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SUMMARY

Standard model (SM) is a very successful theory of nature which contains three funda-

mental forces namely the strong force, weak force and electromagnetic force. Particle

spectrum of SM has been completed with the discovery of Higgs boson. Despite its

tremendous success so far, SM suffers from few drawbacks which need beyond standard

model (BSM) physics. The well-known inadequacies of SM which will be addressed in

this thesis are the absence of a suitable dark matter (DM) candidate, neutrinos are mass-

less, matter-antimatter asymmetry of the Universe and the disagreement between the ex-

perimental and theoretical value of muon (g−2). This thesis deals with the BSM models

which are an extension of SM by extra gauge groups such as U(1)B−L, U(1)Lµ−Lτ or Z2 and

additional particles. By overcoming the SM drawbacks these BSM models always contain

a suitable DM candidate which is stable in the Universe time scale. Moreover, we have

discussed DM production by two mechanisms, one is the freeze-out mechanism (WIMP,

weakly interacting massive particle, type DM) and another one is the freeze-in mechanism

(FIMP, feebly interacting massive particle, type DM ). In our case as well, WIMP type

DM interacts with the visible sector by the usual annihilation or co-annihilation processes

mediated by the Higgses and the extra gauge boson. At freeze-out temperature, DM de-

couples from the cosmic soup and freezes out to that particular value of the co-moving

number density which determines its relic density. By choosing the suitable value of the

model parameters, we can satisfy the DM relic density, in the resonance regions of the

Higgses, in the correct ballpark value put by WMAP and Planck. We have predicted that

WIMP type DM can be tested in future at different direct detection, indirect detection and

collider experiments. Moreover, WIMP type DM can also explain the 1−3 GeV γ-ray ex-

cess in the galactic canter observed by Fermi-LAT satellite. The null result so far after the

rigorous search of WIMP type DM has forced the physicist to think of any alternate way

of DM production. Freeze-in mechanism is one of them where DM feebly couples with

rest of the particles and is very hard to detect it in any terrestrial experiment. In this the-

1



sis, we have explored different regimes of the parameter space for FIMP DM production

and have shown that DM can be produced both from decay and annihilation dominantly.

Moreover, we find regions in the parameter space where either decay or annihilation is

dominant. Due to the feeble coupling of FIMP type DM they are difficult to detect at dif-

ferent DM detection experiments, indeed we have shown that two-component FIMP type

DM (the mass difference between them is around 3.5 keV) can interpret the unknown 3.5

keV line detected by the XMM-Newton and Chandra satellites at the galaxies clusters and

galactic canter.

Neutrino mass has been confirmed by many oscillation experiments and this is one of

the major problems of SM. In this thesis, depending on the model construction we have

generated neutrino mass as well, besides DM, either by tree level process or radiatively.

With the advancement of detector technology, presently there is a tight bound on the

neutrino oscillation parameters (two mass squared differences, three mixing angles and

one CP phase) range obtained from different oscillation experiments. We have constrained

our model parameters by using these oscillation parameter bounds and have shown that

there exist correlations (anticorrelations) among the model parameters.

We generate the lepton asymmetry from the decay of the right-handed neutrinos,

which help in generating the neutrino mass as well, to explain the correct value of the

baryon asymmetry of the Universe through resonant leptogenesis. Interestingly, we find

a regime of FIMP type DM mass where it can be produced entirely from the annihila-

tion of the same right-handed neutrinos which are mentioned just before. Therefore, we

concluded that right-handed neutrinos affect all the three major problems. Since we have

considered U(1)Lµ−Lτ gauged symmetry, it can give MeV order gauge boson after evading

all the existing bounds. This gauge boson can contribute to muon (g−2) through one loop

diagram and for the MeV order gauge boson mass and O(10−3) gauge coupling one can

fill the gap between the experimental and theoretical value of muon (g−2).
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1
Introduction

1.1 Standard Model

Standard Model (SM) of particle physics is a very successful theory so far in describing

nature. The more and more experimental tests happen to validate the SM, the more and

more successful SM becomes a complete theory of nature. Although it is a very successful

theory of nature, indeed it has a few drawbacks which we will discuss later in this chapter.

This thesis is basically to explain those subtleties of the SM by staying in its footstep.

The complete gauge group of the SM is SU(3)c × SU(2)L ×U(1)Y where c corresponds

to colour charge, L corresponds to the left-handed fields which are doublets and Y is the

hypercharge. Particle spectrum of the SM is shown in Table 1.1. We will discuss the SM

briefly in this section and in the later part we will summarize the limitations of SM.

Gauge
Group
SU(3)C
SU(2)L
U(1)Y
U(1)em

Baryon Fields
Qi

L = (ui
L,d

i
L)T

I ui
R I di

R I
3 3 3
2 1 1

1/6 2/3 −1/3
(2/3,−1/3)T 2/3 −1/3

Lepton Fields
Li

L = (νi
L,e

i
L)T ei

R
1 1
2 1
−1/2 −1

(0,−1)T −1

Scalar Fields
φh = (φ+,φ0)T

1
2

1/2
(+1,0)T

Table 1.1: Particle contents and their corresponding charges under SM gauge group. i
represents the generation index and I represents color charge.
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1.1.1 Electroweak Sector S U(2)L×U(1)Y

The electroweak sector consists of S U(2)L and U(1)Y gauge groups. Once the Higgs de-

velops a vacuum expectation value (vev), v, then the aforementioned gauge groups break

to U(1)em,

S U(2)L×U(1)Y → U(1)em . (1.1)

U(1)Y is the high energy abelian symmetry related to hypercharge (Y) and U(1)em is the

low energy abelian symmetry related to the electromagnetic charge. We will see later that

the massless photon, which is a mediator of electromagnetic interaction, is a combination

of S U(2)L and U(1)Y gauge bosons.

Once the neutral component of Higgs multiplet, φh, develops vev, it not only breaks

S U(2)L ×U(1)Y gauge symmetry but is also responsible for the mass generation of the

gauge bosons and fermions.

The complete Lagrangian containing the spin-0 and spin-1 fields looks like as follows,

LEW = −
1
4

3∑
a=1

Wa
µνW

aµν−
1
4

FµνFµν+
(
Dµφh

)† (
Dµφh

)
+µ2

h

(
φ†hφh

)
−λh

(
φ†hφh

)2
,

(1.2)

where Bµ is the hypercharge gauge boson and Bµν = ∂µBν−∂νBµ is the U(1)Y field strength

tensor, Wa
µ (a =1, 2, 3) gauge bosons are related to the S U(2)L gauge symmetry and the

field strength tensor Wa
µν is expressed as,

Wa
µν = ∂µWa

ν −∂νW
a
µ + g2ε

abcWb
µWc

ν , (1.3)

g2 is the S U(2)L gauge coupling, εabc is the Levi-Civita symbol and structure function for

the S U(2)L gauge group. The covariant derivative for the Higgs boson is given by,

Dµφh =
(
∂µ− ig2Wa

µτ
a− ig1YBµ

)
φh . (1.4)

20



1 Introduction

Here, g2 and g1 are the S U(2)L and U(1)Y gauge couplings, respectively, Y = 1
2 is the

hypercharge of the Higgs multiplet. The Higgs potential is given by,

V(φh) = −µ2
h

(
φ†hφh

)
+λh

(
φ†hφh

)2
, (1.5)

under the conditions µ2
h > 0, λh > 0, the neutral component of Higgs mass acquire a vev.

Without loss of any generality, we can write the Higgs multiplet in the following way,

φh = e
2iπaτa

v

 0

v+h√
2

 , (1.6)

where v is the vev, τa = σa

2 is the canonically normalised S U(2) generators, h is the real

scalar field. πa can be made associated with the Goldstone bosons which impart their

physical degree of freedom (dof) to the gauge bosons as the longitudinal mode of them and

make the gauge bosons massive. Therefore, after the electro-weak symmetry breaking,

among the four dof of Higgs multiplet three of them go as the longitudinal component of

the charged bosons (W±, defined later) and neutral boson (Z, defined later). For simplicity,

we use here the unitary gauge which means no unphysical dof are allowed, hence we can

safely take, πa = 0. Therefore, putting

φh =

 0

v+h√
2

 , (1.7)

in the kinetic term of Higgs multiplet (as given in the Eq. (1.2)), we get the following

terms which we discuss step by step.
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Gauge boson mass terms

We focus on the kinetic term of the Higgs boson which gives mass to the gauge bosons,

[(
Dµφh

)† (
Dµφh

)]
GBmass

=
g2v2

8

(
0 1

)
g1
g2

Bµ+ W3
µ W1

µ − iW2
µ

W1
µ + iW2

µ
g1
g2

Bµ−W3
µ


2 01



=
g2v2

8

(W1
µ)2 + (W2

µ)2 +

(
g1

g2
Bµ+ W3

µ

)2 , (1.8)

the above expression gives the mass terms for the gauge bosons. Since, the kinetic term

for the Bµ and Wa
µ are canonically normalised, we don’t need to rescale them and to get

the mass basis we just rotate by the Weinberg angle, θw. The gauge basis and the mass

basis are related in the following way,

Bµ

W3
µ

 =

cosθw −sinθw

sinθw cosθw


Aµ

Zµ

 , (1.9)

with tanθw =
g1
g2

. Define, W±µ =
W1
µ∓iW2

µ
√

2
are the charged gauge bosons. Therefore, the

kinetic terms, mass terms and the interaction terms among the gauge bosons take the

following form,

Lgauge = −
1
4

F2
µν−

1
4

Z2
µν−

1
2

W+
µνW

−
µν+

1
2

M2
ZZµZµ+ M2

WW+
µ W−µ

−iecotθw
[
∂µZν(W+

µ W−ν −W+
ν W−µ ) + Zν(W+

µ W−µν+ W−µ W+
νµ)

]
−ie

[
∂µAν(W+

µ W−ν −W+
ν W−µ ) + Aν(W+

µ W−µν+ W−µ W+
νµ)

]
−

e2

2sin2 θw
(W+

µ W−µ W+
ν W−ν −W+

µ W+
µ W−ν W−ν )− e2 cot2 θw(ZµW+

µ ZνW−ν −ZµW+
ν ZµW−ν )

+e2 cotθw
[
AµW+

µ W−ν Zν+ AµW+
ν W−µ Zν−AνW+

µ W−µ Zν
]

+e2(AµW+
µ AνW−ν −AµW+

ν AµW−ν ) (1.10)

22



1 Introduction

where

Fµν = ∂µAν−∂νAµ ,

Zµν = ∂µZν−∂νZµ ,

W±µν = ∂µW±ν −∂νW
±
µ ,

e = g2 sinθw = g1 cosθw =
g1g2√
g2

1 + g2
2

, (1.11)

and the mass term for the W± and Z bosons are given by,

MW =
g2v
2
, MZ =

v
2

√
g2

2 + g2
1 =

MW

cosθw
. (1.12)

Higgs Boson

After symmetry breaking, physical Higgs boson appear in the SM particle spectrum which

has self interaction as well as interaction with the gauge bosons. The terms related with

the Higgs boson are,

LHiggs =
1
2
∂µh∂µh−

1
2

M2
hh2−

g2M2
h

4MW
h3−

g2
2M2

h

32M2
W

h4 +
2h
v

(
M2

WW+
µ W−µ +

1
2

M2
ZZµZµ

)
+

(
h
v

)2 (
M2

WW+
µ W−µ +

1
2

M2
ZZµZµ

)
. (1.13)

The vertices of Higgs with the gauge bosons are very much important to make the SM

a unitary theory. More explicitly, the theory becomes non-perturbative when we com-

pute the 2− 2 scattering processes among the gauge bosons at high energy regime and

the increasing behaviour of cross section is diminished by the Higgs mediated diagrams.

Hence, because of the interaction of Higgs boson with the gauge bosons the theory re-

mains finite at high energy. The mass term of the Higgs boson, M2
h = 2λhv2, does not

depend on the other independent parameter after symmetry breaking, e, sin2 θw and MW .

Finally, before electroweak symmetry breaking we started with the four independent pa-
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rameters µ2
h, g1, g2, λh and after symmetry breaking we remain with the same number of

independent variables namely, e, θw, Mh and MW .

Experiments have measured the value of the following parameters very accurately,

αe(Me) =
e2

4π
=

1
137

, MZ = 91.2GeV , MW = 80.399GeVand Mh = 126.0 . (1.14)

Using the above values we get the following value of the other parameters, which are,

e =
√

4παe(Me) = 0.303 ,sin2 θw = 0.23 ,g2 =
e

sinθw
= 0.65 ,g1 =

e
cosθw

= 0.34 , and

v =
2MW

g2
= 251GeV . (1.15)

This is the one technique by which we determine the above mentioned values. For exam-

ple from muon decays we get the value of vev as well which is v = 246 GeV.

1.1.2 Fermionic Sector

In the SM, left handed leptons (e, νe, µ, νµ, τ, ντ)L pair transforms non-trivially under the

S U(2)L gauge group, as do the left handed quarks (d, u, s, c, b, t)L. There are three gen-

erations both for leptons as well as quarks,

Li
L =

νe L

eL

 ,
νµL

µL

 ,
ντL

τL

 ,
Qi

L I =

uL

dL


I

,

cL

sL


I

,

 tL

bL


I

,

where i is the generation index, and I is the color index. These fields transform as left

handed field under the Lorentz group i.e. in
(

1
2 ,0

)
representation of the Lorentz group.

On the other hand the right handed Weyl-spinor transform in the
(
0, 1

2

)
representation of

the Lorentz group and they are singlet under S U(2)L gauge group. We define the right
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handed Weyl-fermions by the first generation symbol as,

ui
R I = (uR,cR, tR)I , di

R I = (dR, sR,bR)I ,

ei
R = (eR,µR, τR) ,

where again i is the generation index and I is the color index.

The Lagrangian for the fermions under S U(2)L×U(1)Y gauge groups takes the form,

L f = iL̄i
L
(
��∂− ig2��Waτa− ig1YL�B

)
Li

L + iQ̄i
L

(
��∂− ig2��Waτa− ig1YQ�B

)
Qi

L

+iēi
R
(
��∂− ig1Ye�B

)
ei

R + iūi
R
(
��∂− ig1Yu�B

)
ui

R + id̄i
R
(
��∂− ig1Yd�B

)
di

R , (1.16)

where �A = γµAµ and YL,YQ are the hypercharges for the lepton and quark doublets and

happen to be same for all the generators. Ye,Yu,Yd are the hypercharges for the right

handed counterparts and again same for all generations. R, L are the index for the left

handed and the right handed. In the two component notation, one can always write

Q̄i
L��∂Qi

L = Qi†
L σ̄µ∂µQi

L ,

ūi
R��∂ui

R = ui†
R σµ∂µui

R . (1.17)

In the 4-component or Dirac fermion notation, we introduce left handed and right handed

projectors for the handedness, PL =
1−γ5

2 and PR =
1+γ5

2 . Therefore, we can write the terms

in the following way,

Q̄i
L��∂Qi

L = Qi†
L γ

0γµPL∂µQi ,

ūi
R��∂ui

R = ui†
R γ

0γµPR∂µui
R . (1.18)
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Neutral Currents

In the covariant derivative, considering the terms which contain W3
µ and Bµ, then it gives

the interaction of the fermions with the neutral gauge bosons,

Dµ = ∂µ− ig2W3
µT 3− ig1BµY

= ∂µ− ieAµ
(
T 3 + Y

)
− ieZµ

(
cotθwT 3− tanθwY

)
. (1.19)

Define, Q = T 3 + Y , it actually measures the electric charge,

Q

 0

eL

 =


1
2 −

1
2 0

0 −1
2 −

1
2


 0

eL

 = −

 0

eL

 , (1.20)

it shows that electron has electric charge −1. By considering the fact that left handed

fields have both S U(2)L and U(1)Y charges, and right handed fields have only hypercharge

(Q = Y). Therefore, we can write the generic Lagrangian in the following way,

LNC = iψ̄ j
L

(
��∂− ig2��W3T 3− ig1�BY j

L

)
ψ

j
L + iψ̄ j

R

(
��∂− ig1�BY j

R

)
ψ

j
R (1.21)

where ψ j
L = L j

L, Q j
L, ψ j

R = e j
R,u

j
R,d

j
R, j is the generation index. By using Eq. (1.9), we can

rewrite W3
µ ,Bµ in terms of Aµ,Zµ,

L = ...+
e

sinθw
ZµJZ

µ + eAµJEM
µ (1.22)

where JZ
µ and JEM

µ are given by,

JZ
µ = cosθwJ3

µ −
sin2 θw

cosθw
JY
µ ,

JY
µ =

∑
j

(
Y j

Lψ̄
j
Lγµψ

j
L + Y j

Rψ̄
j
Rγµψ

j
R

)
,

J3
µ =

∑
j

ψ̄
j
LγµT 3ψ

j
L
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JEM
µ =

∑
j

Q j
(
ψ̄

j
Lγµψ

j
L + ψ̄

j
Rγµψ

j
R

)
(1.23)

Fermion mass and Charged Currents

So far we have not discussed the mass generation of the fermions and will address it now.

We can not simply write the mass term like m(ēLeR + h.c.), then the immediate problem

will arise is that this term is not gauged invariant under SM gauge groups. Therefore, we

have to use Higgs doublet to generate the mass term for the fermions, we discuss first the

lepton mass generation after that the quark mass generation.

Lepton mass

The mass term for the leptons can be easily written in the gauge invariant way by the

following terms,

L
lepton
Yuk = −yl

i jL̄
i
Lφ̃he j

R + h.c. , (1.24)

where φ̃h = iσ2φ
∗
h. Once the neutral component of Higgs doublet acquire a vev, it will

generate the mass term for the leptons, −mi j
l (ēi

Le j
R + h.c.), where,

mi j
l =

yi j
l v
√

2
. (1.25)

yi j
l is the 3× 3 complex matrix and by rotating the flavor basis, we can always make the

lepton mass matrix into diagonalised form. As we will see that it is not difficult like

finding the mass basis for quarks because in SM neutrinos are massless.

Quark mass

In the case of quarks, the down type quark mass can be generated in the similar way

we generate mass for the leptons. In contrary to this, for up-type quark we need to define
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Higgs with opposite hypercharge in the following way,

φ̃h = iσ2φ
∗
h (1.26)

which is S U(2)L doublet and has hypercharge value, Y = −1/2. Finally, we can write the

Yukawa terms for both up-type and down-type quarks in the following way,

L
Quark
Yuk = −yu

i jQ̄
i
Lφ̃hu j

R− yd
i jQ̄

i
Lφhd j

R + h.c. . (1.27)

Here, both the terms are S U(3)c × S U(2)L ×U(1)Y gauge invariant. After Higgs vev

development, quarks generate mass,

L
Q
mass = −

yu
i jv
√

2
ūi

Lu j
R−

yd
i jv
√

2
d̄i

Ld j
R + h.c. (1.28)

where yu, yd are the 3× 3 complex matrices. We want the mass basis for the quarks. To

that end, we introduce two unitary matrices Uu, Ud and two diagonal matrices Mu, Md

such that,

yuyu† = UuM2
uU†u , ydyd† = Ud M2

dU†d . (1.29)

It is very obvious that yy† is hermitian matrix and hence it has real eigenvalues. We can

write y in the following way,

yu = UuMuK†u , yd = Ud MdK†d (1.30)

for any unitary matrices Ku, Kd. Therefore, the mass term can be written as,

L
Q
mass = −

v
√

2

[
d̄LUd MdK†ddR + ūLUuMuK†uuR + h.c.

]
(1.31)
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To get the mass basis we can rotate the basis in the following way,

uL→ UuuL , dL→ UddL , uR→ KuuR , dR→ KddR . (1.32)

These new basis are called mass basis and the mass terms take the following form,

L
Q
mass = −mu

j ū
j
Lu j

R−md
j d̄

j
Ld j

R + h.c. (1.33)

where mu
j = v√

2
M j

u, md
j = v√

2
M j

d . We will focus on the charged current (CC) interactions

and we will see that these basis transformations have significant role there.

Charged Current Interaction

We have already discussed the neutral current interaction for the leptons and quarks in

Section 1.1.2. Here, we will only describe the charged current interaction and exception

will happen for the quark case where we will also consider the neutral current case as

well. The charged current interaction terms for the leptons take the following form,

L
leptons
CC = i

(
ν̄i

L ēi
L

) ��∂− iγµ

 ...
g2√

2
W+
µ

g2√
2
W−µ ...



ν

i
L

ei
L


= ...+

g2
√

2
W+
µ ν̄

i
LγµPLei

L + h.c. . (1.34)

Since in the SM, we don’t have mass term for the neutrinos, hence we can freely rotate

the basis and make the lepton mass matrix diagonalised without any difficulty. Now, we

will talk about the CC interaction for the quarks and will see that these basis rotation in

the quark sector have effect on the CC interactions for the quarks. We consider here both

charged and neutral current for the quarks because it will help to describe the effect of

basis rotation properly. More explicitly, we will see later that the basis rotations as shown

in Eq. (1.32) have effect in the charged current interaction and no effect in the neutral

current interaction. The interaction terms both for CC and NC interactions and also the
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mass term for the quarks take the following form,

L f lavor−basis =

(
ūi

L d̄i
L

) ��∂+γµ


g1
6 Bµ+

g2
2 W3

µ
g2√

2
W+
µ

g2√
2
W−µ

g1
6 Bµ−

g2
2 W3

µ



u

i
L

di
L


+ūi

R

(
i��∂+

2g1

3 �B
)
ui

R + d̄i
R

(
i��∂−

g1

3 �B
)
di

R

−
v
√

2

[
d̄LUd MdK†ddR + ūLUuMuK†uuR + h.c.

]
, (1.35)

when we make the rotation dR → KddR and uR → KuuR, the matrix Kd, Ku drop out

from the Lagrangian completely because interaction related to hypercharge is diagonal

generation wise. For the rotation uL → UuuL and dL → UddL, the Bµ, W3
µ interaction

terms does not affect because these are also diagonal in generation wise. For the W±µ

interaction case it mixes the up-type quark to down-type quark and these rotation matrix

do not go away. Therefore, Eq. (1.35) takes the following form after the basis rotation,

Lmass−basis =
e

sinθw
ZµJZ

µ + eAµJEM
µ −

(
mu

j ū
j
Lu j

R + md
j d̄

j
Ld j

R + h.c.
)

+
e

√
2sinθw

[
W+
µ ūi

Lγ
µV i jd j

L + h.c.
]

(1.36)

where V = U†uUd, known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix. One can

easily check that V is a unitary matrix. If we consider N × N unitary matrix then the

number of real parameters required to specify it is N2, among them (2N − 1) number

of parameters can be absorbed in the fields. Number of physical parameters we are left

with is (N −1)2. Of these, N(N−1)
2 parameters are for rotation and the remaining ones are

phases. In the present case N = 3, so number of rotation angles are three (θ12, θ13, θ23) and

one CP phase (δCKM). We can write down the matrix V as follows,

V =


c12c13 s12c13 s13e−iδCKM

−s12c23− c12s23s13eiδCKM c12c23− s12s23s13eiδCKM s23c13

s12s23− c12c23s13eiδCKM −c12s23− s12c23s13eiδCKM c23c13

 (1.37)
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where ci j = cosθi j, si j = sinθi j. From experiments, these mixing angles are measured very

precisely,

θ12 = 13.020±0.040, θ23 = 2.300±0.080, θ13 = 0.200±0.020 and δCKM = 690±50 .

1.1.3 Color Sector S U(3)c

After Electroweak symmetry breaking (EWSB), we can generate mass for all the fermions,

gauge bosons and Higgs. So, we will discuss the strong interaction of the quarks which

has mass mq. After EWSB, the color symmetry, S U(3)c, is still intact with the Lagrangian.

Since, S U(3)c never breaks, hence there are eight massless gluon fields in the theory. The

Lagrangian looks like as follows,

LQCD = −
1
4

Ga
µνG

aµν+
∑

f

q̄ f (iγµDµ−mq)q f (1.38)

where

Ga
µν = ∂µGa

ν −∂νG
a
µ+ g3 f abcGb

µG
c
ν

Dµ = ∂µ− ig3
λa

2
Ga
µ , (1.39)

f abc is the structure constant for the S U(3)c gauge symmetry, λa (a = 1 to 8) is the Gell-

Mann matrices. After decomposition, the above Lagrangian can be written as,

LQCD = −
1
4

(∂µGa
ν −∂νG

a
µ)2 +

∑
f

q̄ f
(
iγµ∂µ−mq

)
q f + g3Ga

µ

∑
f

q̄ fγ
µλ

a

2
q f

−
g3

2
f abc (∂µGaν−∂νGaµ)Gb

µG
c
ν−

g2
3

4
f abc fadeG

µ
bGν

cGd
µG

e
ν . (1.40)

First two terms gives the kinetic term for the gluons and the quarks, third term in the first

line gives the interaction term of quarks with the gluons, and the terms in the second line
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imply the self interaction among the gluons and present purely due to the non-abelian

gauge structure of the S U(3)c gauge group.

1.2 Drawbacks of SM

1.2.1 Hierarchy of Higgs mass

At LHC we have measured the SM Higgs mass which is around 125 GeV confirmed from

the h→ γγ channel. This value is consistent from many sides and one of them is the

Lee-Quigg-Thacker [1] bound which put a constraint on the upper value of the Higgs

mass,

Mh ≤

√
16π

3
v ∼ 1 TeV . (1.41)

If the above constraint is not followed at the tree level then the two to two scattering

processes among the gauge bosons violate unitarity at the high energy scale and weak

interaction becomes strong at the high energy scale. In SM, the immediate problem to the

above constraints comes when we take one-loop correction to its Higgs mass mediated by

the t-quark, as shown in Fig. 1.1. Due to this contribution Higgs mass gets contribution

Figure 1.1: Higgs mass correction from fermionic loop.

which is proportional to the quadratic power of the cut off scale of the theory. Quantita-
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tively the correction comes out as,

∆M2
h = −

|λ2
f |

8π2

[
Λ2

UV + ...
]

(1.42)

where ΛUV is the cut off scale of the theory means after that energy scale theory is not

valid. If we consider ΛUV around the Planck scale then it is a very huge correction and

around 1034 times higher than the observed Higgs mass. This is called the hierarchy

problem of the SM. To tackle this we need to extend the SM and there are many proposals

to solve this hierarchy problem which are yet to be confirmed as a final theory of nature.

Most promising one is the SUperSYmmetry (SUSY) theory where each particle has their

superpartner with a spin-1
2 difference.

1.2.2 Absence of Dark Matter Candidate

The presence of DM in the universe is an inevitable fact, it contains around 26% of the

total energy budget of the Universe which is around five times the visible matter content

of the Universe. We have many pieces of evidence regarding the presence of DM like

Zwicky’s missing mass conclusion in Coma Cluster, the flatness of galaxy rotation curve,

observation of bullet cluster, WMAP and Planck collaboration have measured the amount

of DM present in the Universe. Therefore, we need a suitable candidate for DM in the

particle spectrum of nature. Although, it is not fully correct that SM does not contain

any DM candidate. It is neutrino in the SM which can satisfy all the properties of DM.

Unfortunately, they are present in the Universe with very small fraction and also another

problem is that they are relativistic so can not form the halo. The amount of neutrino

present in our Universe must follow the relation,

Ωνh2 ≤ 0.0062 at 95% CL . (1.43)

33



In the next Section 1.3, we will have more discussion on DM, mainly on its evidences,

possible particle candidate and detection techniques. Therefore, not having a suitable DM

candidate in the SM is a serious flaw of it. So, we need beyond the standard model which

has a suitable DM candidate.

1.2.3 Observation of Neutrino mass

Neutrino mass is a proven fact and SM can not explain it. We have observed neutrino

oscillation among the flavours in many experiments such as atmospheric neutrino exper-

iment Super-Kamiokande [2], solar neutrino experiment SNO [3], reactor neutrino ex-

periment KamLand [4], reactor neutrino experiments with short baselines Daya Bay [5],

RENO [6], Double Chooz [7], and accelerator neutrino experiments T2K [8, 9], NOνA

[10, 11]. To explain neutrino oscillation we need neutrino mass. In SM, there is no right-

handed counterpart for the neutrinos, hence we can not simply write down the Dirac mass

term for the neutrinos. Therefore, in SM neutrinos are massless. To give them mass we

can extend SM particle spectrum in many ways and it will be discussed in detail in Sec-

tion 1.9. Since neutrinos are neutral, we can write down Majorana mass term for them as

well. To generate tiny neutrino masses we can follow the tree level seesaw mechanisms

or radiative mass generation by loop diagrams. Neutrino mass can not be explained by

the SM and we need some beyond SM theory to explain the neutrino mass.

1.2.4 Matter antimatter asymmetry of the Universe

In our Universe, we have observed slight excess of matter over antimatter. The numerical

value of the slight difference [12] lies around, YB = (8.24−9.38)×10−10 . This is one of

the unsolved puzzle so far. In 1967, Sakharov showed [13] that in order to explain matter-

antimatter asymmetry of the Universe microscopic system must satisfy the following three

conditions,
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• Baryon number violation ,

• C and CP violation ,

• The process which generate this asymmetry must be out of equilibrium process.

If one of the above conditions fails then there should not be any excess of matter over

antimatter. Surprisingly, all of the Sakharov conditions are satisfied in the SM, we have

baryon number violation through anomaly, we have CP violation in the quark sector be-

cause it contains three generation of quark, and as the universe cools due to expansion of

it and the electroweak phase transition are out of equilibrium. Unfortunately, these are

not sufficient to produce enough matter-antimatter asymmetry of the Universe. In partic-

ular, we need more CP violation and strong first order phase transition. Therefore, the

observed baryon asymmetry can not be explained in the context of the SM and hence

we need to consider beyond SM scenario. One of the popular BSM solutions is the lep-

togenesis technique in which we generate lepton asymmetry and this lepton asymmetry

can be converted to baryon asymmetry through sphaleron process. Another one is the

R-parity violating SUSY where one can directly produce the observed matter antimatter

asymmetry of the Universe.

1.2.5 Strong CP problem

Apart from the weak CP phase there is another source of CP violation. If we consider

a chiral symmetry ψ→ eiγ5θψ, then this is a classical symmetry of the Lagrangian but

not the quantum symmetry. This symmetry will change the weight in the path integral

formalism,

∫
Dψ̄Dψ→

∫
Dψ̄Dψ exp

iθ∫ d4x
g2

3

32π2 ε
αβµνGa

αβG
a
µν

 . (1.44)
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This term will contribute in the Lagrangian,

Lθ = θQCD
g2

3

32π2 ε
αβµνGa

αβG
a
µν (1.45)

Again when we make chiral rotation in the Yukawa sector, we get similar type of contri-

bution and hence the resulting Lagrangian will look like,

Lθ = θ̄
g2

3

32π2 ε
αβµνGa

αβG
a
µν (1.46)

where θ̄ = θQCD−θY and θY = arg (det(YdYu)). This θ̄ is a physical parameter because any

more chiral rotation can be adjusted between θQCDand θY . Therefore, we should observe

this θ̄ parameter in experiments. We observe the effect θ̄ in computing the neutron electric

dipole moment (EDM) and theoretically neutron EDM comes out as, |dn| = 5.2×10−16 e

cm θ̄. There is also experimental bound on dn which is, |dn| < 2.9×10−26 e cm. Therefore,

from the above two observation we get bound on the θ̄ parameter,

θ̄ < 10−10 . (1.47)

The value of θ̄ is very small as compared to the weak scale CP violation and this is called

the strong CP problem. One of the solution in the context of SM was proposed which was

if one of the quark is massless then we can rotate away the θ parameters and make θ̄ = 0.

But this is not the case because in SM all the quarks are massive. Another BSM solution

of this problem is the Peccei-Quinn symmetry which makes this θ̄ parameter as dynamical

variable and in that case, it can take zero value and solve the strong CP problem.

1.2.6 Gravitational force

In nature, we have four kinds of interaction namely electromagnetic interaction, weak in-

teraction, strong interaction and gravitational interaction. SM does not contain any infor-
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mation about the gravitational force and talks about the remaining three forces. Moreover,

SM has no clue why the gravitational interaction is so weak compared to the other three

interactions namely electromagnetic, weak and strong. Therefore, SM can not become

a complete theory of nature and surely we need to extend the SM. One of these theories

is the minimal supergravity where all the four interactions are included. Finally, the ab-

sence of gravitational force in the SM can also be one of the important reason to demand

a beyond standard model theory.

1.2.7 Gauge coupling unification

SM gauge group consists of S U(3)c×S U(2)L×U(1)Y and each group is associated with

their corresponding gauge coupling which are g3, g2, g1 (gN for S U(N)). If we assume

that in the early Universe all these gauge couplings are unified to a single gauge coupling

as predicted in the grand unified theories (GUT). If we study the running of the gauge

couplings then we need to calculate the β-function which evolve the gauge couplings by

the following equation,

dgi

dlnµ
= µ

dgi

dµ
= βi(gi) =

bi

4π
g3

i . (1.48)

If we make substitution, αi =
g2

i
4π , then the above equation takes the following form,

d
dlnQ

(
1
αi

)
=

bi

4π
1

αi(Q)
=

1
αi(Q0)

+
bi

2π
ln

(
Q0

Q

)
(1.49)

where Q is the energy running scale of the theory and bi is given by,

bi = −
11
3

C2 (Ad j) +
∑

R

(
nWF I(R) +

1
6

nS (R)I(R)
)
, (1.50)
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the first term is the contribution of the gauge bosons, C2(Ad j) is the Casimir operator in

adjoint representation for S U(N) which is C2(Ad j) = N. The second term (first term in

the bracket) represents the contribution due to the Weyl fermions, nWF(R) is the number

of Weyl fermion in representation R, and I(R) = 1
2 for fundamental representation. Re-

maining term is coming from the contribution of complex scalar, nS (R) is the number of

complex scalars in the representation R. In the case of SM, bi comes in the following

order,

b3 = −7, b2 = −
19
6
, and b1 =

2
3
, (1.51)

b3,b2 which are associated with S U(3)c and S U(2)L are asymptotically free and b1, cor-

responding to U(1), is not asymptotically free. In Fig. 1.2, the running of all the three

Figure 1.2: Gauge coupling unification for SM (dashed lines) and SUSY (solid
lines). The image has been borrowed from, A Supersymmetry primer by S Martin
(Adv.Ser.Direct.High Energy Phys. 21 (2010) 1-153).

gauge couplings have been shown by dashed lines and clearly, they never coincide to

the single coupling at high energy. On the other hand in SUSY theory, bi changes their

magnitude as well as sign and it is possible to unify them as shown by the solid lines.
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1.3 Evidences for dark matter

There are many pieces of evidence which support the presence of dark matter in the Uni-

verse and will be discussed briefly in this section.

1.3.1 Study of Galaxy Cluster

The hint for the presence of the dark matter (DM) was first observed by the Swedish

scientist F. Zwicky when he was studying the Coma cluster. The detailed study regarding

this can be found in [14] and we will briefly summarize the result here. As we will

see in the subsequent paragraph that the most important thing in Zwicky’s study was the

determination of the nebulae masses. He used three techniques in doing so and are as

follows,

• virial theorem of classical mechanics,

• observation of gravitational lens effect among the nebulae and

• using statistical mechanics.

We briefly discuss here the virial theorem approach to determine the nebulae mass

only while the details and the other two methods can be found in [14].

Virial theorem : We consider a nebulae (a) is at a distance ~ra with mass ma and it

feels the external force ~Fa

~Fa = ma
d2~ra

dt2
(1.52)
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After dot product with ~ra and summing over a we get,

∑
a

1
2

d2(m2
ar2

a)
dt2

=
∑

a
~ra · ~Fa +

∑
a

ma

(
d~ra

dt

)2

1
2

d2IMI

dt2
= Wvir + 2K (1.53)

where IMI =
∑

mar2
a is the moment of inertia of the cluster, Wvir =

∑
a~ra · ~Fa is called the

Virial of the cluster and K represents the sum of the kinetic energy for all nebulae in the

cluster. If the cluster is stationary then its IMI fluctuates around a mean value, say I0
MI ,

then time average of its derivative vanishes. Therefore, we are left with the following

equation,

Wvir + 2K = 0 (1.54)

Considering the fact that Newton’s inverse square law describes the dynamics of the neb-

ulae accurately, one can easily show that

WVir =
∑

a
~ra · ~Fa

= −
1
2

∑
a,a,b

Gmamb

|~ra−~rb|
(1.55)

which is the total gravitational energy of the system, G is the Newton’s gravitational

constant. If we assume uniform distribution of matter in the galaxy then we can estimate

the Virial energy of the system in the following way,

Wvir = −

∫ R

0
G

(4πr3ρ
3 )4πr2ρdr

r

= −
3GM2

5R
. (1.56)

Taking the average velocity one more time over the whole cluster (define as ¯̄v), we can
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write,

∑
mav2

a = M
¯̄

v2 (1.57)

where M is the total mass of the cluster. Substituting the above expressions in Eq. 1.54,

we get the total mass of the cluster as follows,

M =
5R ¯̄v2

3G
. (1.58)

Using the velocity of the nebulae which was available at that time ¯̄v2 ∼ 5×1015 cm2sec−2,

astronomer F. Zwicky gave the bound on the mass of the coma cluster which is M >

9×1046 gm. The Coma cluster contains around 1000 nebulae, hence the mass associated

to each nebulae would be M > 9× 1043 gm ∼ 4.5× 1010M� . This result is somewhat

unexpected to the value which we get after measuring the luminosity of the cluster which

is roughly around M ∼ 8.5× 107M�. Therefore, we need a multiplicative factor of 500

to match these two number. The inevitable consequence of this result is that in the coma

cluster a large fraction of non-luminous matter is present and in other word it is the evi-

dence of the presence of the dark matter in the cluster.

1.3.2 Flatness of the Galaxy rotation curve

Four decades after the study of F. Zwicky, Rubin-Ford studied the velocity of the stars in

Galaxy [15] and they drew the same conclusion and hinted the presence of the excess mat-

ter in the Galaxy. Their idea was based on the classical object of mass, m, rotating around

a heavy object of mass M at a distance r. To keep the system in orbit, the gravitational

and the centrifugal force has to be equal which is,

mv2

r
=

GMm
r2 . (1.59)
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Considering mass is uniformly distributed in the Galaxy bulge with mass density ρ, then

Figure 1.3: Galactic rotation curve.

mass contained within radius r is, M = 4
3πr3ρ. Therefore within the Galactic bulge, we ex-

pect the velocity of an object increases with the distance i.e v∝ r (obtained from Eq. 1.59).

If we go outside of the Galactic bulge then the mass is fixed and the velocity must fall

with the square root of the distance,

v ∝
1
√

r
. (1.60)

But instead of this falling behaviour of the velocity with distance, they observed the con-

stant value of the velocity of the star with the distance which is moving outside the galactic

bulge. This behaviour can be explained if we consider that the mass is linearly increased

with the distance, M ∝ r, then the velocity of the object does not depend on the distance

i.e. v = constant. Therefore, there exists a huge amount of non-luminous matter namely

dark matter in the galaxy. The other possible solution of the flatness of the galaxy rota-

tion curve can be explained by the modified Newtonian dynamics, proposed by Milgrom

which will be discussed in the latter part of this section.
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1.3.3 Observation of Bullet cluster

In 2006, astronomers working on HST (Hubble Space Telescope) and Chandra X-ray

observatory disclosed the observation of bullet cluster [16–18] at a distance around 4-

billions light-years away from the earth. Bullet cluster is the phenomenon of the collision

between two galaxy clusters. The observation of the bullet cluster implies the direct

evidence of the presence of the extra non-luminous matter namely the DM in the universe.

In bullet cluster, two measurement techniques are used to measure the center of mass, one

of them is the X-ray observation and another one is the gravitational lensing. The bullet

cluster is a high-speed collision between the two clusters. Because of the collision the

gases in each cluster collide with each other and emit high energy X-ray. From this X-ray

observatory point, we get the information about the centre of the baryonic matter. This

collision implies (as shown in Fig. 1.4) that the ordinary matter interacts with each other

and try to merge each other. In Fig. 1.4, this phenomenon is shown by the red regions.

Figure 1.4: Observation of bullet cluster. Image credit: NASA, CXC, STScl.

On the other hand to get the information about the total mass, one can use the gravi-

tational lensing technique by determining the bending of the light. Therefore, for gravita-

tional lensing to happen successfully, we need a background light source and the light will

pass through the heavy object and finally reach the observatory. Since light bends due to

the heavy objects in space-time which is αbend =
4GMlens

R , where αbend is the bending an-
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gle, Mlens is the total lensing mass and R is the radius of it. Therefore, by determining the

bending angle we can infer the mass of the cluster and its centre of mass as well. The blue

regions obtained in Fig. 1.4 are obtained by the gravitational technique. From the figure,

it is very much clear to us that the centre of mass which we obtained from the luminous

object does not coincide with the centre of mass of the cluster. Therefore, the observation

of bullet cluster provide us with useful pieces of information which are as follows,

• this is the phenomenon just after the collision of the two galaxy clusters.

• the centre of mass and the centre of the ordinary matter (which is the X-ray emitting

points) do not coincide. It indicates that there exist excess matter namely the dark

matter.

• Another information which we get is that the ordinary matter interact with each

other hence trying to merge each other (red regions). But the DM is very less

interactive and hence they pass through each other i.e. DM is almost collisionless.

1.3.4 CMB anisotropy

The measurement of the cosmic microwave background (CMB) temperature by the Wil-

son and Penzias not only solidify the base of the Big-Bang theory, but further investigation

on the CMB spectrum and finding the anisotropies in the spectrum implies the amount of

baryonic matter and the dark matter present in the Universe. In explaining the anisotropyin the CMB spectrum [19, 20] as shown in Fig. 1.5, we assume that there exists a density

fluctuation in the Universe which might originate either during the inflation epoch or some

sort of the topological defects present at the early evolution of the Universe. Due to these

density fluctuations, in the early universe baryonic acoustic oscillation (BAO) happen.

BAO reveals two types of regions, one of them is more densed for the baryonic matter,

hence have more interaction with the photon and the other one contains less baryonic

matter but more non-baryonic matter, hence this region is more gravitationally interact-

ing than the repulsive force which generate due to the baryon matter interaction with
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Figure 1.5: CMB power spectrum measured by WMAP [19] and Planck [20].

photon. Therefore, due to these force variation among the matter, rarefaction and com-

pression kind of phenomenon must have been happened. When photon decouples from

the cosmic plasma then only gravitational interaction dominates and the CMB anisotropy

is the imprints of these rarefaction and compression events which were happening before

the photon decoupling. The odd peaks (first, third, etc) happen due to the compression

and the even peaks (second, fourth, ...) happen due to the rarefaction. From these CMB

anisotropies, we get much useful information quantitatively like the amount of matter

present in the universe, Hubble constant value and also the geometry of the Universe. The

first peak imply the geometry of the universe and suggest that the universe is spatially

flat, the ratio between the first and the second peak gives us the amount of baryonic mat-

ter present in the Universe, the ratio between the first and the third peak estimate the total

amount of matter present and the tail towards the high l value gives us the value of the

expansion rate of the Universe which is the Hubble constant.

1.4 Alternative Explanation of dark matter

Before going to the particle candidate for the dark matter, here we explain two well known

alternative scenario where we don’t need to extend the SM. The two proposals are the

modified Newtonian dynamics (MOND) and massive astrophysical compact halo object

45



(MACHO).

1.4.1 Modified Newtonian dynamics

There exist an alternative theory called modified Newtonian dynamics proposed by the

Milgrom in 1982 [21]. Instead of considering the idea of dark matter they tried to explain

the flatness of the rotation curve in the galaxy by modifying the Newtonian dynamics at

the Galactic scale. Newton’s law is well tested when the object moves very fast near to

the galaxy but when the object is outside of the galactic centre then they move slowly.

