as expected from the AG theory. As
⌘ is increased, the gap narrows slightly, but the system remains a gapped superconductor even at
⌘ = 100%. At J = 0.5, we first see a superconductor-metal transition at ⌘ ⇠ 70%, and the gap
closes at ⇠ 60%. By J = 1, in the strong scattering regime, the impurity levels are isolated from
the gap edge at ⌘ = 2% and close the gap at ⇠ 8%, though it is difficult to ascertain whether they
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Figure 6.4: Density of states for J = 0.25,0.5, 0.75 and 1 at various concentrations ⌘ at T = 0. At
J = 0.25, there is a very small narrowing of the gap with increasing ⌘, impurity levels are at the
edge. As J increases, impurity levels move inwards and with increasing ⌘, close the gap at some
⌘g(J) to form a gapless superconducting phase.⌘g decreases from 60% at J = 0.5 to only 8% at
J = 1.

are still disconnected from the gap edge when that happens.

Spatial Plots

Figs.6.5 and 6.6 shows the spatial plots at T = 0 for two different coupling strengths, J = 1.0 and
0.5 respectively.

The top panels show the impurity positions. In the middle panels, we show |�i| averaged over
100 configurations. The bottom panels show the phase correlation Pi = (�i.�0)/(|�i||�0|).

First, we focus on Fig.6.5. We find that as expected from the single impurity case, a very dilute
concentration of impurities (⌘ = 2%) behaves similarly to a non-interacting combination of single
impurities. Thus this case shows a completely uniform �i and phase correlation throughout. As
we increase the concentration, however, multiple scattering effects from the different impurities
change the character of the problem, and we find that at ⌘ ⇠ 12%, �i is depressed significantly at
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Figure 6.5: Spatial plots for for J = 1 at ⌘ = 2%,12% and 30% at T = 0. Upper panel shows
the impurity positions. Middle panels show the thermally averaged |�i|, while bottom panels show
the phase correlation (see text). At ⌘ = 2%, the system is a uniform superconductor. At 12%, �i

are depressed in many impurity positions, however, the phase correlation seems uniform except for
three sites. At ⌘ = 30% ⇠ ⌘c, �i is small at most sites, while the phases are randomly oriented,
signalling the transition to a non superconducting metal.

many impurity sites, even though the reduction is negligible in the case of a single impurity at the
same coupling. The phase correlation, on the other hand, shows a much more uniform behaviour
and only three particular sites (seen as white) seem to have low values. Both the reduction in �i

values and their phase correlations seem to be very local and limited mostly to the corresponding
impurity sites.

As the concentration is increased further, more and more sites show a reduction of �i, and
correspondingly, the number of sites showing reduced phase correlation is increased as well. As a
reference, we have shown the case ⌘ = 30% corresponding to the concentration where supercon-
ductivity vanishes, in the right column. We find that by this time, most sites have very low pairing
fields, and the phase correlations are broken up into random patches, thereby signalling complete
loss of superconductivity. The gapped to gapless transition, happening at ⌘ ⇠ 8% for this J value,
has no remarkable spatial signatures, and hence cannot be inferred from spatial plots like these.

The plots at J = 0.5, on the other hand, show uniform phase correlation and �i values for
a much larger fraction of concentration values before superconductivity is destroyed at ⌘ = 70%

where �i becomes very low everywhere just like at J = 1, and the corresponding phases are also
randomized.

Thus, we find that the increased local effect of larger impurities creates inhomogeneities in �i
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Figure 6.6: Spatial plots for for J = 0.5 at ⌘ = 12%,44% and 70% at T = 0. Panels same as
Fig.6.6. Shows much more homogeneous behaviour than J = 1, with the system being largely
homogeneous and phase coherent even around ⌘ ⇠ 60%, where the system becomes gapless.
However, the eventual destruction at ⌘ = 70% is brought about by almost complete suppression of
all �i, just like at J = 1.

with increasing concentration, until they are depressed everywhere, destroying superconductivity.
The phases of these sites also seem to show weaker local stiffness, as in the non-magnetic disorder
case, and hence, we expect the thermal evolution to be affected by this inhomogeneity. As the
impurity coupling value J is decreased, the corresponding regime of inhomogeneity also decreases,
approaching the weak J limit, where inhomogeneities are practically absent unless very close to the
critical value. In the next section, we examine the thermal evolution of the system and its signatures
on the spectral and spatial properties.

