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SUMMARY

Unruh’s work in 1981 [1] opens the field of analogue gravity. If an inviscid barotropic fluid

medium in motion, satisfying irrotationality condition, is perturbed (creation of sound wave),

the governing equation of the sound wave has similarities with masless scalar field in a curved

spacetime; analogies with even the spacetime near black hole horizon can be found. The sound

wave in the medium is not a wave in the real curved space-time rather the behaviour of the sound

wave in a medium can be compared to (described as) a massless scalar field propagation in

curved space-time whereas the metric component of the corresponding spacetime are functions

of background fluid density and velocity, i.e. it is like a propagating wave in a curved acoustic

spacetime which is embedded in a flat background spacetime for Newtonian description of fluid

dynamics. This is an emergent phenomena and the corresponding spacetime metric is named as

acoustic metric. Hence, by configuring the background flow, several varieties of space-time ge-

ometries can be simulated. The phenomena is called an emergent phenomena because we find

the spacetime geometry from the fluid equations, the second order partial differential equation

(wave equation) is structurally similar to the massless scalar field equation in curved spacetime.

One can also call it simulated spacetime because this is not the spacetime in the real world, this

spacetime (the spacetime metric depends on the fluid density, velocity etc), mimicking curved

spacetime in the real world, is modelled to describe the behaviour of linear perturbation in the

medium. One of the interesting spacetime arising in General Theory of Relativity, is the space-

time near black hole event horizon. Transonic flows give rise to emergent spacetime which is

similar to spacetime near black hole horizon, named as ‘dumb hole’ horizon (because sound is

involved in the emergent phenomena) [2]-[6]. Such sonic geometry contains an acoustic horizon

from where Hawking like radiation may be produced. We particularly investigate the barotropic

condition of the fluid (a necessary condition for such emergent phenomena to happen) in details

by using Lagrangian Perturbation Theory (LPT) [7], [8]. Astrophysical accretion can be thought

of as natural system where such emergent phenomena can be observed.

Accreting black hole is the only system found in the universe where both type of horizons,

gravitational as well as acoustic, can be formed. Hence theoretically if one is interested to
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compare the properties of these two types of horizons, accreting black holes may be consid-

ered as the best candidate to study the sonic geometry embedded within it. In usual analogue

models, the gravitational field does not play any role while formulating the corresponding sonic

geometry. For accretion onto astrophysical black holes (for accretion onto any compact massive

astrophysical objects in general), the gravity determines the dynamics of the fluid and hence

the associated acoustic spacetime itself is influenced by the gravitational field. Therefore, for

accretion onto blackhole, the actual spacetime with a event horizon influences the flow of the

medium, hence the ‘dumb hole’ horizon (location and the metric corresponding to the acous-

tic spacetime) depends on the background space time. Considering such analogue system with

such two horizons has mainly two advantages, one is that such accretion models, describe ac-

cretion phenomena which are ubiquitous in nature and secondly, we will see that these systems

are dynamically very interesting (flows become supersonic with multiple critical sonic points).

We choose to work with accretion models where the flow of accreting medium is inviscid, ir-

rotational and barotropic. Spherically symmetric accretion [9], sub-keplerian disk accretion

[10]-[34] of barotropic fluid medium satisfies such conditions. We specifically choose such ac-

cretion models where the conditions refereed to the physical acoustics are satisfied to obtain the

Lorentzian metric from the wave equation. We extend our analysis to consider the gravitational

effect of the mass of the medium by studying spherically symmetric transonic accretion under

Newtonian gravity. We consider the growth of the accretor itself to be negligibly small within a

reasonable timescale of observation. A novel iterative method is introduced to accomplish that

task of finding steady state solution in such a case.

If we look at the phenomena from the reference frame of an observer moving with the back-

ground velocity (with the velocity of the steady state solution), Eikonal wave (wave of short

wavelength in the geometrical acoustic limit) [36], [5] propagates (within a short distance around

the observer) like wave in a uniform static medium. Therefore, in the neighbourhood of that ob-

server, the emergent gravity of the acoustic spacetime is absent. Hence the reference frame of

the observer sitting in the comoving frame of the background flow is similar to local inertial

frame [37] in General relativity.
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Chapter 1

Introduction

In this chapter, we discuss about the basics and preliminaries about the subject analogue gravity.

This chapter provides the basic building blocks for the relatively advanced notions and applica-

tions discussed in the next chapters.