Therefore, one needs to modify Newton’s dynamics and this is the main statement of the

MOND theory. The modification is very simple and we just need to modify Newton’s

second law in the following way,

F = mµ(x)a , (1.61)

where F is the force on the moving object, x = a
a0

, a is the acceleration of a m mass

object, and a0 is some constant value which differentiates between the Newtonian regime

and the MOND regime. The new function µ(x) is called the interpolation function with

the following two limits,

µ(x) = 1 for x� 1

= x for x� 1 , (1.62)

and in between one can formulate this as µ(x) = x
1+x . From Eq. 1.61, we have the following

form of the velocity in the regime x� 1,

F = m
a2

a0

GmM
r2 = m

(
v2

r

)2

a0

v = (GMa0)
1
4 . (1.63)
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By fitting the data with rotation curve, a0 = 1.2× 10−10 ms−2. Although, MOND theory

can explain flatness of the rotation curve and now they are proceeding to explain the

phenomenon related to gravitational lensing [22]. But there are many things which are

still unexplained from the MOND theory perspectives and are as follows,

• The general theory of relativity (GTR) is a very successful theory of gravity and

prime examples are our GPS where GTR is used and the recent discovery of the

gravitational wave by LIGO collaboration.

• When it comes to the fact of explaining the CMB anisotropy then this theory has no

clue and one of the big drawback of the MOND theory.

• The observation of the bullet cluster indicates that the centre of mass of the clusters

and the centre of the luminous part do not coincide and it can not be explained just

by modifying the Newtonian dynamics.

There are many things to be explained by MOND before we accept it as the successful

theory of DM.

1.4.2 MACHO type objects

A massive astrophysical compact halo object (MACHO) is an astronomical object and

its presence in enough amount can explain the mystery of dark matter. Generally, MA-

CHO objects are non-luminous and hence hard to detect by the terrestrial observatory

which used techniques other than gravitational lensing. MACHO type objects are made

of by baryonic matter and are not associated with any planetary system. The popular can-

didates which fall in the MACHO category are a primordial black hole (PBH), neutron

stars, brown dwarfs, white dwarfs, red dwarfs and unassociated planets. The detection

technique of MACHO type objects is based on the principle of gravitational lensing. In

particular, it works on the microlensing technique which means that when MACHO type
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Figure 1.6: Bound on the fraction of the MACHO type objects contains in the total amount
of dark matter. The bounds from the different collaboration are listed in the following
Refs. [23–26] in detail.

objects move around and passes between the luminous background object and the detec-

tor, then at particular alignment of the three objects (background source, MACHO object

and the detector) there will be a peak in the source light and we can confirm in this way

that something has passed through this region. This works on the principle of microlens-

ing light amplification. There are experimental collaborations who are trying to detect

MACHO type objects and the familiar ones are the EROS2 [23] and MACHO [27] col-

laboration. MACHO claimed that they have observed the MACHO type of objects which

can be around 20% of the total amount of the dark matter. But their claim has been

challenged by the survey of the EROS2 and Hubble space telescope. The bound on the

MACHO type of objects mass and its fraction to the total amount of the dark matter [28]

has been displayed very beautifully in Fig. 1.6.

There is also a strong constraint on this type of MACHO objects which are made of the

baryonic matter from the baryonic acoustic oscillation in CMB and the large scale struc-

ture of the Universe. We know from these collaborations precisely the amount of baryonic

matter present in comparison to the total matter content of the Universe. Therefore, to ex-

plain these extra matters we need to consider the presence of the extra non-baryonic and

non-luminous matter.
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1.5 Particle candidate for dark matter

It is clear to us that we have a large amount of non-baryonic matter whose particle origin

is still unknown to us. The percentwise amount of dark matter is 26% (ΩDM), baryonic

matter is around 5 % (ΩB) and the remaining 69% of the energy density of the universe

is called the dark energy (ΩΛ). Although we don’t have any confirmation about the DM

candidate still to become a DM candidate it has to pass all the following ten criterion as

listed in [29],

• it has to give the correct value of the DM relic density which we obtained from

WMAP [19] and Planck data [20],

• it has to be cold,

• it has to be electrically neutral,

• need to check whether consistent with BBN or not,

• no effect in the stellar evolution,

• should follow the constraints from self-interaction,

• need to obey the bound from the direct detection of DM,

• constraint from γ-rays,

• other astrophysical bounds,

• prospects for its detection in the current earth-based experiments.

If we look into the SM we find that the candidate which satisfy many of the criteria listed

above is the neutrino. But, it has been shown in the literature that neutrino is a relativistic

particle and can not form halo structure which we observe in the Universe. Moreover,

neutrinos are in eV scale, hence it cannot be the sole component of the dark matter. So,
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the only option for us to accommodate the DM candidate in the SM is to extend it by new

particles and also a new gauge group if needed. In literature, a vast study in this direction

exist and many authentic ideas about the DM candidate exist. The most popular ones are

described very briefly below,

• In SUperSYmmetry (SUSY) the superpartner of the W-bosons (SU(2) gauge bosons)

and the B-boson (U(1)Y gauge boson) mix with each other and in the mass basis

the lightest component of them becomes a suitable DM candidate under R-parity

or Z2 symmetry. This DM candidate is called neutralino. Therefore, in the SUSY

extension under R-parity, a DM candidate appears naturally in the model.

• Lightest Kaluza-Klein (KK) particle, if we take motivation from string theory and

consider a 5-dimensional universe and try to compactify it to our observed 4-dimensional

universe, then under compactification of the extra space, Kaluza-Klein tower of par-

ticles appear in the theory. Under KK-parity symmetry, these particles can be viable

DM candidates.

• Axion dark matter, as mentioned in Section 1.2.5 there exists a strong CP-problem

i.e. we need a very small θ-parameter to explain the neutron electric dipole moment.

Under Peccei-Quinn (PQ) symmetry this problem can be solved by making the θ

parameter dynamical and it also gives a new CP-odd scalar particle which can be a

viable DM candidate.

• Inert doublet model (IDM), in this type of model, SM is extended by a doublet and

right handed fermions which are odd under some additional discrete symmetry Z2.

The neutral component of the inert doublet or the right handed neutrino (depending

on their masses) can be a very good DM candidate.

• SM can also be extended by scalars and fermions and under some suitable symme-

try, they become stable and can be very good DM candidate with the minimal ex-

tension of the SM. Among them, the most popular ones are the DM annihilation via
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Higgs-portal, gauge boson mediated processes and also the DM con-annihilation

process. In this thesis, we will mostly focus on this type of dark matter candidate

easily obtained by extending the SM and in some cases, we also extend the SM

gauge group by some additional abelian or non-abelian gauge groups.

1.6 Determining the relic density of dark matter

The number density of a particle is governed by the Boltzmann equation (BE) and take

the following form,

L
[
fφ(pµφ, x

µ)
]

= C
[
fφ(pµφ, x

µ)
]
, (1.64)

where pµφ is the four momentum of the particle species φ at space time point xµ while

L and C are the Lioville’s operator and collision operator, respectively. For the Fried-

mann–Lemaitre–Robertson–Walker (FLRW) metric, the Lioville’s operator takes the fol-

lowing form,

L
[
fφ(Eφ, t)

]
= Eφ

∂ fφ
∂t
−H|~pφ|2

∂ fφ
∂Eφ

, (1.65)

where H =
ȧ(t)
a(t) is called the Hubble parameter.

The number density (nφ(t)) of the particle species φ at any stage of time can be ex-

pressed by using its distribution function in the following way,

nφ(t) =
gφ

(2π3)

∫
fφ(Eφ, t)d3 pφ . (1.66)

Using the above definition of number density, one can easily show that,

gφ
(2π3)

∫
L

[
fφ(Eφ, t)

]
Eφ

d3 pφ =
∂nφ
∂t

+ 3Hnφ . (1.67)
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Therefore, for the process φ + i→ a + b, Eq. (1.64) looks like as follows,

∂nφ
∂t

+ 3Hnφ =
gφ

(2π)3

∫
C
[
fφ(Eφ, t)

]
Eφ

d3 pφ . (1.68)

Using the standard definition of the collision term, the right hand side of the above equa-

tion for the process φ + i→ a + b can be written as,

gφ
(2π)3

∫
C
[
fφ(Eφ, t)

]
Eφ

d3 pφ = −
∑
spin

∫
dΠφdΠidΠadΠb× (2π)4δ4(pφ+ pi− pa + pb)

×
[
|M|2φ+i→a+b fφ fi(1± fa)(1± fb)− |M|2a+b→φ+i fa fb(1± fφ)(1± fi)

]
, (1.69)

where dΠα is the phase space density for the αth particle and defined as,

dΠα =
d3 pα

2Eα(2π)3 , (1.70)

and fα is the distribution function of the species α and +(−) sign implies for the fermions

(bosons). fα(p) implies the probability of the species α in that state for the incoming

particle where (1± fα) factor implies the probability of the emptiness of the α species

in the final state. The momentum, as well as energy conservation, are ensured by the

4-dimensional Dirac-delta function. |M|2
φ+i→a+b implies the modulus square of the ampli-

tude for the process φ+ i→ a+b after taking the average over the spin for the initial state

particles and sum over the spin for the final state particles.

In order to simplify the Eq. (1.69), we make few well accepted assumptions by fol-

lowing the laws of physics which are the following,

• we assume that the final state particles reach thermal equilibrium as soon as they

are produced. This is trivially true for the charged final state particles because it

will see free photon roaming around for the interaction. This is even true for the

neutral particle as well in most of the cases. Therefore, for the final state particle we

use f eq
α . Moreover, if we assume detail balance for any process then we can simply

52



1 Introduction

write,

neq
a neq

b = neq
φ neq

i . (1.71)

• for any process φ + i→ a + b, we can write the following relation by the virtue of

the unitarity of the S-matrix,

∑
spin

∫
dΠadΠb(2π)4δ4(pφ+ pi→ pa + pb)|M|2a+b→φ+i =

∑
spin

∫
dΠadΠb

×(2π)4δ4(pφ+ pi→ pa + pb)|M|2φ+i→a+b . (1.72)

• the other relevant assumption is the use of the classical Maxwell-Boltzmann dis-

tribution for all the species without distinguishing between the Fermi-Dirac (for

the fermions) and Bose-Einstein (for the bosons) distribution. Due to this assump-

tion there will be no Bose condensation or Fermi degeneracy. Therefore, we can

safely neglect the blocking or stimulated factor in Eq. (1.69) i.e. 1 + fα ' 1 while

fα = e
Eα−µ
kBT , µ is the chemical potential and kB is the Boltzmann constant.

The cross section for the process φ+ i→ a + b are defined in the following way,

σφ+i→a+b =
1

4EφEigφgiv

∫
dΠadΠb(2π)4δ4(pφ+ pi→ pa + pb)

∑
spin

|M|2φ+i→a+b , (1.73)

where Eα, gα are the energy and the internal degree of freedom of the species α, v cor-

responds to the relative velocity between the two incoming particles φ and i and have the

following form in terms of the momentums and energies,

v =

√
(pφ · pi)2−m2

φm2
i

EφEi
. (1.74)

Finally using the assumptions as stated above and the expression of the cross section, we
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can write the collision term in the following way,

gφ
(2π)3

∫
C
[
fφ(Eφ, t)

]
Eφ

d3 pφ = −

∫
σφ+i→a+bv

(
dnφdni−dneq

φ dneq
i

)
= −〈σv〉

(
nφni−neq

φ neq
i

)
, (1.75)

where the thermal average of the cross section times velocity implies the following form,

〈σφ+i→a+bv〉 =

∫
σφ+i→a+bvdneq

φ dneq
i∫

dneq
φ dneq

i

. (1.76)

The above expression of the thermal average of the cross section times velocity has a

practical form in terms of the Bessel function and given by,

f1 =

√
s2 + (M2

φ−M2
i )2−2 s (M2

φ+ M2
i ) ,

f2 =

√
s− (Mφ−Mi)2

√
s− (Mφ+ Mi)2 ,

〈σvφ+ i→a+bv〉 =
1

8 M2
φ M2

i T K2

(
Mφ

T

)
K2

(Mi

T

) ×
∫ ∞

(Mφ+Mi)2

σφ i→ab
√

s
f1 f2 K1

( √
s

T

)
ds , (1.77)

where Mφ and Mi correspond to the mass for φ and i, respectively, T is the evolution tem-

perature of the Universe and K2 is the Bessel function of the second kind. Therefore, if we

substitute the collision term in Eq. (1.68) then we get the familiar form of the Boltzmann

equation which is,

∂nφ
∂t

+ 3Hnφ = −〈σtotv〉
(
nφni−neq

φ neq
i

)
, (1.78)

where σtot =
∑

a,bσφ+i→a+b, means after considering all the annihilation mode of φ and

i. In the above equation if we assume that the initial density of φ and i are same i.e.

nφ = ni = n, then the above equation depends only on number density n. Moreover, a

factor of 1/2 will appear in the right hand side of the above equation if the initial particle
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is not its own self conjugate. The above equation looks like as follows,

∂n
∂t

+ 3Hn = −〈σtotv〉
(
n2−neq2

)
. (1.79)

We can further simplify the above equations by defining the co-moving number density

Figure 1.7: Variation of ge f f (T ) and he f f (T ) with the temperature of the Universe.

(Y) which is the ratio between the number density and the entropy, Y = n
s , where s is the

entropy of the Universe. Define a new variable which is the inverse of the temperature,

z = m
T . By using the time temperature relation, Hubble in terms of matter density, matter

density and entropy in terms of temperature, which are as follows,

dt
dT

= −
1

HT

1 +
Th′e f f (T )

3he f f (T )

 ,
H =

√
8πGρ

3
,

ρ = ge f f (T )
π2T 4

30
,

s = he f f (T )
2π2T 3

45
. (1.80)

We can write the Eq. (1.79) in the following form [30],

dY
dz

= −

(
45G
π

)−1/2 g1/2
∗ m
z2 〈σtotv〉

(
Y2−Yeq2

)
, (1.81)
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where g1/2
∗ is defined in the following way,

g1/2
∗ =

he f f (T )√
ge f f (T )

1 +
Th′e f f (T )

3he f f (T )

 , (1.82)

where G is the Newton’s gravitational constant, ge f f (T ) and he f f (T ) are the matter and

the entropy degree of freedom 1. Moreover, the quantities ge f f (T ) and he f f (T ) are related

to the relativistic degree of freedom of the Universe at the time of its evolution and at

temperature T and describe in the following way,

ge f f (T ) =
∑

b=bosons

gb

(Tb

T

)4
+

7
8

∑
f = f ermions

g f

(
T f

T

)4

,

he f f (T ) =
∑

b=bosons

gb

(Tb

T

)3
+

7
8

∑
f = f ermions

g f

(
T f

T

)3

,

(1.83)

where gb, g f are the internal degree of freedom of the bosonic and fermionic fields, re-

spectively at temperature T . The variation of ge f f (T ) and he f f (T ) with the temperature

of the Universe have been shown in Fig. 1.7. These two values match each other for the

entire evolution of the Universe and start deviating when the neutrino decouple from the

thermal plasma which happens between 1-3 MeV.

Finally, we can determine the co-moving number density of the DM today by solving

Eq. (1.81) easily because all the necessary information to solve the equation are known.

Relic density of DM (of mass m) can be determined by the following relation,

Ωh2 = 2.755×108
( m
GeV

)
Y(T → 0) , (1.84)

where Y(T → 0) is the co-moving number density of DM today. In the recent time, the

1Sometime we use the notation gρ(T ) and gs(T ) instead of ge f f (T ) and he f f (T ) in the later part of the
thesis.
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observed value of the dark matter relic density given by the Planck collaboration [20], is

ΩDMh2 = 0.1197±0.0022. (1.85)

In this thesis we have used the above relic density bound.

1.7 Types of Dark Matter

Assuming the fact that DM is mostly non-baryonic, we can classify the DM in two ways.

One of them is by its way of production and another one is depending on its mass. First,

we discuss its distinguished nature from the production viewpoint and next, we distinguish

them by their masses.

1.7.1 DM classification by thermal history

The production mechanism of DM from the thermal point of view can be classified in two

ways namely thermal production of DM and non-thermal production of DM. We briefly

discuss the two different way of DM production.

Thermal production of DM

In this mechanism, one assumes that DM produce simultaneously with the visible matter

and remain in thermal equilibrium until the Universe temperature goes below DM mass.

During its thermal equilibrium with the cosmic soup, DM number density varies differ-

ently with temperature depending on its relativistic and non-relativistic nature,

neq =
ge f f

π2 ζ(3)T 3 for relativistic species

= ge f f

(mT
2π

) 3
2

e−
m
T for non− relativistic species . (1.86)
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The number density of the particle decrease with the temperature and hence at a particular

Figure 1.8: DM production by the freeze-out mechanism for two different values of the
DM mass.

value of the Universe’s temperature its interaction rate Γ = neq〈σv〉 become smaller than

the Hubble rate of the Universe. As a result, the DM particle can not interact with each

other and its number density freezes-out to that particular value. The temperature at which

the freeze-out or decoupling of the DM from the thermal plasma happens is called the

freeze-out temperature and we can be determine its numerical value by equating the DM

interaction rate with the Hubble rate of the Universe in the following way,

neq〈σv〉 = H . (1.87)

In this type of DM production, the co-moving number density is inversely proportional

to the thermal average of the cross-section times velocity i.e. Y ∝ 1
〈σv〉 . Therefore, more

the value of 〈σv〉 less amount of DM present in the Universe. This can be easily seen in

Fig. 1.8. The DM produced by this mechanism is called weakly interacting massive parti-

cle (WIMP). In this mechanism, DM can be successfully produced in the correct ballpark

value (given by WMAP and Planck) for O(1) coupling strength, hence it is conceptually

easy to design the detection technique for this type of DM. So far vastly used techniques

to detect this type of DM are the direct detection, indirect detection and collider search

which we briefly discuss in the next section. In Chapters [2, 3, 4], we discuss this type
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of DM in this thesis. For the numerical study of this type of DM, we use the well known

package micrOMEGAs [31–33].

Non-thermal production of DM

The DM production by the freeze-out mechanism is very charming and conceptually easy

to make a detector to detect them. But after extensive study of this type of DM at the direct

detection, indirect detection and collider, we are unable to find the hint of this type of DM.

Therefore, we need to go beyond the usual freeze-out mechanism. One of the beyond

freeze-out scenarios is the non-thermal way of DM production and this mechanism is

called the freeze-in mechanism. In the left panel (LP) of Fig. 1.9, one can see that for the

Figure 1.9: LP: Schematic diagram shows the order of the coupling strength for freeze-in
and freeze-out. RP: Variation of co-moving number density with the inverse of tempera-
ture for the freeze-out and the freeze-in mechanisms. Figures borrowed from [34].

freeze-in mechanism we need very small coupling strength as compared to the freeze-out

mechanism. The price we pay for such small coupling is that this type of non-thermal DM

is very difficult to detect at any terrestrial experiments. One known possibility to detect

this type of DM is to look for the long-lived particle by observing the displaced vertex type

of signature. The production mechanism of freeze-in mechanism [34] has been displayed

in the right panel (RP) of Fig. 1.9. Due to the feeble coupling of the DM, this type of DM

can never reach thermal equilibrium with the cosmic soup. In producing the DM by the

freeze-in mechanism, we make the crucial assumption that in the very early time DM is
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Figure 1.10: Variation of relic density with the inverse of temperature for different initial
value where the coupling strength is O(10−11) and DM mass is 50 GeV.

produced in a negligible fraction from the inflaton decay after the inflation. Moreover, its

production is independent of the UV quantities like the reheat temperature of the Universe

and the production is IR dominated i.e. depends on the low-temperature regime which is

around the DM mass. In this mechanism as opposed to the freeze-out mechanism, DM is

produced more with the increasing of the coupling strength as shown in Fig. 1.9. In the

freeze-in mechanism, DM is mostly produced when the Universe temperature goes below

DM mass. A particular variation of relic density of the DM produced by the freeze-in

mechanism with the inverse of the temperature has been shown in Fig. 1.10.

1.7.2 DM classification depending on masses

DM can also be classified depending on their masses or more appropriately by comparing

its free streaming length (FSL) with the FSL of the photo galaxy. Depending on FSL, we

get three types of DM which are cold, warm and hot dark matter. For cold DM, its FSL is

smaller than the FSL of photo galaxy. This type of DM mass can range from Solar mass

(MACHO type object) to MeV scale mass. Neutralino, gravitino, heavy sterile neutrino

and many more DM candidates fall in this category. Another one is warm DM where its

FSL is comparable to FSL of photo galaxy. The warm DM mass range varies from 300
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eV to 3000 eV. This type of DM suffer from the absence of many suitable DM candidate

and the most promising ones are the light sterile neutrino. In the hot DM category, its

FSL is much larger than the FSL of photo galaxy. Generally eV scale mass falls in this

category. In SM, the neutrino is a suitable candidate for hot DM candidate. We describe

all the three DM detection methods briefly in the subsequent part.

1.8 Detection of Dark Matter

Figure 1.11: Schematic diagram of DM detection by direct detection, indirect detection
and collider search. Figure is taken from [35].

As mentioned earlier WIMP type DM can be detected by the three techniques which

are direct detection (DD) of DM, indirect detection (ID) of DM and collider search. In

Fig. 1.11, the three types of DM detection have been shown schematically.

1.8.1 Direct Detection

DD detection experiments primary aim to detect the WIMP type DM particle (denoted by

φ). If we assume that our Milky way is composed of WIMP type DM then the flux in the

vicinity of the earth is of the order of 105 ×

(
100 GeV

Mφ

)
cm−2s−2. This is sufficiently large

flux, hence we can expect to detect them at the terrestrial detectors even if WIMP type

DM interacts weakly with the detector nuclei. DD experiments focus to detect WIMP
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by observing the recoil of the nucleus or quantitatively they try to measure the rate, R,

recoil energy, ER, and and in some cases direction of the incident WIMP if the detector

has directional sensitivity.

The differential event rate for the WIMP type DM (of mass Mφ) colliding with the

nucleus of MN is given by,

dR
dER

=
ρ0

MN Mφ

∫ ∞

vmin

v f (v)
dσWN(v,ER)

dER
dv , (1.88)

where ρ0 = 0.3 GeV cm−3 at a distance 8 kpc from the center of the Milky way galaxy,

f (v) is the isotropic, Gaussian velocity of DM near earth,

f (v) =
1
√

2πσ
exp

(
−
|v|2

2σ2

)
, (1.89)

where the speed dispersion, σ, is related to the circular velocity, vc, by σ =
√

3/2vc and

vc = 220±20 km s−1, ER is the recoil energy and can be written in terms of the scattering

angle (θ∗) as,

ER =
µ2v2(1− cosθ)

MN
, (1.90)

where µ =
MN Mχ

MN+Mχ
is the reduced mass of WIMP and nucleus. The lower limit in the

velocity integration in Eq. (1.88) implies the minimum velocity is required to handover

ER amount of recoil energy to the nucleus and expressed as, vmin =
√

MN ER
2µ2 . On the other

hand the upper limit of integration is infinite but in principle it can not exceed the escape

velocity of the Milky way galaxy which is, vesc = 650 km s−1. The quantity dσWN (v,ER)
dER

is called the WIMP-nucleus differential cross section. In determining this quantity we

need the microscopic physics input that means how DM interact with the nucleus and it

contains lots of uncertainties in the nuclear form factor. In general, interactions are two

types one of them is spin independent (happens due to the scalar and vector interaction of

DM) and another one is the spin dependent interaction (happens due to the axial vector
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interaction) and the total differential cross section is sum of these two contributions,

dσWN

dER
=

(
dσWN

dER

)
S I

+

(
dσWN

dER

)
S D

. (1.91)

Finally, the total WIMP-nucleus cross section is measured by taking the coherent sum of

the WIMP-nucleon cross section. A form factor F(ER) is introduced to account for the

contribution of non-zero momentum transfer, q =
√

2MN ER, and the coherent loss which

leads to the suppression in the event rate. Therefore, we can write the differential cross

section as,

dσWN

dER
=

MN

2µ2v2

[
σS I

0 F2
S I(ER) +σS D

0 F2
S D(ER)

]
, (1.92)

where σS D
0 and σS I

0 are the spin-dependent and spin-independent WIMP-nucleon cross

section at zero momentum transfer.

Finally, the total event rate in the unit of kg−1day−1 can be obtained by integration

over the recoil energy of the differential event rate,

R =

∫ ∞

ET

dER
ρ0

MN Mχ

∫ ∞

vmin

v f (v)
dσWN(v,ER)

dER
dv , (1.93)

where ET is the minimum threshold energy which can be recorded by the detector. There

are many earth based DD experiments which try to detect this keV recoil energy of the nu-

cleus. To reduce the background, mainly the cosmic rays, this type of detector is located

underground. These experiments mostly work on two types of detector technologies, one

is the cryogenic detector and another one is the noble gas. The cryogenic detector is

maintained below the 100 mK temperature and it detects the heat produced by the col-

lision of DM particle with the atom of the crystal detector such as germanium. CDMS,

CRESST, EDELWESS, EURECA fall in this kind of detector. In the case of Nobel liq-

uid, it detects the scintillation light produced by the DM collision with the atom of the

liquid Xenon and argon. The experiments are Xenon, LUX, ZEPLIN, DarkSide, PandaX,
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Figure 1.12: Bound on DM dd cross section from different experiments. Image source
[36].

Darwin. The current bound and projected sensitivity of the proposed experiments [37] on

the WIMP-nucleon DD cross-section are shown in Fig. 1.12.

1.8.2 Indirect Detection

Dark matter particles can also be detected indirectly by looking at the final state particles

when they annihilate or when they decay to other particles. DM particle can annihilate

to gamma rays, particle-antiparticle pair of the SM particle spectrum or if the DM is un-

stable, with the lifetime greater than the age of the Universe, then it can decay to SM

particles. In indirect detection we look for the excess of gamma rays, anti-proton ex-

cess or positron excess in the high DM dense region (e.g. the centre of the Milky Way

galaxy). The main difficulties of this type of detection are that the signal can be success-

fully explained by some unrecognised astrophysical source. Therefore, to claim any type

of discovery by the indirect detection we have to be completely aware of the astrophysical

source. We now discuss briefly the different indirect signal which we can have during DM

annihilation or decay.

64



1 Introduction

Gamma rays

The annihilation rate of DM to gamma rays which make an angle ψ with the galactic

center is given by,

φγ(ψ) ' 0.94×10−13
(

Nγσv
cm3s−1

)(
100GeV

Mχ

)2

J(ψ)cm−2 s−1 sr−1 , (1.94)

where the dimensionless parameter J(ψ) is defined as,

J(ψ) =
1

8.5kpc

(
1

0.3GeV cm−3

)2 ∫
l.o.s

ρ2(l)dl(ψ) , (1.95)

ρ(l) is the DM halo density along the line of sight (l.o.s) l(ψ). Nγσv is the annihilation

rate times number of photon produced for the DM annihilation and it depends on the par-

ticular model on which we work. There are many experimental collaborations like HESS,

MAGIC, CANGAROO, VERITAS and FermiLAT which are trying to observe the excess

in the gamma rays. In 2012, Fermi-LAT collaboration [38] claimed the statistical evi-

dence of 130 GeV gamma-ray excess and van be explained by DM annihilation. Several

groups [39, 40] have pointed out the excess of gamma rays in the 1-3 GeV energy range

after analysing the publicly available Fermi-LAT data [41]. This excess can be explained

by the DM annihilation to different channels of SM particles. Another possible explana-

tion of this excess is the millisecond pulsars [42, 43] but a recent study also disfavors this

type of source for the excess.

Neutrino signal
We can also look for DM by observing the neutrino signal from its annihilation. Our solar

system moves through the DM halo present in our galaxy. Although, the probability of

scattering of DM with the sun’s nuclei is very small, still in billion of years there would

be sufficient accumulation of DM particle in the core of the sun. These accumulated DM

particles annihilate and help in creating neutrino later on. Generally, neutrinos can be
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produced from the decay of the heavy quark, heavy gauge boson, other product of WIMP

annihilation and they move towards the earth and can be identified by the large volume

neutrino detector. If the capture rate and annihilation rate are large enough then they can

reach thermal equilibrium and change of number density of DM will follow the equation

below,

dN(t)
dt

= C�−A�N(t)2−E�N(t) , (1.96)

where C� is called the capture rate of DM inside the sun, A� is the annihilation rate and

E� implies the evaporation of DM. If DM mass is more than few GeV, we can neglect

the evaporation term. Therefore, under E� ' 0, we can solve the Eq. (1.96) easily and the

annihilation rate takes the following form,

Γanni−rate =
1
2

A�N(t�)2

=
1
2
C� tanh(

√
C�A� t�) . (1.97)

where t� = 4.5 billion years is the age of our solar system. If the system satisfy the

condition
√
C�A� t�� 1, then we get,

Γanni−rate =
C�

2
. (1.98)

The above equation announces that the annihilation rate is determined by the capture rate

and does not depend on the annihilation cross-section. Finally, the produced neutrinos

heading towards earth can be detected by many experiments like IceCube, AMANDA

and ANTARES.
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Cosmic antimatter

The propagation of charged particle inside the Milky way is a very messy trajectory and

cumbersome to figure out properly. The charged particles deflect due to the magnetic field

and its irregularities. DM particle can create these charged particles inside the Milky way

and when they propagate to earth detector, would give excess in the normal flux spectrum.

In general different experiments like PAMELA, AMS-02, HAWC measure the antiproton,

positron, antineutron, antihelium, antideuterium flux. These antiparticle can be produced

from the DM annihilation,

χ+χ→ qq̄, W+W−, ...→ p̄, D̄, e+, γ, ν . (1.99)

Although, it is a complex system, nevertheless we can write the master equation for space

and energy distribution, Ψ = dn
dt of the charged particle [44],

∂z(VcΨ)−K∆2Ψ+∂E
(
bloss(E)Ψ−KEE(E)∂EΨ

)
= q(X,E) , (1.100)

where n is the number density, E is the energy, Vc ∼ 5 to 10 km s−1 measures the galac-

tic convection wipes cosmic rays away from the disk, K is the spatial diffusion coeffi-

cient, KEE is the diffusive coefficient, bloss(E) is the energy loss and q(X,E) is the rates

of production. The aforementioned master equation has been solved by using different

techniques and all of them lead to the almost same flux at earth.

If the DM produce these cosmic antiparticles then we would expect a deviation in the

normal flux. PAMELA and AMS-02 experiments have observed positron excess [45] in

their flux. However, HAWC collaboration has challenged DM origin of this excess and

hints that the flux is generated by the pulsars [46]. AMS-02 has also studied the antiproton

data and they have found excess around 10 - 20 GeV and above 100 GeV. Although,

the above 100 GeV antiproton excess can be explained by reacceleration of secondary

antiproton due to the Supernovae remnants. AMS-02 has not yet published the data for
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the antideuterium and antihelium and could be a potential probe for the annihilating DM

scenario.

Decaying DM

The gamma rays can also be produced from the decays of the decaying type DM. In gen-

eral, we impose some additional symmetry to make the DM candidate stable for example

R-parity conservation in SUSY. If we consider a model where the lifetime of DM is just

greater than the age of the Universe then it is perfectly a suitable decaying type DM candi-

date. For such decaying DM, we can predict the flux of the gamma rays by the following

relation,

dφdec
γ

dE
=

2
Mχ

dNγ

dE
1

8πτχ

∫
l.o.s

ρχ(l)dl , (1.101)

where τχ is a decay lifetime of DM, in contrary to the annihilation flux decay flux is

proportional to the halo density, ρχ(l), and dNγ

dE is the spectrum of produced gamma-rays

from the hadronisation processes. These exist a 3.55 keV line reported by the XMM-

Newton and Chandra satellites [47–49]. This signal can be explained by the decaying

DM consideration. This signal can also be explained by considering the annihilating DM

as well [50, 51].

1.8.3 Collider search

This is the era of the collider search because of the presence of the gigantic collider exper-

iment Large Hadron Collider (LHC) and many more to come in future like International

Linear Collider (ILC), Compact Linear Collider (CLIC). Collider search of DM implies

to detect the DM directly by producing them at the collider, we focus on the LHC collider

for DM detection. Since DM is a neutral and stable particle, hence it is difficult to track

them at the collider. To understand the presence of the DM, we use the transverse missing
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energy kinematical variable, it is the missing part of the transverse momentum (pT ) in the

transverse plane for the proton-proton (pp) collider like LHC. If we stay within SM then

the missing energy signal can come from the neutrino (ν). At collider, to observe the DM

we generally look for the signal like ��ET + n j + ml, n ≥ 0, m ≥ 0, n + m ≥ 1, j corresponds

to the jets and l is for leptons. This type of signal always mimics by the SM particles.

Therefore, one needs to have a very good understanding of the SM background before

claiming any kind of discovery. If collider finds huge statistical significance of the above

signal then we can interpret the signal in the following way by considering the beyond the

standard model (BSM). For simplicity and to discuss it briefly we consider n ≥ 2, m = 0

i.e. multi-jet + ��ET signal at the pp collider. To explain the signal by any BSM model

we have to take care of the following main backgrounds (BKG) coming from SM which

mimic the signal,

• pp→ QCD (≤ 4 j),

• pp→ Z + 4 j,

• pp→ W±+ ≤ 4 j,

• pp→ tt̄+ ≤ 2 j,

• pp→ W±Z+ ≤ 2 j,

• pp→ ZZ+ ≤ 2 j .

The production cross section of the above BKGs are huge, hence to survive the signal

from the BKG, we need to use suitable cuts on different kinematical variables like pT ,

��ET , invariant mass, rapidity (η) and so on. The aim of using different cuts is to reduce the

BKGs without affecting the signal much and this way we can get the required statistical

significance to explain the signal. This way we claim that this model is the probable model

for the observed signal. There is a rigorous search to observe the SUSY model but so far

null results have been observed for all channels and data is very much agreeing with the
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SM. Another useful tool which people are using nowadays to distinguish the signal from

the BKG very efficiently is machine learning. Therefore, by observing any new signal

related to missing energy is a direct observation of DM at the collider.

1.9 Neutrino Mass

The presence of neutrino oscillation among the flavors is an inevitable consequence of

neutrino mass and mixing. There is much experimental proof of neutrino oscillations,

starting in the year 1967 as the outcome of Davis et. al. work [52, 53]. They were trying

to measure solar electron neutrino (νe) flux by using the chlorine detector (νe + 37Cl→

e− + 37Ar) in the South Dakota’s Homestake mine and found deficit in the neutrino flux

in comparison to the standard solar model available that time [54, 55]. In the contem-

porary time of the Davis et. al. study, the oscillation phenomenon was not consid-

ered very seriously but came into consideration when many experiments in the later

on like Kamiokande [56–59], Super-Kamiokande [60, 61], Gallex/GNO [62–65], and

SAGE [66–69] also observed deficit in the solar neutrino flux.

The oscillation phenomenon was finally confirmed by the measurements at the Sud-

bary neutrino observatory in Canada (SNO) [3,70,71] using a heavy water detector (D2O,

D corresponds to the deuteron). In particular, they observed 1/3 deficit in the solar νe flux

for the charged current interaction (ν+D→ e−+ p+ p) and no deficit in the neutral current

interaction (ν+ D→ ν+ p + n). Other experiments like KamLAND [4, 72, 73] in Japan

and Borexino [74, 75] in Italy also played an important role in certifying the neutrino

oscillation phenomenon during neutrinos travel.

The first confirmed evidence of neutrino oscillation (at 6.2σ statistical significance)

came from the study of the atmospheric neutrinos by Super-Kamiokande collaboration

[2, 76, 77]. These neutrinos are generated when the cosmic rays, mostly consisting of

energetic proton, collide with the nucleon of the outer layer of the atmosphere producing

70



1 Introduction

mesons such as π+,K+. These produced mesons then decay to neutrinos in the following

manner,

π+,K+→ νµµ
+→ νµe+νeν̄µ ,

π−,K−→ ν̄µµ
−→ ν̄µe−νµν̄e ,

which produced muon neutrino and electron neutrino fluxes. Around 1980, before SK

data two experiments Irvine-Michigan-Brookhaven (IMB) [78–80] and KamiokaNDE

[81,82] found the deficit in the atmospheric neutrino flux as well. More recently, K2K [83]

and T2K [8,9] in Japan and MINOS [84,85] and NOνA [10,11] in USA have further stud-

ied neutrino oscillation and confirmed the existence of ν oscillation.

1.9.1 Theoretical Formulation of Oscillation
Neutrino oscillation implies the presence of neutrino mass. To formulate neutrino oscilla-

tion theoretically, consider a neutrino of flavor α, να (α = e,µ,τ), (which is produced with

the same flavor charged lepton lα in the charged current interaction), which is a coherent

superposition of νi states (i = 1,2,3),

|να〉 =
∑

i

Uαi|νi〉 , (1.102)

where U is a unitary matrix. An N × N unitary matrix U, has N(N−1)
2 mixing angles

and (N−1)(N−2)
2 Dirac CP phase, and if the neutrinos are Majorana then (N − 1) Majorana

phases. We will consider here the neutrinos as Majorana particles unless we specify. In

the present case, the unitary matrix U (also called PMNS matrix [86–88]) for N = 3 has

three mixing angles (θ12, θ23, θ13), one Dirac CP phase (δ) and two Majorana phases (α1,

α2) and can be expressed as,

U =


c12c13 s12c13 s13e−iδ

−s12c23− c12s23s13eiδ c12c23− s12s23s13eiδ s23c13

s12s23− c12c23s13eiδ −c12s23− s12c23s13eiδ c23c13




eiα1

2 0 0

0 eiα2
2 0

0 0 1

 ,(1.103)
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where ci j = cosθi j, si j = sinθi j. To quantify the neutrino oscillation from the flavor α to

flavor β, we can determine the following probability,

Pνα→νβ = |〈νβ|να〉|
2 . (1.104)

Using the plane wave approximation and the unitarity condition, one can easily derive the

oscillation probability for να→ νβ transition in the utrarelativistic limit as,

Pνα→νβ = δαβ−4
∑
k> j

Re
[
U∗αkUβkUα jU∗β j

]
sin2

(
φk j

)
+ 2

∑
k> j

Im
[
U∗αkUβkUα jU∗β j

]
sin

(
2φk j

)
,

(1.105)

where φk j =
∆m2

k jL
4E , ∆m2

k j = m2
k −m2

j , mk is the mass for the kth state, E is the energy of the

neutrinos and L is the distance over which they have traveled.

Parameter Hierarchy Best fit 1σ range 2σ range 3σ range
δm2/10−5 eV2 NH or IH 7.37 7.21 – 7.54 7.07 – 7.73 6.93 – 7.97
sin2 θ12/10−1 NH or IH 2.97 2.81 – 3.14 2.65 – 3.34 2.50 – 3.54
∆m2/10−3 eV2 NH 2.50 2.46 – 2.54 2.41 – 2.58 2.37 – 2.63
∆m2/10−3 eV2 IH 2.46 2.42 – 2.51 2.38 – 2.55 2.33 – 2.60
sin2 θ13/10−2 NH 2.14 2.05 – 2.25 1.95 – 2.36 1.85 – 2.46
sin2 θ13/10−2 IH 2.18 2.06 – 2.27 1.96 – 2.38 1.86 – 2.48
sin2 θ23/10−1 NH 4.37 4.17 – 4.70 3.97 – 5.63 3.79 – 6.16
sin2 θ23/10−1 IH 5.69 4.28 – 4.91 ⊕ 5.18 – 5.97 4.04 – 6.18 3.83 – 6.37
δ/π NH 1.35 1.13 – 1.64 0.92 – 1.99 0 – 2
δ/π IH 1.32 1.07 – 1.67 0.83 – 1.99 0 – 2
∆χ2

I−N IH−NH +0.98

Table 1.2: Best-fit values and allowed 1, 2 and 3σ ranges for the 3νmass-mixing parameters [89].

The above equation implies that for neutrino oscillation we need a tiny mass difference

between the neutrinos. The oscillation parameters are θ12, θ13, θ23, ∆m2
12, ∆m2

23 and δCP.

The recent bound on the oscillation parameters [89] is shown in Table 1.2. If we look at

the SM then the neutrinos are massless. Therefore, to generate neutrino mass with the

renormalisable terms, we need to extend the SM as there is no other way to accommodate

neutrino mass.
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1.9.2 Neutrino Mass Theory

In SM we have two types of Weyl fermions, one is left handed chiral field and another

one is the right handed chiral field defined in the following way,

ψL,R =
1∓γ5

2
ψ,

= PL,Rψ, (1.106)

where ψ is the four component spinor. In general, we can write two types of mass term,

one is the Dirac mass term and other one is Majorana mass term expressed in the following

way,

Dirac mass term:

LDirac = mDψ̄ψ ,

= mDψ̄LψR + h.c. . (1.107)

Majorana mass term:

LMa jorana = mLψ̄Lψ
c
L + mRψ̄

c
RψR + h.c. . (1.108)

where mD is the Dirac mass and mL, mR are the Majorana mass term for the left and right

handed fields. One can easily notice that for the Dirac type of mass term we need both left

handed and right handed chiral fields like the mass term for the charged fermions in SM.

If we add right handed neutrinos (NR) to the SM, then we can write down the Yukawa

term which gives the Dirac mass term naturally,

LYuk
NR

= yνL̄φ̃hNR + h.c. . (1.109)

To achieve the neutrino mass in the eV scale, we need to assume that yν � ye, where ye
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is electron Yukawa coupling. As mentioned earlier, we have another option to generate

the mass, namely, the Majorana mass. Since, neutrinos are neutral particles one can very

easily generate Majorana mass for them. In the case of Majorana mass, we need only

one kind of chiral fermion as shown in Eq. (1.108). Due to charge conservation we can

not write Majorana mass for the charged particles. As mentioned previously, in SM we

don’t have any right handed counterpart of the neutrinos, hence it is difficult to write

down the Dirac type mass term but we can write Majorana mass term by using the non-

renormalisable dim-5 operator which consist of the SM fields,

Lν =
y2

Λ

(
L̄φ̃h

)2
+ h.c. , (1.110)

where y is a dimensionless parameter and Λ is some high scale of the theory upto which

the theory is valid. Once the EWSB happens spontaneously, the above term generates the

neutrino mass,

mν =
y2〈φh〉

2

Λ
ν̄Lν

c
L + h.c. . (1.111)

From the above expression when Λ� 〈φh〉, then the neutrino mass automatically comes

to the eV scale. As mentioned before, we consider here Majorana neutrinos for the rest

of the discussion. This type of mass generation can be achieved in many UV complete

beyond SM models, where ν mass is generated at tree level as well as loop level. We will

discuss now some very popular techniques for generating the neutrino mass.

Tree level process

• Type-I Seesaw Mechanism: If we introduce three right handed neutrinos (NR j, j =

1,2,3) in the SM, then we can write down the following terms in the Lagrangian,

−LType−I = yνL̄φ̃hNR +
MN

2
N̄c

RNR + h.c. . (1.112)
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νL NR NR νL

MR

〈φh〉 〈φh〉

Figure 1.13: Schematic diagram of Type-I seesaw mechanism.

When the EWSB happens then we can write the above terms in the following way,

−2LType−I =

3∑
i, j=1

[
¯νiL(mD)i jNR j + N̄c

R j(mD) jiν
c
iL + N̄c

Ri(MR)i jN jR + h.c.
]
,

(1.113)

where mD = yν〈φh〉 and we use the relation ν̄LNR = N̄c
Rν

c
L. In matrix form we can

write the above matrix in the following way,

−2LType−I =

(
ν̄L N̄c

R

) 0 mD

mT
D MR


(
νc

L NR

)
+ h.c. ,

=

(
ν̄L N̄c

R

)
M

(
νc

L NR

)
+ h.c. . (1.114)

One can diagonalize the above 6×6 matrix, M, in the limit mD� MR by the matrix

VI ,

Dν = VI MVT
I ,

'

mDM−1
R mT

D 0

0 MR

 , (1.115)

where

VI =

 I (M−1
R mT

D)†

−M−1
R mT

D I


iI 0

0 I

 . (1.116)

By defining the new basis we can write the above neutrino mass term in the follow-
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ing way,

−2LType−I = mνν̄ν+ MRN̄N + h.c. , (1.117)

where

mν = mDM−1
R mT

D ,

MR = MR . (1.118)

In the limit MR � mD, mν represents the the matrix for the light neutrinos and MR

denotes the mass matrix for the heavy neutrinos. The schematic view of the Type-I

seesaw mechanism has been shown in Fig. 1.13.