6.4 Thermal properties

In this section, we study the thermal properties of the system. We found that at large values of
J ⇠ 1, the system became inhomogeneous with increasing concentration ⌘. It is interesting to
study the effect of this on the thermal evolution, and how the system smoothly interpolates to the
more homogeneous behaviour at weaker J .
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Figure 6.7: Density of states for J = 0.5 and 0.75, at two values of ⌘, 32% and 60%, and 12%
and 24% respectively. Four temperature values are given by 0.1Tc0, 0.5Tc0, Tc0 and 1.5Tc0, where
Tc0 ⇠ 0.07t is the clean transition temperature. The evolution is along expected lines starting from
the T = 0 values, with no outstanding features.

6.4.1 Density of states

Fig.6.7 shows the thermal evolution of the density of states at J = 0.5 and 0.75 for two values of ⌘,
corresponding to the gapped and the gapless regimes respectively. Data is shown for four T values,
0.1Tc0, 0.5Tc0, Tc0 and 1.5Tc0 respectively. In all the cases, starting from the T = 0 states, the
thermal evolution is quite standard, as the gap fills up and the low energy DOS becomes uniform.
At a larger value of ⌘, where the T = 0 gap is smaller or has been closed, the density of states
becomes flatter at a smaller temperature, as expected. Thus, we find that the density of states does
not show any unexpected behaviour with increasing temperature. Thus, we direct our attention to
the spatial evolution next.

140



Figure 6.8: Spatial signatures of thermal evolution for J = 1 (top two rows) and J = 0.5 (bottom
two rows) at ⌘ = 12%. The first snapshot shows the impurity positions. Next 5 snaps show the
nearest neighbour phase correlation (see text) in steps of T = 0.01 starting at Tmin = 0.005. Shows
low correlations at a few sites to begin with, which become larger with increasing T , while the
correlations weaken at other impurity sites as well. Last 6 snaps show the correlations for J = 0.5,
starting at Tmin with steps of T = 0.01. Show negligible effects on phase correlation till T ⇠ 0.35,
and even after that, the correlation is lost much more homogeneously.

6.4.2 Spatial character

Fig.6.8 shows the thermal evolution of the system in terms of the nearest neighbour phase correla-
tion Ni, which is defined as Ni = (1/4)

P
j(�i.�?

j)/(|�i||�j|), where j sums over the 4 nearest
neighbours of i. To contrast the behaviour of the system at strong and weak coupling, we have
shown two J values, viz. 1 and 0.5.

At J = 1, the T = 0 state consists of a phase correlated superconductor except for three
sites, where the correlation is particularly low, as evident from the white spots in the figues. As
T is increased, these regions grow, and simultaneously, other impurity sites begin to lose phase
correlation as well. This continues until the global correlation is lost at Tc ⇠ 0.7Tc0, where Tc0 =

0.07t is the transition temperature for the pure superconductor. However, it is difficult to make out
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whether the transition is a percolative one, since the correlation at all sites become quite weak close
to Tc. Thus, this system is characterized by an extremely inhomogeneous thermal evolution, where
impurity sites act as ‘nucleation’ centres for loss of phase correlation. The presence of impurities
lowers the local phase stiffness at those sites, making them more susceptible to phase fluctuations.
There is also a large variation even among impurity sites, with some (for example the three sites
at low T ) sites clearly having much lower stiffnesses than others. In contrast, the evolution of the
J = 0.5 system shows negligible loss of phase correlations till T ⇠ 0.65Tc0, and a much more
homogeneous loss of coherence after that.

To gain more insight into this, we can try to formulate an effective model of the form Heff =
P

hiji Kij�i.�?
j , where the effect of the impurities is incorporated in Kij . At present, we do not try

and derive this from our starting Hamiltonian, but simply use it as a phenomenological construct to
attempt to understand our results in terms of simpler quantities.

In this model, the pure superconducting system has a uniform negative Kij at T = 0. As we
put magnetic impurities, they become scattering centres for the electrons and hence change the
local values of Kij . For large impurity coupling, especially, there is a large reduction in the Kij

value locally, and as we have seen in the single particle case, beyond a critical J , the impurity sites
may even develop positive values of Kij , resulting in the ⇡ phase change. The zero temperature
�i value at each site is determined by a stiffness term with higher powers, resulting in a locally
reduced value of � at the impurity positions.