1.1 Gravity, Space-Time Geometry

Newton’s theory of gravitation [37] could not explain certain astrophysical phenomena observed

experimentally (e.g. precession of the perihelion of Mercury). In 1915, Einstein came up with a

new theory, so called General theory of relativity. This theory of gravitation has been successful

so far i.e., it is found compatible with up to date experimental evidences. Due to the equality of

inertial mass and gravitational mass [37], there arises the Principle of Equivalence. Principle of

Equivalence states that at any point in spacetime we can construct a locally inertial coordinate

system in which the matter satisfies the laws of special relativity, i.e., in such a coordinate

system, in the near vicinity of the point in spacetime, the effect of gravity is absent. For example,

a freely falling observer in the Earth’s gravitational field feels no gravity, i.e., that freely falling

observer has no way of determining the effect of gravity from the relative motion of bodies

in the near neighbourhood (because the bodies in the near vicinity of that observer has same

acceleration because of the Earth’s gravity, due to the equality of inertial mass and gravitational

mass). In this new theory, in stead of considering gravity as a force, gravity is considered

as space-time geometry [37]-[39]. Space and time are treated in equal footing (three spatial

9



Chapter 1. Introduction

dimension with an additional special dimension which is time, i.e., 3+ 1D). In the absence of

gravity, the spacetime is flat, i.e., the corresponding spacetime metric is Minkowskian, given by

ds2 = ηµνdxµdxν (1.1)

where, Greek indices run from 0− 3, while Roman indices run from 1− 3. Then, introducing

(3+1)-dimensional space-time coordinates, which we write as xµ ≡ (t;xi) and

ηµν ≡



−c2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, (1.2)

where c is the speed of light in vacuum.

Therefore, according to the Principle of Equivalence, thus any spacetime under gravity locally

resembles to Minkowski spacetime, thus spacetime is a manifold. Therefore, in such a manifold,

the notion of spacetime distance, i.e. the line element or the spacetime metric is given by

ds2 = gµν(x)dxµdxν (1.3)

where gµν(x) is a symmetric second rank covariant tensor describing the spacetime, x is the

spacetime coordinate (t,x). Due to symmetric property, in 3+ 1 D, the metric tensor gµν has

ten independent components. According to the Principle of Equivalence, at each point in the

spacetime in the laboratory coordinate under gravity, there exists a coordinate transformation

(locally inertial coordinate system or freely falling system) such that the metric tensor in the

new coordinate system, is reduced to the Minkowski metric and the first derivative of the metric

tensor vanishes at that point.

In this spacetime geometry, any particle follows geodesic governed by geodesic equation [37].

Massless particle follows lightlike geodesic (ds2 = 0), massive particle follows timelike geodesic

(ds2 < 0).

There exists an alternative version of Principleof Equivalence, known as General Covariance

10



1.1. Gravity, Space-Time Geometry

[37]. It states that physical equations hold in a general gravitational field, if two conditions are

satisfied:

1. The equation holds in the absence of gravitation, i.e., it obeys the laws of Special Relativity

when in that equation the metric tensor gµν equals the Minowski tensor ηµν and when the affine

connection [37] (a function having first order derivative of gµν ) vanishes.

2. The equation is generally covariant, i.e., it preserves it’s form under general coordinate trans-

formations. General coordinate transformation is defined as a bijective map between two set of

coordinate to describe the spacetime manifold.

Principle of General covariance allows one to treat the quantities appearing in a equation as

contravariant tensor, covariant tensor or scalar. Therefore, one can first write down any equation

obeying the laws of special relativity in the locally inertial frame of reference and then to obtain

the equation under gravity, one has to treat the quantities in that equation like tensors or scalars

and make a coordinate transformation to the laboratory coordinate.

For example, equation of a massless scalar field φ(t ′,x′), in flat spacetime, is given by

∂
′
µ∂
′µ

φ(t ′,x′) = 0. (1.4)

where primed notation is used in the locally inertial frame. Now applying Principle of Gen-

eral Covariance, i.e. by treating φ(t,x) as scalar, ∂ ′µ as covariant rank one tensor and ∂ ′µ as

contravariant rank one tensor, we get the desired equation of a massless scalar field (in mini-

mal coupling [38]) under gravity (by coordinate transformation from locally inertial frame to

unprimed laboratory frame),

DµDµ
φ(t,x) =

1√
−g

∂µ(
√
−ggµν

∂ν)φ(x) = 0, (1.5)

where Dµ is the covariant derivative [37].

Therefore, gravity can be viewed as spacetime geometry, but what causes spacetime geometry

or gravity? Einstein field equations answer the question. It relates energy and momentum tensor

to the metric, given by

Rµν −
1
2

gµνR =−8πG
c4 Tµν , (1.6)

11



Chapter 1. Introduction

where Rµν is Ricci tensor, R is Ricci scalar [37], Tµν is energy momentum tensor and G is uni-

versal gravitational constant.

This is a second order nonlinear differential equation in metric tensor.

Solution of Einstein’s field equations give rise to interesting spacetime geometry, for example

black hole spacetime. This is actually one of the most striking proposals of Albert Einstein’s

general theory of relativity.