• Type-II Seesaw Mechanism: Instead of extending the SM by three right handed

∆0

〈φh〉 〈φh〉

νL νL

Figure 1.14: Schematic diagram of Type-II seesaw mechanism.

neutrinos, we can extend the SM by a S U(2) triplet scalar with hypercharge Y =−2.

This S U(2) triplet scalar will be useful because the combination L̄Lc also forms

triplet under S U(2) gauge group. When the triplet scalar combines with L̄Lc they

form a singlet. The Lagrangian can be written in the following way,

−LType−II =
Y∆

2
L̄iτ2∆Lc +µ∆φ

T ∆φ+ M2
∆∆†∆+ h.c. , (1.119)
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where τ2 =
σ2
2 and the triplet scalar is given by,

∆ =


∆−√

2
∆−−

∆0 − ∆−√
2

 . (1.120)

Schematically the above terms are shown in Fig. 1.14. Once the EWSB occur, the

neutral component of the triplet acquires induced vev. We can write down the neu-

trino mass term as,

mType−II = µ∆Y∆
〈φh〉

2

M2
∆

,

= µ′∆Y∆
〈φh〉

2

M∆

, (1.121)

where µ′
∆

=
µ∆

M∆
. The above mass term exactly looks like the Eq. (1.111) when we

assume y2 = µ′
∆

Y∆.

• Type-III Seesaw Mechanism: One can generate the neutrino mass at the tree level

νL ρ ρ νL

Mρ

〈φh〉 〈φh〉

Figure 1.15: Schematic diagram of Type-III seesaw mechanism.

by introducing the S U(2) triplet fermions as well instead of introducing the singlet

fermions. If we introduce the triplet fermion with hypercharge zero, then we can

write down a term with lepton doublet and Higgs doublet which is S U(2) singlet.

The Lagrangian looks like,

−LType−III = YρL̄iτ2ρφh + MρTr
[
ρ̄cρ

]
+ h.c. , (1.122)
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where the triplet fermion is expressed as,

ρ =


ρ0
2

ρ+

√
2

ρ−
√

2
−
ρ0
2

 . (1.123)

The above terms in the Lagrangian can generate the neutrino mass as shown in Fig. 1.15

schematically. After integrating out the heavy triplet field one can generate the neutrino

mass in the following form,

mType−III = 〈φh〉
2YρM−1

ρ YT
ρ . (1.124)

Therefore, by setting Mρ� 〈φh〉, we can generate the light neutrino mass very easily.

One-loop process

• Inert Higgs doublet:

νi Nk νj

η0η0

φ0
h φ0

h

Figure 1.16: Light neutrino mass generation by one loop process with the inert Higgs
doublet.

Like the tree level processes, one can generate neutrino mass by the loop diagram as

well (as shown in Fig. 1.16) [90]. Here, one introduces three right handed neutrino

and one doublet scalar which are odd under a Z2 symmetry and the SM fields are

even under this discrete gauge group. We can write down the following term in the
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Lagrangian,

LN =
∑

i=e,µ,τ

i
2

N̄iγ
µDµNi−

1
2

M N̄cN −
∑

i, j=e,µ,τ

yi jL̄iη̃N j + h.c. , (1.125)

Scalar potential also gets few extra terms which are as follows,

V(φh,φH ,η) = −µ2
hφ
†

hφh +µ2
ηη
†η+λ1(φ†hφh)2 +λ2(η†η)2

+λ12(φ†hφh)(η†η) +λ4(φ†hη)(η†φh)

+
1
2
λ5

(
(φ†hη)2 + h.c.

)
. (1.126)

Once the EWSB symmetry breaks resulting in the induced vev for the triplet Higgs,

we can generate the neutrino mass (as shown in the Fig. 1.16) in the following form,

Mν
i j =

∑
k

yik y jk Mk

16π2


M2
η0

R

M2
η0

R
−M2

k

ln
M2
η0

R

M2
k

−

M2
η0

I

M2
η0

I
−M2

k

ln
M2
η0

I

M2
k

 , (1.127)

where Mη0
R,I

are the mass of the real and imaginary part of the neutral component of

the inert doublet and MK is the mass of the right handed neutrino. If we consider

the mass square difference between η0
R and η0

I i.e. M2
η0

R
−M2

η0
I

= λ5v2 << M2
0 where

M2
0 = (M2

η0
R

+ M2
η0

I
)/2 then the above expression reduces to the following form,

Mν
i j =

λ5v2

16π2

∑
k

yik y jk Mk

M2
0 −M2

k

1− M2
k

M2
0 −M2

k

ln
M2

0

M2
k

 . (1.128)

Therefore, by choosing the parameters value appropriately we can achieve the cor-

rect value of the neutrino mass. One advantage of this model is that the right handed

neutrino or the neutral component of the inert Higgs doublet, depending on their

masses, can be made a viable DM candidate.

• Zee model in Left-Right symmetric extension:

The initial proposal of Zee to generate the neutrino mass by one loop process [91]
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Figure 1.17: Light neutrino mass generation by one loop process with the inert Higgs
doublet.

is already ruled out by the neutrino oscillation data [89]. If we implement the basic

idea of the Zee model i.e. a charged singlet scalar in the left-right symmetric model,

then we can still satisfy the allowed range of the neutrino oscillation parameters

(schematic diagram shown in Fig. 1.17). We are discussing this particular left-right

extension of the Zee model, since we have studied this version of Zee model in [92]

and is not included in the thesis (detailed derivations are therein). The Yukawa

terms which are relevant for the neutrino mass generation are as follows,

LY = Y l1
i j lLiΦlR j + Y l2

i j lLiΦ̃lR j +λLi jl
T
Liiτ2lL jδ

+ +λRi jl
T
Riiτ2lR jδ

+ + h.c. ,

(1.129)

where δ+ is the additional charged scalar and the other particle contents are same

with the left-right symmetric model. The structure of λL/Ri j term is such that the

only terms that will survive are the ones with i , j. This is exactly the same as in

the Zee mechanism of neutrino mass generation. If we expand out any one of the

terms involving δ+ in the Yukawa Lagrangian we will get:

L ⊃
∑
i, j

νie j(λi j−λ ji), (1.130)
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where νi and e j are both in the flavor basis. Thus if we redefine the λ matrix to λ′i j =

λi j −λ ji, then this new λ′ matrix is completely anti-symmetric and the Lagrangian

terms can now be written as:

L ⊃
∑
i, j

νie jλ
′
i j. (1.131)

The complete scalar potential is given in [92] and it contains the following terms

which help in generating the neutrino mass,

V(∆,Φ) ⊃
[
iα1Tr(HT

L τ2ΦHRδ
−) + iα2Tr(HT

L τ2Φ̃HRδ
−) + h.c.

]
. (1.132)

The neutrino mass matrix takes the form,

Mν =

 ML
ν MD

ν

(MD
ν )T MR

ν

 , (1.133)

where MD
ν = Y l1v1 + Y l2v2, v1,2 are the vevs of the bidoublet. ML

ν , MR
ν are given by,

(ML
ν )
αγ

=
1

4π2λ
′

Lαβmeβ

3∑
i=1

Log

M2
hi

m2
eβ

×V5i
[
(Y†l )βγV∗2i− (Ỹ†l )βγV∗1i

]
+ α↔ γ ,

(MR
ν )
αγ

=
1

4π2λ
′

Rαβmeβ

3∑
i=1

Log

M2
hi

m2
eβ

×V5i
[
(Yl)βγV∗1i− (Ỹl)βγV∗2i

]
+ α↔ γ ,

(1.134)

where meβ is the lepton mass and Vi j (i,j = 1 to 5) is the unitary matrix which

diagonalize the charged mass matrix of 5× 5 dimension. If we diagonalize the

Eq. (1.133) then we get the following mass term for the neutrinos,

Mν = ML
ν −MD

ν
T

MR
ν
−1

MD
ν . (1.135)

With the suitable choice of the model parameters one can easily satisfy the present

day neutrino oscillation data as done in Ref. [92].
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1.10 An overview of the thesis

This thesis mainly on dark matter and neutrino mass models. We are convinced after

knowing all the evidences of DM that it exists in nature and can not be explained by

the SM. Another beyond SM problem is the existence of neutrino mass which has been

proven by many experimental collaborations as discussed earlier. SM also has no clue

to tackle this problem. Moreover, so far we have not discussed about the muon (g− 2)

anomaly which says that the experimental value of muon (g−2) and the theoretical value

of muon (g− 2) after taking into account the loop diagrams based on SM do not agree

each other. Therefore, to tackle all these beyond SM problems we have to extend SM by

considering new particles as well as new gauge groups if it is necessary. Now we will

describe very briefly the outline of each chapters contained in this thesis.

We discuss in chapter 2 the U(1)B−L extension of SM. The extra gauge group is local

hence to cancel the gauge anomaly we have included three extra right handed neutrinos.

Moreover, two singlet scalars have been introduced with nontrivial (B− L) charge, one

of them becomes a WIMP type DM candidate and other scalar spontaneously breaks the

U(1)B−L gauge symmetry. We discuss the DM phenomenology in detail and its detection

prospects at the direct detection experiments and also discuss that this DM candidate

could be a possible source of the 1− 3 GeV Galactic center γ-ray excess observed by

Fermi-LAT satellite.

In chapter 3, we discuss the U(1)Lµ−Lτ extension of the SM. Although, this abelian

extension is gauge and gravitational anomaly free by its gauge structure still we have

added three right handed neutrinos and two singlet scalars in order to explain the neutrino

mass and DM. We can make the gauge boson light by obeying all the bounds, hence

we can explain the muon (g− 2) anomaly by this model. We have discussed in detail

the neutrino mass generation and allowed parameter space among the parameters after

satisfying the neutrino oscillation data. We have also studied WIMP type DM and its

detection at direct detection experiments.
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Chapter 4 talks about extension of SM by S U(2)L triplet fermion, scalar and singlet

fermion. Both the fermions are odd under extra Z2 symmetry and the remaining particles

are even. The singlet fermion and the neutral component of triplet fermion can mix each

other and lightest among them becomes a suitable WIMP DM candidate. We have studied

in detail the detection of this type of DM by direct and indirect detection and also its

collider search.

The gauge groups and the particle contents of chapter 5 are exactly same with the

chapter 2. Here we have considered different way of DM production namely the freeze-in

mechanism instead of freeze-out mechanism. Due to the feeble coupling of the FIMP

type of DM, it never achieve thermal equilibrium with the cosmic soup. We have studied

in detail its production mechanism from decay and annihilation of the other particles.

Finally, we have also constrained the model parameters from the relic density bound. We

have also discussed about the neutrino mass generation and the the baryon asymmetry of

the Universe using resonant leptogenesis.

Chapter 6 mimic the same model as discussed in chapter 3. Here, also we have consid-

ered the FIMP type DM. We have done the detail study of its production from the decay

and annihilation of the other particles. In particular we have constrained the MZµτ − gµτ

parameter space from the bound of muon (g−2) and DM relic density.

In chapter 7, we have considered U(1)Lµ−τ extension of the inert doublet model. Here,

we have considered the case when the mother particle (from which DM is produced dom-

inantly) is also out of equilibrium and we have determined its number density by solving

Boltzmann equation consist of Lioville’s operator collision functions. We have success-

fully satisfied the observed value of the DM relic density. Finally, we have also explained

the 3.5 keV line observed by the XMM-Newton and Chandra satellites.

Therefore, chapters (2 - 4) contain WIMP type DM candidate and the remaining ones,

chapters (5 - 7), explain the FIMP type DM. Moreover, depending on the model construc-

tion we have also explained neutrino mass, matter antimatter asymmetry of the Universe
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and muon (g−2).
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2
Galactic Gamma Ray Excess and Dark Matter

Phenomenology in a U(1)B−L Model

2.1 Introduction

This chapter is based on the work [93]. We consider an extension of the SM where the

gauge sector of SM is enhanced by a local U(1)B−L gauge group where B and L repre-

sent the baryon and lepton numbers respectively. In this model we have an extra neutral

gauge boson ZBL as the model Lagrangian possesses an additional local U(1)B−L gauge

invariance. In order to construct an anomaly free theory, the model needs three right

handed neutrinos with B−L charge equal to −1. Thus, B−L extension of the SM is

a well motivated beyond Standard Model (BSM) theory which can explain the origin of

tiny neutrino masses through the type-I seesaw mechanism. Majorana mass terms of these

three right handed neutrinos are generated in a gauge invariant way by introducing a SM

gauge singlet scalar φH having B−L charge +2. The U(1)B−L gauge symmetry breaks

spontaneously when the scalar field φH gets a vacuum expectation value vBL, thereby gen-

erating mass of the B−L gauge boson ZBL and the right handed neutrinos. The mixing

between the neutral components of φH and the SM Higgs doublet φh produces two physi-

cal scalars namely h1 and h2 where h1 is identified as the SM-like Higgs boson with mass

around 125.5 GeV. The B−L extension of SM [94–97] has been explored before in the

context of dark matter phenomenology [98–106] and baryogenesis in the early Universe
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in Refs. [107–109]. In the present work we have introduced a complex scalar field φDM

to the U(1)B−L extension of SM. This complex scalar field φDM is singlet under the SM

gauge group while it transforms nontrivially under U(1)B−L gauge group. By choosing

proper B−L charge, this scalar field φDM can be made stable and hence it can play the role

of a viable dark matter candidate. In this present work, we have considered the low mass

region 40 GeV to 55 GeV of DM masses to explain the Fermi-LAT gamma-ray excess

from the Galactic Centre, whereas the high mass region has been studied in Ref. [105].

We have calculated the relic density of φDM by solving Boltzmann equation numerically.

We have found that the gamma-ray flux produced from the annihilation of φDM and φ†DM

can reproduce the gamma-ray excess as observed by Fermi-LAT from the direction of

GC. Moreover, in this work, we have taken into account all the possible existing theoreti-

cal as well as experimental constraints obtained from experiments like LHC, LEP, LUX,

Planck.

2.2 Model

In the present work, we have considered “pure” U(1)B−L extension of the Standard Model

(SM) of elementary particles where the SM gauge group S U(3)c × S U(2)L ×U(1)Y is

enhanced by an additional local U(1)B−L gauge symmetry where B and L represent the

baryon and lepton numbers, respectively. Therefore, all the SM (quarks and leptons)

fields transform nontrivially under this U(1)B−L gauge group. Besides the SM fields,

we have to introduce three right handed neutrinos (Ni, i = 1 to 3) such that the present

model becomes anomaly free. Further, in addition to the usual SM Higgs doublet φh,

the scalar sector of the SM is also extended by adding two SM gauge singlet complex

scalar fields, namely φH , φDM both of which possess nonzero U(1)B−L charge. U(1)B−L

gauge symmetry breaks spontaneously when the scalar field φH gets a nonzero vacuum

expectation value (VEV) vBL. Consequently, we have one extra neutral massive gauge

field ZBL in the model. Moreover, after spontaneous breaking of U(1)B−L symmetry, the
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Majorana mass terms for the three right handed neutrinos can be generated in a gauge

invariant way by choosing a suitable U(1)B−L charge +2 of the scalar field φH . Also, if

the value of the relevant model parameters are such that the VEV of φDM is zero then the

complex scalar field φDM can be made stable by giving an appropriate B−L to it. Under

such circumstances φDM can be a viable dark matter candidate. The U(1)B−L charges as

well as the SM gauge charges of all the fields present in the model are given in a tabular

form (see Table 2.1).

Gauge
Group

S U(2)L
U(1)Y

U(1)B−L

Baryon Fields
Qi

L = (ui
L ,d

i
L)T ui

R di
R

2 1 1
1/6 2/3 −1/3
1/3 1/3 1/3

Lepton Fields
Li

L = (νi
L ,e

i
L)T ei

R Ni
R

2 1 1
−1/2 −1 0
−1 −1 −1

Scalar Fields
φh φH φDM
2 1 1

1/2 0 0
0 2 nBL

Table 2.1: Particle content and their corresponding charges under various symmetry
groups.

The Lagrangian of the present model including the SM Lagrangian LS M is as follows

L = LS M +LDM + (DµφH)†(DµφH)−
1
4

FBLµνFBL
µν+

i
2

N̄iγ
µDµNi−V(φh,φH)

−

3∑
i=1

1
2
λNiφH N̄c

i Ni−

3∑
i, j=1

y′i jL̄iφ̃hN j + h.c. , (2.1)

with φ̃h = iσ2φ
∗
h, while LDM represents the dark sector Lagrangian whose expression is

given by

LDM = (DµφDM)†(DµφDM)−µ2
DMφ

†

DMφDM −λDh(φ†DMφDM)(φ†hφh)

−λDH(φ†DMφDM)(φ†HφH)−λDM(φ†DMφDM)2 , (2.2)

and the self interactions of φH and its mutual interaction with the SM Higgs doublet φh

are described by V(φh,φH) which can be written as

V(φh,φH) = µ2
Hφ
†

HφH +λH(φ†HφH)2 +λhH(φ†hφh)(φ†HφH) . (2.3)

In Eq. (2.1), FBLµν = ∂µZBLν − ∂νZBLµ is the field strength tensor of the U(1)B−L gauge
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field ZBL. Covariant derivative appearing in Eqs. (2.1, 2.2) is defined as

Dµψ = (∂µ+ igBL QBL(ψ)ZBLµ)ψ, (2.4)

where ψ = φH , φDM, Ni and QBL(ψ) is the corresponding U(1)B−L gauge charge which is

given in Table 2.1. In general, the Majorana mass matrix for the three right handed neu-

trinos, obtained after spontaneous breaking of B−L symmetry, will contain off diagonal

terms. However these off diagonal terms can be easily removed by changing the basis

and therefore, we have considered the diagonal Majorana mass matrix for the three right

handed neutrinos (or the right handed neutrinos Ni’s are in mass basis).

After spontaneous breaking of U(1)B−L symmetry the scalar fields φh and φH in uni-

tary gauge take the following form

φh =


0

v + H
√

2

 φH =

(
vBL + HBL
√

2

)
, (2.5)

where v = 246 GeV is the VEV of φh, which breaks the electroweak symmetry to a U(1)

symmetry (U(1)em). On the other hand the VEV of φH , vBL, is responsible for the breaking

of B−L gauge symmetry of the Lagrangian and thereby generates masses for the three

right handed neutrinos as well as the gauge boson ZBL,

MNi =
λNi
√

2
vBL ,

MZBL = 2gBL vBL . (2.6)

In Eq. (2.5) H and HBL are two neutral scalar fields of φh and φH respectively. There is

also mixing between H and HBL through the term λhH (see Eq. (2.3)). As a result, the

mass matrix of H and HBL contains off diagonal elements which are proportional to λhH ,

v and VBL. Hence, H and HBL are not representing any physical field. The scalar mass
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matrix with respect to the basis (H, HBL) is given by

M2
scalar =


2λhv2 λhH vBL v

λhH vBL v 2λHv2
BL

 . (2.7)

In order to obtain the physical states we have to diagonalise the real 1 symmetric matrix

M2
scalar (Eq. (2.7)) by an orthogonal matrix. The physical fields or the mass eigenstates

which are linearly related to H and HBL, can be obtained through the following relations

h1 = H cosα+ HBL sinα,

h2 = −H sinα+ HBL cosα, (2.8)

where the scalar field h1 is identified as the SM like Higgs boson and h2 is the extra Higgs

boson in the model, while α is the mixing angle between H and HBL given as

tan2α =
λhH vBL v

λhv2−λHv2
BL

. (2.9)

We will see later that from LHC results, the allowed values of the mixing angle α are

extremely small. The expressions of masses of the three physical scalar fields h1, h2 and

φDM are

M2
h1

= λhv2 +λHv2
BL +

√
(λhv2−λHv2

BL)2 + (λhH vvBL)2 ,

M2
h2

= λhv2 +λHv2
BL−

√
(λhv2−λHv2

BL)2 + (λhH vvBL)2 ,

M2
DM = µ2

DM +
λDhv2

2
+
λDHv2

BL

2
. (2.10)

Since h1 is the SM like Higgs boson therefore we have taken Mh1 = 125.5 GeV.

In this model, besides the SM parameters, we have twelve unknown independent pa-

1In present model we have taken all the coupling constants and VEVs as real.
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rameters, namely the masses of h2, φDM, ZBL, Ni, U(1)B−L gauge coupling gBL, B−L

charge (nBL) of dark matter (φDM), scalar mixing angle α and three quartic couplings

λDH , λDh, λDM. In terms of these independent parameters, the couplings appearing in the

Lagrangian (Eqs. (2.1-2.3)) can be expressed as

λH =
M2

h1
+ M2

h2
+ (M2

h2
−M2

h1
)cos2α

4v2
BL

,

λh =
M2

h1
+ M2

h2
+ (M2

h1
−M2

h2
)cos2α

4v2 ,

λhH =
(M2

h1−M2
h2

)cosαsinα

vvBL
,

µ2
φh

= −
(M2

h1
+ M2

h2
)v + (M2

h1
−M2

h2
)(vcos2α+ vBL sin2α)

4v
,

µ2
φH

=
−(M2

h1
+ M2

h2
)vBL + (M2

h1
−M2

h2
)(vBL cos2α− vsin2α)

4vBL
, (2.11)

where µ2
φh

and µ2
φH

are the quadratic self coupling of the SM Higgs doublet φh and the extra

Higgs singlet φH respectively. Moreover, the model parameters are subjected to satisfy

certain conditions arising from theoretical constraints as well as relevant experimental

results. These constraints are briefly discussed below.

• Vacuum Stability: In our model we choose the ground state (φh, φH , φDM) = (v,

vBL, 0). This requires the following constrains on the quadratic self couplings of

the scalar fields,

µ2
φh
< 0, µ2

φH
< 0 and µ2

DM > 0 . (2.12)

Also in order to obtained a stable ground state (vacuum), the quartic couplings,
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appearing in the Lagrangian, need to satisfy the following conditions

λh ≥ 0,λH ≥ 0,λDM ≥ 0,

λhH ≥ −2
√
λhλH ,

λDh ≥ −2
√
λhλDM,

λDH ≥ −2
√
λH λDM,√

λhH + 2
√
λhλH

√
λDh + 2

√
λhλDM

√
λDH + 2

√
λH λDM

+2
√
λhλHλDM +λhH

√
λDM +λDh

√
λH +λDH

√
λh ≥ 0 . (2.13)

• Planck Limit: The relic density ΩDMh2 of the dark matter particle φDM at the

present epoch should lie within the range reported by the satellite borne experiment

Planck [20], which is

0.1172 ≤ΩDMh2 ≤ 0.1226 at 68% C.L. (2.14)

• Stability of dark matter: We give a U(1)B−L charge to the dark matter candidate

(φDM) in such a way so that all possible decay terms are forbidden by the invari-

ance of U(1)B−L gauge symmetry which therefore ensures the stability of φDM. In

general, the possible decay terms of φDM are like φDMφ
p
hφ

q
H (where p+q ≤ 3 and p,

q are integer can vary from 0 to 3) and φDM f̄ ′ f , where f is Ni and f ′ = Nc
i

2. From

Table 2.1 one can see that the B−L charges of φh and φH are 0 and +2 respectively.

Therefore if we take nBL , −2q then we can not write the term φDMφ
p
hφ

q
H , as it will

violate the U(1)B−L gauge symmetry. In addition, in our case, we have varied dark

matter mass from 40 GeV to 55 GeV and MDM < Mh1 , Mh2
3 as a result any decay

modes of φDM to these scalar bosons are kinematically forbidden. Moreover, due to

2Since φDM is singlet under SM gauge group therefore a term like φDM f f̄ with f being any Standard
Model fermion is forbidden.

3which is required to explain Fermi-LAT gamma excess [110], see section 2.5 for more detailed discus-
sion.
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the presence of φDMN̄c
i Ni term, the dark matter candidate can also decay into two

Majorana type right handed neutrinos in the final state, if the kinematical condition

(MDM > 2MNi , i = 1 to 3) is satisfied, which can also destroy its stability. To get

rid of this decay term we can not choose nBL = +2 as the combination N̄c
i Ni has

B−L charge −2. Therefore, in order to avoid all the above mentioned decay terms

(due to renormalizability of the Lagrangian we have considered operators only upto

dimension 4) we need nBL , ±2q where q is any integer between 0 and 3.

• LEP bound: Since the SM fermions are charged under the gauge group U(1)B−L,

therefore LHC should find some footprint of the B−L gauge boson ZBL as it can

directly interact with all the SM fermions. The nondetection of any signature of ZBL

puts a severe constraint on its mass (MZBL) and B−L gauge coupling (gBL). From

LEP experiment the ratio
MZBL
gBL

is bounded from below by the following condition

[111, 112] 4

MZBL

gBL
>∼ 6−7 TeV . (2.15)

h1/h2 ZBL

φDM/φ†
DM φDM/φ†

DMφDM/φ†
DM φDM/φ†

DM

N N N N

Figure 2.1: Feynmann diagrams for spin independent scattering cross section of dark mat-
ter particle/antiparticle with nucleon (N) through both Higgses (h1,h2) and gauge boson
ZBL.

• LUX limit: In this model, the complex scalar field φDM is our dark matter candi-

date. Therefore, both φDM and its antiparticle can elastically scatter off the detector
4Recent bounds on the mass and gauge coupling of ZBL from ATLAS collaboration are given in Ref.

[113].
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nuclei through the exchange of neutral scalars h1, h2 and U(1)B−L gauge boson ZBL.

Moreover, due to the presence of vector boson (ZBL) mediator, the elastic scattering

cross sections for the dark matter and its antiparticle are different. If we take the

number densities of the dark matter and its antiparticle to be equal at the present

epoch (which is true if the species has negligible chemical potential [30]), then we

have to multiply the elastic scattering cross sections of dark matter and its antipar-

ticle by a factor 1/2 while comparing these scattering cross sections, obtained from

the present model, with the experimental upper limits reported by the direct detec-

tion experiment LUX [114, 115]. The reason behind this is the exclusion regions

in σS I −MDM plane reported by different dark matter direct detection experiments

are computed assuming the existence of only one type of dark matter particle (and

also self-conjugate) in the Universe. Although our model too has only one kind of

dark matter candidate, however, it has a different antiparticle and they do not pos-

sess equal interaction strengths with the detector nuclei. Feynman diagrams for the

elastic scattering of both φDM and φ†DM with the nucleon (N) are shown in Fig. 2.1.

These processes are mediated through the exchange of h1, h2 and ZBL. The expres-

sions of spin independent scattering cross sections off the nucleon (N) for both φDM

and φ†DM are given by

σ
φDM (φ†DM) =

µ2

4π

[
MN fN cosα

MDM v

( tanαg
φDMφ

†

DMh2

M2
h2

−

g
φDMφ

†

DMh1

M2
h1

)
− (+)

2nBL g2
BL fZBL

3 M2
ZBL

]2

,

(2.16)

where g
φDMφ

†

DMhi
is the vertex factor for a vertex involving fields φDM φ

†

DM hi (i = 1,

2) and its expression is given in Table 2.1. The reduced mass between nucleon N

(proton or neutron) and DM particle is denoted by µ. Moreover, the nuclear form

factor for the scalar mediated processes is fN ∼ 0.3 [116] while that for ZBL medi-
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ated diagram is fZBL = 3.0 5. From the expression of spin independent scattering

cross section it is seen that although, the elastic scattering cross sections of φDM

and φ†DM with N are identical when the scattering processes are mediated through

the scalar bosons only, however, if we include the ZBL mediated diagram then the

elastic scattering cross sections for both φDM and φ†DM become different from each

other. It is due to the fact that the momentum dependent vertex factors for the ver-

tices φDMφDMZBL and φ†DMφ
†

DMZBL
6 are differ by a -ve sign (due to the change in

sign of momentum while go from particle to anti particle scenario) from each other

which results in a difference between σφDM and σ†φDM
arising from the interaction

terms between ZBL and scalar bosons mediated diagrams. If σexp
S I represents the

upper limit of the spin independent scattering cross section reported by the LUX

experiment for a particular dark matter mass then for a viable dark matter model

both σφDM and σ
φ†DM

must satisfy the following condition

σφDM +σ
φ†DM

< 2σexp
S I , (2.17)

• LHC constraints:

– Signal Strength of SM-like Higgs: The signal strength of h1 for a particular

decay channel h1→ XX̄ (X is any SM particle such as gauge boson, quark or

lepton) is defined as

RXX̄ =
σBR(h1→ XX̄)

[σBR(h→ XX̄)]S M
, (2.18)

where σ and BR(h1 → XX̄) are the production cross section of h1 and its

branching ratio for XX̄ decay channel. In the denominator of the above equa-

5 N N̄ ZBL coupling g
N N̄ ZBL

=
∑

q=ud f N
Vq
×gqq̄ZBL [32] with gqq̄ZBL =−

gBL γ
µ

3 is the coupling for the vertex

containing fields qq̄ZBL (see Table 2.2). Now for proton p (neutron n) f p
Vu

= 2, f p
Vd

= 1 ( f n
Vu

= 1, f n
Vd

= 2) [32].
Therefore, for both the nucleon N (n and p) the coupling g

N N̄ ZBL
= fZBL ×gqq̄ZBL with fZBL =

∑
q=ud f N

Vq
= 3.

Thus in this model form factors of proton and neutron are same for ZBL mediated diagram.
6see the expression of g

φDMφ
†

DMZBL
in Table 2.2
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tion [σBR(h→ XX̄)]S M represent the same quantities for the SM Higgs boson

(h). If the neutral boson h1 is similar to the SM Higgs boson then according

to LHC result the signal strength ratio RXX̄ should be > 0.8 7 [117]. We will

see later, in Fig. 2.3 (Section 2.4) that the above condition will impose severe

constrain on the allowed values of scalar mixing angle α.

– Invisible decay width of Higgs boson: In the present model, the SM like

Higgs boson h1 can decay into a pair of φDM and φ†DM if the kinematical con-

dition Mh1 ≥ 2MDM is satisfied. Such decay channel is known as the invisible

decay model of h1. The expression of partial decay width of h1 into φDMφ
†

DM

final state is

Γh1→φDM
φ†DM

=

g2
h1φDM

φ†DM

16πMh1

√√√
1−

4M2
DM

M2
h1

, (2.19)

where gh1φDM
φ†DM

is the vertex factor for the vertex involving h1φDM
φ†DM.

Throughout this work we have considered the partial width of this invisible

decay channel of h1 to be less than 20% [118, 119] of its total decay width.

• Fermi-LAT gamma excess from Galactic Centre: In order to explain the Fermi-

LAT observed gamma-ray excess from the Galactic Centre using a self-conjugate

annihilating dark matter, one needs a dark matter particle of mass 48.7+6.4
−5.2 GeV

[110]. If we assume an NFW halo profile with γ = 1.26, ρ� = 0.4 GeV/cm3, r� = 8.5

kpc and rs = 20 kpc then the annihilation cross section of dark matter particle

for the bb̄ annihilation channel should lie in the range 〈σv〉bb̄ ∼ 1.75+0.28
−0.26 × 10−26

cm3/s [110]. However, if we take into account the uncertainties of DM halo pro-

file parameters (mentioned above) then the quantity 〈σv〉bb̄ can vary in the range

A× 1.75+0.28
−0.26 × 10−26 cm3/s with A = [0.17,5.3] [110]. We will discuss about the

Fermi-LAT gamma-ray excess elaborately in Section 2.5 where we will see that the

7We have considered the central value of the combined signal strength of the SM Higgs boson reported
by the CMS collaboration [117].
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required value of 〈σv〉bb̄ for a non-self-conjugate DM (which is true for the present

model) is different from a dark matter candidate whose particles and antiparticles

are same.

φDM

φ†
DM

h1/h2

f

f̄

φDM

φ†
DM

ZBL

f

f̄

Figure 2.2: Feynman diagrams for dark matter annihilation through both scalar bosons
(h1,h2) and gauge boson ZBL.

2.3 Relic Density

The evolution of total number density (n) of both φDM and φ†DM is governed by the Boltz-

mann equation as given in Eq. (1.81). To calculate 〈σv〉 (as defined in Eq. (1.76)), we need

to calculate the cross section for the process φDMφ
†

DM → f f̄ , mediated by the exchange

of h1, h2 and ZBL as given in Fig. 2.2, which is as follows,

σ =
3

8πs

√√
s−4m2

f

s−4M2
DM

{
A2 (s−4m2

f )

∣∣∣∣∣∣∣
gh1φDMφ

†

DM

(s−M2
h1

) + iΓh1 Mh1

−

tanα gh2φDMφ
†

DM

(s−M2
h2

) + iΓh2 Mh2

∣∣∣∣∣∣∣
2

+
2
9

g4
BLn2

BL

(s−MZBL)2 + (ΓZBL MZBL)2 (s−4M2
DM)(s + 2m2

f )
}
, (2.20)

where Γi is the total decay width of the particle i (i = h1, h2, ZBL), m f is the mass of the

SM fermion f and
√

s is centre of mass energy. giφDMφ
†

DM
is the vertex factor for the

vertex involving the fields iφDMφ
†

DM (i = h1, h2) and its expression is given in Table 2.2.
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Vertex Vertex Factor
abc gabc

qq̄h1 −
Mq

v
cosα

qq̄h2
Mq

v
sinα

qq̄ZBL −
gBL

3
γµ

l l̄ h1 −
Ml
v

cosα

l l̄ h2
Ml
v

sinα

l l̄ZBL gBL γ
µ

φDM φ†DM h1 −
1

2gBL
(2gBL vλDh cosα+ MZBL λDH sinα)

φDM φ†DM h2
1

2gBL
(2gBL vλDh sinα−MZBL λDH cosα)

φDM φ†DM ZBL nBL gBL (p2 − p1)µ

φDM φ†DM h1 h1 −(λDh cos2 α+λDH sin2 α)

φDM φ†DM h2 h2 −(λDh sin2 α+λDH cos2 α)

φDM φ†DM h1 h2 sinαcosα(λDh −λDH )

φDM φ†DM ZBL ZBL 2g2
BLn2

BL
φDM φ†DMφDM φ†DM −4λDM

Table 2.2: All possible vertex factors related to dark matter annihilation for the present
model.

2.4 Results

In this section we have shown how the relic density of DM varies with various model

parameters namely α, gBL, nBL, Mh2 , MDM, MZBL , λDh, λDH . In order to compute the

DM relic density, we have solved the Boltzmann equation (Eq. (1.81)) numerically using

the micrOMEGAs [33] package while the information of the present model is supplied

to micrOMEGAs through the LanHEP [120] package. All the constraints on the model

parameters, listed in Section 2.2, are also taken into account in the numerical calculations.

In the left panel (right panel) of Fig. 2.3 we plot the variation of DM relic density Ωh2

with the scalar mixing angle α for three different values of λDH = −0.005 (λDh = 0.008)

(green dashed line), −0.0104 (0.001) (red solid line) and −0.015 (0.004) (blue dashed-

dotted line) while the values of other parameters are kept fixed at gBL = 0.01, MDM = 52.0

GeV, Mh2 = 102.8 GeV, MZBL = 104.1 GeV, λDh = 0.001 (λDH = −0.0104) and nBL =

0.15. In this plot, magenta dotted line represents the central value of DM relic density

as reported by the Planck collaboration (Ωh2 = 0.1199). From the Table 2.2 we see that

the ZBL mediated diagram is independent of the mixing angle α, so its contribution does

not depend on α. On the other hand the two Higgs scalars h1,h2 mediated diagrams are
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dependent on the mixing angle α. It is seen from Fig. 2.3 that the dark matter relic density

is practically independent of the mixing angle αwhen α becomes too small (α< 3×10−3).

This can be explained as follows, in this region sinα∼ 0 and the h2 mediated diagram does

not contribute since the l l̄ h2 vertex is suppressed and it is mostly the ZBL and h1 mediated

diagrams that contribute. For very small α, even the h1 mediated diagram is independent

of α since cosα ∼ 1, making Ωh2 constant with α. We also note from left (right) panel

of Fig. 2.3 that in this region, Ωh2 has no dependence on λDH (λDh). This again can be

explained using the fact that here only the h1 mediated diagram (in addition to the ZBL

mediated diagram which is anyway independent of α, λDH and λDh) contributes and Table

2.2 reveals that for small α we have impact of only λDh on Ωh2.

On the other hand if we start increasing the mixing α after the value (α > 3× 10−3),

the scalars h1 and h2 both start contributing along with B−L gauge boson ZBL in the

DM annihilation process, which enhances 〈σv〉bb̄. Therefore the relic density which is

approximately inverse of 〈σv〉bb̄ decreases with increase of mixing angle α. Again we

notice from Table 2.2 that the cosα dependent term in the vertex φDMφ
†

DMh2 and the sinα

dependent term in the vertex φDMφ
†

DMh1 is proportional to λDH . This makes the relic

density decrease with increasing λDH for larger values of α, as is evident from the left

panel of Fig. 2.3. Likewise the right panel shows the dependence of the relic density on

λDh which comes from the first term of the φDMφ
†

DMh1 vertex. This explains the decrease

of the relic density with λDh. In this figure, we have also shown the excluded region

for mixing angle α from LUX and LHC experiment. The crossed region is excluded by

both LUX and LHC experiment, whereas the forward lines is only excluded by LHC

experiment.

Left panel of Fig. 2.4 represents the variation of Ωh2 with U(1)B−L gauge coupling

gBL for three different chosen values of λDH . Here green dashed-dotted line is for λDH =

−0.015, red solid line is for λDH = −0.0104 whereas the plot for λDH = −0.015 is shown

by blue dashed line. Like the previous figures here also, the central value of Planck limit
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Region excluded only by LHC

Region excluded by LHC and LUX

nBL = 0.15
λDH = - 0.005
λDH = - 0.0104
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Figure 2.3: Left (Right) panel: Variation of relic density Ωh2 with mixing angle α for
nBL = 0.15 and three different values of λDH (λDh) while other parameters value have
been kept fixed at gBL = 0.01, MDM = 52.0 GeV, Mh2 = 102.8 GeV, MZBL = 104.1 GeV,
λDh = 0.001 (λDH = −0.0104).
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Figure 2.4: Left (Right) panel: Variation of relic density Ωh2 with gBL (Mh2) for nBL =

0.15 and three different values of λDH (α) while other parameters value have been kept
fixed at MDM = 52.0 GeV, MZBL = 104.1 GeV, Mh2 = 102.8 GeV, λDh = 0.001, α = 0.045
(λDH = −0.0104). For discussion about the two marked regions see text below of this
figure.

on DM relic density is indicated by magenta dotted line. It is seen from the left panel of

Fig. 2.4 that initially the relic density increases with gBL and attains a maximum value

at gBL ∼ 0.01, thereafter it starts decreasing with gBL. The initial rise of Ωh2, for low

gBL, is due to s channel process of φDMφ
†

DM → f f̄ , mediated by h1 and h2. In this case,

the relevant couplings (φ†DMφDMhi, i = 1, 2) are inversely proportional to gBL (see Table

2.2). However, as gBL becomes large (gBL >∼ 0.01), the other s channel process mediated

by B−L gauge boson starts dominating over the scalar exchange processes. From Table

2.2, one can easily see that the coupling φ†DMφDMZBL is proportional to gBL, which makes

〈σv〉 f f̄ (via ZBL exchange) proportional to fourth power of gBL
8. The dominance of s

8 f f̄ ZBL coupling is also proportional to gBL.
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Figure 2.5: Left panel: Variation of relic density Ωh2 with the mass of ZBL for three
different values of gBL. Right panel: Variation of DM relic density with its B−L gauge
charge nBL for three different values of α. Both the plots are drawn for MDM = 52.0 GeV,
Mh2 = 102.8 GeV, λDh = 0.001, λDh = −0.0104.

channel ZBL exchange annihilation process over the scalar mediated ones is indicated by

the fact that in this region (higher value of gBL, gBL >∼ 0.01) Ωh2 (or 〈σv〉 f f̄ ) does not

depend on the coupling λDH . We show by the hatched region the values of gBL excluded

by LEP.

In the right panel of Fig. 2.4 we show the variation of Ωh2 with the mass of the non-

standard Higgs boson h2 for three different values of its mixing angle with SM Higgs,

namely α = 0.045, 0.05, 0.055. From this plot, it is seen that for all the chosen val-

ues of α the relic density satisfies the Planck limit only near the resonance region when

MDM ∼ Mh2/2. The figure shows that in this region Ωh2 becomes practically independent

of α. We see that there are two sets of values of Mh2 for which the model can predict

the correct dark matter relic density. Of these two regions which are marked in the fig-

ure, one of them with Mh2 ∼ 100 GeV produces 〈σv〉bb̄ in the right ballpark value of

∼ 10−26 cm3/s, thus can explain the Fermi-LAT gamma-ray excess [110]. Whereas the

other region labelled as “Region can’t explain Fermi-LAT γ excess” (Mh2 ∼ 120 GeV)

produces 〈σv〉bb̄ ∼ 10−29 cm3/s (see Fig. 2.9 also).

Variation of Ωh2 with the mass of B−L gauge boson is shown in left panel of Fig.

2.5. In this figure three different plots are computed for three different values of B−L

gauge coupling (gBL). Here, red solid line is for gBL = 0.01 while gBL = 0.0108 and
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0.0104 are represented by green dashed line and blue dashed-dotted line, respectively.

This figure is drawn for fixed values of other parameters, namely, α = 0.045, MDM = 52.0

GeV, Mh2 = 102.8 GeV, λDh = 0.001, λDH = −0.0104, nBL = 0.15. From this plot it is seen

that for a fixed value of MZBL , DM relic density increases with gBL, which is consistent

with the plot in left panel of Fig. 2.4 (cf. red line in the left panel of Fig. 2.4 where the

maxima of Ωh2 occurs for gBL >∼ 0.015). The presence of resonance due to ZBL (when
√

s ' MZBL) is also seen from this figure and like the previous case for h2 here also the

Planck limit is satisfied only near the resonance. However, the resonance due to ZBL is

not as sharp as it is due to h2 because in this region of parameter space the decay width

of ZBL is nearly two orders of magnitude larger than that of h2. Here in the left panel the

shaded region is not allowed by the LEP bound on ZBL. Right panel of Fig. 2.5 describes

the variation of Ωh2 with the B−L gauge charge (nBL) for three different values of neutral

scalar mixing angle namely α = 0.04 (blue dashed-dotted line), 0.045 (red solid line) and

0.05 (green dashed line), respectively. From this figure it is seen that as the B−L charge

of the DM candidate φDM decreases, its relic density increases sharply and eventually the

DM relic density saturates after a certain value of nBL <∼ 0.1. A possible explanation of

this nature of Ωh2 could be as follows. For large value of nBL (nBL ∼ 1) the maximum

contribution to DM annihilation cross section comes from B−L gauge boson mediated

channel as the cross section for this channel is directly proportional to n2
BL. Hence 〈σv〉 f f̄

becomes practically independent of the mixing angle α. However as nBL decreases from

unity the scalar mediated s channel processes become significant and consequently after

a certain value of nBL (nBL <∼ 0.1) the annihilation cross section 〈σv〉 f f̄ becomes nearly

insensitive to nBL and depends strongly on the mixing angle α. In the right panel, we

have given upper bound on the DM charge nBL, which we get from LUX limit on spin

independent direct detection cross section.