The picture of a spatially varying Kij and �i helps us understand the contrasting thermal evo-
lutions in the J = 1 and J = 0.5 case. At large impurity coupling, the system consists of an ex-
tremely inhomogeneous distribution of Kij values, with the impurity sites generally having lower
values than the normal sites. As T is increased, the sites with lowest Kij values lose phase coher-
ence first, followed by the others. Thus, these sites act as nucleation centres for phase correlation,
as seen in the snaps. At weaker impurity coupling, J = 0.5, on the other hand, Kij are much more
uniform, resulting in a more homogeneous thermal evolution.

6.5 Discussion

We now discuss several aspects of these results, relating the large J spatial inhomogeneities with
the deviations in the phase diagrams compared to the AG results, the effect of increased attractive
coupling on the thermal transition, the possibility of including an auxiliary field in the spin channel
due to the broken spin symmetry in the problem, and, finally, possible extensions of this problem.
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Figure 6.9: Low temperature wavefunctions for J = 1 at ⌘ = 2%,6% and 12% respectively. Top
row shows spatial impurity distribution at these concentrations. Middle and bottom rows show
wavefunctions corresponding to the first and third excited states. Have large overlaps with impurity
positions, avoiding regions with large �i (see text).

6.5.1 Inhomogeneities and gapless phase

We have seen how increased impurity coupling J causes spatial inhomogeneities in the system
on the one hand, and an increased gapless regime on the other. Here, we try to understand the
connection of these two. To facilitate this, we show, in Fig.6.9 the wavefunctions of the first and
second excited states for ⌘ = 2, 6 and 12% at J = 1 at T = 0. Quite clearly, these are concentrated
at the impurity positions. Thus, the impurity induced low energy states that eventually make the
system gapless live on the impurity positions, which are also regions where the pairing field �i is
small. This explains the crucial role of spatial inhomogeneity in systems with strong scattering: the
availibility of low � regions makes it much easier to form low energy excitations, thus creating a
much larger gapless phase compared to superconductors where spatial inhomogeneities are weak,
as in systems with weak scattering.

6.5.2 Nature of thermal transition

Strong impurity coupling caused an increased inhomogeneity in the superconducting state, result-
ing in an inhomogeneous thermal evolution, where the low �i sites seemed to act as nucleation
centres for the loss of phase correlation. However, at Tc most of the sites seemed to have lost phase
correlation and it is not clear whether the transition is percolative, as the simple Kij picture would
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suggest. The thermal evolution, in general, would renormalize the Kij values, and it seems that
at the parameter point U/t = 2, this renormalization is large enough to effectively homogenize
these values for T ⇠ Tc, which weakens the percolative nature of the transition. It is possible that
with a larger value of U/t, such that the effect of phase fluctuations are greater, one can see such a
percolative transition much more clearly.

6.5.3 Effect of spin dependent auxiliary fields

In this work, we have utilized the same two field decomposition in the pairing and density channels
that we had used to treat non-magnetic disorder. While most of our results seem to be qualitatively
correct, it is possible that in view of the broken spin symmetry of the system, a further decomposi-
tion in the spin channel, resulting in the inclusion of the spin auxiliary fields �si that couple to the
spin density would provide better results. In Sec. 2.3.2, we found that such a decomposition in the
spin channel comes with an extra imaginary factor multipled to it, and hence it is not clear how one
can incorporate the effect of thermal fluctuations at finite temperature in such a setup. However,
one can include such effects at the mean field level. In such a theory, the resultant auxiliary field,
along with the impurity spins, will renormalize the effective exchange interaction with the local
electron spins in a way that is similar to the effect of the density field with non-magnetic disorder.
This can shift the positions of the different phases and it would be interesting to study the resultant
physics of such a system.

6.5.4 Extensions

An important extension of the present work would be to start with a periodic arrangement of these
magnetic moments and consider fluctuations in their orientations as well. The resultant ‘magnetic’
superconductors, interacting via the intermediate electrons, can show simultaneous superconduct-
ing as well as magnetic order, and depending on the coupling, the impurity strengths and the specific
arrangement of the moments, give rise to an array of complicated phases, including a spin glass at
low temperatures [188]. One can also consider additional interactions among these moments to
complicate the problem further, with the possibility of competing interactions and a further array
of rich phases. A range of real materials, such as the pnictides [189], show complicated effects due
to the presence of both superconducting as well as magnetic correlations.

6.6 Conclusions

In conclusion, we have studied the effects of magnetic impurities on s-wave superconductors over
a large coupling and temperature window. We have demarcated the gapped and gapless supercon-
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ducting phases, and tracked the evolution of the critical concentration ⌘sc with coupling. We have
studied the spectral and spatial signatures, enabling us to create a comprehensive picture of the
thermal evolution of the system.
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