Variation of Ωh2 with dark matter mass for two different values of nBL are shown

in Fig. 2.6. In this figure, the left panel is for nBL = 0.15 while the right panel is for

nBL = 0.2. In each panel the three different lines represent the variation of Ωh2 with nBL
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Figure 2.6: Left (Right) panel: Variation of relic density Ωh2 with mass of φDM for
nBL = 0.15 (nBL = 0.20) and three different value of λDH while other parameters value
have been kept fixed at α = 0.045, gBL = 0.01, Mh2 = 102.8 GeV, MZBL = 104.1 GeV,
λDh = 0.001.

for three chosen values of λDH = −0.005, −0.0104 and −0.015 respectively. From both

panels of Fig. 2.6 it is seen that there are two resonance regions where the first one is

for the non-standard Higgs boson h2 (Mh2 ∼ 104 GeV) while the second one corresponds

to the SM Higgs boson of mass 125.5 GeV. In both panels the DM relic density satisfies

the Planck limit (indicated by the magenta dotted line) only near the resonance regions.

In both the panel of Fig. 2.6, we have shown allowed region of DM mass for explaining

Fermi-LAT gamma-ray excess from GC.
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Figure 2.7: Left (Right) panel: Variation of relic density Ωh2 with λDh (λDH) for nBL =

0.15 and three different values of mixing angle α while other relevant parameters value
have been kept fixed at MDM = 52.0 GeV, Mh2 = 102.8 GeV, MZBL = 104.1 GeV, λDH =

−0.0104 (λDh = 0.001).

We finally show the variation of Ωh2 with two remaining model parameters λDh and

λDH in left and right panel of Fig. 2.7, respectively. In each panel we have shown the

variation of Ωh2 for three different values of mixing angle α namely α = 0.045, 0.05 and
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0.055. From the left panel of Fig. 2.7 it is seen that for small value of the parameter λDh

(λDh < 0.03) relic density remains unaffected with respect to the change in value of λDh

as in this region DM annihilation cross section is controlled by the coupling λDH which

is considered to be |λDH | ∼ 0.01. Also from Table 2.2 we see that when λDH � λDh,

the couplings gh1φDMφ
†

DM
∝ sinα and gh2φDMφ

†

DM
∝ cosα. However, the term within the

modulus in Eq. (2.20) is proportional to sin2α. Therefore, inspite of being small in

value, the variation of α produces a significant change in σ and hence in relic density.

Similarly, using Eq. (2.20) and Table 2.2 one can easily see that for higher value of λDh

(when λDH � λDh), the scalar mediated term in σ (term within modulus in Eq. (2.20))

mainly depends on cosα and λDh. Consequently, for the higher value of λDh, there is no

observable change in relic density with respect to α and it decreases with the increase

of λDh. In right panel of Fig. 2.7 we have shown the variation of Ωh2 with λDH . It is

seen from this figure that, the behaviour of DM relic density with respect to the coupling

λDH is same as it is with λDh i.e. initially for small value of λDH relic density remains

unchanged and therefore after a certain value of λDH (when λDH > λDh, λDh ∼ 10−3) relic

density falls gradually with the increase of λDH . However, by comparing both the plots

in Fig. 2.7 one finds that with respect to α the behaviour of Ωh2 Vs λDH curve is exactly

opposite to the curve Ωh2 Vs λDh (shown in the left panel) which can be easily understood

from Table 2.2 and Eq. (2.20). In both the panel we have shown allowed regions for the

coupling constant λDh and λDH respectively. The crossed regions are excluded by both

LHC and LUX, whereas for left panel the backward line region is excluded by LUX and

for right panel the forward line region is excluded by LHC.

In the left panel of Fig. 2.8, we show how the average value of spin independent

scattering cross section 1
2 (σφDM +σ

φ†DM
) of φDM and φ†DM with the detector nuclei varies

as a function of dark matter mass for nBL = 0.15. While computing this plot, we have

varied the mass of B−L gauge boson in range of 2 MDM
+70
−30 GeV for a particular value

of DM mass (MDM) since the relic density is satisfied only near the respective resonance

regions of ZBL and h2 where Mh2 , MZBL ∼ 2MDM (see Figs. 2.4, 2.5). The other relevant
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Figure 2.8: Left panel: Spin independent cross section σS I between and dark matter par-
ticle (φDM) and the detector nucleon for nBL = 0.15. Blue dashed lines in this panel repre-
sent upper limit on σS I reported by LUX collaboration. Right panel: Allowed regions in
MDM −Mh2 plane which satisfy the observed relic density, Fermi-LAT gamma-ray excess
(〈σv〉bb̄ ∼ 10−26 cm3/s for red coloured region only) and LHC constraints listed in Section
2.2.

parameters are kept fixed at α = 0.045, gBL = 0.01, λDH = −0.0104, λDh = 0.001. The

experimental upper limits on the DM spin independent scattering cross section with the

detector nuclei is also shown by blue dashed line. Here all the points within the red and

green patches satisfy all the necessary constraints namely Planck limit on relic density,

LHC bounds on invisible decay width and signal strength of SM-like Higgs boson (h1),

lower limit on
MZBL
gBL

from LEP and also the vacuum stability conditions. From this plot

it is seen that although the dark matter mass between 40 GeV to 55 GeV satisfies all

the constrains mentioned above, the lower mass region between 40 GeV to 45 GeV has

already been excluded by the upper limit on spin independent scattering cross section

reported by the LUX collaboration. Therefore in this model with the considered ranges of

model parameters, dark matter mass of 45 GeV to 55 GeV is still allowed by all possible

experimental as well as theoretical constraints. This allowed region can be tested in near

future by the upcoming “ton-scale” direct detection experiments like XENON 1T.

As we have seen earlier in Fig. 2.4 (right panel), that for two values of Mh2 Planck’s

relic density central value is satisfied. If we consider the higher value of Mh2 (Mh2 ∼ 120

GeV) then the annihilation cross section for the channel φDMφ
†

DM → bb̄ comes in around

〈σv〉bb̄ ∼ 10−29 cm3 s−1, which cannot explain Fermi-LAT gamma excess [110]. On the

other hand the lower value of Mh2 (Mh2 ∼ 100 GeV) produces 〈σv〉bb̄ in the right ballpark
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value of 10−26 cm3 s−1 which is required to explain the Fermi-LAT gamma excess. To find

the allowed region which can satisfy all the constraints as mentioned in Section 2.2 we

have varied Mh2 and MZBL in the ranges 2 MDM
+25
−10 GeV and 2 MDM

+70
−30 GeV respectively.

The allowed region in MDM−Mh2 plane is shown in the right panel of Fig. 2.8. In this plot

red coloured region around ∼ 2×MDM corresponds to the lower value of Mh2 which can

explain the Fermi-LAT γ-ray excess while the higher allowed value of Mh2 is indicated

by green coloured patch which is unable to explain the GC γ-ray excess. As we have

discussed above, here also the region corresponds to dark matter mass of 40 GeV to 45

GeV is ruled out by the results of LUX direct detection experiment. The region beyond

the dark matter mass of 45 GeV satisfies all the constraints listed in Section 2.2.

Figure 2.9: Allowed region in Mh2-α plane satisfied by various experimental constraints
considered in this work. Other relevant parameters are kept fixed at λDh = 0.001, λDH =

−0.0104, MZBL = 104.1 GeV and gBL = 0.01.

Figure 2.10: Left panel (Right panel): Allowed region in gBL-λDH (gBL-MZBL) plane satis-
fied by all the experimental constraints considered in this work. Other relevant parameters
are kept fixed at λDh = 0.001, α = 0.045, MDM = 52 GeV and Mh2 = 102.8 GeV.

In Fig. 2.9 we show the allowed region in Mh2-α plane for 40GeV ≤ MDM ≤ 55
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GeV, MZBL = 104.1 GeV, nBL = 0.15, λDh = 0.001, λDH = −0.0104 and gBL = 0.01. Here,

green coloured region satisfies all the constraints except Fermi-LAT bound on dark matter

annihilation cross section into bb̄ final state while the values of α and Mh2 lying within

the red coloured patch are allowed by all the experimental constraints listed in Section

2.2. The region in λDH − gBL plane which satisfies simultaneously the results of Planck,

LUX, LHC, LEP and Fermi-LAT experiments is shown by a red coloured patch in the left

panel of Fig. 2.10. While computing this plot we have varied the mass of the extra neutral

gauge boson ZBL in the range of 50 GeV to 1050 GeV and the values of other relevant

parameters are kept fixed at MDM = 52 GeV, Mh2 = 102.8 GeV, α = 0.045, λDh = 0.001

and nBL = 0.15. From this figure it is evident that gBL <∼ 0.1 and |λDH | <∼ 0.011 are allowed

for 50GeV ≤ MZBL ≤ 1050 GeV. On the other hand from the right panel of Fig. 2.10 one

can see that all the considered range of MZBL (50GeV ≤ MZBL ≤ 1050 GeV), except the

extreme right region with gBL lies between 0.01 to 0.1 (LEP excluded region), is allowed

with respect to the variation of U(1)B−L gauge coupling constant gBL.

2.5 Gamma-ray flux

In this present model the pair annihilation of φDMφ
†

DM produces b and b̄ at the final state9.

Therefore, these b quarks undergo hadronisation processes and produce γ-rays. The dif-

ferential gamma-ray flux from the pair annihilation of φDM and φ†DM at the Galactic Centre

region is given by

dΦγ

dΩdE
=

1
2

r�
8π

(
ρ�

MDM

)2

J̄ 〈σv〉bb̄

dNb
γ

dE
, (2.21)

where r� = 8.5 kpc is the distance of solar system from the centre of our Milky way

galaxy and dark matter density near the solar neighbourhood is denoted by ρ� which is

taken to be 0.4 GeV/cm3. Similar to Eqs. (1.81), here also the half factor appearing in the

9One can extrapolate this work and can explain the Fermi-LAT gamma-ray excess by studying different
channels such as τ+τ−, W+W−, qq̄ and h1h1.
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expression of the differential gamma-ray flux is due the non-self-conjugate nature of φDM.

Moreover,
dNb

γ

dE is the spectrum of produced gamma-rays from the hadronisation processes

of b quarks and we have adopted the numerical values of
dNb

γ

dE for different values of photon

energy from ref. [121]. Annihilation cross section for the channel φDMφ
†

DM → bb̄ which

acts as the seed mechanism for the Galactic Centre gamma-excess, is denoted by 〈σv〉bb̄.

Further, J̄ is the averaged of “astrophysical J factor" over a solid angle ∆Ω. The value of

solid angle ∆Ω around the Galactic Centre depends on the choice of a particular region

of interest (ROI). In the present work we have adopted the same ROI as considered by

Calore et. al. [110] which is |l| < 200 and 20 < |b| < 200 with l and b are the galactic

longitude and latitude respectively. Therefore, the expression of J̄ is given by

J̄ =
4

∆Ω

∫ ∫
db dlcosb J(b, l) , (2.22)

with

J(l,b) =

∫
l.o.s

ds
r�

(
ρ(r)
ρ�

)2

, (2.23)

and

∆Ω = 4
∫

dl
∫

dbcosb , (2.24)

r =
(
r2
�+ s2−2r� scosbcos l

)1/2
, (2.25)

where the integration of Eq. (2.23) is performed along the line of sight (l.o.s) distance s

which can be defined using Eq. (2.25). In the definition of “astrophysical J factor” (Eq.

(2.23)), ρ(r) represents the variation of dark matter density with respect to the distance r

from the Galactic Centre, which is also known as the density profile of dark matter. As

the actual form of the density profile is still unknown to us there are many approximate
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dark matter density profiles available in the literature such as NFW profile [122], Einasto

profile [123], Isothermal profile [124], Moore profile [125]. Therefore, as in ref. [110],

in this work also, we have used NFW halo profile with γ = 1.26, rs = 20 kpc. Using Eqs.

(2.22-2.25) and a NFW dark matter halo profile we have found the value of J̄ = 57.47

for the above mentioned ROI (|l| < 200 and 20 < |b| < 200). However, due to our poor

knowledge about the halo profile parameters (ρ�, γ, rs) the value of J̄ may vary from its

canonical value J̄ = 57.47 obtained for γ = 1.26, rs = 20, ρ� = 0.4 GeV/cm3. Now in

order to include such uncertainties into the value of J̄, which exist within the values of

DM density profile parameters, we have redefined J̄ in the following way

J̄ =A J̄canonical , (2.26)

where J̄canonical = 57.47, i.e. the value of J̄ for γ = 1.26, rs = 20, ρ� = 0.4 GeV/cm3 and

the quantity A can vary in the range 0.19 to 5.3 [110]. Therefore, the values of J̄ and

Jcanonical coincide whenA = 1.

Using Eqs. (2.21-2.26), we have computed the γ-ray flux due to the pair annihilation

of φDMφ
†

DM into bb̄ final state and it is plotted in Fig. 2.11. In this plot, Fermi-LAT

observed gamma-ray flux from the direction of Galactic Centre is denoted by black trian-

gle shaped points with the black vertical lines represent the uncorrelated statistical errors

while the correlated systematics are described by yellow coloured boxes. The red solid

line denotes the gamma-ray flux which is computed for an annihilating non-self-conjugate

dark matter particle of mass MDM = 52 GeV using the present model. We have found that

the gamma-flux obtained from the present model agrees well with the flux observed by

Fermi-LAT if the product of A〈σv〉bb̄ = 4.7× 10−26 cm3/s. Therefore, if we use the

canonical values of the halo profile parameters (when A = 1 and J̄ = 57.47) then in or-

der to reproduced Fermi-LAT observed gamma-ray flux from the pair annihilation of a

non-self-conjugate dark matter of mass 52 GeV its annihilation cross section for the bb̄

channel must be 4.7×10−26 cm3/s. For the other values ofAwhich are not equal to unity,
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the quantity 〈σv〉bb̄ will be scaled accordingly.

Figure 2.11: Gamma-ray flux produced from dark matter annihilation at the Galactic
Centre.

Three allowed values of 〈σv〉bb̄ that we have obtained from the present model for

MDM = 52 GeV, which are also satisfying all the constrains listed in Section 2.2, are

given in Table 2.3.

MDM [GeV]
52.0

nBL

0.15

Mh2 [GeV]
103.3
102.8
101.4

MZBL [GeV]
77.1
104.2
168.6

Ωh2

0.1208
0.1191
0.1199

< σv >bb̄ [cm3s−1]
7.005×10−26

4.545×10−26

2.853×10−26

A

0.67
1.03
1.65

Table 2.3: Allowed values of 〈σv〉bb̄ andA for three randomly chosen benchmark points
Mh2 and MZBL . The values of other relevant parameters are gBL = 0.01, α = 0.045, λDH =

−0.0104 and λDh = 0.001.
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3
Neutrino Mass, Dark Matter and Anomalous Magnetic

Moment of Muon in a U(1)Lµ−Lτ Model

3.1 Introduction

This chapter contains the paper [126] where we have considered the gauged U(1)Lµ−Lτ

extension of the SM. The main motivations for choosing this model is that it provides µ−τ

flavor symmetry which could naturally explain the peculiar neutrino mixing parameters

(See Table 1.2) wherein θ23 is close to maximal and θ13 is small. As mentioned above, this

model can also explain the muon (g−2) anomaly [127–131] for a range of Zµτ mass and

gµτ consistent with collider constraints. We will further extend this model with a complex

scalar, which will become a viable DM candidate. U(1)Lµ−Lτ extended Ma model [90]

has been studied earlier in the context of small neutrino mass generation in one loop

level [132] and dark matter [133]. A review on earlier works about µ−τ flavour symmetry

in neutrino sector can be found in [134] and references therein. In order to generate

neutrino masses through the Type-I seesaw mechanism [135–138] in the present scenario,

we have introduced three right handed neutrinos (Ne, Nµ, Nτ) with Lµ − Lτ charges 0, 1

and -1 respectively in the fermionic sector of SM. The scalar sector of the model is also

enlarged by the addition of two complex scalar singlets (φH and φDM) with nonzero Lµ−

Lτ charge. The proposed Lµ − Lτ symmetry is broken spontaneously when φH acquires
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vacuum expectation value (VEV) vµτ and thereby making Zµτ massive. The breaking

of Lµ − Lτ symmetry also results in additional terms in the neutrino mass matrix. In

particular, the µ−τ symmetry is broken and we can generate neutrino masses and mixing

parameters consistent with current bounds. We show that the complex scalar φDM is

stable in our model and hence becomes the DM candidate satisfying the constraints from

Planck, LUX and LHC results. We show that a sub-region of the parameter space that is

consistent with Planck, LUX and LHC results can also explain the Galactic Centre gamma

ray excess observed by Fermi-LAT.

3.2 Model

In this present work, we have considered a minimal extension of the SM where we have

imposed an extra local U(1)Lµ−Lτ symmetry to the SM Lagrangian, where Lµ and Lτ

denote the muon lepton number and tau lepton number respectively. Therefore, the La-

grangian of the present model remains invariant under the SU(3)c × SU(3)c × SU(2)L ×

U(1)Y ×U(1)Lµ−Lτ gauge symmetry. This model is free from axial vector and mixed grav-

itational gauge anomalies as these anomalies cancel between second and third generations

of leptons without the requirement of any additional chiral fermion. The full particle con-

tent of our model and their respective charges under SU(3)c×SU(2)L×U(1)Y ×U(1)Lµ−Lτ

gauge groups are listed in Tables 3.1 and 3.2. In order to break the U(1)Lµ−Lτ symmetry

spontaneously, we need a complex scalar field φH with a non-trivial Lµ − Lτ charge as-

signment such that the Lµ − Lτ symmetry is broken spontaneously when φH picks up a

vacuum expectation value vµτ. Spontaneous breaking of the Lµ− Lτ symmetry generates

mass for the extra neutral gauge boson Zµτ. It has been shown that the spontaneously bro-

ken Lµ − Lτ model can explain the anomalous muon g−2 signal. The Lµ − Lτ symmetry

is a flavor symmetry and hence can be used to explain the peculiar mixing pattern of the

neutrinos [139]. In our model we generate small neutrino masses through the Type-I see-

saw mechanism. To that end we introduce three right handed neutrinos (Ne, Nµ, Nτ) with
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Lµ−Lτ charges of 0, 1 and −1 respectively, such that their presence do not introduce any

further anomaly. In the U(1)Lµ−Lτ symmetric limit the right-handed neutrino mass has ex-

act µ−τ symmetry. We will show that the spontaneous breaking of the gauged U(1)Lµ−Lτ

symmetry leads to additional terms in the right-handed neutrino mass matrix, providing

a natural explanation of the neutrino masses and mixing parameters observed in neutrino

oscillation experiments, given in Table 1.2. We also add another complex scalar field φDM

in the model, with a chosen Lµ−Lτ charge nµτ such that the Lagrangian does not contain

any term with odd power of φDM. Also the scalar field φDM does not acquire any VEV

and consequently in this model φDM becomes odd under a remnant Z2 symmetry after

the spontaneous breaking of the gauged U(1)Lµ−Lτ symmetry, which ensure its stability.

Hence φDM can be a viable dark matter candidate. We now write the Lagrangian of

Gauge
Group
SU(2)L
U(1)Y

Baryon Fields
Qi

L = (ui
L ,d

i
L)T ui

R di
R

2 1 1
1/6 2/3 −1/3

Lepton Fields
Li

L = (νi
L ,e

i
L)T ei

R Ni
R

2 1 1
−1/2 −1 0

Scalar Fields
φh φH φDM
2 1 1

1/2 0 0

Table 3.1: Particle contents and their corresponding charges under SM gauge group.

Gauge
Group

U(1)Lµ−Lτ

Baryonic Fields
(Qi

L ,u
i
R ,d

i
R)

0

Lepton Fields
(Le

L ,eR ,Ne
R) (LµL ,µR ,N

µ
R) (LτL , τR ,Nτ

R)
0 1 −1

Scalar Fields
φh φH φDM
0 1 nµτ

Table 3.2: Particle contents and their corresponding charges under U(1)Lµ−Lτ .

present model, which is given by

L = LS M +LN +LDM + (DµφH)†(DµφH)−V(φh,φH)−
1
4

Fαβ
µτFµταβ , (3.1)

where LS M is the usual SM Lagrangian while the Lagrangian for the right handed neu-

trinos containing their kinetic energy terms, mass terms and Yukawa terms with the SM
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lepton doublets, is denoted by LN which can be written as

LN =
∑

i=e,µ,τ

i
2

N̄iγ
µDµNi−

1
2

Mee N̄c
e Ne−

1
2

Mµτ (N̄c
µNτ+ N̄c

τNµ)

−
1
2

heµ(N̄c
e Nµ+ N̄c

µNe)φ†H −
1
2

heτ(N̄c
e Nτ+ N̄c

τNe)φH

−
∑

i=e,µ,τ

yiL̄iφ̃hNi + h.c. (3.2)

with φ̃h = iσ2φ
∗
h and Mee, Mµτ are constants having dimension of mass while the Yukawa

couplings heµ, heτ and yi are dimensionless constants. In Eq. (3.1), LDM represents the

dark sector Lagrangian including the interactions of φDM with other scalar fields. The

expression of LDM is given by

LDM = (DµφDM)†(DµφDM)−µ2
DMφ

†

DMφDM −λDM(φ†DMφDM)2

−λDh(φ†DMφDM)(φ†hφh)−λDH(φ†DMφDM)(φ†HφH) . (3.3)

Moreover, the quantity V(φh,φH) in Eq. (3.1) contains all the self interaction of φH and its

interaction with SM Higgs doublet. Therefore,

V(φh,φH) = µ2
Hφ
†

HφH +λH(φ†HφH)2 +λhH(φ†hφh)(φ†HφH) . (3.4)

The expressions of all the covariant derivatives appearing in Eqs. (3.1)-(3.3) can be written

in a generic form which is given as

DνX = (∂ν+ igµτQµτ(X)Zµτν) X , (3.5)

where X is any field which is singlet under SM gauge group but has a Lµ − Lτ charge

Qµτ(X) (see Table 3.2) and gµτ is the gauge coupling of the U(1)Lµ−Lτ group. Furthermore,

the last term in Eq. (3.1) represents the kinetic term for the extra neutral gauge boson Zµτ

in terms of its field strength tensor Fαβ
µτ = ∂αZβµτ−∂βZαµτ.
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The Lµ−Lτ symmetry breaks spontaneously when φH acquires VEV and consequently

the corresponding gauge field Zµτ becomes massive, MZµτ = gµτ vµτ. In the unitary gauge,

the expressions of φh and φH after spontaneous breaking of the SU(3)c×SU(2)L×U(1)Y ×

U(1)Lµ−Lτ gauge symmetry are

φh =


0

v + H
√

2

 , φH =

(
vµτ+ Hµτ
√

2

)
, (3.6)

where v and vµτ are the VEVs of φh and φH respectively. Presence of the mutual inter-

action term in Eq. (3.4) between φh and φH introduces mass mixing between the scalar

fields H and Hµτ. The scalar mass matrix with off-diagonal elements proportional to λhH

is given by

M2
scalar =


2λh v2 λhH vµτ v

λhH vµτ v 2λH v2
µτ

 . (3.7)

From the expression ofM2
scalar it is evident that if λhH = 0 (i.e. the interaction between φh

and φH is absent), there is no mixing between H and Hµτ and hence they can represent two

physical states. In our model however λhH , 0 and consequently the states representing

the physical scalars will be obtained after the diagonalization of matrixM2
scalar. The new

physical states which are linear combinations of H and Hµτ can be written as

h1 = H cosα+ Hµτ sinα,

h2 = −H sinα+ Hµτ cosα. (3.8)
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The mixing angle α and the corresponding eigenvalues (masses of h1 and h2) are given by

tan2α =
λhH vµτ v

λhv2−λHv2
µτ

, (3.9)

M2
h1

= λhv2 +λHv2
µτ+

√
(λhv2−λHv2

µτ)2 + (λhH vvµτ)2 , (3.10)

M2
h2

= λhv2 +λHv2
µτ−

√
(λhv2−λHv2

µτ)2 + (λhH vvµτ)2 . (3.11)

We have considered h1 as the SM-like Higgs boson 1 which has recently been discovered

by ATLAS [140] and CMS [141] collaborations. Therefore its mass Mh1 and VEV v are

kept fixed at 125.5 GeV and 246 GeV respectively. The mass of dark matter candidate

φDM takes the following form

M2
DM = µ2

DM +
λDh v2

2
+
λDH v2

µτ

2
. (3.12)

In this model our ground state is defined as 〈φh〉 =
v
√

2
, 〈φH〉 =

vµτ
√

2
and 〈φDM〉 = 0 this

requires

µ2
h < 0, µ2

H < 0 and µ2
DM > 0. (3.13)

The stability of the ground state (vacuum) requires the following inequalities [93] among

the quartic couplings of scalar fields

λh ≥ 0,λH ≥ 0,λDM ≥ 0,

λhH ≥ −2
√
λhλH ,

λDh ≥ −2
√
λhλDM,

λDH ≥ −2
√
λH λDM,√

λhH + 2
√
λhλH

√
λDh + 2

√
λhλDM

√
λDH + 2

√
λH λDM

+2
√
λhλHλDM +λhH

√
λDM +λDh

√
λH +λDH

√
λh ≥ 0 . (3.14)

1Eq. (3.10, 3.11) are valid when Mh1 > Mh2 . On the other hand, the expressions of Mh1 and Mh2 will be
interchanged for Mh2 > Mh1 resulting an change in sign to the mixing angle α.
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Besides the above inequalities, the upper bound on quartic, gauge and Yukawa couplings

can be obtained from the condition of perturbativity. For a scalar quartic coupling λ

(λ = λh, λH , λDM, λhH , λDh, λDH) this condition will be ensured when [142]

λ < 4π, (3.15)

while for gauge coupling gµτ and Yukawa coupling y (y = ye, yµ, yτ, heµ and heτ) it is [142]

gµτ, y <
√

4π. (3.16)

The above quadratic and quartic couplings of scalars fields φh and φH namely µ2
h, µ2

H , λh,

λH and λhH can be expressed in terms of physical scalar masses (Mh1 , Mh2), mixing angle

α and VEVs (v, vµτ), which have been given in [93].

3.3 Muon (g−2)

It is well known that from the Dirac equation, the magnetic moment of muon ~M can be

written in terms of its spin (~S ), which is

~M = gµ
e

2mµ

~S , (3.17)

where mµ is the mass of muon and gµ = 2 is the gyromagnetic ratio. However, if we

calculate gµ using QFT then contributions arising from loop corrections slightly shift the

value of gµ from 2. Hence one can define a quantity aµ which describes the deviation of

gµ from its tree level value,

aµ =
gµ−2

2
. (3.18)
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In general, the contribution to the theoretical value of aµ (ath
µ ) comes from the following

sources [117]

ath
µ = aQED

µ + aEW
µ + aHad

µ , (3.19)

where the contributions arising from Quantum Electrodynamics (QED), Electroweak the-

ory and hadronic process are denoted by aQED
µ , aEW

µ and aHad
µ , respectively. The SM

prediction of aµ including the above terms is [143]

ath
µ = 1.1659179090(65)×10−3 . (3.20)

On the other hand, aµ has been precisely measured experimentally, initially by the CERN

experiments and later on by the E821 experiment, and the current average experimental

value is [128]

aexp
µ = 1.16592080(63)×10−3 . (3.21)

From the above one can see that although the theoretically predicted and the experimen-

tally measured values of aµ are quite close to each other, there still exists some discrepancy

between these two quantities at the 3.2σ significance which is [143],

∆aµ = aexp
µ −ath

µ = (29.0±9.0)×10−10 . (3.22)

Therefore, in order to reduce the difference between aexp
µ and ath

µ we need to explore

BSM scenarios where we can get extra contributions from some extra diagrams. In our

U(1)Lµ−Lτ model we have an additional one loop diagram compared to the SM, which

is mediated by the extra neutral gauge boson Zµτ and gives nonzero contribution to ath
µ

as shown in Fig. 3.1. The additional contribution to ath
µ from this diagram is given by
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γ

µ µ
Zµτ

Figure 3.1: One loop Feynman diagram contributing to muon (g− 2), mediated by the
extra gauge boson Zµτ.

[127, 144],

∆aµ(Zµτ) =
g2
µτ

8π2

∫ 1

0
dx

2x(1− x)2

(1− x)2 + rx
, (3.23)

where, r = (MZµτ/mµ)2 is the square of the ratio between masses of gauge boson (Zµτ)

and muon. As mentioned in the Introduction, although a O(100 MeV) Zµτ is allowed,

its coupling strength (gµτ) is strongly constrained to be less than ∼ 10−3 from the mea-

surement of neutrino trident cross section by experiments like CHARM-II [145] and

CCFR [146]. In our analysis, we find that for MZµτ = 100 MeV and gµτ = 9× 10−4 the

value of ∆aµ = 22.6×10−10, which lies around the ballpark value given in Eq. (3.22). In

what follows, we will use MZµτ = 100 MeV and gµτ = 9.0×10−3 as our benchmark point

for the analyses of neutrino masses and dark matter phenomenology.

3.4 Neutrino Masses and Mixing

Majorana neutrino masses are generated via the Type-I seesaw mechanism by the addition

of three right handed neutrinos to the model. Using Eq. (3.2) we can write the Majorana
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mass matrix for the three right handed neutrinos as

MR =



Mee
vµτ
√

2
heµ

vµτ
√

2
heτ

vµτ
√

2
heµ 0 Mµτ eiξ

vµτ
√

2
heτ Mµτ eiξ 0


, (3.24)

where all parameters in MR in general can be complex. However, by proper phase rotation

one can choose all the elements expect the µτ component of MR to be real [132]. Thus,

MR depends on the real parameters Mee, Mµτ, heµ and heτ and the phase ξ. On other

hand, from the Yukawa term in Eq. (3.2) one can easily see that the Dirac mass matrix

MD between left handed and right handed neutrinos is diagonal and for simplicity we

have chosen all the Yukawa couplings (ye, yµ and yτ) are real. The expression of MD is

MD =



fe 0 0

0 fµ 0

0 0 fτ


, (3.25)

where fi =
yi
√

2
v with i = e, µ and τ. Now, with respect to the basis

(
ναL (NαR)c

)T
and

((ναL)c NαR)T we can write the mass matrix of both left as well as right handed neutrinos

which is given as

M =

 0 MD

MT
D MR

 , (3.26)

where M is a 6×6 matrix and both MD and MR are 3×3 matrices given by Eqs. (3.24) and

(3.25). After diagonalization of the matrix M one obtains two fermionic states for each
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generation which are Majorana in nature. Therefore we have altogether six Majorana

neutrinos, out of which three are light and rest are heavy. Using block diagonalisation

technique, we can find the mass matrices for light as well as heavy neutrinos which are

given as

mν ' −MD M−1
R MT

D , (3.27)

mN ' MR . (3.28)

Here both mν and mN are complex symmetric matrices. Also Eqs. (3.27-3.28) are derived

using an assumption that MD � MR i.e. the eigenvalues of MD is much less than those

of MR and therefore terms with higher powers of MD/MR are neglected. Using the ex-

pressions of MR and MD given in Eqs. (3.24-3.25) the light neutrino mass matrix in this

model takes the following form

mν =
1

2 p



2 f 2
e M2

µτe
iξ −

√
2 fe fµ heτvµτ −

√
2 fe fτ heµvµτ

−
√

2 fe fµ heτvµτ
f 2
µ h2

eτ v2
µτ e−iξ

Mµτ

fµ fτ
Mµτ

(Mee Mµτ− pe−iξ)

−
√

2 fe fτ heµvµτ
fµ fτ
Mµτ

(Mee Mµτ− pe−iξ)
f 2
τ h2

eµ v2
µτ e−iξ

Mµτ


, (3.29)

where p = heµ heτ v2
µτ −Mee Mµτ eiξ. The masses and mixing angles of the light neutrinos

are found by diagonalising this matrix [147] and are compared against the corresponding

experimentally allowed ranges obtained from global analysis of the data (see Table 1.2).

There are eight independent parameters in the light neutrino mass matrix mν, namely,

fe, fµ, fτ, Mµτ, Mee, Veτ =
vµτ
√

2
heτ, Veµ =

vµτ
√

2
heµ and ξ. All of these parameters have mass

dimension GeV except the dimensionless phase factor ξ which is in radian. In order to

find the model parameter space allowed by the neutrino oscillation experiments, we have
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varied the above mentioned parameters in the following range

0 ≤ ξ [rad] ≤ 2π ,

1 ≤ Mee, Mµτ [GeV] ≤ 104 ,

1 ≤ Veµ, Veτ [GeV] ≤ 280 ,

0.1 ≤
( fe, fµ, fτ)

10−4 [GeV] ≤ 10 .

(3.30)

The allowed parameter space satisfies the following constraints from the neutrino sector

• cosmological upper bound on the sum of all three light neutrinos,
∑

i mi < 0.23 eV

at 2σ C.L. [20],

• mass squared differences 6.93 <
∆m2

21

10−5 eV2 < 7.97 and 2.37 <
∆m2

31

10−3 eV2 < 2.63 in

3σ range [89],

• all three mixing angles 30◦ < θ12 < 36.51◦, 37.99◦ < θ23 < 51.71◦ and 7.82◦ < θ13 <

9.02◦ also in 3σ range [89].

All the Yukawa couplings appearing in the light as well as heavy Majorana neutrino mass

matrices (mν and MR) are enforced to always lie within the perturbative range mentioned

in Eq. (3.16). Furthermore, we scan the allowed areas in the model parameter space for

only for the normal mass ordering which corresponds to ∆m2
31 > 0.

Figure 3.2: Left (Right) panel: Allowed region in fe− fµ ( fe− fτ) plane which satisfies all
the experimental constraints considered in this work.

In the left and right panels of Fig. 3.2, we have shown the allowed regions in fe − fµ
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and fe − fτ planes respectively, where we have varied fe, fµ, fτ in the range 10−5 GeV

to 10−3 GeV while the other parameters have been scanned over the entire considered

range as given in Eq. (3.30). From both the panels it is clear that there is (anti)correlation

between the parameters fe− fµ and fe− fτ. We find that for the lower values of fe higher

values of fµ, fτ are needed to satisfy the experimental constraints in the 3σ range and vice

versa. Moreover, although there are smaller number of allowed points when both fe and fi

(i = µ, τ) are small but the present experimental bounds on the observables of the neutrino

sector forbid the entire region in the fe− fµ and fe− fτ planes for both fe and fi > 2×10−4

GeV (i = µ, τ). Also, unlike the parameters fµ and fτ, we do not get any allowed values

of fe beyond 8×10−4 GeV.

Figure 3.3: Left panel: Allowed region in fµ− fτ plane. Right panel: Variation of θ23 with
fe (blue dots), fµ (green dots) and fτ (red dots).

The allowed parameter space in fµ − fτ plane has been shown in the left panel of

Fig. 3.3. From the figure it is seen that there is a correlation between the parameters fµ

and fτ. That means unlike the previous plots here most of allowed points in fµ− fτ plane

are such that for the lower (higher) values of the parameter fµ we also need lower (higher)

values of fτ to reproduce the experimental results. On the other hand, in the right panel of

Fig. 3.3, we show the variation of θ23 with fe (blue dots), fµ (green dots) and fτ (red dots).

We see from the plot that the region around maximal θ23 mixing angle is ruled out in this

model. The reason is that while in the Lµ− Lτ symmetric limit, the neutrino mass matrix

had a µ− τ symmetry and hence θ23 = π/4 and θ13 = 0, once the Lµ − Lτ symmetry is

spontaneously broken, θ23 shifts away from maximal and θ13 becomes non-zero, making
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the model consistent with the neutrino oscillations data. The plot also shows that the

allowed values of mixing angle θ23 lie in two separate ranges between 38◦ <∼ θ23 <∼ 42◦

(lower octant, θ23 < 45◦) and 48◦ <∼ θ23 <∼ 51.5◦ (higher octant, θ23 > 45◦) for the variation

of entire considered range of parameters fi (i = e, µ, τ) from 10−5 GeV to 10−3 GeV.

Therefore, we can conclude that our model is insensitive to the octant of θ23.

Figure 3.4: Left (Right) panel: Allowed region in Mee −Mµτ (Veµ −Veτ) plane which
satisfies all the experimental constraints considered in this work.

The allowed regions for the other remaining parameters Mee−Mµτ and Veµ−Veτ have

been shown in Fig. 3.4. The left panel of Fig. 3.4 shows the (anti)correlation between the

allowed values of the parameters Mee and Mµτ. The neutrino oscillation data rules out the

parameter region Mee >∼ 500 GeV, Mµτ >∼ 500 GeV and Mee <∼ 5 GeV, Mµτ <∼ 5 GeV. In the

right panel Fig. 3.4, we have shown the allowed region in the Veµ −Veτ plane. In order

to keep the Yukawa couplings heµ and heτ within the perturbative regime (see Eq. (3.16))

we have restricted variation of both Veµ and Veτ upto 280 GeV. From this plot it is clearly

seen that the higher values of Veµ and Veτ (Veµ, Veτ >∼ 10 GeV) are mostly preferred by the

neutrino experiments over the smaller ones.

In the left panel of Fig. 3.5, we have shown the variation of the phase ξ with respect

to the parameter Mµτ. Only a very narrow range of value of ξ, placed symmetrically with

respect to the line ξ = π, are allowed, which reproduce the neutrino observables in the

3σ range. It is also seen from this figure that there are no points along ξ = π line (blue

dashed line), which indicates that for the present model, at least one element in the right
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Figure 3.5: Left pane: Allowed values of the parameters Mµτ and ξ. Blue dashed line
represents ξ = π. Right panel: Variation of

∑
i mνi with the mass square differences ∆m2

21
and ∆m2

32.

handed neutrino mass matrix (here we have considered 2× 3 element of MR) has to be

a complex number to satisfy the experimental results. The variation of sum of all three

neutrino masses with ∆m2
21 is presented in the right panel of Fig. 3.5. The variation of

∆m2
atm is also shown in the same figure. From this plot, it is evident that in this model

lower values of
∑

mi (
∑

mi ≤ 0.18 eV) are more favourable.

Figure 3.6: Left panel: Variation of θ13 with θ23. Right panel: Variation of Dirac CP
phase δCP with mixing angle θ12.

In the left and right panels of Fig. 3.6, we have shown the predicted ranges of the

mixing angles and the Dirac CP phase. The left panel shows that for both lower and

higher octant, the whole range of θ13 is allowed here. In the right panel of Fig. 3.6, we

have plotted the predicted Dirac CP phase with respect to the mixing angle θ12. We find

that in our model the predicted values of Dirac CP phase are very small and symmetric

around 0◦. One can also note that the absolute predicted value of |δCP| increases with the

mixing angle θ12.
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3.5 Dark Matter

Being stable as well as electrically neutral, φDM can serve as a dark matter candidate.

By following the 1.81, we can compute the relic abundance of φDM at the present epoch

and its spin independent scattering cross section relevant for direct detection experiments

is already discussed in section 2.2 by considering only the Higgses mediated diagrams

as shown in Fig. 3.7. The viability of φDM as a dark matter candidate will be tested

h1/h2

φDM/φ†
DM φDM/φ†

DM

N N

Figure 3.7: Feynman diagram for the elastic scattering of φDM and φ†DM with detector
nucleon (N).

by comparing its relic abundance and spin independent scattering cross section with the

results obtained from Planck and LUX experiments. Finally, at the end of this section we

will compute the γ-ray flux due to the annihilation of φDM and compare this flux with

Fermi-LAT observed γ-ray excess from the regions close to the Galactic Centre (GC).

3.5.1 Results

We have computed the relic density of DM using micrOMEGAs [33] package and the

implementation of the present model in micrOMEGAS has been done using the Lan-

HEP [148] package. For the relic density calculation, we have considered the following

benchmark values of the parameters related to the neutrino sector,

• Masses of the three heavy neutrinos: MN1 = 332.88 GeV, MN2 = 279.06 GeV and

MN3 = 168.28GeV,
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Vertex Vertex Factor
abc gabc

qq̄h1 −
Mq

v
cosα

qq̄h2
Mq

v
sinα

W+ W− h1
2 M2

W cosα

v

W+ W− h2 −
2 M2

W sinα

v

Z Z h1
2 M2

Z cosα

v

Z Z h2 −
2 M2

Z sinα

v
Ne Nµ (Nτ)h1

√
2sinαheµ (heτ)

Ne Nµ (Nτ)h2
√

2cosαheµ (heτ)

l l̄ h1 −
Ml
v

cosα

l l̄ h2
Ml
v

sinα

l l̄Zµτ ±gµτ γρ(+ for µ, − for τ)
φDM φ†DM h1 −(vλDh cosα+ vµτλDH sinα)

φDM φ†DM h2 (vλDh sinα− vµτ λDH cosα)

φDM φ†DM Zµτ nµτ gµτ (p2 − p1)ρ

φDM φ†DM h1 h1 −(λDh cos2 α+λDH sin2 α)

φDM φ†DM h2 h2 −(λDh sin2 α+λDH cos2 α)

φDM φ†DM h1 h2 sinαcosα(λDh −λDH )

φDM φ†DM Zµτ Zµτ 2g2
µτn2

µτ

φDM φ†DMφDM φ†DM −4λDM

Table 3.3: All relevant vertex factors required for the computation of DM annihilation as
well as scattering cross sections.

• Yukawa couplings: heµ = 2.44 and heτ = 1.28.

We have checked that these adopted values of right handed neutrino masses and Yukawa

couplings reproduce all the experimentally measurable quantities of the neutrino sector

within their 1σ range [89]. Moreover like the previous section, here also we have used

our benchmark point MZµτ = 100 MeV and gµτ = 9×10−4, which are required to explain

the muon (g−2) anomaly.

In the left panel of Fig. 3.8, we show the variation of the DM relic density with its

mass for three different values of the scalar mixing angle, α = 0.01 rad, 0.045 rad and

0.09 rad 2 respectively. From this plot it is clearly seen that DM relic density satisfies the

central value of Planck limit (ΩDMh2 = 0.1197) only around the two resonance regions

where the mass of DM is nearly equal to half of the mediator mass i.e. MDM ∼ Mhi/2

(i = 1, 2). Therefore the first resonance occurs when DM mass is around 62 GeV and it is

due to the SM-like Higgs boson h1 while the second one is due to extra Higgs boson h2

2We have checked that these values of mixing angle α are allowed by the LHC results on Higgs signal
strength [117] and invisible decay width [118].
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Figure 3.8: Left (Right) Panel: Variation of relic density ΩDMh2 with respect to the DM
mass MDM for three different value of mixing angle α (Mh2), while other the values of
parameters have been kept fixed at λDH = 0.01, λDh = 0.001, and Mh2 = 200 GeV (α =

0.045 rad).

of mass 200 GeV. Like the left panel of Fig. 3.8, the right panel also shows the variation

of ΩDMh2 with MDM but in this case three different plots are generated for three different

values of Mh2 = 200 GeV (blue dashed dot line), 300 GeV (green dashed line) and 400

GeV (red solid line), respectively. Similar to the left panel, here also the DM relic density

satisfies the Planck limit only around the resonance regions. However in this plot, as we

have varied the mass of h2, therefore instead of getting a single resonance region for h2

(as in the left panel) we have found three resonance regions at MDM ∼ 100 GeV, 150 GeV

and 200 GeV for Mh2 = 200 GeV, 300 GeV and 400 GeV, respectively. For all three cases

the resonance due to the SM-like Higgs boson h1 occurs at the same value of MDM ∼ 62.5

GeV as we have fixed the mass of h1 at 125.5 GeV. Plots in both panels are generated for

nµτ = 0.15.
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Figure 3.9: Left (Right) Panel: Variation of relic density Ωh2 with respect to the mass of
the dark matter MDM for three different value of λDH (λDh), while other parameters value
are kept fixed at Mh2 = 200 GeV, α = 0.045 rad and λDh = 0.001 (λDH = 0.01).
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Left and right panels of Fig. 3.9 represent the variation of relic density ΩDMh2 with the

dark matter mass φDM for there different values of parameter λDH and λDh, respectively.

These plots also show the appearance of two resonance regions due to the two mediating

scalar bosons. However, from this figure one can notice the effect of parameters λDh

and λDH on the DM relic density with respect to the variation of MDM. In the low mass

region (MDM <∼ 80 GeV), SM-like Higgs boson mediated diagrams dominantly contribute

to the pair annihilation processes of φDM and φ†DM while the contribution of extra Higgs

mediated diagrams become superior for the high DM mass region (MDM >∼ 80 GeV).

From the expression of φDM φ
†

DM h1 vertex factor given in Table 3.3, one can see that the

effect of the parameter λDH on 〈σv〉 is mixing angle suppressed (i.e. multiplied by sinα).

Therefore, in the left panel for low DM mass region the effect of λDH to ΩDMh2 is small.

On the other hand, in the expression of vertex factor of φDM φ
†

DM h1, the parameter λDh

appears with cosα and hence we see a considerable effect of λDh on ΩDMh2 in the right

panel (low DM mass region). For the extreme right region of both panels (MDM >∼ 200

GeV), the dominant pair annihilation channel is φDMφ
†

DM → h2h2. Hence, the impact

of λDH and λDh to ΩDMh2 can well be understood from the expression of φDMφ
†

DMh2h2

vertex factor (see Table 3.3). In the intermediate region (80GeV < MDM < 200GeV),

φDMφ
†

DM →W+W−, ZZ and h1h1 channels mainly contribute to DM relic density and in

the right panel for 100GeV < MDM < 200GeV, the variation of ΩDMh2 with respect to

λDh resulting from DM pair annihilation into h1h1 final state.

In the left panel of Fig. 3.10, we show the allowed values of Mh2 which reproduce the

correct DM relic density for the variation of MDM in the range 30 GeV to 500 GeV. In

this plot we have varied the mass of extra Higgs boson Mh2 in the range 60 GeV to 450

GeV and λDH from 0.001 to 0.1. From this plot it is evident that for a particular value

of dark matter mass the corresponding allowed values of Mh2 lie around 2 MDM. The

reason behind this nature is that the relic abundance of dark matter (both φDM and φ†DM)

satisfies the observed DM density only around the resonance regions (when mediator

mass Mhi ∼ 2×MDM, i = 1, 2 see Fig. 3.8 and Fig. 3.9). The allowed range of Mh2 for
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Figure 3.10: Left Panel: Allowed values of Mh2 with respect to the variation of the dark
matter mass MDM for two different value of mixing angle α. Right panel: Variation of spin
independent scattering cross sections of dark matter with its mass. All the points in both
plots satisfy the Planck limit on DM relic density in 1σ range (ΩDMh2 = 0.1197±0.0022
[20]) and these two plots are generated for λDh = 0.001.

a particular DM mass does not vary much for the change of mixing angle α from 0.01

rad (red coloured region) to 0.05 rad (green colour region). Moreover, we restrict Mh2

upto 430 GeV to remain within the perturbative regime (λH < 4π) and hence the relic

density condition is not satisfied beyond MDM = 215GeV Furthermore, near MDM ∼ 60

GeV, one can see that a broad range of Mh2 values are allowed, which indicates that

in this region the SM-like Higgs contributes dominantly giving the wide range of Mh2

values for which the DM relic density is satisfied. Spin independent elastic scattering

cross section (σSI) of DM with with its mass has been plotted in the the right panel of

Fig. 3.10 for two different values of α = 0.01 rad (green coloured region) and 0.05 rad

(red coloured region) respectively. This plot is also generated for 60GeV ≤ Mh2 ≤ 430

GeV, 0.001 ≤ λDH ≤ 0.1 and λDh = 0.001 and all the points within the red and green

coloured patch satisfy the Planck result. For comparison with current experimental limits

on σSI from DM direct detection experiments we have plotted the result of LUX-2016

(blue solid line) in the same figure. Moreover, we have also shown the predicted results

from the “ton-scale” direct detection experiments like XENON 1T [149] (blue dashed

line) and DARWIN [150] (long dashed purple line). From this figure it is evident that the

validity of our model can be explored in near future by these “ton-scale” experiments.
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3.5.2 Indirect detection: Fermi-LAT γ-ray excess from the Galactic

Centre
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Figure 3.11: Gamma-ray flux obtained from the pair annihilation of φDM and φ†DM at the
Galactic Centre for MDM = 52 GeV, 〈σvbb̄〉 = 3.856×10−26 cm3/s andA = 1.219

Following the same procedure given in Section 2.5 we have found that, for the present

model, the excess gamma-rays flux observed by Fermi-LAT can be reproduced for an

annihilating dark matter of mass MDM = 52 GeV and 〈σvbb̄〉 = 3.856× 10−26 cm3/s. In

this case, DM annihilation to bb̄ channel dominantly occurs through the resonance of

extra Higgs boson (h2) with resonating mass Mh2 = 104.025 GeV and coupling parameters

λDH = 0.01, λDh = 0.001 and scalar mixing angle α = 0.045 rad.

In Fig. 3.11, green solid line represents the γ-ray flux that we have computed for a

MDM = 52 GeV while the value of bb̄ annihilation cross section is 3.856× 10−26 cm3/s.

The correlated systematic errors are represented by the yellow boxes while the Fermi-LAT

uncorrelated statistical uncertainties are shown by the black error bars taken from [151].

We have found that in order to reproduced the Fermi-LAT observed γ-ray flux for a 52

GeV non-self-conjugate DM, the quantity A× 〈σvbb̄〉 must be 4.7× 10−26 cm3/s [93].

This requires DM halo profile error parameter A to be ∼ 1.22, well inside its allowed

range between 0.17 to 5.3 [110].
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4
Singlet-Triplet Fermionic Dark Matter and LHC

Phenomenology

4.1 Introduction

This chapter is based on [152] which deals with an extension of the SM that accommo-

dates both high as well as low mass fermionic DM such that it can be produced and tested

at the 13 TeV run of the LHC. The low mass DM regime do not have any significant SE

enhancement (because the DM mass becomes comparable to the mediator mass inside the

loops) and hence are safe from the gamma ray indirect detection bounds put by the Fermi-

LAT collaboration [153]. Our proposed extension of the particle content includes one SM

singlet fermion and SM triplet fermion [154–158]. The scalar sector is also extended to

include a SM triplet scalar. The Z2 charge of these BSM particles is arranged in such a

way that there is a mixing between the neutral component of the triplet fermion and the

singlet fermion, that generates two mass eigenstates for the neutral fermions. The lower

mass eigenstate becomes the viable DM candidate. The neutral and charged components

of the SM doublet and triplet scalars also mix, that gives rise to two physical neutral Higgs

scalars and one charged Higgs scalar. The presence of these extra scalars opens up addi-

tional annihilation and co-annihilation processes between the two DM candidates which

effectively reduces the mass of the DM for which the current DM relic density bound can

be easily satisfied. For low mass DM we give the prediction for the annihilation of the
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DM to two gamma rays by one loop process. In addition, these lower mass DM fermions

(∼ 100 GeV) can be observed with large production cross-section at the 13 TeV LHC. We

perform a detailed collider phenomenology of the DM model. In this work we will con-

sider multi jets + missing energy signal in the final state for searching the DM. We study

in detail the dominant backgrounds for such type of signal. The SM backgrounds are re-

duced by applying suitable cuts that increases the statistical significance of detection for

the fermionic DM with the low luminosity run of the LHC. A final comment is in order.

It is possible to embed our model in a SO(10) GUT where the SU(2) triplet would belong

to the 45 representation of SO(10) and would help in the gauge coupling unification, as

was shown in [159, 160].

4.2 Triplet Fermionic Dark Matter

Gauge
Group

S U(3)c
S U(2)L
U(1)Y
Z2

Baryon Fields
Qi

L = (ui
L ,d

i
L)T ui

R di
R

3 3 3
2 1 1

1/6 2/3 −1/3
+ + +

Lepton Fields
Li

L = (νi
L ,e

i
L)T ei

R ρ

1 1 1
2 1 3
−1/2 −1 0

+ + −

Scalar Fields
φh
1
2

1/2
+

Table 4.1: Particle content and their corresponding charges under various symmetry
groups.

Ω h2 = 0.1199 ± 0.0027
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Figure 4.1: Variation of relic density Ωh2 with the mass of the triplet DM Mρ0
1
.

In this case the SM particle content is extended with just a left handed fermionic triplet

field ρ [161,162]. There is an additional Z2 symmetry imposed on the model such that the
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triplet is odd under it, while all SM particles are even under this symmetry. The particle

content of the model and their charges under the symmetries of the model is given in Table

4.1. The Z2 symmetry forbids all the Yukawa couplings of ρ with the SM fermions and

the complete Lagrangian includes just the additional kinetic energy term for the triplet

(Lρ) along with the SM Lagrangian (LSM),

L =LSM+Lρ . (4.1)

The Lagrangian for triplet field ρ takes the following form,

Lρ = Tr[ρ̄ iγµDµ ρ] , (4.2)

where the covariant derivative Dµ takes the following form,

Dµ = ∂µ− igT ad j
i Wi , (4.3)

where g and Wi are the S U(2)L gauge coupling and gauge field, respectively, and T ad j
i ’s

ρ0 (ρ+)

ρ± (ρ−)

W± (γ, Z)

f̄ (f,W+)

f ′ (f̄ ,W−)

ρ0 (ρ±)

ρ0 (ρ±)

ρ+ (ρ0)

W+ (W±)

W− (W±)

Figure 4.2: Pure triplet fermions DM annihilation and co-annihilation diagrams.

are the S U(2)L generators in the adjoint representation. The Z2 symmetry makes ρ0,

the chargeless component of ρ stable and it becomes the DM. The annihilation and co-

annihilation of the DM ρ0, and ρ± proceed through SM gauge bosons, as shown in

Fig. 4.2. In Fig. 4.1 we show the ρ0 relic abundance as a function of its mass Mρ0 . From

the figure one can notice that with the increase of the DM mass, its relic density also

increases. This is because in the present case the velocity times the DM annihilation and

co-annihilation cross sections vary inversely with the square of the DM mass. Hence, as

the DM mass is increased, the DM annihilation cross-section decreases and as a result the
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DM relic density increases as it is inversely proportional to the velocity times cross sec-

tion. From the figure we note that the present day observed value of the DM relic density

is satisfied around Mρ0 ∼ 2370 GeV. This has been also pointed out before in [162].

Note that, while the model can be tested in direct and indirect detection experiments,

due to its heavy mass it is difficult to produce this DM candidate at the 13 TeV or 14 TeV

LHC search. One will need a very high energy collider to test this DM model. Minimal

extension of the model by adding a gauge singlet fermion and a triplet scalar opens up the

possibility to test the model at collider. Below, we discuss in detail the required extensions

and the model predictions.

4.3 Singlet Triplet Mixing

Gauge
Group

S U(3)c
S U(2)L
U(1)Y
Z2

Baryon Fields
Qi

L = (ui
L ,d

i
L)T ui

R di
R

3 3 3
2 1 1

1/6 2/3 −1/3
+ + +

Lepton Fields
Li

L = (νi
L ,e

i
L)T ei

R N′ ρ

1 1 1 1
2 1 1 3
−1/2 −1 0 0

+ + − −

Scalar Fields
φh ∆

1 1
2 3

1/2 0
+ +

Table 4.2: Particle content and their corresponding charges under various symmetry
groups.

In this section, we present a minimal extension of the model, such that the mass of

the DM can be suitably reduced and it can be produced at the LHC. To that end, we

add an extra gauge singlet fermion which is also odd under the Z2 and an additional real

triplet Higgs (Y = 0). The particle content of our model and their respective charges are

displayed in the Table 4.2. The corresponding Lagrangian is given by,

L = LS M + Tr
[
ρ̄ iγµDµρ

]
+ N̄′ iγµDµN′+ Tr[(Dµ∆)†(Dµ∆)]−V(φh,∆)

−Yρ∆ (Tr[ρ̄∆] N′+ h.c.)−MρTr[ρ̄cρ]−MN′ N̄′cN′ (4.4)
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where the triplet fermion takes the following form,

ρ =


ρ0
2

ρ+

√
2

ρ−
√

2
−
ρ0
2

 . (4.5)

The complete form of the potential V(φh,Ω) takes the following form,

V(φh,∆) = −µ2
hφ
†

hφh +
λh

4
(φ†hφh)2 +µ2

∆Tr[∆†∆] +λ∆(∆†∆)2 +λ1 (φ†hφh)Tr [∆†∆]

+λ2
(
Tr[∆†∆]

)2
+λ3 Tr[(∆†∆)2] +λ4φ

†

h∆∆†φh + (µφ†h∆φh + h.c.) . (4.6)

In general, one can also insert a term like φ†h∆†∆φh, but this term can be easily decom-

posed to two components that give contribution to the terms with λ1 and λ4 couplings.

Hence, we do not write this term separately in the potential. We assume here that µ2
∆

is positive hence the neutral component of the Higgs triplet will get small induced vev,

because it has coupling with the SM like Higgs, after electro weak symmetry breaking

(EWSB) which takes the following form,

〈∆0〉 = v∆ =
µv2

2
(
µ2

∆
+ (λ4 + 2λ1) v2

4 + (λ3 + 2λ2)
v2

∆

2

) (4.7)

The Higgs doublet and real triplet take the following form after taking the small fluctua-

tion around the vevs v and v∆, respectively,

φh =


φ+

v + H + iξ
√

2

 ∆ =


∆0+v∆

2
∆+
√

2
∆−√

2
−

∆0+v∆

2

 . (4.8)

Since φh takes vev spontaneously which breaks the EWSB and ∆ gets induced vev, we

need to satisfy the following criterion for the quadratic and quartic couplings,

µ2
h > 0, µ2

∆ > 0, λh > 0 and λ∆ > 0 . (4.9)
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After symmetry breaking the 2× 2 mass matrix for the CP even Higgs scalars H and ∆0

take the following form,

Ms =
1
2

 λv2 vv∆(2λ1 +λ4)−2µv

vv∆(2λ1 +λ4)−2µv 2v2
∆

(λ3 + 2λ2) +
µv2

v∆

 (4.10)

After diagonalisation of the above matrix we will get the physical Higgses h1 and h2 with

masses Mh1 and Mh2 , respectively. If the mixing angle between h1 and h2 is α, then the

mass and flavor eigenstates can be written in the following way,

h1 = cosαH + sinα∆0

h2 = −sinαH + cosα∆0 (4.11)

The CP odd field ξ becomes Goldstone boson which is “eaten” by the SM gauge boson

Z. In addition to the mixing between H and ∆0, the charged scalars will also be mixed

and one of them will be the Goldstone boson “eaten” by W±. We can write them in the

physical basis in the following way,

G± = cosδφ±+ sinδ∆±

H± = −sinδφ±+ cosδ∆± (4.12)

where the mixing angle depends on the strength of the vevs of doublet and triplet, i.e.,

tanδ =
2v∆

v
. (4.13)

The quadratic and quartic couplings have the following form in terms of the CP even

Higgs masses Mh1 and Mh2 , the mixing angle between them α, the charge scalar mass and
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the mixing angle between the charged scalars δ:

µ =
M2

H± sinδcosδ

v
,

λ3 + 2λ2 =
M2

h1
+ M2

h2
+ (M2

h2
−M2

h1
)cos2α−2 M2

H± cos2 δ

2v2
∆

,

λh =
M2

h1
+ M2

h2
+ (M2

h1
−M2

h2
)cos2α

v2 ,

λ4 + 2λ1 =
(M2

h1
−M2

h2
) sin2α+ M2

H± sin2δ

vv∆

,

µ2
h = λh

v2

4
+ (λ4 + 2λ1)

v2
∆

4
−µv∆ . (4.14)

The vev of the Higgs triplet is constrained by the data on the ratio
M2

W
cos2 θwM2

Z
, which limits

v∆ < 12 GeV [163, 164]. The value of Mh2 needs to satisfy the perturbativity limit on

the quartic couplings which is λ < 4π. The quartic couplings are also bounded from the

below [165] and as long as all the quartic couplings are positive, we do not need to worry

about the lower bounds. From Eq. (4.14) we see that by choosing a suitable value for the

free parameter µ which has mass dimension, we can keep all the quartic couplings in the

perturbative regime.

In Eq. (4.4), Yρ∆ is the Yukawa term relating the fermionic triplet with the fermionic

singlet. When the neutral component of ∆ takes vev, the mass matrix for the fermions

takes the following form,

MF =

 Mρ
Yρ∆v∆

2
Yρ∆v∆

2 MN′

 . (4.15)

The lightest component of the eigenvalues of this matrix will be the stable DM. Relation

between the the mass eigenstates and weak eigenstates are as follows:

ρ0
2 = cosβρ0 + sinβN′c

ρ0
1 = −sinβρ0 + cosβN′c (4.16)
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Therefore, the tree level mass eigenstates are,

Mρ0
1

=
1
2

Mρ+ MN′ −

√
(Mρ−MN′)2 + 4

(
Yρ∆v∆

2

)2
 ,

Mρ0
2

=
1
2

Mρ+ MN′ +

√
(Mρ−MN′)2 + 4

(
Yρ∆v∆

2

)2
 ,

tan2β =
Yρ∆v∆

Mρ−MN′
. (4.17)

In terms of Mρ0
1

and Mρ0
2

we can express the Yukawa coupling Yρ∆ in the following way:

Yρ∆ =
(Mρ0

2
−Mρ0

1
) sin2β

2v∆

,

=
∆M21 sin2β

2v∆

(4.18)

where ∆M21 = (Mρ0
2
−Mρ0

1
) represents the mass difference between Mρ0

2
and Mρ0

1
. There-

fore, one can increase the Yukawa coupling Yρ∆ by increasing the mass difference ∆M21

or the singlet triplet fermionic mixing angle, or decreasing the triplet vev v∆. We have

kept the mass of charged component (ρ±) of triplet fermion equal to the mass of ρ0
2 with

the mass gap of pion i.e. Mρ± = Mρ0
2
+ 0.16 GeV.

A further discussion is in order. For the present model we can generate the neutrino

mass by Type I seesaw mechanism just by introducing SM singlet right handed neutrinos.

In other variants of the triplet fermionic DM model, neutrino masses were generated by

using the Type III seesaw mechanism and radiatively by the authors of [166] and [154–

156, 162], respectively.

4.4 Constraints used in Dark Matter Study

Below, we discuss different constraints that we take into account. This includes the con-

straints from relic density, the direct detection constraints, as well as the invisible Higgs
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ρ01 ρ01

h1

N N

ρ01 ρ01

N N

h2

Figure 4.3: SI direct detection scattering processes between DM and nucleaon of the
nucleus.

decay.

4.4.1 SI direct detection cross section

The Feynman diagrams in Fig. 4.3 show the spin independent (SI) direct detection (DD)

scattering processes between the DM and the nucleon (ρ0
1 N→ ρ0

1 N), which are mediated

by the two Higgses h1 and h2, respectively, through the t-channel process. Since DM

interacts very weakly with the nucleon, one can safely calculate the cross-section for this

process in the t→ 0 limit, where t is the Mandelstam variable corresponding to the square

of the four-momentum transfer. The expression for the above process takes the following

form,

σS I =
µ2

red

π

MN fN
v

gρ0
1ρ

0
1h2

sinα

M2
h2

−

gρ0
1ρ

0
1h1

cosα

M2
h1


2

(4.19)

where the quantity fN is the nucleon form factor and it is equal to 0.3 [32] while µred is

the reduced mass between the DM mass (Mρ0
1
) and the nucleon mass (MN) and is given

by

µred =
MN Mρ0

1

MN + Mρ0
1

, (4.20)
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The couplings in Eq. (4.19) gρ0
1ρ

0
1h1

and gρ0
1ρ

0
1h2

are given by,

gρ0
1ρ

0
1h1

=
Yρ∆

2
sin2β sinα,

gρ0
1ρ

0
1h2

=
Yρ∆

2
sin2β cosα, (4.21)

where Yρ∆, α and β have been defined in the previous section. We had seen in Eq. (4.18)

that the Yukawa coupling Yρ∆ is linearly proportional to sin2β for a given choice of mass

splitting ∆M21 = (Mρ0
2
−Mρ0

1
) and vev v∆. Therefore, inserting Eqs. (4.18) and (4.21) into

Eq. (4.19) we get

σS I =
µ2

red

π

MN fN
v

∆M21 sin2 2β sin2α
4v∆

 1
M2

h2

−
1

M2
h1


2

(4.22)

Since σS I depends on the model parameters, and since the current limit from DD experi-

ments need to be satisfied, they put a constraint on the our model parameter space. Also,

the model could be tested and/or the parameter space can be constrained by the future DD

experiments like LUX [115, 167], Xenon-1T [149, 168], Panda [169] and Darwin [150].

4.4.2 Invisible decay width of Higgs

If the DM candidate has mass less than half the SM-like Higgs mass then the SM-like

Higgs could decay to pair of DM particles. This process would contribute to the decay

width of the SM-like Higgs into invisible states. The Higgs decay width has been mea-

sured very precisely by the LHC which constrains the Higgs decay in such a way that its

branching ratio to invisible states must be less than 34% at 95% C.L. [170]. In the present

model the Higgs decay width to invisible states ρ0
1 (since in the present work Mρ0

2
>

Mh1
2 ,

hence Higgs can not decay to ρ0
2) is given by,

Γh1→ρ
0
1ρ

0
1

=

Mh1g2
ρ0

1ρ
0
1h1

16π

1−
4M2

ρ0
1

M2
h1


3/2

, (4.23)
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where gρ0
1ρ

0
1h1

is given in Eq. (4.21). In order to satisfy the LHC limit, the model parame-

ters have to satisfy the following constraint

Γh1→ρ
0
1ρ

0
1

ΓTotal
h1

≤ 34% at 95% C.L. (4.24)

For the parameter range where the kinematical condition Mρ0
1
<

Mh1
2 is satisfied we im-

pose the condition given by Eq. (4.24) and only model parameter values that satisfy this

constraints are used in our analysis.

4.4.3 Planck Limit

Relic density for the DM has been measured very precisely by the satellite borne exper-

iments WMAP [19] and Planck [20]. In this work we have used the following bound on

the DM relic density,

0.1172 ≤Ωh2 ≤ 0.1226 at 68% C.L. , (4.25)

which is used to constrain the model parameters such that it is compatible with the Planck

limit on DM abundance.

4.5 Dark Matter Relic Abundance

In analysing the DM phenomenology we implement the model in Feynrules [171]. We

generate Calchep files using Feynrules and feed the output files into micrOmegas [33].

The relevant Feynman diagrams that determine the DM relic abundance are shown in

Fig. 4.4. In presence of triplet as well as singlet states, additional channels mediated by

the neutral and charged Higgs state opens up.

Different model parameters, such as, the mass of DM, neutral Higgs, mixing between
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Figure 4.4: Feynman diagrams which dominantly participate in determining the relic den-
sity of DM.
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Figure 4.5: Left Panel: variation of DM relic density for three different values of the
singlet triplet fermionic mixing angle sinβ. Right Panel: variation of DM relic density for
three different values of the neutral Higgses mixing angle sinα. When the BSM Higgs
value kept fixed at Mh2 = 300 GeV and we took sinδ equal neutral Higgs mixing angle
for simplicity and kept the mass difference ∆M12 fixed at 50 GeV.
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singlet and triplet fermions, as well as different Higgs states can impact the DM relic

density. We analyse the dependence of the DM relic density on the model parameters and

also study the correlation between them that follows from the DM relic density constraint.

Fig. 4.5 shows the variation w.r.t the mass of DM taking into account the variation of the

different mixing angles. In other figures, such as, Fig. 4.6, we explore the dependency on

the mass-difference and the BSM Higgs masses. Few comments are in order:

• In the left panel (LP) of Fig. 4.5, we show the variation of the DM relic density with

DM mass for three different values of the singlet-triplet mixing angle sinβ. The thin

magenta band shows the 2σ experimentally allowed range of the DM relic density

reported by the Planck collaboration. From the figure, this is evident, that there

are four dip regions with respect to the DM mass. The first resonance occurs at

Mρ0
1
' Mh1/2 ∼ 62.5 GeV. The SM-like Higgs mediated diagrams shown in Fig. 4.4

give the predominant contribution in this mass range. The second resonance occurs

at Mρ0
1
∼ 150 GeV, when the DM mass is approximately half the BSM Higgs mass

(Mρ0
1
' Mh2/2) assumed in this figure. The third dip is due to the t-channel diagram

ρ0
1 ρ

0
1 → W±H∓ mediated by the ρ±. This dip occurs when the DM mass satisfies

the relation Mρ0
1

=
MW±+MH∓

2 and happens due to the destructive interference term

of the W±H∓ final state. The fourth dip happens because of the threshold effect of

the W±H∓ final state and clear from the fact that with the variation of the charged

scalar mass (MH∓), this dip also changes its position with respect to the DM mass.

For DM masses greater than this, the DM relic abundance is mainly dominated by

the s-channel annihilation diagram where the final state contains H+H−, h2h2.

• This is to emphasize, in the present scenario even relatively lighter DM is in agree-

ment with the observed relic density. The low mass DM can be copiously produced

at LHC and hence can further be tested in the ongoing run of LHC. The lowering of

DM mass is possible due to the addition of the extra SM gauge singlet fermion N′

and the extra SM triplet Higgs ∆. This opens up additional annihilation and coan-
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nihilation diagrams shown in Fig. 4.4. As described before, this allows the three

resonance regions and make the model compatible with the experimental constraint

from Planck for DM masses accessible at LHC. This should be contrasted with the

pure triplet model discussed in section 4.2, where the DM mass compatible with

the Planck data is 2.37 TeV, well outside the range testable at LHC due to small

production cross-section. In the next section, we will discuss in detail the prospects

of testing the DM at LHC (see Fig. 4.11).

• The singlet triplet mixing angle β has significant effect on the relic density. With

the increase of the mixing angle β, the DM relic density decreases. This happens

because the gρ0
1ρ

0
1hi

(i = 1,2) coupling increases with β (cf. Eq. (4.21)), thereby

increasing the cross-section of the annihilation processes. Since the relic density

is inversely proportional to the velocity times cross-section 〈σv〉, where σ is the

annihilation cross-section of the DM particles and v is the relative velocity, increase

of sinβ causes the relic density of DM to decrease.

• Additionally, we also explore the effect of the Higgs mixing angle α. In the right

panel (RP) of Fig. 4.5, we show the variation of the DM relic density for three dif-

ferent values of the doublet-triplet Higgs mixing angle α. The first resonance peak

is seen to be nearly unaffected by any change in sinα. As the DM mass increases,

the impact of sinα increases and we see an increase in the DM relic density with

increase of sinα. These features can be explained as follows. Inserting Yρ∆ from

Eq. (4.18) into Eq. (4.21), and replacing v∆ in terms of tanδ using Eq. (4.13), we

get

gρ0
1ρ

0
1h1

=
∆M21 sin2β

2v
sinα
tanδ

,

gρ0
1ρ

0
1h2

=
∆M21 sin2β

2v
cosα
tanδ

. (4.26)

In our analysis we have taken sinα = sinδ for simplicity. Therefore, this results

in partial cancellations between the the neutral scalars mixing angle and charged
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Figure 4.6: Left Panel: variation of DM relic density for three different value of mass
difference (Mρ0

2
−Mρ0

1
) when the BSM neutral and charged Higgses values kept fixed at

Mh2 = MH± = 300 GeV. Right Panel: variation of DM relic density for three different
value of the BSM Higgs mass and we kept the mass difference fixed at Mρ0

2
−Mρ0

1
= 50

GeV. We took the other parameters value, sinα = 0.03, sinδ = 0.03.

scalars mixing angle, hence we get the following effective couplings for the h1 and

h2 mediated diagrams, respective,

gρ0
1ρ

0
1h1

=
∆M21 sin2β

2v
cosα,

gρ0
1ρ

0
1h2

=
∆M21 sin2β

2v
cos2α

sinα
. (4.27)

Since the h1 mediated diagrams effectively depend on cosα and since cosα remains

close to 1 for all the three choices of sinα, taken in Fig. 4.5, we see no effect of

sinα variation for the h1 resonance region. On the other hand, once the h2 mediated

diagrams start to dominate, the effect of sinα variation starts to show up. For the

h2 resonance region, the cross-section decreases as sinα increases (cf. Eq. (4.26))

and hence the relic density increases with sinα. In the vicinity of third resonance

region t-channel diagrams dominate and for DM masses Mρ0
1
> Mh2 , MH± , the s-

channel mediated diagrams start contributing in the DM relic density and vary the

relic density in the expected way with the variation of sinα and sinδ.

Additionally, we also show the variation of relic density for different mass difference

∆M21 in the LP of Fig. 4.6. The first and second resonance regions show very little de-

pendence on the mass difference (Mρ0
2
−Mρ0

1
), with the relic abundance being marginally
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less for higher (Mρ0
2
−Mρ0

1
). However, for the high DM mass we see that the decrease in

DM relic abundance with increasing values of (Mρ0
2
−Mρ0

1
) is visible. The reason for this

can be understood as follows. From Eq. (4.18), one can see that the singlet-triplet Yukawa

coupling Yρ∆ is directly proportional to the mass difference (Mρ0
2
−Mρ0

1
). Both DM cou-

plings gρ0
1ρ

0
1h2

and gρ0
1ρ

0
1h1

(see Eq. (4.21)) depend on the Yukawa coupling Yρ∆ and hence

in first and second resonance regions where the s-channel processes dominate, viz., at the

resonance regions mainly, controlled by resonance, hence less effect. On the other hand

for higher Mρ0
1

regions and t-channel dominated regions no such resonance exists, so vary

linearly with the mass differences. Close to the third resonance region, the t-channel pro-

cess dominates and here, the cross-section is suppressed due to the propagator mass Mρ± .

Therefore, for regions of the parameter space where the t-channel process dominates, the

relic abundance is seen to increase as (Mρ0
2
−Mρ0

1
) (here we considered Mρ± −Mρ0

2
= 160

MeV) increases for a given Mρ0
1
. One can see that there is clear cross over between the

t-channel and s-channel diagrams for Mρ0
1
> MH± , Mh2 , because after this value of DM

mass ρ0
1ρ

0
1 mainly annihilates to h2h2 and H+H− by the s-channel process mediated by

the Higgses.

Finally, we also explore the dependency on the mass of the neutral Higgs h2. In the

RP of Fig. 4.6, we show the variation of the relic density with DM mass for three different

values of the BSM Higgs mass: Mh2 = 200 GeV, 300 GeV and 400 GeV, respectively.

From the figure we see that the first resonance remains unchanged at Mρ0
1
∼ 62.5 because

the SM-like Higgs mass is fixed at Mh1 = 125.5 GeV. However, the second resonance

occurs at three different values of the DM mass depending on the values of Mh2 , as the

resonance occurs at Mρ0
1
∼

Mh2
2 . Since here we vary only the BSM Higgs mass Mh2 , the

couplings which are related to the Higgses remain unaffected, and all three curve merge

for greater values of DM mass.

To summarise, the relic density depends crucially on the mixing angles between sin-

glet and triplet states, as well as the SM and BSM Higgs, and their masses. The BSM
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Figure 4.7: LP (RP): Allowed region in the Mρ0
1
−Mh2 (Mρ0

1
− sinβ) plane after satisfying

relic density bound. Other parameters values are ∆M12 = 50 GeV, MH± = Mh2 and the
remaining parameters have been varied as shown in Table 4.3.

neutral Higgs state with mass Mh2 and the charged Higgs state with suitable mass can

generate multiple resonance regions, where the DM relic abundance is satisfied. The relic

abundance varies inversely with the fourth power of sin2β i.e., ∝ 1
sin4 2β

, where β is the

singlet-triplet mixing angle. The DM relic abundance is also seen to depend on the neu-

tral Higgs mixing angle α. Below, we discuss the correlation between different model

parameters.

Model Parameters Range
M
ρ0

1
110 - 300 [GeV]

Mh2 (2 M
ρ0

1
)100
−50 [GeV]

sinβ 10−3 - 1

Table 4.3: Parametsr varied in the above mentioned range at the time of generating the
scatter plots.

4.6 Correlation between parameters

In the LP of Fig. 4.7 we show the allowed regions in Mh2 and Mρ0
1
, where all the dots

satisfy the relic density bound as given in Eq. 1.85. The three colors correspond to three

different benchmark choices for the Higgs mixing angle α. From Figs. 4.5 and 4.6, one

can see that the DM relic density can always be satisfied near the resonance regions.

Hence, for a given BSM Higgs mass, there is only a range of DM masses that are allowed
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by the Planck bound. In generating the scatter plots we have varied the model parameters

as shown in Table 4.3. We have kept the values of Mh2 near the resonance region. As

expected, we get a sharp correlation between the mass of DM and the BSM Higgs mass as

stressed above. On the other hand, in the RP of Fig. 4.7 we have shown the allowed region

in the sine of singlet-triplet mixing angle (sinβ) and the DM mass (Mρ0
1
) plane. Here we

keep ∆M21 = 50 GeV (∆M21 as defined before), and the allowed region shows that for the

given ranges as in Table 4.3, the DM relic density can be satisfied for 0.025 < sinβ < 0.27.

One interesting point to note here is that in the LP of Fig. 4.7 for sinα, sinδ = 0.03,

correlation in the Mρ0
1
−Mh2 is wider compared to the other two lower values of sinα,

sinδ. We can understand this as follows. From the RP of Fig. 4.7 for sinα, sinδ = 0.03, the

DM relic density is satisfied for higher values of sinβ (∼ 0.3). From the LP of Fig. 4.5 we

see that near the second resonance region (Mρ0
1
∼ Mh2/2) the DM relic density is satisfied

for a wider range of Mρ0
1

for higher values of sinβ. Since, for sinα, sinδ = 0.03, we get

higher values of sinβ (as seen from the RP of Fig. 4.7), so the correlation in Mρ0
1
−Mh2

planes becomes wider.

The LP and RP of Fig. 4.8 show the allowed regions in the spin independent DD

cross section and the DM mass (σS I −Mρ0
1
) plane and the singlet-triplet mixing angle

(σS I − sinβ) plane, respectively. The LP shows that the model parameter space is not

constrained so-far by the results from the LUX experiment [167] (and Panda experiment

[169]). However, a good part of the parameter space can be probed in by the Xenon 1T

experiment [168] and in the future by the Darwin experiment [150]. The green, blue and

red dots satisfy the present day relic density bound for three chosen values of sinα. In the

RP we show the variation of the spin independent direct detection cross-section with the

fermion singlet-triplet mixing angle. Since the DD cross section is directly proportional

to the square of sinβ we see this functional dependence in this figure and σS I is seen to

increase with sinβ.
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Figure 4.8: LP (RP): Allowed region in the Mρ0
1
−σS I (sinβ−σS I) plane after satisfying

relic density bound. Other parameters values are ∆M12 = 50 GeV, MH± = Mh2 = 300 GeV
and the remaining parameters have been varied as shown in Table 4.3.
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Figure 4.9: Feynman diagrams of the DM annihilation into the gamma rays by one loop
diagrams mediated by the charge gauge boson W± and the charged scalar H±.

4.7 Indirect Detection of Dark Matter by γγ observation

In addition to the detection of the DM in the ongoing direct detection experiments for the

present model, it can also be detected by the indirect search of DM in different satelite

borne experiments like Fermi-LAT [153,172], HESS [173,174] by detecting the gamma-

rays signal which comes from the DM annihilation. In the present situation DM cannot

annihilate to gamma-rays at tree level but certainly can annihiate at the one loop level

mediated by the charged gauge boson W± and the charged scalar H± which is shown in

Fig. 4.9. The average of the amplitude for the velocity times cross section for the Feynman
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γγ from Present Model
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Figure 4.10: Fermi-LAT bounds and the prediction from the present model. In getting
the prediction from the model, we have kept the parameters value fixed at sinβ = 0.1,
∆M21 = 50 GeV, MH± = Mh2 = 2MDM and sinα = sinδ = 0.03.

diagrams which are shown in Fig. 4.9 takes the following form [175, 176],

〈σv〉γγ =

α2
EM M2

ρ0
1

16π3 |A|2 (4.28)

where A = AWρ + AHρ, αEM = e2/4π and e = 0.312. AWρ and the AHρ are the separate

contribution from one loop diagrams as shown in Fig. 4.9 which are mediated by the W±

and H±, respectively. The individual amplitude for the diagrams which are shown in

Fig. 4.9 take the following form,

AWρ = −2C2
1

[
2Ia

3(MW) + 2(M2
ρ± + M2

W −M2
ρ0

1
)Ia

4 + 2M2
ρ± Ib

4 + 3M2
ρ± Ic

4 + Ib
3(MW ,Mρ±)

]
+8C2

1 Mρ±Mρ0
1
(Ib

4 + Ic
4),

AHρ = C2
2

[
2M2

ρ± Ib
4 + M2

ρ± Ic
4 + Ib

3(MH± ,Mρ0
1
)
]

(4.29)

where the explicit form of Ii
3 (i = a,b) and I j

4 ( j = a,b,c) are given in the Appendix.

The couplings C1 and C2 are C1 = −esinβ/sinθw, where θw is the Weinberg angle and

C2 = cosαYρ∆/2, where Yρ∆ is given in Eq. (4.18).

In Fig. 4.10, we show the variation of 〈σv〉 with the DM mass, Mρ0
1

by considering

the relevant one loop diagrams. As the DM relic density for the pure triplet fermion is
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satisfied for DM mass of about 2.4 TeV and this is already ruled out by the Fermi-LAT

data when we the Sommerfeld enhancement is taken into consideration. In the current

work, we have taken the triplet fermion mixing with the singlet fermion with the help of

the triplet scalar and DM relic density can be satisfied around the 100 GeV order DM

mass. For such low mass range of the DM where Mρ0
1
∼ MW ∼ MH± , the Sommerfeld

enhancement factor will have no significant role in the increment of 〈σv〉γγ. We have

shown the Fermi-LAT-2013 [172] and Fermi-LAT-2015 [153] data in the 〈σv〉γγ −Mρ0
1

plane by the red and green dash line, respectively. By blue solid line we have shown the

〈σv〉γγ variation with the DM mass which is suppressed by the one loop factor for the

present model.

4.8 LHC Phenomenology

Although there has been no dedicated search for such a model at the LHC, one can in

principle, derive limits on the masses of the exotic fermions (ρ0
1,2, ρ±) and the additional

scalar states(h2, H±) from existing LHC analyses looking for similar particles. LHC has

extensively searched for heavy neutral Higgs boson similar to h2 and the non-observation

of any such states puts stringent constraints on masses and branching ratios of such par-

ticles provided their decay modes are similar to that of the SM-like Higgs [177–179].

However, in our case, these bounds are significantly weakened because the decays of h2

here are quite different compared to the conventional modes. h2 mostly decays into h1h1,

ρ0
2ρ

0
1 or ρ0

1ρ
0
1 pair depending on the availability of the phase space. In absence of ρ0

2ρ
0
1

mode, ρ0
1ρ

0
1 always has a large (30% - 40%) branching ratio, which is a completely invis-

ible mode and thus leads to weaker event rates in the visible final states. In the presence

of ρ0
2ρ

0
1 and(or) h1h1 modes, a bb̄ final state study can constrain the h2 mass since ρ0

2 al-

ways decays dominantly via bb̄. However, the net branching ratio suppression results in

weaker limits from the existing studies. Charged Higgs search at the LHC concentrates

on the τν̄, cs̄, cb̄ and tb̄ decay modes depending on the mass of H± [180–183]. None
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of these decay modes are significant in our present scenario. Here ρ± decays via ρ0
1ρ
±

and(or) W±Z depending on the particle masses. Thus the existing charged Higgs mass

limits do not apply here. Instead, a dilepton or trilepton search would be more suitable

for such particles although the charged leptons originating solely from the gauge boson

decays will be hard to distinguish from those coming from the SM. Constraints on the

masses of ρ0
2 and ρ± can be drawn from searches of wino-like neutralino and chargino in

the context of supersymmetry [184, 185]. However, production cross-section of this pair

at the LHC is smaller compared to the gauginos leading to weaker mass limits. Moreover,

the decay pattern of ρ0
2 is quite different from that of a wino-like neutralino. The most

stringent gaugino mass bounds are derived from the trilepton final state analysis. Such

a final state cannot be expected in our present scenario since ρ0
2 dominantly decays into

a bb̄ pair along with ρ0
1. However, ρ± always decays into ρ0

1 associated with an on-shell

or off-shell W-boson, similar to a wino-like chargino. Thus the bounds derived on the

chargino masses in such cases [184, 185] can be applied to mρ± as well if appropriately

scaled to its production cross-section and subjected to mρ0
1
. We have taken this constraint

into account while constructing our benchmark points.

In this section, we discuss in detail the LHC phenomenology of the dark matter. The

low mass dark matter can be copiously produced at LHC, either directly or from the decay

of the its triplet partner.

4.8.1 Production cross-section and choice of benchmark points

For this we consider production of ρ±ρ0
2 which further decay into ρ0

1 associated with

quarks resulting in a multi-jet + ��ET signal. Similar collider signal can also arise from

other production modes, namely, ρ0
2ρ

0
2 and ρ+ρ−. While the ρ0

2 pair production cross-

section is smaller by orders of magnitude, the other two production channels have com-

parable cross-sections as shown in Fig. 4.11. For Fig. 4.11, we have kept the mass gap

between ρ0
2 and ρ± fixed at the pion mass and the cross-section is computed at 13 TeV
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p p → ρ+ ρ2
0, ρ- ρ2
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p p → ρ+ ρ-
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Figure 4.11: Variation of production cross section ρ±ρ0
2 and ρ±ρ∓ with DM mass for 13

TeV run of LHC where we kept fixed Mρ0
2
−Mρ0

1
= 20 GeV, Mh2 = MH± = 300 GeV.

centre-of-mass energy. Clearly, σ(pp→ ρ±ρ0
2) is almost twice to that of σ(pp→ ρ+ρ−)

making the former one the most favored production channel to probe for the present sce-

nario. However, the latter one can also contribute significantly to boost the multi-jet +��ET

signal event rate given the fact that ρ0
2 and ρ± are mass degenerate from the collider per-

spective. The degeneracy of ρ0
2 and ρ± results in their decay products to have very similar

kinematics. Therefore, in our study of the multi-jet final state we have included both the

production channels pp→ ρ0
2ρ
± and pp→ ρ+ρ−. ρ0

2 further decays into ρ0
1 mostly via

h2 whereas ρ± also decays into ρ0
1 via W-boson. Regardless of whether the intermediate

scalar or the gauge bosons are on-shell or off-shell, we always consider their decays into

pair of b-quarks or light quarks. In the former case, the decay of h2 is likely to give rise

to b-jets in the final state whereas the latter one results in light jets arising from W decay.

Hence in order to combine the event rates arising from these two production channels,

we do not demand any b-tagged jets in the final states. Besides, demanding b-tagged jets

in the final state can also hinder the signal event rates specially for cases where the mass

difference between ρ0
2 and ρ0

1, i.e., ∆M21 is small.

For detail collider simulation and analysis of the above mentioned final state, we have

constructed few benchmark points representative of the available parameter space after

imposing all the relevant constraints. We have presented our choice of benchmark points

with all the relevant particle masses and DM constraints in Table 4.4. Note that, the mass
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Parameters M
ρ0

1
[GeV] M

ρ0
2

[GeV] Mρ+ [GeV] Mh2 [GeV] MH± [GeV] σS I [pb] Ωh2

BP1 87.6 128.0 128.2 195.5 195.5 2.1 ×10−12 0.1207
BP2 132.0 172.0 172.2 300.0 300.0 4.1 ×10−12 0.1208
BP3 171.1 211.0 211.2 400.0 400.0 4.8 ×10−12 0.1197
BP4 86.7 200.0 200.2 194.1 194.1 1.8 ×10−11 0.1186
BP5 119.0 230.0 230.2 280.0 280.0 2.9 ×10−11 0.1195

Table 4.4: Benchmark points to study LHC phenomenology. We fixed other BSM param-
eters as sinα = 0.03, sinβ = 0.1.

gap between ρ0
2 (or ρ±) and ρ0

1 (∆M21) can not be arbitrarily large for admissible values

of β. Hence in some cases, these fermionic states can lie quite close together giving rise

to a compressed scenario as depicted by, for example, BP1 in Table 4.4. However, the

mass gap can be moderate to significantly large and our choice of the benchmark points

encompasses all possible kind of DM mass regions and mass hierarchies.

4.8.2 Simulation details

As mentioned previously, the mass gap ∆M21 can be quite small in some cases, resulting

in soft jets in the final state, which may escape detection. The standard procedure is

to tag the radiation jets in order to look for such scenarios. For that, one needs to take

into account production of the mother particles along with additional jets and perform a

proper jet-parton matching [186, 187] in order to avoid double counting of jets. We have

considered the above mentioned production channels associated with upto two additional

jets at the parton level.

p p → XY

p p → XY j

p p → XY j j (4.30)

where {X Y} indicates any of the three pairs, {ρ0
2 ρ+}, {ρ0

2 ρ−} and {ρ+ ρ−}. The

events have been generated at the parton level using MadGraph5(v2.4.3) [188, 189] with
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CTEQ6L [190] parton distribution function (PDF). Events were then passed through

PYTHIA(v6.4) [191] to perform showering and hadronisation effects. Matching between

the shower jets and the parton level jets has been done using MLM [186, 187] matching

scheme. We have subsequently passed the events through Delphes(v3.4.1) [192–194] for

jet formation based on the anti-kT jet clustering algorithm [195] via fastjet [196] and for

detector simulation we used the default CMS detector cuts.

Since the number of hard jets obtained in the cascade are expected to vary for the

different benchmark points depending on the choice of ∆M21, we have chosen our final

state with an optimal number of jet requirement along with missing energy: ≥ 2-jets +��ET .

The dominant SM background contributions for such a signal can arise from QCD, V+

jets, tt̄+ jets and VV + jets channels, where V = W± and Z. For collider analysis of this

final state we have followed strategy similar to that adopted in, for example [197, 198].

Selection Cuts

We have used the following basic selection cuts (A0) to identify the charged leptons (e,

µ), photon (γ) and jets in the final state:

• Leptons are selected with pl
T > 10 GeV and the pseudorapidity |η`| < 2.5, where

` = e,µ.

• We used pγT > 10 GeV and psudorapidity |ηγ| < 2.5 as the basic cuts for photon.

• We have chosen the jets which satisfy p j
T > 40 GeV and |η j| < 2.5.

• We have considered the azimuthal separation between all reconstructed jets and

missing energy must be greater than 0.2 i.e. ∆φ( jet,��~ET ) > 0.2.

In Fig. 4.12, we have shown the distribution function of different kinematic variable

for the illustrative benchmark points after applying the basic selection cuts (A0). In ad-

dition, we also show the distribution for the SM background events. The signal event
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Figure 4.12: Normalised differential distribution with respect to the different cuts which
we have used in our study. Besides the SM backgrounds we have also shown the distri-
bution of three benchmark points BP1, BP4, BP3. All the kinematic variables have been
addressed in text.

distributions shown here correspond to ρ0
2ρ
± production channel which is the dominant

contributor to the final state.

Here we have shown the distribution corresponding to the effective mass (ME f f ) and

missing energy (��ET ) where the effective mass defined in the following way,

ME f f =
∑

i

|~p j
Ti
|+

∑
i

|~p`Ti
|+��ET . (4.31)

These distributionis show some distinguishing features of the signal events from the SM

backgrounds. Guided by these distributions we now proceed to device some appropriate

kinematic cuts to optimise the signal to background events ratio in order to maximise the

statistical significance of the signal.

A1: Since we are studying a hadronic final state, we have imposed a lepton and pho-

ton veto in the final state. This cut coupled with a large ��ET cut helps to reduce

background events particularly arising from W + jets when W decays leptonically.

A2: pT requirements on the hardest and second hardest jets: p j1
T > 130 GeV and p j2

T >

80 GeV. This cut significantly reduce the V + jets (where V = W±, Z) and QCD

backgrounds.

A3: The QCD multi-jet events have no direct source of missing energy. Therefore, any
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contribution to ��ET in these events must arise from the mismeasurement of the jet

pT s. In order to minimise this effect, we have ensured that the ��~ET and the jets

are well separated, i.e., ∆φ( ji,��~ET ) > 0.4 where i = 1, 2. For all the other jets,

∆φ( j,��~ET ) > 0.2.

A4: We demand a hard cut on the effective mass variable, ME f f > 800 GeV.

A5: We put the bound on the missing enrgy��ET > 160 GeV.

ME f f and ��ET are the two most effective cuts to reduce SM background events for

multi-jet analyses. As shown in Fig. 4.12, these variables clearly separates the sig-

nal kinematical region from most of the dominant backgrounds quite effectively and

can reduce the backgrounds in a significant amount. Most importantly, these cuts

along with A1 and A2, reduces the large QCD background to a neglible amount.

Results

In Table 4.5 and 4.6, we have shown numerical results of our collider analysis in produc-

tion channels ρ0
2ρ
± and ρ+ρ− respectively corresponding to the five choosen benchmark

points (as shown in Table 4.4) which satisfy the present day accepted value of the DM

relic density and are safe from the different ongoing direct detection experiment. We have

studied the SM background in detail and in Table 4.7 we have shown the resulting cross

sections after appyling the aforementioned cuts. Here, we have considered NLO cross

section for all the SM background processes as provided in [188].

Signal at 13 TeV
BP Cross-section (pb)

BP1 6.757
BP2 2.279
BP3 1.052
BP4 1.296
BP5 0.760

Effective Cross section after applying cuts (fb)
A0 + A1 A2 A3 A4 A5
1005.05 175.08 138.45 22.02 19.15
385.22 69.16 56.51 11.87 10.85
189.71 34.63 29.19 7.36 6.82

1047.86 145.67 116.94 14.19 9.82
616.00 89.60 72.63 9.80 7.40

Table 4.5: Cut-flow table for the obtained signal cross section at 13 TeV LHC correspond-
ing to ρ0

2ρ
± channel. The five benchmark points are referred as BP1-BP5. See the text for

the details of the cuts A0-A5.
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Signal at 13 TeV
BP Cross-section (pb)
BP1 3.419
BP2 1.156
BP3 0.532
BP4 0.652
BP5 0.380

Effective Cross section after applying cuts (fb)
A0 + A1 A2 A3 A4 A5
2639.30 74.36 59.18 8.54 7.31
880.60 28.77 23.87 4.95 4.43
402.24 14.80 12.62 3.18 2.95
446.80 63.99 45.54 5.72 3.76
258.55 34.40 28.07 3.99 3.08

Table 4.6: Cut-flow table for the obtained signal cross section at 13 TeV LHC correspond-
ing to ρ+ρ− channel. The five benchmark points are referred as BP1-BP5. See the text for
the details of the cuts A0-A5.

SM Backgrounds at 13 TeV
Channels Cross-section (pb)

Z + ≤ 4 jets 5.7×104

W± + ≤ 4 jets 1.9×105

QCD (≤ 4 jets) 2.0×108

t t̄+ ≤ 2 jets 722.94
W±Z + ≤ 2 jets 51.10

Z Z +≤ 2 jets 13.71
Total Backgrounds

Effective Cross section after applying cuts (pb)
A0 + A1 A2 A3 A4 A5
5.5 ×103 361.90 241.60 11.40 2.20
9.1 ×103 783.20 504.00 18.90 1.50
1.5 ×107 3.5 ×105 2.4 ×105 2.5 ×103 -
493.73 171.46 120.63 13.89 1.94
19.66 5.37 3.59 0.50 0.12
4.99 0.80 0.53 0.06 0.02

5.78

Table 4.7: Cut-flow table for the obtained cross-sections corresponding to the relevant
SM background channels for the cuts A0-A5 as mentioned in the text at the LHC with 13
TeV center-of-mass energy.

In order to compute statistical significance (S) of our signal for the different bench-

mark points over the SM background we have used

S =

√
2×

[
(s + b) ln

(
1 +

s
b

)
− s

]
. (4.32)

where s is the number of signal events and b that of the total SM background contribution.

In Table 4.8, we have shown the statistical significance obtained for 100 fb−1 integrated

luminosity (L). In the last column we have also shown the required L to achieve 3σ

statistical significance for our benchmark points at 13 TeV LHC.

Signal at 13 TeV
BP DM mass [GeV]
BP1 87.6
BP2 132.0
BP3 171.1
BP4 86.7
BP5 119.0

Statitical Significance (S)
L = 100 fb−1

3.5
2.0
1.3
1.8
1.4

Required Luminosity L (fb−1)
S = 3σ

74.4
223.0
545.3
282.3
473.9

Table 4.8: Statistical significance of the multi-jet signal corresponding to different bench-
mark points for L = 100 fb−1 integrated luminosity along with the required luminosity to
achieve 3σ statistical significance at 13 TeV run of the LHC.

As evident from Table 4.5, 4.6, 4.7 and 4.8, the used kinematical cuts are efficient
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enough to reduce the SM background contributions to the multi-jet channel. At the same

time sufficient number of signal events survive leading to discovery potential of such a

scenario at the 13 TeV run of the LHC with realistic integrated luminosities. The cuts A2,

A4 and A5 are particularly useful in reducing the dominant background constributions

arising from W + jets, Z + jets and tt̄ + jets. A combination of cuts A2-A5 has reduced

the QCD contribution to a negligible amount. As the numbers indicate in Table 4.8, BP1

can be probed at the 13 TeV run of the LHC with 3σ statistical significance with rela-

tively low luminosity owing to the large production cross-section. As expected, the signal

significance declines as the mass of ρ0
2 (ρ±) is increased while its mass gap with ρ0

1 is

kept same as represented by the numbers corresponding to the two subsequent bench-

mark points (BP2 and BP3). The last two benchmark points, BP4 and BP5 represent the

scenario when the parent particles have masses significantly higher than the DM candi-

date. As a result, one would expect the cut efficiencies to improve for these benchmark

points. This is reflected for example in the case of BP5 which has a signal significance

very similar to BP3 in spite of having the smallest production cross-section. It can be

inferred from our analysis that ρ0
2 (ρ±) masses ∼ 250 GeV can easily be probed at the 13

TeV LHC with a reasonable luminosity.
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5
Neutrino Mass, Leptogenesis and FIMP Dark Matter in

a U(1)B−L Model

5.1 Introduction

This chapter mostly covers the work [199] where we have extended the SM gauge group

SU(3)c × SU(2)L ×U(1)Y by a local U(1)B−L gauge group. The B−L extension of SM

[94–97] has been studied earlier in the context of dark matter phenomenology [98–106,

200, 201] and baryogenesis in the early Universe in Refs. [107–109]. Since we have im-

posed a local U(1) symmetry, consequently an extra gauge boson (ZBL) will arise. To

cancel the anomaly due to this extra gauge boson we need to introduce three right-handed

(RH) neutrinos (Ni, i = 1, 2, 3) to make the model anomaly free. Apart from the three

RH neutrinos, we have also introduced two SM gauge singlet scalars namely φH and

φDM, both of them are charged under the proposed U(1)B−L gauge group. The U(1)B−L

symmetry is spontaneously broken when the scalar field φH takes a nonzero vacuum ex-

pectation value (VEV) and thereby generates the masses for the three RH neutrinos as

well as the extra neutral gauge boson ZBL, whose mass terms are forbidden initially due

to the U(1)B−L invariance of the Lagrangian. The other scalar φDM does not acquire any

VEV and by choosing appropriate B−L charge φDM becomes naturally stable and there-

fore, can serve as a viable dark matter candidate. As mention above, anomaly cancellation
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requires the introduction of three RH neutrinos in the present model. Therefore we can

easily generate the neutrino masses by the Type-I seesaw mechanism after B-L symmetry

is broken. Diagonalising the light neutrino mass matrix (mν, for detail see Section 5.2.1),

we determine the allowed parameter space by satisfying the 3σ bounds on the mass square

differences (∆m2
12, ∆m2

atm), the mixing angles (θ12, θ13, θ23) [89] and also the cosmological

bound on the sum of three light neutrinos masses [20]. We also determine the effective

mass mββ which is relevant for neutrino-less double beta decay and compare it against the

current bound on mββ from GERDA phase I experiment [202].

Next, we explain the possible origin of the baryon asymmetry at the present epoch

from an initially matter-antimatter symmetric Universe via leptogenesis. We first gener-

ate the lepton asymmetry (or B−L asymmetry, YB−L) from the out of equilibrium, CP

violating decays of RH neutrinos. The lepton asymmetry thus produced has been con-

verted into the baryon asymmetry by the (B + L) violating sphaleron processes which are

effective before and during electroweak phase transition [203–205]. When the sphaleron

processes are in thermal equilibrium (1012 GeV <∼ T <∼ 102 GeV, T being the temperature

of the Universe), the conversion rate is given by [206]

YB = −
8N f + 4Nφh

22N f + 13Nφh

YB−L (5.1)

where N f = 3 and Nφh = 1, are the number of fermionic generations and number of Higgs

doublet in the model, respectively.

Finally, in order to address the dark matter issue, we consider the singlet scalar φDM

as a DM candidate. Since the couplings of this scalar to the rest of the particles of the

model are free parameters, they could take any value. Depending on the value of these

couplings, we could consider φDM as a WIMP or a FIMP. Detailed study on the WIMP

type scalar DM in the present U(1)B−L framework has been done in Refs. [93, 104, 105].

In most of the earlier works, it has been shown that the WIMP relic density is mainly

satisfied around the resonance regions of the mediator particles. Moreover, the WIMP
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parameter space has now become severely constrained due to non-observation of any

“real” signal in various direct detection experiments. Thus, as discussed earlier, in this

situation the study of scalar DM other than WIMP is worthwhile. Therefore in this work,

we consider the scalar field φDM as a FIMP candidate which, depending on its mass, is

dominantly produced from the decays of heavy bosonic particles such as h1, h2, ZBL and

also from the annihilations of bosonic as well as fermionic degrees of freedom present

in the model (e.g. Ni, ZBL, hi etc.). In the present work, we have extensively studied

the FIMP DM production mechanism from all possible decays and annihilations other

particles present in the model. Moreover, we have found that depending on our DM mass,

a sharp correlation exists among the three puzzles of astroparticle physics namely neutrino

mass generation, leptogenesis and DM.

In the non-thermal scenario, most of the production of the FIMP from the decay of a

heavy particle occurs when T ∼ M, where M is the mass of the decaying mother particle,

which is generally assumed to be in thermal equilibrium. Therefore, the non-thermality

condition of the FIMP demands that
Γ

H
< 1

∣∣∣∣∣
T∼M

[207], which in turn imposes a severe

upper bound on the coupling strengths of the FIMP. Thus the non-thermality condition

requires extremely small coupling of φDM with the thermal bath (<∼ 10−10) and hence,

FIMP DM can easily evade all the existing bounds from DM direct detection experiments

[115, 208, 209]. In this Chapter, we will not describe the model (particle spectrum and

Lagrangian) because it is already described more elaborately in Chapter 2.

5.2 Results

5.2.1 Neutrino Masses and Mixing

As mentioned earlier, the cancellation of both axial vector anomaly [210, 211] and grav-

itational gauge anomaly [212, 213], in U(1)B−L extended SM, requires the presence of
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extra chiral fermions. Hence, in the present model to cancel these anomalies we have

introduced three right handed (RH) neutrinos (Ni, i=1 to 3). The Majorana masses for the

RH neutrinos are generated only after spontaneous breaking of the proposed B−L sym-

metry by the VEV of φH . Also in the present scenario, as stated earlier, we are working

in a basis where the Majorana mass matrix for the three RH neutrinos are diagonal i.e.

MR = diag(MN1 ,MN2 ,MN3). The expression for the mass of ith RH neutrino (MNi) is

given by,

MNi =
yNi
√

2
vBL . (5.2)

On the other hand, the Dirac mass terms involving both left chiral and right chiral neutri-

nos, are originated when the electroweak symmetry is spontaneously broken by the VEV

of SM Higgs doublet φh, giving rise to a 3× 3 complex matrix MD. In general, one

can take all the elements of matrix MD as complex but for calculational simplicity and

also keeping in mind that only three physical phases (one Dirac phase and two Majorana

phases) exist for three light neutrinos (Majorana type), we have considered only three

complex elements in the lower triangle part of the Dirac mass matrixMD. However, the

results we have presented later in this section will not change significantly if we consider

all the elements of MD are complex. The Dirac mass matrix MD we assume has the

following structure:

MD =



yee yeµ yeτ

yµe + i ỹµe yµµ yµτ

yτe + i ỹτe yτµ+ i ỹτµ yττ


, (5.3)

where yi j =
y′i j
√

2
v (i, j = e, µ, τ) and the Yukawa coupling y′i j has been defined in Eq. (2.1).
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Now, with respect to the Majorana basis
(
ναL (NαR)c

)T
and ((ναL)c NαR)T one can

write down the Majorana mass matrix for both left and right chiral neutrinos usingMD

andMR matrices in the following way,

M =

 0 MD

MD
T MR

 . (5.4)

Since MD and MR are both 3×3 matrices (for three generations of neutrinos), the resultant

matrix M will be of order 6×6 and also it is a complex symmetric matrix which reflects

its Majorana nature. Therefore, after diagonalisation of the matrix M, we get three light

and three heavy neutrinos, all of which are Majorana fermions. If we use the block di-

agonalisation technique, we can write the light and heavy neutrino mass matrices in the

leading order as,

mν ' −MDMR
−1MD

T , (5.5)

mN ' MR . (5.6)

Here MR is a diagonal matrix and the expression of all the elements of mν in terms of the

elements ofMD andMR matrices are given in Appendix of Ref. [199]. After diagonal-

ising mν matrix we get three light neutrino masses (mi, i = 1, 2, 3), three mixing angles

(θ12, θ13 and θ23) and one Dirac CP phase δ.

We have used the Jarlskog Invariant JCP [214] to determine the Dirac CP phase δ,

which is defined as,

JCP =
1
8

sin2θ12 sin2θ23 sin2θ13 cosθ13 sinδ. (5.7)

Moreover, the quantity JCP is related to the elements of the Hermitian matrix h = mνm
†
ν in
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the following way,

JCP =
Im(h13h23h31)

∆m2
21 ∆m2

32 ∆m2
31

(5.8)

where in the numerator Im(X) represents the imaginary part of X while in the denom-

inator, ∆m2
i j = m2

i −m2
j . Once we determine the quantity JCP (from Eq. (5.8)) and the

intergenerational mixing angles of neutrinos then one can easily determine the Dirac CP

phase using Eq. (5.7).

In the present scenario we have twelve independent parameters coming from the Dirac

mass matrix. The RH neutrino mass matrix, in principle, should bring in three additional

parameters. However, as we will discuss in details in Section 5.2.2, two of the RH neu-

trino masses is taken to be nearly degenerate. In particular, the condition of resonant

leptogenesis requires that MN2 −MN1 = Γ1/2, where Γ1 is the tree level decay width of N1

and is seen to be ∼ 10−11 GeV. Therefore, for all practical purposes we have MN1 ' MN2 ,

and the RH neutrino mass matrix only brings in two independent parameters, MN1 and

MN3 . Thus, we have fourteen independent parameters which we vary in the following

ranges,

1 TeV ≤ MN1 ≤ 3 TeV ,

MN1 < MN3 ≤ 15 TeV ,

1 ≤

√
2 yi j

v
×108 ≤ 1000 (i, j = e, µ, τ, i = j , e) ,

1 ≤

√
2 yee

v
×1010 ≤ 100 ,

1 ≤

√
2 ỹi j

v
×108 ≤ 1000 (i = τ, j = e, µ) ,

1 ≤

√
2 ỹµe

v
×109 ≤ 1000 .

(5.9)

We try to find the allowed parameter space which satisfy the following constraints on three

mixing angles (θi j) and two mass square differences (∆m2
i j), JCP obtained from neutrino

oscillation data and the cosmological bound on the sum of three light neutrino masses.
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These experimental/observational results are listed below.

• Measured values of three mixing angles in 3σ range [89]:

30◦ < θ12 < 36.51◦, 37.99◦ < θ23 < 51.71◦ and 7.82◦ < θ13 < 9.02◦.

• Allowed values of two mass squared differences in 3σ range [89]:

6.93 <
∆m2

21

10−5 eV2 < 7.97 and 2.37 <
∆m2

31

10−3 eV2 < 2.63 in 3σ range.

• Above mentioned values of the neutrino oscillation parameters also put an upper

bound on the absolute value of JCP from Eq. (5.7), which is |JCP| ≤ 0.039.

• Cosmological upper bound on the sum of three light neutrino masses i.e.
∑

i mi <

0.23 eV at 2σ C.L. [20].

While it is possible to obtain both normal hierarchy (NH) (m1 < m2 < m3) and inverted

hierarchy (IH) (m3 < m1 < m2) in this scenario, we show our results only for NH for

brevity. Similar results can be obtained for IH.

Figure 5.1: LP: Variation of Jcp with δ. RP: Variation of neutrino less double β decay
parameter mββ with m1

In the LP of Fig. 5.1, we have shown the variation of JCP parameter (as defined in

Eq. (5.7)) with the Dirac CP phase δ. From this plot one can easily notice that there are two

allowed ranges of Dirac CP phase 0◦ ≤ δ≤ 90◦ and 270◦ ≤ δ≤ 360◦ respectively which can

reproduce the neutrino oscillation parameters in 3σ range. Since the Jarlskog invariant

JCP is proportional to sinδ (Eq. 5.7), hence we get both positive and negative values
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of JCP symmetrically placed in the first and fourth quadrants. However, the absolute

values of JCP always lie below 0.039. Also, here we want to mention that from the recent

results of T2K [215] experiment, values of δ lying in the fourth quadrant are favourable

compared to those in first quadrant. In the RP of Fig. 5.1, we have shown the variation

of neutrino less double β decay parameter mββ with the mass of lightest neutrino m1. mββ

is an important quantity for the study of neutrino less double β decay as the cross section

of this process is proportional to mββ =
∣∣∣∑3

i=1(UPMNS)2
e i mi

∣∣∣ = (mν)ee, where (mν)ee (see

Appendix of Ref. [199] for details.) is the (1,1) element of light neutrino mass matrix mν.

The nature of this plot is very to similar to the usual plot in mββ−m1 plane for the normal

hierarchical scenario [216]. In the same plot, we have also shown the current bound on

mββ from KamLand-Zen experiment [217].

5.2.2 Baryogenesis via Resonant Leptogenesis

As we have three RH neutrinos in the present model, in this section we have studied the

lepton asymmetry generated from the CP violating out of equilibrium decays of these

heavy neutrinos at the early stage of the Universe. The B−L asymmetry thus produced

is converted into the baryon asymmetry through sphaleron transitions which violate B + L

quantum number while conserving the B−L charge. The sphaleron processes are ac-

tive between temperatures of ∼ 1012 GeV to ∼ 102 GeV in the early Universe. At high

temperatures the sphalerons are in thermal equilibrium and subsequently they freeze-out

at around T ' 100 − 200 GeV [218, 219], just before electroweak symmetry breaking

(EWSB). To produce sufficient lepton asymmetry, which would eventually be converted

into the observed baryon asymmetry, one requires RH neutrinos with masses >∼ 108−109

GeV [218, 220]. This is the well know scenario of the “normal” or “canonical" leptogen-

esis. However, detection of these very massive RH neutrinos is beyond the reach of LHC

and other future colliders. Here we consider the RH neutrinos to be in TeV mass range

to allow for their detection at collider experiments. It has been shown that with RH neu-
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N1

L

φh

N1

L

φh

N1
L

φhNj

Nj

Figure 5.2: Feynmann diagrams for the decay of lightest RH neutrino N1.

trinos in the TeV mass-scale range, it is possible to generate adequate lepton asymmetry

by considering the two lightest RH neutrinos N1 and N2 to be almost degenerate. More

specifically, we demand that MN2 −MN1 ' Γ1/2, where Γ1
1 is the total decay width of the

lightest RH neutrino N1. This scenario is known as Resonant leptogenesis [219,221–223].

Fig. 5.2 shows the tree level as well as one loop decay diagrams of the lightest RH neu-

trino N1. These diagrams are applicable for all the three RH neutrinos. Here L represents

the SM lepton which can either be a charged lepton or a left chiral neutrino depending

on the nature of the scalar field (charged 2 or neutral) associated in the vertex while N j

denotes the remaining two RH neutrinos, N2 and N3 for the case of N1 decay. In order to

produce baryon asymmetry in the Universe we need both C and CP violating interactions,

which is one of the three necessary conditions (see Sakharov conditions [13] given in

Section 5.1) for baryogenesis. Lepton asymmetry generated from the out of equilibrium

decay of RH neutrinos is determined by the CP asymmetry parameter (εi), which is given

1The typical value of Γ1 is ∼ 10−11 GeV (see Fig. 5.3) while MNi ∼ O(TeV). Hence we take MN1 = MN2

throughout the work.
2Since these processes occurred before EWSB hence we have both charged as well as neutral scalars in

the SM.
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by (for details see Appendix of Ref. [199]),

ε2 ' −
1
2

Im
[
(MDMD†)2

12

]
(MDMD†)11 (MDMD†)22

, (5.10)

ε1 ' −
Γ1 Γ2

Γ2
1 +Γ2

2

Im
[
(MDMD†)2

12

]
(MDMD†)11 (MDMD†)22

, (5.11)

'
2Γ1 Γ2

Γ2
1 +Γ2

2

ε2 . (5.12)

Figure 5.3: LP: Variation of CP asymmetry parameter ε1 with the mass of N1. RP:
Variation of total decay width of N1 with MN1 . Black solid line represents the upper
bound of Γ1 coming from out of equilibrium condition of N1. All the points in both plots
satisfy the neutrino oscillation data in 3σ range.

In the LP of Fig. 5.3, we show the variation of CP asymmetry parameter ε1, generated

from the decay of RH neutrino N1, with the mass of N1. Here we see that for the consid-

ered ranges of MN1 (1000GeV≤MN1 ≤ 10000GeV) and other relevant Yukawa couplings

(see Eq. (5.9)), the CP asymmetry parameter ε1 can be as large as ∼ 10−2, which is signif-

icantly large compared to ε1 in the “normal” Leptogenesis case (ε1 ∼ 10−8 for MN1 ∼ 1010

GeV) [218]. In the RP of Fig. 5.3, we plot the variation of total decay width of N1 with

MN1 . From this plot, one can easily notice that in the present scenario, Γ1 lies between

∼ 10−12 GeV to 10−9 GeV for the entire considered range of MN1 . All the points in both

panels satisfy the neutrino oscillations data in the 3σ range while the black solid line in

the RP provides the upper bound on Γ1, obtained from the out of equilibrium conditions

for N1 i.e. Γ1 < 3 H(MN1) [218] where H is Hubble parameter at T = MN1 .
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Next, we calculate the B−L asymmetry generated from the decays as well as the pair

annihilations of the RH neutrinos N1 and N2. In order to calculate the net B−L asymmetry

produced from the interactions of N1 and N2 at temperature of the Universe T ' 150 GeV

(freeze-out temperature of sphaleron) we have to solve a set of three coupled Boltzmann

equations. The relevant Boltzmann equations [218, 219] for calculating YNi and YB−L are

given below,

dYN1

dz
= −

Mpl

1.66 M2
N1

z
√

g?(z)
gs(z)

〈Γ1〉
(
YN1 −Yeq

N1

)
−

2π2

45
Mpl MN1

1.66

√
g?(z)
z2 ×(

〈σv〉N1,ZBL + 〈σv〉N1,t,HBL

) (
Y2

N1
− (Yeq

N1
)2
)
, (5.13)

dYN2

dz
= −

Mpl

1.66 M2
N1

z
√

g?(z)
gs(z)

〈Γ2〉
(
YN2 −Yeq

N2

)
−

2π2

45
Mpl MN1

1.66

√
g?(z)
z2 ×(

〈σv〉N2,ZBL + 〈σv〉N2,t,HBL

) (
Y2

N2
− (Yeq

N2
)2
)
, (5.14)

dYB−L

dz
= −

Mpl

1.66 M2
N1

z
√

g?(z)
gs(z)

 2∑
j=1

YB−L

2

YNeq
j

Yeq
L

+ε j

(
YN j −YNeq

j

) 〈Γ j〉

 , (5.15)

where YX =
nX

s
denotes the comoving number density of X, with nX being the actual num-

ber density and z =
MN1

T
. Planck mass is denoted by Mpl. The quantity g?(z) is a function

of gρ and gs, the effective degrees of freedom related to the energy and entropy densities

of the Universe respectively and defined in section 1.6. Before EWSB, the variation of

gs(z) with respect to z is negligible compared to the first term within the brackets and

hence one can use
√

g?(z) '
gs(z)√
gρ(z)

. The equilibrium comoving number density of X

(X = Ni, L), obeying the Maxwell Boltzmann distribution, is given by [30]

Yeq
X (z) =

45gX

4π4

(
MX z
MN1

)2 K2

(
MX
MN1

z
)

gs

(
MN1

z

) , (5.16)

where gX and MX are the internal degrees of freedom and mass of X respectively while

gs

(
MN1

z

)
is the effective degrees of freedom related to the entropy density of the Universe

at temperature T =
MN1

z
. K2

(
MX
MN1

z
)

is the modified Bessel function of order 2. The
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Figure 5.4: Feynman diagrams for the annihilations of RH neutrinos.

relevant Feynman diagrams including both decay and annihilation of Ni are shown in

Figs. 5.2 and 5.4. The expression of thermal averaged decay width 〈Γi〉, which is related

to total decay width Γi of Ni is given as

〈Γi〉 = Γi

K1

(
MNi
MN1

z
)

K2

(
MNi
MN1

z
) . (5.17)

The thermally average annihilation cross sections 〈σv〉Ni,ZBL and 〈σv〉Ni,ZBL , appear-

ing in Boltzmann equations (Eqs. (5.13) and (5.14)) for the processes shown in Fig. 5.4,

can be defined in a generic form,

〈σv〉Ni, x =
z

16 M4
Ni

MN1 g2
Ni

K2

(
MNi
MN1

z
)2

∫ ∞

4 M2
Ni

σ̂Ni, x K1

( √
s

MN1

z
)
√

sds , (5.18)

where the σ̂Ni, x is related to the actual annihilation cross section σNi, x by the following

relation

σ̂Ni, x = 2g2
Ni

(
s−4 M2

N1

)
σNi, x , (5.19)

where gNi = 2 is the internal degrees of freedom of RH neutrino Ni. The expression of
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Figure 5.5: Variation of YN1 (Green dash line) and YB−L (blue dash-dot line) with z where

other parameters have kept fixed at MN1 = 2000 GeV, αBL

(
=

g2
BL

4π

)
= 3×10−4, MZBL = 3000

GeV.

σ̂Ni,ZBL and σ̂Ni, t,HBL for the present model is given in Ref. [219].

To calculate the B−L asymmetry at around T ' 150 GeV, we have to numerically

solve the set of three coupled Boltzmann equations (Eqs. (5.13)-(5.15)) using Eq. (1.82)

and Eq. (5.19). However, we can reduce the two flavour analysis (when both N2 and N1

are separately considered) into one flavour case by considering the parameters of MD

matrix in such a way so that the decay widths of N1 and N2 are of the same order i.e.

Γ1 ∼ Γ2. Hence, the CP asymmetry generated from the decays of both N1 and N2 are

almost identical (ε1 ∼ ε2, see Eq. (5.10)-(5.11)). In this case, the net B−L asymmetry is

equal to twice of that is being generated from the CP violating interactions of the lightest

RH neutrino N1 [219]. Hence instead of solving three coupled differential equations we

now only need to solve Eqs. (5.13) and (5.15). The results we have found by numerically

solving Eqs. (5.13) and (5.15) are plotted in Fig. 5.5. In this plot, we have shown the

variation of YN1 and YB−L with z for MN1 = 2000 GeV, αBL = 3× 10−4 and MZBL = 3000

GeV 3. While solving the coupled Boltzmann equations we have considered the following

initial conditions: YN1(T B
in) = Yeq

N1
and YB−L = 0 with T B

in is the initial temperature which

we have taken as 20 TeV. Thereafter, the evolutions of YN1 and YB−L are governed by

3The considered value of MZBL and the corresponding gauge coupling gBL satisfy the upper bounds
obtained from LEP [111, 112] and more recently from LHC [104] as well.
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their respective Boltzmann equations. From Fig. 5.5, one can notice that initially upto

z ∼ 1 (T ∼ MN1), the comoving number density of YN1 does not change much as a result

of the B−L asymmetry produced from the decay, and the annihilation of N1 is also less.

However, as the temperature of the Universe drops below the mass of MN1 , there is a

rapid change in the number density of N1, which changes around six orders of magnitude

between z = 1 and z = 20. Consequently, the large change in YN1 significantly enhances

the B−L asymmetry YB−L and finally YB−L saturates to the desired value around ∼ 10−10,

when there are practically no N1 left to produce any further B−L asymmetry.

The produced B−L asymmetry is converted to net baryon asymmetry of the Universe

through the sphaleron transitions while they are in equilibrium with the thermal bath. The

quantities YB−L and YB are related by the following equation [206]

YB = −2×
28
79

YB−L(Tf) , (5.20)

where Tf ' 150 GeV is the temperature of the Universe upto which the sphaleron process,

converting B−L asymmetry to a net B asymmetry, maintains its thermal equilibrium. The

extra factor of two in the above equation is due to the equal contribution to YB−L arising

from the CP violating interactions of N2 as well. Finally, we calculate the net baryon

asymmetry YB for three different masses of RH neutrino N1 and CP asymmetry parameter

ε1. The results are listed in Table 5.1. In all three cases, the final baryon asymmetry

lies within the experimentally observed range for YB i.e. (8.239− 9.375)× 10−11 at 95%

C.L. [12].

MN1 [GeV] ε1 YB =
nB
S

1600 4.4×10−4 8.7121×10−11

1800 2.25×10−4 8.7533×10−11

2000 1.8×10−4 8.5969×10−11

Table 5.1: Baryon asymmetry of the Universe generated for three different values of MN1

and ε1.
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5.2.3 FIMP Dark Matter

In the present section we explore the FIMP scenario for dark matter in the Universe, by

considering the complex scalar field φDM as a corresponding candidate. As described in

the Section 2.2, the residual Z2 symmetry of φDM makes the scalar field absolutely stable

over the cosmological time scale and hence can play the role of a dark matter candidate.

Since φDM has a nonzero B−L charge nBL, therefore DM talks to the SM as well as the

BSM particles through the exchange of extra neutral gauge boson ZBL and two Higgs

bosons present in the model, one is the SM-like Higgs h1 while other one is the BSM

Higgs h2. The corresponding coupling strengths, in terms of gauge coupling gBL, B−L

charge nBL, mixing angle α and λs, are listed in Table 5.2. As the FIMP never enters

into thermal equilibrium, these couplings have to be extremely feeble in order to make

the corresponding interactions nonthermal. For the case of φDM φ
†

DM ZBLµ coupling, we

will make the B−L charge of φDM extremely tiny so that this interaction enters into the

nonthermal regime. In principle, one can also choose the gauge coupling gBL to be very

small, however in the present case we will keep the values of gBL and MZBL fixed at 0.07

and 3 TeV respectively as these values reproduce the observed baryon asymmetry of the

Universe (see Section 5.2.2). Also, there is another advantage of choosing tiny nBL as

this will make only φDM out of equilibrium while keeping ZBL in equilibrium with the

thermal bath. Moreover, due to the nonthermal nature, the initial number density of FIMP

is assumed to be negligible and as the temperature of the Universe begins to fall down,

they start to be produced dominantly from the decays and annihilation of other heavy

particles.

In the present scenario, we have considered all the particles except φDM to be in ther-

mal equilibrium. Before EWSB, all the SM particles are massless4. In this regime,

production of φDM occurs mainly from the decay and/or annihilation of BSM particles

namely ZBL, HBL, and Ni. Also, before EWSB the annihilation of all four degrees of free-

4Although the SM particles acquire thermal masses before EWSB, we have neglected these masses, as
in this regime this approximation will not affect the DM production processes significantly.
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Vertex Vertex Factor
abc gabc

φDM φ
†

DM ZBLµ gBL nBL(p2− p1)µ

φDM φ
†

DM h1 − (λDhvcosα+λDHvBL sinα)
φDM φ

†

DM h2 (λDhvsinα−λDHvBL cosα)

Table 5.2: Couplings of FIMP (φDM) with ZBL, h1 and h2.

dom of SM Higgs doublet φh can produce φDM. Feynman diagrams for all the production

processes of φDM before EWSB are shown in Fig. 5.6.

φDM

φ†
DM

Ni

Ni

φDM

φ†
DM

ZBL

ZBL

φDM

φ†
DM

φDM

φ†
DM

HBL, ZBL

HBL, φh, ZBL

HBL, φ
†
h, ZBL

HBL, ZBL HBL

Figure 5.6: Feynman diagrams for the all possible production modes of φDM before
EWSB.

After EWSB, all the SM particles become massive and consequently besides the BSM

particles, φDM can now also be produced from the decay and/or annihilation of the SM

particles as well. The corresponding Feynman diagrams are shown in Fig. 5.7. In gener-

ating the vertex factors for different vertices to compute the Feynman diagrams as listed

in Fig. 5.6 and Fig. 5.7 we have used the LanHEP [120] package.

In order to compute the relic density of a species at the present epoch, one needs to

study the evolution of the number density of the corresponding species with respect to

the temperature of the Universe. The evolution of the number density of φDM is governed

by the Boltzmann equation containing all possible number changing interactions of φDM.
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Figure 5.7: Production processes of φDM from both SM as well as BSM particles after
EWSB.

The Boltzmann equation of φDM in terms of its comoving number density YφDM =
nφDM

s
,

where n and s are actual number density and entropy density of the Universe is given by

dYφDM

dz
=

2Mpl

1.66M2
h1

z
√

g?(z)
gs(z)

[ ∑
X=ZBL,h1,h2

〈ΓX→φDMφ
†

DM
〉(Yeq

X −YφDM )
]

+
4π2

45
MplMh1

1.66

√
g?(z)
z2

[∑
p
〈σvpp̄→φDMφ

†

DM
〉(Yeq 2

p −Y2
φDM

)

+〈σvh1h2→φDMφ
†

DM
〉(Yeq

h1
Yeq

h2
−Y2

φDM
)
]
, (5.21)

where z =
Mh1

T
, while

√
g?(z), gs(z) and Mpl are same as those in Eqs. (5.13)–(5.15)

of Section 5.2.2. In the above equation (Eq. (5.21)), first term represents the contribution

coming from the decays of ZBL, h1 and h2. The expressions of equilibrium number density

Yeq
X (z) (X is any SM or BSM particle expect φDM) and the thermal averaged decay width

〈ΓX→φDMφDM〉 can be obtained from Eqs. (5.16) and (5.17), respectively by only replacing

MN1 with MX, the mass of decaying mother particle. As mentioned above, before EWSB,

the summation in the first terms is over h2 and ZBL only, as there will be no contribution

from the SM Higgs decay as such trilinear vertex (h1φDMφ
†

DM) is absent before EWSB and

after EWSB there will be contributions to the relic density of φDM from all there decaying
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particles. The dark matter production from the pair annihilations of SM and BSM particles

are described by the second term of the Boltzmann equation. Here, summation over p

includes all possible pair annihilation channels namely W+W−, ZZ, ZBLZBL, NiNi, hihi, tt̄.

However before EWSB, pair annihilations of the BSM particles and SM Higgs doublet

φh contribute to the production processes (i.e. p = ZBL, Ni, HBL, φh, see Fig. 5.6). The

third term, which is present only after EWSB, is another the production mode of φDM

from the annihilation of h1 and h2. The expressions of all the relevant cross sections and

decay widths for computing the DM number density are given in Appendix of Ref. [199].

The most general form of thermally averaged annihilation cross section for two different

annihilating particles of mass MA and MB is given by Eq. (1.76).

Finally, as defined in Eq. (1.85) the relic density of φDM is obtained using the follow-

ing relation between Ωh2 and YφDM (0) [224, 225],

Ωh2 = 2.755×108
(MDM

GeV

)
YφDM (0) , (5.22)

where YφDM (0) is the value of comoving number density at the present epoch, which can

be obtained by solving the Boltzmann equation.

The contribution to dark matter production processes from decays as well as annihi-

lations of various SM and BSM particles depend on the mass of φDM. Accordingly, We

have divided our rest of the dark matter analysis into four different regions depending on

MDM and the dominant production modes of φDM.

MDM <
Mh1

2
,

Mh2

2
,

MZBL

2
, SM and BSM particles decay dominated region.

In this case DM is dominantly produced from the decays of all three particles namely h1,

h2 and ZBL. Therefore, in this case U(1)B−L part of the present model directly enters into

the dark matter production. Moreover in this mass range, φDM can also be produced from

the annihilations of SM and BSM particles, however, we find that their contributions are
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not as significant as those from the decays of h1, h2 and ZBL. In the left panel (LP) and

right panel (RP) of Fig. 5.8, we have shown the variation of DM relic density with z. In

LP, we have shown the dependence of DM relic density with the initial temperature Tin.

Initial temperature (Tin) is the temperature upto which we have assumed that the number

density of DM is zero and its production processes start thereafter. We can clearly see

from the figure that as long as the initial temperature is above the mass of BSM Higgs

(Mh2 ∼ 500 GeV), the final relic density does not depend on the choice of the initial

temperature and reproduces the observed DM relic density of the Universe for the chosen

values of model parameters as written in the caption of Fig. 5.8. If we reduce the initial

TIn =  zIn

Mh1

zIn = 0.001
zIn = 0.01
zIn = 0.05
zIn = 0.1
zIn = 3.0
Ω h2 = 0.12

Ω h
2
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10−3

1

z (=Mh1/T)
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EW
SB

Decay
Annihilation
Ω h2 = 0.12

Ω h
2

10−9

10−6

10−3

1

z (=Mh1/T)
0.01 0.1 1 10 100 1000

Figure 5.8: Left (Right) panel: Variation of relic density Ωh2 with z for different initial
temperature (Contributions to Ωh2 coming from decay and annihilation), where other
parameters are fixed at λDh = 8.75×10−13, λDH = 5.88×10−14, nBL = 1.33×10−10, MDM
= 50 GeV, MZBL = 3000 GeV, gBL = 0.07, Mh1 = 125.5 GeV and Mh2 = 500 GeV, α= 10−4.

temperature from 500 GeV, i.e. for Tin = 251 GeV, the decay contribution of BSM Higgs

h2 becomes less since corresponding the number density of h2 for Tin < Mh2 is Boltzmann

suppressed (exponentially suppressed), which is clearly shown by the blue dashed-dotted

line. Hence, if we reduce the initial temperature (Tin) further i.e. Tin < Mh2 ,Mh1 ∼ 42 GeV

then the number densities of both SM-like Higgs h1 as well as BSM Higgs h2 become

Boltzmann suppressed and hence, less amount of DM production will take place which is

evident from the LP of Fig. 5.8 (represented by the yellow dashed-dot line). On the other

hand in the RP of Fig. 5.8, we have shown the contributions to DM relic density coming

from decay and annihilation. Magenta dotted horizontal line represents the present day

observed DM relic density of the Universe. Green dashed line represents the total decay

181



EW
SB

(h1 + h2 + ZBL) Decay
ZBL Decay
h1 Decay
h2 Decay
Ω h2 = 0.12

Ω h
2

10−9

10−6

10−3

1

z (=Mh1/T)
0.01 0.1 1 10 100 1000

MDM = 10 GeV
MDM = 30 GeV
MDM = 50 GeV
MDM = 75 GeV
Ω h2 = 0.12

Ω h
2

10−5

10−4

10−3

0.01

0.1

1

z (=Mh1/T)
0.01 0.1 1 10 100 1000

Figure 5.9: Left panel: Showing variation of decay contributions of both the Higgs bosons
to Ωh2 separately with z. Right panel: Variation of relic density Ωh2 with z for different
values of DM mass MDM. Other parameters value have been kept fixed at λDh = 8.75×
10−13, λDH = 5.88× 10−14, nBL = 1.33× 10−10, MDM = 50 GeV (for LP), MZBL = 3000
GeV, gBL = 0.07, Mh1 = 125.5 GeV and Mh2 = 500 GeV, α = 10−4.

contribution arising from the decays of both h1, h2 and ZBL whereas the net annihilation

contribution coming from the annihilation of all the SM as well as BSM particles has

been shown by the blue dashed-dotted line. There is a sudden rise in the annihilation

contribution which occurs around the Universe temperature T ∼ 154 GeV (i.e. EWSB

temperature). After the EWSB temperature, all the SM particles become massive and

hence the sudden rise in the annihilation part because of the appearance of the following

annihilation channels W+ W−, Z Z, h1 h1, h1 h2. The plot clearly implies that the lion

share of the contribution comes from the decay of both Higgses h1, h2 and ZBL, while for

the considered values of model parameters the annihilation contribution is subdominant.

Moreover, in this case we cannot enhance the annihilation contribution by increasing

parameters λDh, λDH and nBL as these changes will result in the over production of dark

matter from the decays of h1, h2 and ZBL.

In the LP of Fig. 5.9, we have shown how the individual decay contribution from

each scalar varies with z. Here we consider the following values of the scalar quartic

couplings λDh = 8.75 × 10−13 and λDH = 5.88 × 10−14 and the (B− L) charge of φDM

nBL = 1.33 × 10−10. From this plot we can see that before EWSB SM-like Higgs h1

cannot decay to a pair of φDM as in this epoch it has no coupling with the latter. In this

regime the decay of BSM Higgs h2 and ZBL contribute, while after EWSB even the SM-
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like Higgs starts contributing to the DM production and hence we get an increased relic

density (right side of EWSB). Its worth mentioning here that while generating the plot in

the LP of Fig. 5.9, we have taken the scalar quartic couplings λDh, λDH and B−L charge

of φDM nBL of different strengths such that the contributions of both the scalars (h1 and

h2) and the extra gauge boson to the DM relic density are of equal order. This is because

for the case of BSM Higgs h2 decay the coupling λDH multiplied by the B−L symmetry

breaking VEV vBL is relevant, while for the decay of the SM-like Higgs h1, the product of

the parameter λDh and the EWSB VEV v is relevant and the contribution from the decay

of ZBL, DM charge nBL is relevant. Since in the present case vBL > v, the magnitudes of

the two quartic couplings λDh and λDH are of different order (see Table 5.2). On the other

hand, in the RP of Fig. 5.9, we have shown the variation of the relic density with z for

four different values of the DM mass MDM. From Eq. (5.22), one can see that the DM

relic density is directly proportional to the mass MDM and as a result when other relevant

couplings remain unchanged Ωh2 increases with MDM. This feature is clearly visible in

the RP for the cases with MDM = 10 GeV (black solid line), MDM = 30 GeV (red dashed

line) and 50 GeV (green dashed line) respectively. However for MDM = 75 GeV (blue

dashed dot line) Ωh2 does not rise equally because for this value of DM mass the decay

of h1 to a pair of φDM and φ†DM becomes kinematically forbidden and hence, there is no

equal increment in this case.

In LP and RP of Fig. 5.10, we have shown how the relic density varies with z for

different values of scalar quartic couplings λDh and λDH , respectively. In each panel, one

can easily notice that there exists a kink around the EWSB region. However in the LP, the

kink occurs for a higher value of λDh while in the RP, the situation is just opposite. We

have already seen in the LP of Fig. 5.9 that before EWSB only h2 decay is contributing

to DM relic density and at the EWSB region SM-like Higgs h1 also starts contributing.

A kink will always appear in the relic density curve when contribution of the SM-like

Higgs boson h1 to Ωh2 is larger compared to that of the BSM Higgs h2 and extra gauge

boson ZBL i.e. Γh1→φDMφ
†

DM
> Γh2→φDMφ

†

DM
, ΓZBL→φDMφ

†

DM
. The values of scalar quartic
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Figure 5.10: Left (Right) panel: Variation of relic density Ωh2 with z for three different
values of λDh (λDH), where other parameters are fixed at λDH = 5.88×10−14 (λDh = 8.75×
10−13), nBL = 1.33×10−10, MDM = 50 GeV, MZBL = 3000 GeV, gBL = 0.07, Mh1 = 125.5
GeV and Mh2 = 500 GeV, α = 10−4.

Figure 5.11: Left (Right) panel: Allowed region in the λDh−λDH (Mh2 −α) plane where
other parameters are fixed at MZBL = 3000 GeV, gBL = 0.07, nBL = 1.33× 10−10, Mh1 =

125.5.

couplings λDh and λDH in the LP of Fig. 5.9 are such that Γh2→φDMφ
†

DM
and ΓZBL→φDMφ

†

DM

always remain large compared to Γh1→φDMφDM and hence no kink is observed in the total

relic density curve. However, in the present figure (in the left panel of Fig. 5.10) we do

have kinks around the EWSB region, because in the LP with λDH = 8.316× 10−14 and

nBL = 1.33× 10−10, Γh1→φDMφ
†

DM
> Γh2→φDMφ

†

DM
, ΓZBL→φDMφ

†

DM
condition is satisfied only

for the case with larger value of λDh = 1.237×10−11 (λDh >> λDH) while in the RP with

a fixed value of λDh = 1.237× 10−12, the above condition is not maintained because ZBL

decay channel dominates.

In the LP of Fig. 5.11, we have shown the allowed region in the coupling plane

(λDh −λDH) which reproduces the observed DM relic density (0.1172 ≤ Ωh2 ≤ 0.1226).

In this figure, we have clearly indicated the dominant DM production processes when
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MDM varies between 10 GeV to 100 GeV i.e. DM production from the decays of h1, h2

or both or entirely from the annihilations of SM particles like W±, Z, h1 etc. The pa-

rameters which are related to the ZBL decay (gBL, nBL) have been kept fixed at 0.07 and

1.33× 10−10 respectively, so at every time an equal amount of ZBL decay contribution

remains present. As illustrated in the figure, when the parameter λDh is small compared

to the other parameter λDH then among the two scalars it is the BSM Higgs h2 which is

mainly contributing to the DM production while for the opposite case, the production of

φDM becomes h1 dominated and in between both the scalars contribute equally. Apart

from that, if the mass of φDM is greater than the half of the SM-like Higgs mass (i.e.

MDM >
Mh1

2
) then DM production from h1 decay becomes kinematically forbidden. In

this case, however, the production from the decays of h2 and ZBL are still possible. Now,

the deficit in DM production can be compensated by the production from self annihila-

tion of SM particles like h1, W± and Z and for this we need to increase the parameter λDh.

Moreover, by increasing λDh (decreasing λDH simultaneously) we can arrive a situation

where DM production is entirely dominated by the annihilations of SM particles and this

situation has been indicated by a pink coloured arrow in the LP of Fig. 5.11. On the other

hand, in the RP of Fig. 5.11 we have presented the allowed region in Mh2 −α plane which

satisfies the relic density bound. From this figure one can see that with the increase of

Mh2 , the allowed values of mixing angle α decrease. The reason behind this decrement

is related to the vacuum stability conditions as given in the Eq. (2.13). The region satis-

fying both the relic density bound as well as the vacuum stability conditions is shown by

the green dots while in the other part of Mh2 −α plane the quantity µ2
φh

becomes positive

which is undesirable in the context of the present model (see Eq. (2.13)).
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Figure 5.12: Variation of DM relic density Ωh2 with z. Other parameters value have been
kept fixed at λDh = 6.364× 10−12, λDH = 7.637× 10−14, nBL = 8.80× 10−11, MDM = 70
GeV, MZBL = 3000 GeV, gBL = 0.07, Mh1 = 125.5 GeV, Mh2 = 500 GeV, α = 10−5, MN2 ≈

MN1 = 2000 GeV and MN3 = 2500 GeV.

Mh1

2
< MφDM <

Mh2

2
,

MZBL

2
, BSM particles decay and SM particles annihilation dom-

inated region.

Clearly in this mass region, DM production from the decay of SM-like Higgs h1 is kine-

matically forbidden and hence DM has been produced from the decays of h2, ZBL only.

However, unlike the previous case, here we find significant contribution to DM relic den-

sity arising from the self annihilation of the SM particles namely, h1, W±, Z and t. On

the other hand, the annihilations of BSM particles like ZBL, h2 and Ni have negligible

effect on DM production processes. In Fig. 5.12, we have shown the variation of DM relic

density with z for
Mh1

2
< MφDM <

Mh2

2
,

MZBL

2
. Since now the decay of the h1 to φDMφDM

†

is kinematically forbidden, hence we can increase the parameter λDh safely and this will

not overproduce DM in the Universe. Due to this moderately large value of λDh, the an-

nihilation channels become important. From Fig. 5.12 it is clearly seen that in this case

the annihilation channel h1h1→ φDMφ
†

DM (Green dashed line) contributes significantly to

the DM production. Therefore in the present case, production of DM has been controlled

by the decays of h2, ZBL and the self annihilations of the SM particles and thus directly

relates to the U(1)B−L sector of this model.
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Figure 5.13: Left (Right) panel: Variation of DM relic density Ωh2 with z. Other parame-
ters value have been kept fixed at λDh = 2.574×10−12 (7.212×10−14), λDH = 3.035×10−11

(8.316× 10−14), nBL = 3.4× 10−11 (6.2× 10−11), MDM = 450 GeV (600 GeV), MZBL =

3000 GeV, gBL = 0.07, Mh1 = 125.5 GeV, Mh2 = 500 GeV, α = 10−5, MN2 ≈ MN1 = 2000
GeV and MN3 = 2500 GeV.

In this regime of the DM mass, the only surviving decay mode is the decay of B−L

gauge boson ZBL to a pair of φDM. Apart from that, depending on the choice of mass of

φDM a significant fraction of DM has been produced from the self annihilation of either

BSM Higgs h2. In other word, we can say that in this region the production of DM is BSM

particles dominated. In LP of Fig. 5.13 we show the relative contribution of dominant

production modes of DM to Ωh2 for a chosen value of MDM = 450 GeV. From this plot

one can easily notice that in the case when MDM < Mh2 , the almost entire fraction of DM

is produced from the decay of ZBL (green dashed line) and self annihilation of BSM Higgs

h2 (solid turquoise line). This is because, as in this case the production of φDM from h2

decay is kinematically forbidden hence one can increase the parameter λDH so that the

annihilation channel h2h2→ φDMφDM
†, which is mainly proportional to λ2

DH (due to four

point interaction) becomes significant.

On the other hand, in the RP we have considered a situation where almost the entire

DM has been produced from the decay of B−L gauge boson. For this, we have chosen

MDM > Mh2 and a larger value of nBL = 6.2× 10−11. Similar to the previous case (i.e.

MDM < Mh2) here also, the production of φDM from h2 decay still remains forbidden.
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Figure 5.14: Allowed region in MZBL − gBL plane which produces observed DM relic
density. Solid lines (black and red) are the upper limits on the gauge coupling gBL
for a particular mass of ZBL obtained from LHC and LEP respectively. Other rele-
vant parameters used in this plot are 250GeV ≤ MDM ≤ 5000GeV, λDh = 7.212×10−14,
λDH = 8.316×10−14, Mh2 = 500 GeV, α= 10−5, MN2 ≈ MN1 = 2000 GeV and MN3 = 2500
GeV.

However, as the sum of final state particles masses are larger than that of initial state

hence, in this case h2h2 annihilation mode becomes suppressed. Moreover, to make the

contribution of h2 annihilation even more suppressed we have reduced the quartic cou-

plings λDh and λDH accordingly. As a result other annihilation channels e.g. ZBLZBL,

NiNi also become inadequate as these channels are mediated by the exchange of h1 and

h2. Although, RH neutrinos can annihilate to φDMφDM
† via ZBL, we cannot increase the

contribution of ZBL mediated diagrams because for that one has to further increase the

B−L charge of φDM (nBL), which results in an over production of DM in the Universe

from ZBL decay. From the RP of Fig. 5.13, one can easily notice that in this situation

ZBL decay is the most dominant DM production channel (red dashed line) while the total

contributions from the annihilations of h2, ZBL and Ni are negligible. Therefore, for the

entire mass range of φDM i.e.
Mh1

2
,

Mh2

2
< MφDM <

MZBL

2
, the DM production processes

are always related to the U(1)B−L sector of the present model by receiving a sizeable

contribution from ZBL decay.

In Fig. 5.14, we have shown the allowed region (green coloured points) in MZBL −gBL

plane which reproduces the observed DM relic density. While generating this plot we
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have varied 250GeV ≤ MDM ≤ 5000 GeV and 10−11 ≤ nBL ≤ 10−8. In this region as

mentioned above dominant contributions to DM relic density arise from ZBL decay and

annihilation of BSM Higgs h2. In this figure, the black solid line represents the current

upper bound [104,113,226] on gBL for a particular mass of ZBL from LHC 5 while the limit

[111,112,227] from LEP 6 has been indicated by the red solid line respectively. Therefore,

the region below the red and black solid line is allowed by the collider experiments like

LHC and LEP. The benchmark value of gBL, MZBL (= 0.07, 3000 GeV) for which we have

computed the baryon asymmetry in the previous section (Section 5.2.2) is highlighted by

a blue coloured star. Hence, in this regime the extra gauge boson ZBL immensely takes

part in achieving the correct ballpark value of the DM relic density and also at the same

time ZBL plays a significant role to obtain the observed value of the matter-antimatter

asymmetry of the Universe.

MφDM >
Mh1

2
,

Mh2

2
,

MZBL

2
, BSM particles annihilation dominated region.

Finally, in this range of DM mass the entire production of φDM from the decays of h1, h2

and ZBl become kinematically inaccessible. Therefore, in this case all three parameters

namely λDh, λDH and nBL become free and we can make sufficient increment to these

parameters so that either scalar medicated (h1, h2) or gauge boson mediated (ZBL) annihi-

lation processes of Ni, ZBL or both can be the dominant contributors in DM production.

Similarly, in the LP and RP of Fig. 5.15, we have shown two different situations where

the DM production are dominated by scalar (h1, h2) mediated diagrams and gauge boson

ZBL mediated diagrams respectively. In the LP, by keeping the nBL value low and adjusting

the parameters λDh and λDH one can achieve the correct value DM relic density and on

5To get the bound in MZBL −gBL plane from LHC, ATLAS and CMS collaborations consider the Drell-
Yan processes (p p→ ZBL → l̄ l, with l = e or µ) and by searching the dilepton resonance they put lower
bound on MZBL for a particular value of extra gauge coupling gBL.

6LEP consider the processes e+ e− → f̄ f ( f , e) above the Z-pole mass and by measuring its cross
section they put lower limit on the ratio between the gauge boson mass and guage coupling, which is
MZBL
gBL
≥ 6−7 TeV.
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Figure 5.15: Left (Right) Panel: Variation of DM relic density Ωh2 with z when dom-
inant contributions are coming from scalar hi, (gauge boson ZBL) mediated annihilation
channels. Other relevant parameters value have been kept fixed at λDh = 7.017× 10−12

(7.212× 10−13), λDH = 6.307× 10−11 (8.316× 10−12), nBL = 1.0× 10−10 (1.34× 10−8),
MDM = 1600 GeV, MZBL = 3000 GeV, gBL = 0.07, Mh1 = 125.5 GeV, Mh2 = 500 GeV,
α = 10−5, MN2 ≈ MN1 = 2000 GeV and MN3 = 2500 GeV.

the other hand, in the RP we have kept the values of λDh and λDH sufficiently low and by

suitably adjusting the DM charge nBL we have achieved the correct value of the DM relic

density. Therefore, in this region, a strong correlation exists among the neutrino sector,

U(1)B−L sector and DM sector as the entire DM is now being produced from NiNi and

ZBLZBL annihilations.

In Fig. 5.16, we have shown the allowed parameter space in MDM −MN1 plane by

DM relic density. In order to generate this plot we have varied DM mass in the range

1500GeV ≤ MDM ≤ 3000GeV, RH neutrino masses 1500GeV ≤ MNi ≤ 10000GeV (i =

1, 2), MN1 < MN3 ≤ MN1 + 5000 GeV and 10−10 ≤ nBL ≤ 10−8. Other relevant param-

eters have been kept fixed at λDh = 7.212× 10−13, λDH = 8.316× 10−12, MZBL = 3000

GeV, gBL = 0.07, Mh2 = 500 GeV, α = 10−5 As discussed above, in this regime (MDM >

Mh1

2
,

Mh2

2
,

MZBL

2
) φDM is dominantly produced from the annihilations of ZBL and RH

neutrinos. From this plot one can observe that in this high DM mass range to obtain the

observed DM relic density, the mass of the lightest RH neutrino cannot be larger than

∼ 6000 GeV. Analogous to the Fig. 5.14, here also we have indicated the benchmark point

for which we have computed baryon asymmetry in the previous section (Section 5.2.2)

by a blue coloured star. Therefore, in this case RH neutrinos are very actively taking part
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Figure 5.16: Allowed region in MDM −MN1 plane which mimics the observed DM relic
density. The blue coloured star represent our benchmark point (MDM = 1600 GeV, MN1 =

2000 GeV).

in all three processes we have considered in this work namely DM production processes,

tiny neutrino mass generation and also the generation of required lepton asymmetry to

reproduce the observed baryon asymmetry of the Universe.

From the above four regions, which are based on the mass of our FIMP DM, it is

evident that in the first region DM production mainly happens from the decay of h1, h2

and ZBL and all annihilations are subdominant. Therefore, in this region only the extra

neutral gauge boson (ZBL), BSM Higgs (h2) and SM-like Higgs (h1) are taking part in

the DM relic density estimates and there is no significant role of the RH neutrinos. In

the second region, SM-like Higgs decay does not contribute to DM production processes,

hence one can safely increase the quartic coupling λDh and consequently h1h1 annihila-

tion contribution increases. Similar to the previous regime, here also RH neutrinos have

less importance in determining the DM relic density. In the third region, the only decay

mode that involves in DM production is ZBL→ φDMφDM
†. Since all other decay modes

correspond to h1 and h2 are kinematically forbidden, hence we can increase both the

quartic couplings λDh and λDH appropriately which eventually enhance the annihilation

contribution from the BSM Higgs significantly. Moreover, due to the increment of quartic

couplings in this region ZBLZBL and NiNi annihilation channels start contributing in the
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DM production processes. Lastly in region four, due to the high value of the DM mass

no decay process contributes to DM relic density and only the BSM particles annihilation

contributes. Therefore, in this region by properly adjusting the extra gauge coupling gBL,

one can get a sizeable fraction of DM production from the annihilation of RH neutrinos.

Since apart from the masses of the involving particles, the annihilation of RH neutrinos

mediated by ZBL depends on the extra (B-L) gauge coupling gBL solely. Thus, depending

on the mass range of our FIMP DM, we can say that the different model parameters and

the additional BSM particles (e.g. ZBL, Ni, h2) are fully associated to the DM production

processes in the early Universe.

Analytical Estimates

So far, we have solved the full Boltzmann equation (Eq. 5.21) for a FIMP φDM numer-

ically. Apart from this, one can estimate the FIMP relic density (or comoving number

density) by using the approximate analytical formula. Let us consider a FIMP (φDM)

which is produced from the decay of a particle A i.e., A→ φDM φDM
†, where A in the

present model can be h1, h2 or ZBL. The contribution of A to the FIMP relic density at the

present epoch, considering the effect of both φDM and φDM
†, is given by [34],

ΩFIMPh2 '
2.18×1027gA

gs
√gρ

MDMΓA

M2
A

, (5.23)

where MA and gA are mass and internal degrees of freedom of the mother particle A,

respectively, while ΓA is the decay width of the process A→ φDM φDM
†. The analytic ex-

pressions for ΓA corresponding to h2, h1 and ZBL are given in the Appendix of Ref. [199].

Moreover, gρ and gs, as define earlier, are the degrees of freedom related to the energy and

entropy densities of the Universe, respectively. Let us now compare the analytical result

with the numerical value which we obtain by solving the Boltzmann equation Eq. (5.21).
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For this, let us consider a situation when a significant fraction of our FIMP candidate

(φDM) is produced from the decay mode of BSM Higgs i.e., h2→ φDMφ
†

DM. Substituting

the values of model parameters given in the caption of Fig. 5.9 to Eq. (5.23), we get the

contribution of h2 to DM relic density, which is

ΩFIMPh2 ' 0.027, (5.24)

where we consider gρ = gs ≈ 100 and gA = 1. This can be compared to the contribution of

h2 obtained from exact numerical estimate shown in the LP of Fig. 5.9 which is,

Ωh2→φDMφ
†

DM
h2 = 0.0276. (5.25)

Therefore, from the above two estimates it is clearly evident that the analytical result

agrees well with the full numerical result. Similarly, for the other decay modes also (i.e.

h1, ZBL) one can match the analytical and numerical results.
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6
FIMP and Muon (g−2) in a U(1)Lµ−Lτ Model

6.1 Introduction

This chapter is based on [228] and discuss the extension of SM gauge group by a lo-

cal U(1)Lµ−Lτ symmetry [126, 139, 229]. Therefore, the complete gauge group in this

model is SU(3)c × SU(2)L ×U(1)Y ×U(1)Lµ−Lτ . Since we are increasing the SM gauge

group by a local U(1)Lµ−Lτ symmetry, we must check the cancellation of axial vector

anomaly [210,211] and mixed gravitational-gauge anomaly [212,213]. The advantage of

the U(1)Lµ−Lτ extension is that these anomalies cancel automatically between the second

and third generations [230–232] of SM fermions.

We also extend the particle content of the SM and include three right-handed neutri-

nos and two SM gauge singlet scalars. The new particles are given appropriate U(1)Lµ−Lτ

charge. One of the scalars picks up a Vacuum Expectation Value (VEV) breaking U(1)Lµ−Lτ

symmetry spontaneously, while the other does not take any VEV. The U(1)Lµ−Lτ charge

nµτ of the other scalar φDM is chosen in such a way that it remains stable even after

U(1)Lµ−Lτ breaking and becomes a dark matter candidate. The new gauge boson Zµτ after

spontaneous breaking of U(1)Lµ−Lτ becomes massive and gives additional contribution

to the muon (g− 2), helping reconcile the observed data with the theoretical prediction

in this model. The three right-handed neutrinos carry Majorana masses and give rise
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to light neutrino mass matrix via the Type-I seesaw mechanism. In our earlier work in

Ref. [126], we showed that our model can explain the nonzero neutrino masses and their

intergenerational mixing angles. Also in that work, we considered the scalar field φDM as

a WIMP type dark matter candidate and checked its viability in various direct detection

experiments. We found that all the existing constraints are satisfied around the resonance

regions, where the mediator mass is nearly equal to twice of dark matter mass. The model

for the present work is exactly similar to the model as discussed in Chapter 3, hence we

will not describe the model here.

In this work, we show that φDM could serve as a FIMP type dark matter candidate in

this U(1)Lµ−Lτ extension of the SM. All particles of our model including the additional

scalar h2, Zµτ and the three right-handed neutrinos are in thermal equilibrium in the early

Universe except φDM. In order to make this possible, φDM must be feebly interacting

with other particles. We choose its couplings with the visible sector to be extremely small

(see Section 3.2 and 6.3 for detailed discussions) such that it remains out of equilibrium

throughout its evolution in the early Universe 1. We compute the relic density of φDM by

solving the Boltzmann equation where we consider all the possible production modes of

φDM from the decays as well as the annihilations of SM and BSM particles. We find that in

our model, φDM is produced not only from the decays of h1 and h2, but also from the pair

annihilation of Ni (i = 2, 3) mediated by the extra neutral gauge boson Zµτ. Therefore, the

dark matter phenomenology is intricately intertwined with the phenomenology of neutrino

masses and muon (g−2).

6.2 Muon (g−2) and neutrino mass

In our previous work [126] we studied in detail the muon (g−2) and neutrino mass phe-

nomenology in the framework of present model. The difference here with the previous

1Γ < H where Γ is the dark matter production rate and H is the Hubble parameter [207]
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work is that here we wish to produced the dark matter via the freeze-in mechanism in-

stead of freeze-out, as in [126]. Our aim is to simultaneously explain the dark matter relic

abundance as well as the muon (g−2). The region of the gµτ - MZµτ parameter space that

can explain the muon (g− 2) has been shown in [233]. This allowed region is seen to

be very small and mostly constrained by the neutrino trident process experiments such as

CHARM-II, CCFR [145, 146] and 4-leptons decay [233]. In determining the allowed pa-

Figure 6.1: Bounds in the gµτ - MZµτ plane from different experiments and allowed re-
gion to satisfy relic density (red dots) and muon (g−2) excess in 2σ range (grey shaded
region).

rameter space for the present model, we have considered the relic density constraint [20]

and also the bound on invisible decay width of SM-like Higgs [170]. The one loop con-

tribution [127, 144] to muon (g−2) for the U(1)Lµ−Lτ gauge boson Zµτ mediated diagram

is given in Eq. (3.23). In Fig. 6.1 we show the allowed and disfavoured regions in the gµτ-

MZµτ plane. The region above the green dashed line is ruled out by the neutrino trident

experiment CCFR [233]. The grey region inside the blue dashed-dotted line and black

dashed line can explain the (g−2) anomaly in ±2σ range [233]. As will be discussed in

much detail later, the red dots in this figure span the parameter region which can satisfy

the dark matter relic abundance (cf. Eq. (1.85)). We see that for gµτ ≥ 3× 10−3 no red

points exist because the contribution from the Zµτ mediated diagram to the relic abun-

dance becomes too large. See Appendix of Ref. [228], for the expression of cross section

of N̄i Ni→ φ†DMφDM, i = 2,3. The region of the parameter space compatible with both the

dark matter relic abundance and muon (g− 2) lies in the narrow overlapping zone. The

benchmark point (values of gµτ and MZµτ) used in all further results shown in this work
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is marked by the star in Fig. 6.1 and corresponds to MZµτ = 100 MeV and gµτ = 9×10−4.

Such low mass Zµτ gauge boson can be searched by looking 2µ+ /ET final states in LHC or

future collider experiments [234,235]. For these values of the parameters, the contribution

to muon (g−2) from Eq. (3.23) comes out to be

∆aµ = 22.6×10−10 , (6.1)

which lies within the ±2σ range of the observed value [233]. The neutrino mass in the

context of the present model has been discussed in detail in section 3.4.

6.3 FIMP Dark Matter and Boltzmann Equation

W+, Z φ†
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W−, Z

h1, h2
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φ†
DM

φDM

Fig.− b
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φ†
DM
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φ†
DM

φDM

Fig.− f

Figure 6.2: Feynman diagrams for the dark matter production processes from the annihi-
lations and decays of different SM and BSM particles.

Vertex Vertex Factor
abc gabc

φDM φ†DM h1 −(λDhvcosα+λDH vµτ sinα)

φDM φ†DM h2 (λDhvsinα−λDH vµτ cosα)

φDM φ†DM Zρµτ nµτgµτ(p2 − p1)ρ

N̄i Ni Zρµτ
gµτ
2
γργ5

Table 6.1: Relevant couplings required to compute Feynman diagrams given in Fig. 6.2.
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As can be seen from the Eqs. (3.1–3.4), the dark matter particle can interact with

the thermal bath containing both SM as well as BSM particles only via h1, h2 and Zµτ.

The Feynman diagrams relevant for the production of dark matter are shown in Fig. 6.2.

The corresponding couplings are listed in Table 6.1. From Table 6.1, one can see that

the couplings of φDM with scalar bosons h1 and h2 depend on the parameters λDh and

λDH , while that with extra neutral gauge boson Zµτ involves gµτ and nµτ. For the dark

matter to be a suitable FIMP candidate, the cross section of the diagrams listed in Fig. 6.2

should be very small. The complete expressions for the contribution from each of the

diagrams is given in the Appendix of Ref. [228]. The processes involving h1 and h2 can

be easily made feeble enough by taking λDh and λDH ∼ 10−12. As we will see later, the

other important production mechanism of φDM is shown by the Feynman diagram where

N2 and N3 annihilate to φDM via the new gauge boson Zµτ. The expression for the cross

section of this process is given in the Appendix of Ref. [228]. We see that the cross section

for this process is proportional to ∼ g4
µτn

2
µτ/102. Since we fix gµτ = 9× 10−4 to explain

the anomalous muon (g−2), we take nµτ ∼ 10−5 to keep σN jN j→φ
†

DMφDM
small enough so

that φDM stays out of chemical equilibrium. This choice for nµτ also ensures that there is

a remnant Z2 symmetry even when U(1)Lµ−Lτ symmetry is broken spontaneously, which

enables φDM to be stable. Thus, φDM behaves as a FIMP dark matter, it stays out of

thermal equilibrium at all times, and is produced by the freeze-in mechanism.

The evolution of comoving number density of FIMP produced from the decays as

well as annihilations of the SM and BSM particles is governed by the Boltzmann equa-

tion. The Boltzmann equation in terms of the comoving number density of φDM is given

below. This equation contains both decay as well as annihilation terms. While deriving

the Boltzmann equation for the FIMP φDM, we have taken all the particles except φDM

in thermal equilibrium and hence their number densities follow the Maxwell-Boltzmann
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distribution function.

dYφDM

dz
=

2Mpl

1.66M2
h2

z
√

g?(z)
gs(z)

[ ∑
i=1,2

〈Γhi→φ
†

DMφDM〉(Y
eq
i −YφDM )

]

+
4π2

45
MplMh2

1.66

√
g?(z)
z2

[ ∑
p=W,Z,h1,h2, f

〈σvpp̄→φ†DMφDM
〉(Yeq 2

p −Y2
φDM

)

+
∑

i=1, j=2,3

〈σvNiN j→φ
†

DMφDM
〉(Yeq

Ni
Yeq

N j
−Y2

φDM
) + 〈σvh1h2→φ

†

DMφDM
〉(Yeq

h1
Yeq

h2
−Y2

φDM
)
]
.

(6.2)

In the above equation YφDM =
nφDM

s
is the comoving number density, nφDM represents the

actual number density of the dark matter candidate φDM while s is the entropy of the

Universe. The quantity z =
Λ

T
, where Λ is some mass scale and here it corresponds to the

mass of the second Higgs h2 (Λ ∼ Mh2). The temperature of the Universe is denoted by T

and Mpl = 1.22× 1019 GeV is the Planck mass. The functions g?(z), gs(z) and gρ(z) are

defined in section 1.6. If the decaying particles (h1, h2) are in thermal equilibrium 2 then

the thermal average of the decay width can be calculated by using the Eq. (5.17).

Next we explain the Boltzmann equation given in Eq. (6.2) term by term. The first

term on the R.H.S represents the contribution to YφDM arising from the decays of h1 and

h2 and it is proportional to the equilibrium comoving number density of the decaying

particle. On the other hand, the inverse decay term proportional to the comoving number

density of φDM occurs with a negative sign as it washes out the φDM number density.

However, as we have mentioned before that the initial number density of φDM is extremely

small due to its non-thermal origin and hence the negative feedback coming from the

inverse processes can be safely neglected.

Similarly, the second, third and fourth terms in the R.H.S of Eq. (6.2) indicate the

net contribution to YφDM coming from the annihilations of SM and BSM particles at the

early stage of the Universe. Unlike the first term (decay term) of Eq. (6.2) these terms are

2If they are not in thermal equilibrium then we have to find their non-thermal momentum distribution
functions by solving the appropriate Boltzmann equations which will be discussed in Chapter 7.
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proportional to the second power of the comoving number densities of relevant particles.

The term proportional to Y2
p (p = W, Z, h1, h2, f ) (in the second term of the Boltzmann

equation) represents the increment of YφDM from the pair annihilation of p and its antipar-

ticle while the feedback arising from the inverse process φDMφ
†

DM → pp̄ is proportional

to Y2
φDM

and comes with a negative sign. The rest of the annihilation terms represent

the production processes of φDM from the annihilations of two different particles such as

(Ni, N j), (h1, h2) and consequently these terms are proportional to the comoving number

densities of two different initial state particles. The terms indicating the inverse pro-

cesses (φDMφ
†

DM → NiN j, hih j, i , j) are proportional to Y2
φDM

, as in the second term

of the Boltzmann equation. All the annihilation terms of Eq. (6.2) are proportional to

the thermal averaged annihilation cross sections of relevant processes and if all the other

particles (except φDM) involved in the annihilation processes are in thermal equilibrium

then the general expression of thermally averaged annihilation cross section of a process

A B → φ†DM φDM is given in Eq. (1.76). In order to get the comoving number density

(YφDM ) of the DM particle φDM, we have to solve the Boltzmann equation numerically.

After determining the comoving number density YφDM of dark matter particle φDM at the

present epoch, we can determine the relic density [224, 225] as defined in Eq. (1.84),

ΩφDM h2 = 2.755×108
(

MφDM

GeV

)
YφDM (T0) , (6.3)

where MDM is in GeV. In this work we have used the relic density bound as given in

Eq. (1.85).

6.4 Results

We have implemented our model in LanHEP [120] to generate all the vertex factors which

are required to calculate the relevant annihilation cross sections and decay widths. Cor-

responding Feynman diagrams are shown in Fig. 6.2. After putting all the cross sections
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Figure 6.3: Variation of relic density for different choices of initial temperature while the
other parameters have been kept fixed at, MZµτ = 0.1 GeV, gµτ = 9.0× 10−4, α = 0.01,
λDh = 9.8×10−13, λDH = 1.3×10−11, MDM = 50.0 GeV, nµτ = 5.5×10−5.

and decay widths (as listed in Appendix of Ref. [228]) in Eq. (6.2), we solve the Boltz-

mann equation numerically and study the related phenomenology of FIMP dark mat-

ter. Throughout this analysis we keep the extra Higgs mass fixed at Mh2 = 500 GeV. In

Fig. 6.3, we show the variation of the dark matter relic density with z for different choices

of the initial temperature. From the figure, it is clear that if the initial temperature is

greater Tin ≥ 1 TeV, then there is no dependence of the final relic density on the value

of the initial temperature. This can be explained in the following way. As the heavy

Higgs h2 is in thermal equilibrium with the cosmic soup, hence the maximum produc-

tion of φDM from the decay of h2 occurs around a temperature of the Universe (T ) ∼ Mh2

i.e. 500 GeV. However, as the temperature of the Universe drops below Mh2 , the number

density of the extra Higgs boson (h2) becomes exponentially suppressed (or Boltzmann

suppressed), which in turn reduces the final abundance of φDM. This case is shown by the

choice Tin = 125 GeV in the figure. Hence in what follows, we take a fixed Tin = 1 TeV.

In the left panel of Fig. 6.4, we show the relative contributions of two different types

of production processes (decay and annihilation) to Ωh2. The red dotted line represents

the contribution from the decay of SM-like Higgs boson h1 and extra Higgs boson h2,

while the black dashed line corresponds to the contribution from the all possible anni-

hilation channels of SM and BSM particles (see Fig. 6.2 for the corresponding Feyn-

man diagrams). The total contribution towards the relic density of φDM coming from the
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Figure 6.4: Left panel showing the contributions of decay and annihilation in the total
relic density. Right panel: Variation of dark matter relic density with z for four different
values of dark matter mass MDM. The other parameters are kept fixed at MZµτ = 0.1 GeV,
gµτ = 9.0×10−4, α = 0.01, λDh = 9.8×10−13, λDH = 1.3×10−11, MDM = 50.0 GeV (LP),
nµτ = 5.5×10−5.

decay as well as annihilation of different particles is represented by blue dashed-dotted

line. The horizontal magenta line indicates the observed value of dark matter relic den-

sity (Ωh2 ∼ 0.12 [20]) at the present epoch. From this plot, it can be seen clearly that

for our chosen set of model parameters (MZµτ = 0.1 GeV, gµτ = 9.0× 10−4, α = 0.01,

λDh = 9.8×10−13, λDH = 1.3×10−11, MDM = 50.0 GeV, nµτ = 5.5×10−5), the decay pro-

cesses contribute ∼ 67% of dark matter production while rest of the dark matter particles

are produced from the annihilations of different SM as well as BSM particles. In the right

panel of Fig. 6.4, the variation of relic density with z (i.e. with respect to the inverse of

temperature T ) has been shown for four different values of dark matter mass MDM. For

MDM = 10 GeV, 30 GeV and 50 GeV, the relic density is seen to rise with MDM. This

agrees with the expression for relic density given in Eq. (6.3). However, if we take a

slightly higher value of dark matter mass, MDM = 60 GeV (blue dotted line), the relic

density decreases instead of increasing. This is because MDM = 60 GeV is very close

to half of the SM like Higgs boson mass (∼ Mh1/2) and the decay mode h1→ φDMφ
†

DM

becomes phase space suppressed. Therefore, it reduces the contribution arising from h1

decay and hence the final relic density of dark matter.

The contributions to Ωh2 arising from the decays of h1, h2 and the annihilations of SM

as well as BSM particles are shown respectively in left and right panels of Fig. 6.5. Here

203



Figure 6.5: Left Panel: Relative contributions of two decay modes in relic density. Right
Panel: Relative contributions of different annihilation channels towards Ωh2. Other pa-
rameters are kept fixed at MZµτ = 0.1 GeV, gµτ = 9.0×10−4, α = 0.01, λDh = 9.8×10−13,
λDH = 1.3×10−11, MDM = 50.0 GeV, nµτ = 5.5×10−5.

Figure 6.6: Left (Right) Panel: Variation of relic density with z for three different values of
λDh (λDH). Other parameters are kept fixed at MZµτ = 0.1 GeV, gµτ = 9.0×10−4, α = 0.01,
λDh = 9.8×10−13, λDH = 1.3×10−11, MDM = 50.0 GeV, nµτ = 5.5×10−5.

we define a quantity Ω〈Γ〉
Ω

(Ω〈σv〉
Ω

) which represents the fractional contribution of a particular

decay (annihilation) channel to dark matter relic density. In the left-panel of Fig. 6.5, the

contribution from h2 decay has been shown by the green dashed-dotted line and that from

h1 decay has been shown by the red dashed line, while the total decay contribution to the

dark matter relic density is represented by the black solid line. From this plot one can

see that, initially for low values of z (z < 10, corresponding to higher temperatures), the

extra Higgs contribution to Ωh2 is more because of its high mass. On the other hand, for

higher values of z (z > 10), the SM-like Higgs decay contribution starts dominating. In

the right panel of Fig. 6.5, we show the contribution coming from different annihilation

channels. The total contribution from all the annihilation channels is represented by the

black solid line while the other lines show the contribution of individual channels. From
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this plot it is clearly seen that, the two dominating annihilation channels are N2 N2 and

N3 N3. Annihilation channels h1 h1 and h2 h2 also have significant role in the production

processes of dark matter, while the effect of other channels are sub dominant. In the left-

panel of Fig. 6.6, variation of relic density with z for three different value of λDh have

been shown. The red dashed line for λDh = 9.8×10−13 gives the correct relic density. In

the right-panel of Fig. 6.6 we show the variation of relic density for different values of

the other quartic coupling λDH . It is clear from Fig. 6.6 that the relic density increases

with both λDh and λDH as the production modes of φDM are proportional to these quartic

couplings. However, the increment of Ωh2 with respect to increasing λDh or λDH is not

uniform. When we decrease λDh (λDH) from 9.8× 10−13 (1.3× 10−11) by one order of

magnitude, the decrease in Ωh2 is very small because in this regime we have dominant

contribution from the Zµτ mediated right-handed neutrino annihilation channel. However,

if we increase λDh (λDH) from 9.8×10−13 (1.3×10−11) by one order of magnitude, Ωh2

increases by more than order of magnitude since in this case the contribution from decay

channels become dominant.

Figure 6.7: Left panel: Allowed parameter space in λDh - λDH plane. Right panel: Al-
lowed parameter space in MDM - gµτ plane. In both the plots red points satisfy the relic
density bound.

In the left-panel of Fig. 6.7, we have shown the allowed regions in the λDh - λDH plane.

The red points in the plane satisfy the relic density bound. Both the parameters λDh and

λDH have been varied from 10−14 to 10−8. We see from the figure that for λDh ≥ 8×10−11

and λDh ≥ 3×10−10 no red points exist, and therefore these regions are disallowed by the

relic density bound. One can also notice that there is no lower bound on λDh and λDH .
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This is because for lower values of λDh and λDH , even though the Higgs mediated annihi-

lation and decay contributions become very less, the Zµτ mediated annihilation channels

(Ni Ni→ φ†DM φDM, i = 2,3 see Appendix of Ref. [228]) contribute fully and hence can ex-

plain the relic density bound. In the right-panel of Fig. 6.7, we show the allowed regions

in the MDM - gµτ plane. Here we have varied dark matter mass MDM from 1 GeV to 100

GeV and the U(1)Lµ−Lτ gauge coupling gµτ from 10−6 to 0.1. The figure shows that the

whole range of dark matter mass MDM can satisfy the relic density bound. However, the

gauge coupling gµτ ≥ 3×10−3 does not satisfy the relic density bound as over production

of φDM occurs through the annihilation channel Ni Ni→ φ†DM φDM, i = 2,3.

Figure 6.8: Left panel: Allowed parameter space in MDM - λDh plane. Right panel:
Allowed parameter space in MDM - λDH space. In both the plots red points satisfy the
relic density bound.

In Fig. 6.8, we show the allowed parameter space in the MDM −λDh and MDM −λDH

planes in the left and right panels respectively. As it was seen earlier, here too the whole

range of considered dark matter mass 3 is allowed. However, there is an upper limit on

both λDh and λDH . In both the panels, there exist an anti-correlation between the dark

matter mass and the quartic coupling λDh(H) since the relic density is proportional to the

dark matter mass MDM as well as the coupling constant. Hence, if we increase MDM

then to satisfy the relic density, λDh(H) must decrease. In the left-panel we observe that

around MDM ∼ 62 GeV, there is a rise in λDh. This happens because this is the resonance

region for the SM-like Higgs and as a result there is little contribution from the decay

3In all the plots the allowed red points in the MDM appear more dense on the right since we have
generated the random number in linear scale but plotted the figures in the log scale.
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of SM-like Higgs (phase space suppression). Hence, to satisfy the relic density bound,

there is a sudden rise in λDh to increase the contribution arising from the decay as well as

annihilation processes involving h1. Beyond MDM ∼ 62.5 GeV, there is no contribution

from the SM-like Higgs. Hence, the coupling λDh again starts behaving in the normal way

(anti-correlation). No such peculiar behaviour is seen for λDH because this parameter is

important for the decay of h2 and the chosen mass range of the dark matter is not in

the resonance region of the extra Higgs h2 (Mh2 ∼ 500 GeV). Therefore, for the quartic

coupling λDH , the anti-correlation exists for the entire range of dark matter mass MDM

(1-100 GeV).
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7
Explaining the 3.5 keV X-ray Line in a Lµ−Lτ

Extension of the Inert Doublet Model

7.1 Introduction

This chapter reflects the work [236] where we address the issue of the observed neutrino

masses and mixing, dark matter abundance of the universe and the 3.5 keV line within a

BSM (Beyond SM) model, where we have naturally a two component Dark Matter and

a nearly degenerate long-lived state. We extend the SM gauge group by an anomaly free

local U(1)Lµ−Lτ symmetry [139,230–232]. We break this gauge symmetry spontaneously

by introducing in the model a SM singlet scalar charged under U(1)Lµ−Lτ . The mass

of the resultant neutral gauge boson is given in terms of the new gauge coupling and

vacuum expectation value (VEV) of this scalar. Also included in the model are three RH

neutrinos and a SM (inert) doublet scalar, both of which carry −1 charge with respect

to an additional Z2 symmetry, while all other particles carry charge +1. This forbids all

Yukawa couplings of this doublet with the SM fermions (thereby earning the name, inert

doublet) and the only Yukawa term where it appears is the one with the RH neutrinos. The

Z2 symmetry also forbids the normal Yukawa coupling involving the lepton doublets, RH

neutrinos and the SM Higgs doublet. On the other hand, the allowed Yukawa coupling

between the lepton doublets, RH neutrinos and the inert doublet does not lead to a Dirac-

like mass term since the inert doublet does not take a VEV. As a result, light neutrino
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masses via Type-I seesaw is forbidden. However, the light neutrinos get mass radiatively

at one-loop, where the RH neutrinos and the inert doublet run in the loop [90]. The RH

neutrinos protected by the Z2 symmetry become the dark matter of the universe. The Z2

symmetry allows the RH neutrinos to be coupled only to the Higgs sector and the Zµτ.

We invoke a non-thermal production mechanism for the generation of DM in the early

universe via the freeze-in mechanism [34] wherein the RH neutrinos are mainly produced

by out-of-equilibrium decays of Zµτ gauge bosons.

The 3.5 keV γ line can be explained by the decay of a heavy RH neutrino to an-

other RH neutrino if the two states are nearly degenerate and the mass splitting is 3.5

keV [237, 238]. Moreover the lifetime of the next-to-lightest neutrino has to be suffi-

ciently long. Both conditions are naturally realised in our scenario. Indeed we will see

that in the U(1)Lµ−Lτ symmetric limit, the Lµ − Lτ symmetry enforces two completely

degenerate states and one heavier state for the RH mass spectrum in our model. The

two lighter degenerate RH neutrino states play the role of a two-component dark matter.

The spontaneous breaking of U(1)Lµ−Lτ results in a small mass splitting between the two

degenerate RH neutrinos, determined by the symmetry breaking scale and Yukawa cou-

plings of the RH neutrinos. The lifetime of the heavier state is longer than the age of the

Universe due both to the phase-space suppression and to the small parameters needed to

explain the light neutrino masses.

7.2 Model

The complete gauge group in our model is, SU(3)c×SU(2)L×U(1)Y ×U(1)Lµ−Lτ . In ad-

dition to the SM particles, we augment our model with a SM scalar doublet, a SM scalar

singlet and three RH neutrinos. We also impose a Z2 symmetry to make the additional

doublet inert. The Z2 charge of the RH neutrinos are also taken to be −1 to keep them

stable, such that they could be dark matter candidates. The complete fermionic and scalar
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particle content of the model and their corresponding charges under the different symme-

try groups are shown in Tables 7.1 and 7.2:

Gauge
Group
SU(2)L
U(1)Y
Z2

Baryon Fields
Qi

L = (ui
L ,d

i
L)T ui

R di
R

2 1 1
1/6 2/3 −1/3
+ + +

Lepton Fields
Li

L = (νi
L ,e

i
L)T ei

R Ni
R

2 1 1
−1/2 −1 0

+ + −

Scalar Fields
φh φH η

2 1 2
1/2 0 1/2
+ + −

Table 7.1: Particle contents and their corresponding charges under SM gauge group and
discrete group Z2.

Gauge
Group

U(1)Lµ−Lτ

Baryonic Fields
(Qi

L ,u
i
R ,d

i
R)

0

Lepton Fields
(Le

L ,eR ,Ne
R) (LµL ,µR ,N

µ
R) (LτL , τR ,Nτ

R)
0 1 −1

Scalar Fields
φh φH η

0 1 0

Table 7.2: Particle contents and their corresponding charges under U(1)Lµ−Lτ .

The complete Lagrangian L for the present model is as follows,

L = LS M +LN + (DµφH)†(DµφH) + (Dµη)†(Dµη) +
∑
j=µ,τ

Q j L̄ jγρL jZ
ρ
µτ

−
1
4

FµτρσFµτρσ−V(φh,φH ,η) , (7.1)

where φh and η are two SU(2)L doublets while φH is a scalar singlet. Moreover, Q j =

1(−1) for j = µ(τ) where L j =
(
ν j j

)T
. Here, one of the scalar doublets namely η which

is odd under Z2 symmetry, does not have any Yukawa interaction involving only SM

fermions and acts like an inert doublet. For the same symmetry reason it does not have

any VEV. The field strength tensor for the extra neutral gauge field Zµτ corresponding

to gauge group U(1)Lµ−Lτ is denoted by Fµτ. In principle we should include a mixing

term between the SM neutral gauge boson Z and the new neutral gauge boson Zµτ. The

experimental bound restricts this mixing to be < 10−3 br the LEP II [111, 239]. In this

work we assume no mixing between the neutral gauge bosons of SM and U(1)Lµ−Lτ .

Indeed, if such mixing is generated at the loop level, we expect it to be suppressed not

only by loop factors, but also by the gauge coupling gµτ1 rendering it negligible in our

1In this work, to maintain the nonthermal nature of our DM candidates we consider gµτ ∼ 10−11 (see
Section 7.5).
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discussion. The Lagrangian for the three RH neutrinosLN after obeying all the symmetry

has the following form,

LN =
∑

i=e,µ,τ

i
2

N̄iγ
µDµNi−

1
2

Mee N̄c
e Ne−

1
2

Mµτ (N̄c
µNτ+ N̄c

τNµ)

−
1
2

heµ(N̄c
e Nµ+ N̄c

µNe)φ†H −
1
2

heτ(N̄c
e Nτ+ N̄c

τNe)φH

−
∑

α=e,µ,τ
hαL̄αη̃Nα+ h.c. , (7.2)

where η̃ = iσ2η
∗. The potential V(φh,φH ,η) in Eq. (7.1) contains all possible interaction

terms involving the two SM scalar doublets and one SM scalar singlet,

V(φh,φH ,η) = −µ2
Hφ
†

HφH −µ
2
hφ
†

hφh +µ2
ηη
†η+λ1(φ†hφh)2 +λ2(η†η)2 +λ3(φ†HφH)2

+λ12(φ†hφh)(η†η) +λ13(φ†hφh)(φ†HφH) +λ23(φ†HφH)(η†η) +λ4(φ†hη)(η†φh)

+
1
2
λ5

(
(φ†hη)2 + h.c.

)
. (7.3)

After spontaneous breaking of U(1)Lµ−Lτ and SU(3)c ×SU(2)L ×U(1)Y , the scalars take

the following form,

φh =


0

v + H
√

2

 , φH =

(
vµτ+ Hµτ
√

2

)
, η =


η+

η0
R + iη0

I
√

2

 . (7.4)

There is mixing between the neutral components of φh and φH , and the off diagonal ele-

ments of the mass matrix are proportional to the parameter λ13. After diagonalising the

mass matrix one obtains two physical scalar states h1 and h2. Masses of h1, h2 and mixing

angle α are given by

M2
h1

= λ1v2 +λ3v2
µτ−

√
(λ3v2

µτ−λ1v2)2 + (λ13 vvµτ)2 , (7.5)

M2
h2

= λ1v2 +λ3v2
µτ+

√
(λ3v2

µτ−λ1v2)2 + (λ13 vvµτ)2 , (7.6)

tan2α =
λ13 vµτ v

λ3v2
µτ−λ1v2

. (7.7)
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7 Explaining the 3.5 keV X-ray Line in a Lµ−Lτ Extension of the Inert Doublet Model

The lighter Higgs state h1, for small mixing angle α and vµτ� v, behaves as the Standard

Model Higgs observed at the LHC [140, 141] and therefore we will take its mass to be

125.5 GeV. From the above Eq. (7.5)-(7.7), we can also write down the quartic couplings

in terms of the physical masses of the Higgses Mh1 and Mh2 and the mixing angle α. The

expressions are as follows,

λ3 =
M2

h1
+ M2

h2
+ (M2

h2
−M2

h1
)cos2α

4v2
µτ

,

λ1 =
M2

h1
+ M2

h2
+ (M2

h1
−M2

h2
)cos2α

4v2 ,

λ13 =
(M2

h2
−M2

h1
)cosαsinα

vvµτ
, (7.8)

In order to obtained a stable vacuum, the quartic couplings need to satisfy the following

inequalities,

λ1 ≥ 0,λ2 ≥ 0,λ3 ≥ 0,

λ12 ≥ −2
√
λ1λ2,

λ13 ≥ −2
√
λ1λ3,

λ23 ≥ −2
√
λ2λ3,

λ12 +λ4− |λ5| ≥ −2
√
λ1λ2,√

λ13 + 2
√
λ1λ3

√
λ23 + 2

√
λ2λ3

√
λ12 +λ4− |λ5|+ 2

√
λ1λ2

+2
√
λ1λ2λ3 +λ13

√
λ2 +λ23

√
λ1 + (λ12 +λ4− |λ5|)

√
λ3 ≥ 0 ,√

λ13 + 2
√
λ1λ3

√
λ23 + 2

√
λ2λ3

√
λ12 + 2

√
λ1λ2

+2
√
λ1λ2λ3 +λ13

√
λ2 +λ23

√
λ1 +λ12

√
λ3 ≥ 0 . (7.9)

As we will see in the result section (Section 7.5), in our analysis the value of the extra

singlet scalar vev is around 1014 GeV, mass of BSM Higgs Mh2 = 5 TeV and the mixing

angle between the neutral components of Higgses α = 0.01. Hence, we get the following
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values for the quartic couplings by using the Eq. (7.8),

λ1 = 0.15, λ3 = 1.25×10−21 and λ13 = 1.01×10−11 . (7.10)

All the values of the quartic couplings as shown above are positive and in the present case

the quartic couplings which are related to the inert doublet are free parameters (except λ5,

which we have considered ∼ 10−3 to obtain light neutrino masses in sub-eV range), hence

all the inequalities as prescribed in Eq. (7.9) are inevitably satisfied.

On the other hand the masses of the inert doublet components after symmetry breaking

can be expressed in the following form,

M2
η± = µ2

η+
1
2

(
λ12v2 +λ23v2

µτ

)
,

M2
η0

R
= µ2

η+
1
2
λ23 v2

µτ+
1
2

(λ12 +λ4 +λ5)v2 ,

M2
η0

I
= µ2

η+
1
2
λ23 v2

µτ+
1
2

(λ12 +λ4−λ5)v2 , (7.11)

The mass term for the extra neutral gauge boson Zµτ is also generated when φH acquires

a nonzero VEV vµτ such that

MZµτ = gµτ vµτ , (7.12)

where gµτ is the gauge coupling corresponding to gauge group U(1)Lµ−Lτ . In this model

all three RH neutrinos are odd under the Z2 symmetry. However, the mass of N1 comes

out to be higher than that of N2 and N3, so that N1 can decay to the lighter RH neutri-

nos. Also, we will see in Section 7.3 that the masses of N2 and N3 are nearly degenerate

because of the Lµ − Lτ symmetry, so that both can play the role of dark matter candi-

date. Furthermore, in Section 7.4 we will show that the RH neutrinos can be produced

by the freeze-in mechanism in the early Universe, which requires a tiny gauge coupling

gµτ ∼ O(10−11). Thus, in order to have a TeV scale gauge boson Zµτ we need large vµτ.
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7 Explaining the 3.5 keV X-ray Line in a Lµ−Lτ Extension of the Inert Doublet Model

Therefore, by choosing appropriate values of the relevant model parameters we can make

the masses of inert doublet components higher than the reheat temperature of the universe

so that their effect on the production of N2 and N3 can be safely neglected.

7.3 Heavy and Light Neutrino Masses

In this section we will show how the U(1)Lµ−Lτ symmetry determines the mass spectrum

and mixing angles of all the six neutrinos, the three heavy ones as well as the three light

ones. The relevant part of the Lagrangian was given in Eq. (7.2) where the first term

gives the kinetic part while the rest give the mass terms and Yukawa terms involving the

neutrinos. After U(1)Lµ−Lτ and electroweak symmetry breaking the mass matrix for the

RH neutrinos is given by

MR =



Mee
vµτ
√

2
heµ

vµτ
√

2
heτ

vµτ
√

2
heµ 0 Mµτ eiξ

vµτ
√

2
heτ Mµτ eiξ 0


, (7.13)

where the terms involving the VEV vµτ appear after U(1)Lµ−Lτ breaking. In the limit that

U(1)Lµ−Lτ is unbroken, the RH neutrino mass matrix is given by

MR =



Mee 0 0

0 0 Mµτ eiξ

0 Mµτ eiξ 0


. (7.14)
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Eigenvalues of Eq. (7.14) are

M′2/3 = ±Mµτeiξ

M′1 = Mee , (7.15)

giving very naturally two degenerate RH neutrinos with opposite parity. The U(1)Lµ−Lτ

breaking terms in Eq. (7.13) brings corrections to the RH neutrino mass spectrum, break-

ing the degeneracy between N2 and N3. The mass splitting between them is given at first

order for Mee� Mµτ by

∆M23 =
(heµ+ heτ)2v2

µτ

2Mee
. (7.16)

Hence, the mass splitting between N2 and N3 depends on the U(1)Lµ−Lτ breaking VEV

vµτ and the Yukawa couplings heµ and heτ. In what follows, we will see that vµτ will be

determined by the choice of the Zµτ gauge boson. However, the Yukawa couplings heµ

and heτ can be suitably adjusted to yield a mass splitting of 3.5 keV, needed to explain the

3.5 keV X-ray line from N2→ N3γ decay.

Despite having the RH neutrinos in this model, the masses for light neutrinos cannot

be generated by the Type-I seesaw mechanism since the normal Yukawa term involving

the RH neutrinos, lepton doublets and the standard model Higgs φh is forbidden by the Z2

symmetry. The other Yukawa term between the RH neutrinos, lepton doublets and inert

doublet η is allowed, but η does not take any VEV. Hence, there is no mass term for the

light neutrinos at the tree-level. However, masses for the light neutrinos gets generated

radiatively at the one-loop level [90] through the diagram shown in Fig. 7.1, giving the

following mass matrix for the light neutrinos [90]

Mν
i j =

∑
k

yik y jk Mk

16π2


M2
η0

R

M2
η0

R
−M2

k

ln
M2
η0

R

M2
k

−

M2
η0

I

M2
η0

I
−M2

k

ln
M2
η0

I

M2
k

 , (7.17)
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νi Nk νj

η0η0

φ0
h φ0

h

Figure 7.1: Radiative neutrino mass generation by one loop.

where Mk is the mass of kth RH neutrino while Mη0
R,η

0
I

is the mass of η0
R, I . The quantities

y ji = h jU ji, where h j are the Yukawa couplings in the last term of Eq. (7.2) and U ji are the

elements of the RH neutrino mixing matrix since the flavour basis (Nα, α = 1, 2, 3) of the

RH neutrinos and their mass basis (Ni, i = 1, 23) are related by a unitary transformation,

Nα =
∑

UαiNi. If we put this relation into the last term of Eq. (7.2), one can write the

Yukawa term involving SM leptons and RH neutrinos in the following way

LN ⊃ h jL̄ jη̃U jiNi = y jiL̄ jη̃Ni . (7.18)

If we consider the mass square difference between η0
R and η0

I i.e. M2
η0

R
−M2

η0
I
= λ5v2 << M2

0

where M2
0 = (M2

η0
R

+ M2
η0

I
)/2 then the above expression reduces to the following form,

Mν
i j =

λ5v2

16π2

∑
k

yik y jk Mk

M2
0 −M2

k

1− M2
k

M2
0 −M2

k

ln
M2

0

M2
k

 . (7.19)

In this work we have considered the masses of inert scalars greater than the reheat tem-

perature of the Universe, i.e. Mη0
R, I
∼ 106 GeV. The masses of RH neutrinos we consider

to be around ∼ 100 GeV. If we take the parameter λ5 ∼ 10−3 and v = 246 GeV, then to

obtain the neutrino masses of the order of Mν ∼ 10−11 GeV, we need y2
ji ∼ 10−1 which can

be easily obtained. The U(1)Lµ−Lτ breaking ensures that the mixing angle θ13 is non-zero

and θ23 is non-maximal.
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7.4 Production of Dark Matter

We consider the non-thermal production of dark matter candidates. Hence, the initial

number densities of these particles are assumed to be negligibly small and their inter-

actions with the particles in the thermal bath are also extremely feeble. As mentioned

before, the lighter RH neutrino states N2 and N3 are our dark matter candidates, stabilised

by the Z2 symmetry. Because of their gauge and Z2 charges they could be produced only

through the decay of Zµτ and h1
2 and h2 bosons. In what follows, we will see that the

dominant production channel for the RH neutrinos is via the decay of Zµτ. In order for the

total abundances of N2, N3 to match the observed DM relic density at the present epoch,

the gauge coupling has to be small gµτ <∼ 10−11. Since all the interactions of Zµτ are pro-

portional to the gauge coupling gµτ, the requirement of such a tiny gauge coupling makes

the additional neutral gauge boson Zµτ also decoupled from the thermal bath. Therefore,

before computing the DM number density we first need to know the distribution function

of mother particle Zµτ by solving the relevant Boltzmann equation. The most general

form of the Boltzmann equation describing the distribution function of any species can be

expressed as,

L̂ [ f ] = C [ f ] (7.20)

where L̂ is the Liouville operator and f is the distribution function which we want to

compute while in the RHS the term C contains interaction processes which are responsible

for changing the number density of the species under considering. C is known as the

collision term. If one considers an isotropic and homogeneous Universe then using the

2Since the mass of the SM-like Higgs has to be kept at 125.5 GeV, the decay channel h1→ NiN j will be
kinematically allowed only for lighter Ni/N j masses.
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FRW metric, the Liouville operator 3 takes the following form,

L̂ =
∂

∂t
−H p

∂

∂p
, (7.21)

where p is magnitude of three momentum and H is the Hubble parameter. Now, we

change the variables (p, t) to a new set of variables (ξp, r) using a transformation as men-

tioned in Ref. [240]

r =
Msc

T
, ξp =

(
gs(T0)
gs(T )

)1/3 p
T
. (7.22)

Msc is some reference mass scale. Using the time-Temperature relationship dT
dt =−H T

(
1 +

T g′s(T )
3gs(T )

)−1
,

the Liouville operator defined in Eq. (7.21) can be reduced to the following form contain-

ing a derivative with respect to a single variable, i.e.

L̂ = r H
(
1 +

Tg′s
3gs

)−1
∂

∂r
(7.23)

where gs(T ) and g′s(T ) are the effective number of degrees of freedom (d.o.f) related to

entropy of the Universe and its derivative with respect to the temperature T .

The Boltzmann equation to determine the distribution function ( fZµτ) of Zµτ is then

given by,

L̂ fZµτ =
∑
i=1,2

Chi→ZµτZµτ +CZµτ→ all , (7.24)

where the first term in the RHS represents the production of Zµτ from the decays of scalars

h1 and h2 while the second term describing the depletion of Zµτ due to its all possible

decay modes. The expressions of collision terms Chi→ZµτZµτ and CZµτ→ all are given in

Appendix of Ref. [236]. Note that generically also scattering processes, which change

3General form of the Liouville operator is, L̂ = pα ∂
∂xα −Γαβγpβpγ ∂

∂pα where pα is the four momentum
and Γαβγ is the affine connection by which gravitational interaction enters in the equation.
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the Zµτ number, are present, but those give a subleading contribution compared to the

decay (see e.g. the Appendix of [241] for a discussion).

Once we numerically evaluate the non thermal momentum distribution of the gauge

boson Zµτ, we can easily determine the number density of Zµτ using following relation

nZµτ(r) =
gT 3

2π2 B(r)3
∫

dξp ξ
2
p fZµτ(ξp, r) , (7.25)

where

B(r) =

(
gs(T0)
gs(T )

)1/3

=

(
gs(Msc/r)
gs(Msc/r0)

)1/3

. (7.26)

Here T0 is the initial temperature and Msc is some reference mass scale. In this work we

take T0 = 10 TeV and Msc = Mh1 = 125.5 GeV, the mass of SM Higgs boson. The entropy

density of the Universe is given by [242],

s =
2π2

45
gs(T )T 3 . (7.27)

Therefore, after determining the number density of Zµτ and the entropy of the Universe

one can determine the comoving number density using the following relation,

YZµτ =
nZµτ

s
. (7.28)

Finally, to determine the comoving number densities of DM components N2 and N3,

we need to solve the relevant Boltzmann equation for N2 and N3, which can be written in

a generic form,

dYN j

dr
=

Vi j Mpl r
√

g?(r)

1.66 M2
sc gs(r)

 ∑
k=1,2

∑
i=1,2,3

〈Γhk→N j Ni〉(Yhk −YN jYNi)


+

Vi j Mpl r
√

g?(r)

1.66 M2
sc gs(r)

∑
i=1,2,3

〈ΓZµτ→N jNi〉NT H (YZµτ −YN jYNi) , (7.29)
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7 Explaining the 3.5 keV X-ray Line in a Lµ−Lτ Extension of the Inert Doublet Model

where Mpl is the Planck mass while g?(r) =
gs(r)
√

gρ(r)

(
1− 1

3
d lngs(r)

d lnr

)
is a function of gρ(r)

and gs(r). The parameter Vi j = 2 for i = j and equal to 1 otherwise. The first term in the

above equation represents the production of N j from the decays of scalar fields h1 and

h2. Since these scalar fields remain in thermal equilibrium throughout their cosmological

evolution, one can consider their distribution function as Maxwell-Boltzmann distribu-

tion. Therefore the thermal averaged decay width for a process h(k)→ N j Ni is given

by [30]

〈Γhk→N j Ni〉 = Γhk→N j Ni

K1

(
r

Mhk
Msc

)
K2

(
r

Mhk
Msc

) , (7.30)

where Ki is the Modified Bessel function of ith kind. As the neutral gauge boson Zµτ is not

r=0.02

Non-thermal
Thermal

ξ p2
 f

Z
μ
τ(
ξ p

)

10−24

10−18

10−12

10−6

1

ξp

10−4 10−3 0.01 0.1 1 10 100 1000

Figure 7.2: Thermal and Non-thermal distribution function of Zµτ gauge boson.

in thermal equilibrium (due to very small value of gµτ), one cannot assume a Maxwell-

Boltzmann distribution function for Zµτ. The distribution fZµτ of Zµτ can be found by

solving Eq. (7.24) and we have shown it in Fig. 7.2. Although the shape of the distribu-

tion is similar in both cases but they differ by magnitude because in the current case Zµτ
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is always out of equilibrium and never attains equilibrium value. Once we get the distri-

bution function fZµτ the non-thermal average of decay width for the process Zµτ→ N jNi

can be computed as follows

〈ΓZµτ→N jNi〉NT H = MZµτΓZµτ→N jNi

∫ fZµτ (p)√
p2+M2

Zµτ

d3 p∫
fZµτ(p)d3 p

. (7.31)

All the relevant decay widths of h2 and Zµτ needed in Eq. (7.29) are given in Appendix

of Ref. [236] in detail. After solving the above Boltzmann equations for j=2 and j=3, we

can determine the comoving number density of the DM candidates N2 and N3. Therefore,

one can easily determine the total DM relic density for N2 and N3 candidates by using the

following relation [224],

ΩDMh2 = 2.755×108
( MN2

GeV

)
YN2(TNow) + 2.755×108

( MN3

GeV

)
YN3(TNow) . (7.32)

7.5 Results

h2 Decay
Zμτ Decay
(h2 + Zμτ) Decay

ΩDM h2 = 0.12
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Ω D
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+ N

3
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Mh1)
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Figure 7.3: Left panel: Variation of relic density with r and contributions from h2 and Zµτ
in the DM production. Right panel: Variation of comoving number density of Zµτ and N2,
N3 with r for three different values of gauge boson mass. Other parameters have been kept
fixed at gµτ = 1.01×10−11, mixing angle α = 0.01, gauge boson mass MZµτ = 1 TeV, DM
mass MDM = 100 GeV, BSM Higgs mass Mh2 = 5 TeV and RH neutrinos masses MN1 =

150 GeV and MDM = MN2 ' MN3 = 100 GeV.

Using Eqs. (7.29), (7.30), (7.31) and (7.32) we numerically compute the DM abun-
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7 Explaining the 3.5 keV X-ray Line in a Lµ−Lτ Extension of the Inert Doublet Model

dance. In the left panel of Fig. 7.3 we show the time evolution of the DM relic density

with r(= Mh1/T ). The left panel of the this figure shows the comparative contribution for

the two DM production channels, Zµτ → NiN j and h2 → NiN j. We have taken masses

of the RH neutrinos N2 and N3 as 100 GeV and hence the decay of SM-like Higgs h1

to a pair of RH neutrinos is kinematically forbidden. From the left panel we see that for

the large value of BSM Higgs mass (Mh2 ∼ 5 TeV), the DM production at low r (which

corresponds to high T ) is dominated by h2 decay. However, as the temperature of the

universe falls and goes below the mass of the Zµτ gauge bosons, they get produced, and

for high value of r (which corresponds to comparably lower temperature of the universe),

the DM production via the Zµτ decay channel dominates. The reason for this dominance

can be understood as follows. We see that the decay width ΓZµτ→NiN j ∝ MZµτg
2
µτ while

Γh2→NiN j ∝ Mh2heαheβ (as given in Appendix of Ref. [236]), where heαheβ are products of

two any of the Yukawa couplings heµ and heτ that appeared in Eq. (7.2). Since we have

chosen MZµτ ∼ Mh2 we can write

ΓZµτ→NiN j

Γh2→NiN j

∝
g2
µτ

heαheβ
, (7.33)

Since the Yukawa couplings heα appear as the U(1)Lµ−Lτ breaking terms in the RH neu-

trino mass matrix which instruments the splitting of 3.5 keV between N2 and N3 we have

from Eq. (7.13)

Veα =
heαvµτ
√

2
∼ 0.1 GeV . (7.34)

Inserting this in Eq. (7.33) and using the relation MZµτ = gµτvµτ we get

ΓZµτ→NiN j

Γh2→NiN j

∝
M2

Zµτ

V2
eα

, (7.35)

explaining the dominance of the Zµτ decay channel.

In the right panel of Fig. 7.3 we show the variation of the comoving number densities

223



of the Zµτ gauge boson vis-a-vis that of the sum of N2 and N3. We show this as function

of r for three different values of the gauge boson mass MZµτ .

The abundance YZµτ (indicated by the dash line) has an initial rise, then flattens and

finally decays. One can see from Eq. (7.24) that there are two collision terms in the

Boltzmann Equation, one for Zµτ production and another one for its decay to all possible

channels and they are active at different times. Note that the maximal abundance of Zµτ

can be easily estimated also by the analytic formula for FIMP production, i.e. for MZµτ �

Mh2

ΩFIh2 = 1.09×1027 g

g3/2
S

MZµτ

M2
h2

Γh2→ZµτZµτ ∼ 2.18×1024 g2
µτMh2

32πMZµτ
= 8.54; , (7.36)

where g counts the number of internal degrees of freedom of the mother particle. Accord-

ing to eq. (7.32) this corresponds to YZµτ = 0.3×10−10 and is in perfect agreement with the

plateau in Fig. 7.3. One interesting point to note is that as we increase the Zµτ mass MZµτ ,

keeping gµτ fixed, the DM abundance decreases instead of increasing, as explained by the

relation above. In the same figure also the production of dark matter as a result of the

out-of-equilibrium decay of Zµτ can be seen beautifully. Less production of Zµτ results in

lower DM abundance, since practically every Zµτ produces two Dark Matter particles.
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Tini = 10 TeV
Tini = 7 TeV
Tini = 3 TeV
Tini = 0.5 TeV

Ω D
M h

2

10−18

10−15

10−12

10−9

10−6

10−3

1

r (= T
Mh1)

10−3 1 1000 106

ΩDM h2 = 0.12

gμτ = 5.01 × 10-12

gμτ = 1.01 × 10-11

gμτ = 5.01 × 10-11

Ω D
M h

2

10−18

10−15

10−12

10−9

10−6

10−3

1

r (= T
Mh1)

10−3 1 1000 106

Figure 7.4: Left (Right) panel: Variation of relic density with r for different initial tem-
perature (for different gauge coupling values), while the other parameters have been kept
fixed at gµτ = 1.01× 10−11 (Tini = 10 TeV), mixing angle α = 0.01, gauge boson mass
MZµτ = 1 TeV, BSM Higgs mass Mh2 = 5 TeV and RH neutrinos masses MN1 = 150 GeV,
MN2 ' MN3 = 100 GeV.
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7 Explaining the 3.5 keV X-ray Line in a Lµ−Lτ Extension of the Inert Doublet Model

The left panel of Fig. 7.4 shows the variation of relic density with the parameter r for

different initial temperature Tini (temperature where DM relic density is taken as zero).

Important point to note here that as long as the initial temperature is above the mass of

the gauge boson Zµτ, final relic density remains the same. However, when we reduce

the initial temperature below the Zµτ mass (shown by the cyan color curve) then final

abundance reduces significantly due to the Boltzmann suppression factor. In the right

panel we show the variation of DM relic density with r for different gauge coupling values

(gµτ). One can see from the figure that if we increase the value of the gauge coupling, the

DM production rate as well as the total DM abundance increases. The reason can be

understood easily if we see the expression of DM production rate (as given in Appendix

of Ref. [236]), which is almost the same as the Zµτ decay rate, is proportional to the second

power of gµτ. In the present model for gµτ = 1.01×10−11 we achieve the correct DM relic

density value of the universe. In both the panels of Fig. 7.4, the horizontal magenta line

corresponds to the present day correct DM relic density value of the universe. For the rest

of the analysis, we have fixed the initial temperature of the universe at 10 TeV.
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Figure 7.5: Left (Right) panel: Variation of relic density with r for different values of DM
mass (Contributions in the relic density of DM from different channels of Zµτ), while the
other parameters have been kept fixed at gµτ = 1.01×10−11, mixing angle α = 0.01, gauge
boson mass MZµτ = 1 TeV (MDM = 100 GeV), BSM Higgs mass Mh2 = 5 TeV and RH
neutrinos masses MN1 = 150 GeV, MDM = MN2 ' MN3 = 100 GeV.

In the left panel of Fig. 7.5, we present the variation of the DM relic density for three

different values of the DM mass MDM (=MN2 ,MN3). As shown in Eq. (7.32) that DM

relic density is proportional to the DM mass MN2 and MN3 and this dependence is evident
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in the left panel of Fig. 7.5. For the chosen value of the parameters (mentioned in the cap-

tion), we have obtained correct relic density value (indicated by the horizontal line) of the

universe for DM mass value MDM = MN2 ' MN3 = 100 GeV, this value will be different

for different set of values of the other parameters. In the right panel of Fig. 7.5, we show

the decay contributions of Zµτ in different channels. The relative contributions among the

different channels is seen to differ significantly and the decay rate into N2N3 dominates

naturally producing equal populations of the two Dark Matter candidates. Indeed, to pro-

duce degenerate neutrinos i.e. MN2 ' MN3 , we have considered relatively small values of
heµvµτ
√

2
and heτvµτ

√
2

(∼ 0.1), as discussed before. Therefore, the elements of the unitary ma-

trix which relate the flavour and mass basis of the RH neutrinos take the following form,

U11 ∼ 1, U12,U13,U21,U31 ∼ 0.01, U22 = U23 = 1√
2

and U32 = −U33 = − 1√
2
. Therefore, it

is clear from the couplings (as listed in Appendix of Ref. [236]) that the dominant channel

for DM production is Zµτ→ N2N3, while the other channels will be suppressed which is

clearly visible in the right panel of Fig. 7.3. Similar considerations will also be true for

the N3 DM production channels.

7.6 3.5 keV γ ray line

N2

l

η
γ

N3 N2

l

η

N3

γ

Figure 7.6: Radiative decay of RH neutrino (N2→ N3γ) and 3.55 keV γ-line.

Finally, we come to the explanation of the 3.5 keV γ-ray line from the RH neutrino

radiative decay N2→ N3γ. Since the photon flux for a decaying Dark Matter candidate is
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7 Explaining the 3.5 keV X-ray Line in a Lµ−Lτ Extension of the Inert Doublet Model

given by

Φ =
1

4πMN2τN2

∫
l.o.s.

ρN2(~r)d~r (7.37)

where the last integral over the N2 density is computed along the line of sight and τN2

is the lifetime of the heavier DM particle N2. In order to explain the 3.5 keV line from

a decay such as N2 → N3γ, we need not only a mass splitting between the two fermion

states of ∼ 3.5 keV, but also a decay width of the unstable DM given as,

Γ(N2→ N3γ) = (0.72−6.6)×10−52 GeV
(

MN2

3.5keV

)
= (0.2−1.9)×10−44 GeV

(
MN2

100GeV

)
.(7.38)

Here we are assuming that the density of N2 is approximately half of the DM density and

rescaled the result of [47] accordingly.

The relevant decay diagrams for N2 are shown in Fig. 7.6. We consider N2 to be

slightly heavier than N3 (∼ 3.5 keV) so that it can produce the 3.5 keV γ-ray line. As

discussed before, the 3.5 keV mass splitting between nearly-degenerate N2 and N3 can be

easily achieved in our model via the U(1)Lµ−Lτ symmetry and its breaking parameters. So

we take Veα =
heαvµτ
√

2
∼ 0.1 GeV (α = µ,τ) and by suitably adjusting the Veα parameters

we can generate the 3.5 keV mass gap between N2 and N3. For the U(1)Lµ−Lτ conserving

leading terms in Eq. (7.13) we take the values Mee = 11 TeV and Mµτ = 100 GeV which

gives us MN2 and MN3 ∼ 100 GeV with opposite CP parities [243]. Ref. [243] has pointed

out that if N2 and N3 have opposite CP, then the transition from N2 to N3 is governed only

by the magnetic moment term (µ23), generated at one loop level as shown in Figure 7.6.

Therefore, the effective Lagrangian for the decay process N2→ N3γ is given as

Le f f ≈ i
µ23

2
N̄2σ

µνN3 Fµν . (7.39)

In determining the expression for the above decay process we consider the ratio of lepton

mass to RH neutrino mass to be very small ( Ml
MN2
� 1). Also, the ratio of the RH neutrino

mass and the inert doublet mass is very small i.e.
MN2
Mη
� 1. The decay width of N2 comes

227



out as [244],

Γ(N2→ N3γ) =
µ2

23

4π
δ3

(
1−P

MN3

MN2

)2

, (7.40)

where δ =
MN2

2 (1−
M2

N3
M2

N2

), P gives the relative CP of the two neutrino states, which in the

present model is P = −1. The magnetic moment coefficient µ23 in our model is given by

µ23 =
∑

i

e
2

1
(4π)2

MN2

M2
η

(yi2yi3) , (7.41)

where yi j = hiUi j being the derived Yukawa couplings given in Eq. (7.18) . The values

of the parameters appearing in the N2 decay width are intimately related with those that

determine the light neutrino masses. In Section 7.3, we had set the parameter values to

explain the tiny neutrino mass in the following order,

Mη = 106 GeV,MN2 = 100GeV, (yi j)2 = 10−1 . (7.42)

Using these in the Eq. (7.18) we get µ23 ∼ O(10−14) GeV−1. Using Eq. (7.40), for DM

mass around 100 GeV, δ' 3.5 keV and µ23 ∼ 10−14 GeV−1, we get the lifetime of N2 of the

order O(10−44) GeV, which is exactly what is needed to give the 3.5 keV line. Note that

the lifetime of N2 is then around 1019 sec and hence greater than the age of the universe

(1017 sec). Hence the present model can naturally explain the origin of the claimed 3.5

keV line.
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8
Conclusion

In this thesis, we have mainly studied two well known beyond standard model puzzles

which are dark matter and neutrino mass. In describing them we have extended the SM

gauge group as well as the particle spectrum. We will summarize the whole thesis in

chapter wise.

8.1 Galactic Gamma Ray Excess and Dark Matter Phe-

nomenology in a U(1)B−L Model

In Chapter 2, the U(1)B−L symmetry that we impose is local, there is an additional gauge

boson ZBL in this model. Three right handed neutrinos also have to included in the model

to make it anomaly free. In order to break the U(1)B−L symmetry spontaneously, one in-

troduces an extra SM singlet scalar φH which carries a nontrivial B−L charge. The B−L

charge of this scalar can be arranged in such a way that the right handed neutrinos pick up

Majorana masses when φH gets a VEV, breaking the U(1)B−L symmetry spontaneously.

As a result the ZBL gauge boson also becomes massive. This extra neutral gauge boson

has been searched for at collider experiments which put a stringent bound on the combi-

nation of the new U(1)B−L gauge coupling and the mass of ZBL. We extended this gauged

U(1)B−L model further by adding another complex SM scalar φDM which is charged un-
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der U(1)B−L and arranged its U(1)B−L charge in such away that all decays of φDM are

forbidden making it a stable DM candidate. We imposed constraints coming from vac-

uum stability, LEP bound on MZBL/gBL, LHC bounds on signal strength of the SM-like

Higgs and invisible decay width of the SM-like Higgs, and found the regions of the model

parameter space which can simultaneously explain the observed DM relic density as well

as the Fermi-LAT GC gamma ray excess and at the same time evaded the bounds from the

direct detection experiments such as LUX. We showed that for DM masses in the range

40-55 GeV and for a wide range of U(1)B−L gauge boson masses, one can satisfy all these

constraints if the additional neutral Higgs scalar has a mass around the resonance region.

8.2 Neutrino Mass, Dark Matter and Anomalous Mag-

netic Moment of Muon in a U(1)Lµ−Lτ Model

In Chapter 3, we propose a gauged Lµ−Lτ extension of the SM with two additional scalars

and three additional right-handed neutrinos. Since we require U(1)Lµ−Lτ to be local, we

get an extra gauge boson, Zµτ. One of the most appealing aspects of the gauged U(1)Lµ−Lτ

extension of the SM is that it does not introduce any anomaly in the theory [230–232].

This model can explain the anomalous muon (g−2) data, small neutrino masses and pe-

culiar mixing pattern, and provides a viable dark matter candidate. It can explain the

relic abundance as well as the galactic centre gamma ray excess while satisfying all other

experimental bounds. It also predict no CP violation in neutrino oscillation experiments.

This model is phenomenologically rich and predictive and should be testable in forthcom-

ing high energy physics experiments, including collider experiments, dark matter experi-

ments as well as neutrino oscillation experiments.
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8 Conclusion

8.3 Singlet-Triplet Fermionic Dark Matter and LHC Phe-

nomenology

In Chapter 4, we study WIMP-type DM and shown that its relic density, detection at direct

and indirect detection experiments, and detection at collider experiments are intimately

inter-related. In this work we have proposed a fermion DM model that can successfully

explain the DM relic density, can be tested in future direct detection experiments, and

can be produced and tested at the 13 TeV run of the LHC. The present model allows for

low mass fermionic DM that satisfactorily produces the observed relic density of the uni-

verse. It can be tested at the current and next-generation DM direct detection experiments.

More importantly the 100 GeV mass range of the DM candidate in this model allows its

production and detection at the LHC. The 13 TeV LHC can discover this fermionic DM

candidate for with more than 3σ statistical significance with reasonable luminosity.

8.4 Neutrino Mass, Leptogenesis and FIMP Dark Matter

in a U(1)B−L Model

In Chapter 5, we study the spontaneously broken local U(1)B−L extension of the SM with

three additional RH and two additional scalars can explain the three main evidences for

physics beyond the SM, viz., small neutrino masses, matter-antimatter asymmetry of the

Universe and dark matter. Tiny neutrino masses and all mixing angles can be obtained

via Type I seesaw mechanism where we chose a certain pattern for the real and complex

Yukawa couplings. The model gave a definite prediction for the CP violating phase to be

measured in the next generation long baseline experiments. The dark matter candidate is

a scalar which is neutral under the SM gauge group and has a nonzero B−L charge. DM

is made stable by virtue of a remnant Z2 symmetry arises after the spontaneous breaking

of U(1)B−L gauge symmetry. This can be achieved by imposing a suitable B−L charge on
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φDM so that the Lagrangian does not contain any odd term of φDM. This scalar DM can

easily be taken as a FIMP candidate which is produced from the decays and annihilations

of SM and BSM particles. Therefore, even if the WIMP type DM is ruled out in near

future from direct detection experiments this present variant of U(1)B−L scenario with

FIMP DM will still survive. Further, since gBL is of the order of SM gauge couplings, this

model has the potential to be tested in the LHC or in other future collider experiments

by detecting B−L gauge boson ZBL from its SM decay products. Moreover, considering

the masses of RH neutrinos in TeV scale allow us to simultaneously explain the baryon

asymmetry of the Universe from resonant leptogenesis, FIMP DM production via Freeze-

in mechanism and also neutrino masses and mixing from TeV scale Type-I seesaw. Thus,

all three phenomena addressing in this article are interconnected to each other.

8.5 FIMP and Muon (g−2) in a U(1)Lµ−Lτ Model

This section will summarize Chapter 6. Our proposed U(1)Lµ−Lτ extension of the SM can

explain the three main puzzles that demand beyond Standard Model physics. First, it can

successfully explain the smallness of neutrino masses via the Type-I seesaw mechanism

as well as the peculiar mixing pattern of the neutrinos via the U(1)Lµ−Lτ gauge symmetry

that also acts on the lepton flavours, thereby giving a pattern to the light neutrino mass

matrix. Second, the additional one loop contribution of the extra neutral gauge boson Zµτ

can successfully satisfy the muon (g− 2) data. And finally, the model has a SM singlet

scalar with non-zero U(1)Lµ−Lτ , that makes it stable and which acts as a non-thermal dark

matter candidate, thereby satisfying constraint on the relic abundance and at the same time

evading all bounds coming from direct and indirect dark matter detection experiments.
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8 Conclusion

8.6 Explaining the 3.5 keV X-ray Line in a Lµ−Lτ Exten-

sion of the Inert Doublet Model

Chapter 7 deals with the extension of the SM gauge group by a local U(1)Lµ−Lτ gauge

group and a Z2 discrete symmetry. The particles spectrum was extended by three RH

neutrinos, one inert doublet and one SM gauge singlet scalar. We showed that this model

explains the observed 3.5 keV line consistently with the relic dark matter abundance in the

framework of a model that generates light neutrino masses radiatively. The Type I seesaw

in this model is forbidden by the Z2 symmetry but tiny neutrino masses are generated via

a one-loop diagram involving the RH neutrino and the inert doublet which does not take

any VEV. We considered inert scalar masses ∼ 106 GeV, which is higher than the reheat

temperature, and RH neutrino masses ∼ 100 GeV. Then for parameter choices λ5 ∼ 10−3

and Yukawa couplings y2
ji ∼ 10−1 we can get light neutrino masses Mν ∼ 0.01 eV. The RH

neutrino mass matrix in our model is non-diagonal and carries the Lµ−Lτ flavour structure

which ensures that two of the RH neutrino remain degenerate in the U(1)Lµ−Lτ symmetric

limit. The spontaneous breaking of the U(1)Lµ−Lτ gauge symmetry generates terms in the

RH neutrino mass matrix that splits the two degenerate RH neutrinos by 3.5 keV, while the

third one remains heavier. The two nearly degenerate neutrinos form the two-component

DM in our model. We showed that the RH neutrinos are predominately produced by the

decay of the extra neutral gauge boson Zµτ, which are taken in the 1 TeV mass range

in our model. The production of RH neutrinos from decay of the additional scalar h2 is

subdominant, while the annihilation channels have negligible effect. We showed that the

peculiar structure of the unitary matrix (U) which relates the flavour and mass basis of the

RH neutrinos ensures that the decay mode Zµτ → N2 N3 is the dominant one among the

other channels. Since the associated gauge coupling gµτ is taken to be very small here,

the Zµτ stays out of equilibrium in the early universe and the RH neutrinos are produced

by the freeze-in mechanism. We solved the coupled Boltzmann equation numerically and

showed the dependence of the DM relic abundance on initial temperature Tini, gµτ, MZµτ
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and MDM. Finally, we showed that the heavier of the two DM component N2 can decay

into the lighter N3 (N2 → N3γ) through one loop diagram, thus producing the 3.5 keV

X-ray line that was observed by Chandra satellite. The model parameter values which

determine the lifetime of N2 were obtained through constraints from the light neutrino

mass sector and gave a decay rate of 10−44 GeV for N2. So the lifetime of the heavier

Dark Matter particle is consistent with both the age of the universe as well as the strength

of the observed 3.5 keV line.
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