The most general solution of Einstein’s equation which represents a stationary (metric com-

ponents are independent of time), static and isotropic gravitational field (in vacuum) due to a

central mass M, is the Schwarzschild solution, given by (in metric form)

ds2 =−c2
(

1− 2GM
c2r

)
dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2dΩ2 (1.7)

where r is the spherical polar coordinate, dΩ2 =
(
dθ 2 + sin2θdφ 2), with θ and φ being polar

angle and azimuth angle. The coordinate (t,r,θ ,φ) in which the metric is written, is called the

Schwarzschild coordinate and the frame of reference which they form is called the Schwarzchild

reference frame [39]. The metric is asymptotically flat far from the centre of gravity (r→ ∞).

r = rg = 2GM
c2 , is called Schwarzschild radius. gtt changes sign at this radius leading to the

singularity in the flow of time , because the physical time interval dτ =
(

1− 2GM
c2r

) 1
2

dt or in

other words, the worldline of an observer sitting at a fixed point in space, i.e, at constant r, θ and

constant φ ceases to be timelike at this radius. It is also worth mentioning that at this radius, the

free fall acceleration becomes infinity [39]. As light follows lightlike geodesic, therefore, one

can show that if a light is emitted from r = rg, it will take an infinite amount of time, t to reach

any point at greater radius [39]. At radius less than rg, motion of any body (massive or massless)

becomes unidirectional, i.e, towards the singularity (r = 0); thus rg is identified as event horizon

because photon can not escape black hole from radius less than rg.

Any infinitesimal translation in spacetime coordinate can be given by (in general)

x′µ = xµ + εξ
µ(x). (1.8)

12



1.1. Gravity, Space-Time Geometry

The infinitesimal translation vector ξ µ for which the metric preserves it’s functional form, i.e.

g′µν(x
′) = gµν(x′), is called killing vector of that metric. The surface in the spacetime where

the norm of the killing vector becomes zero, is defined as the boundary of the ergo region, and

the region where the killing vector is spacelike, is defined as the ergo region. As the metric is

stationary, i.e., the metric is invariant in form under time translation, giving rise to generator of

the symmetry, Killing vector [37], ξ
µ

(t) = (1,0,0,0). The killing vector becomes spacelike (as gtt

changes sign at r = rg) at radius less than rg, therefore r = rg is the boundary of the ergo region,

i.e., ergo sphere [39], or the static limit surface. Therefore, in the case of Schwarzschild black

hole, the radius of ergo sphere coincides with the radius of event horizon.

This conclusion, can be drawn in another way. A Schwarzschild black hole in this coordinate is

not only stationary, but also it has an additional symmetry, i.e., the time reversal symmetry. For

t →−t, the acoustic metric is invariant, therefore, Schwarzschild black hole represents a static

spacetime. According to the theorem by Hawking et al [39], the killing horizon (the radius of

ergo sphere) coincides with event horizon for stationary static back hole.

If an acoustic metric does not have the time reversal symmetry (due to cross time with dt), one

needs to write down the metric in a new coordinate where it takes the form (where the time and

space does not mix with each other):

ds2 =−V 2dt2 +hi jdxidx j. (1.9)

Now, if the black hole is stationary (V and hi j are independent of t; one can redefine time of

course if V only depends on t to make g00 component time independent), the black hole is static

[39].

There are also other kind of black holes (e.g. non-static stationary black hole). For brevity and

according to the relevance of our thesis, we restrict ourselves to the Schwarzschild black hole.

There are limitations in the General Theory of Relativity too. A black hole forms when a mas-

sive star runs out of the fuel needed to balance out gravity, and collapses under its own gravity

to a point; thus General relativity predicts that the star collapses to an infinitely small point with

infinite density. Such a thing does not really exist in the real world because it contradicts the

quantum theories. The appearance of a black hole singularity in general relativity simply indi-
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Chapter 1. Introduction

cates that general relativity is inaccurate at very small sizes. One needs quantum field theoretic

description to analyse gravity in small length scales, but gravity turns out to be non renormal-

izable. There is limitation in large length scale (cosmological length scale) too, the problem of

acclerating expansion of universe (dark energy in that context) is still not quite understood [37].

1.2 Analogue model of spacetime geometry

William Unruh published the first modern paper on analogue gravity [1]. It is then followed

by Matt Visser [2][3][4]. It was nicely showed that the effective propagation of sound waves

in a fluid flow is given in terms of geodesics in an acoustic “spacetime geometry”. Since then

many works have been done on the topic, now commonly referred to as “Analogue Gravity”

[5]. We discuss here briefly about the subject relevant for thesis. We also mention the lines

and the paragraphs in this chapter which refers the other chapters in the thesis in italics for the

convenience of the readers. The contents of this section are mostly followed from the review

article on analogue gravity [5].

1.2.1 Physical Acoustics

In non-relativistic fluid dynamics, in the case of inviscid flow, mass conservation equation and

the momentum conservation equation for fluid are given by [40] (according to Newton’s laws of

dynamics) determine the flow.

The continuity equation of fluid is given by

∂ρ

∂ t
+∇.(ρv) = 0 (1.10)

where ρ,v are fluid density and velocity respectively, and these quantities depend on x and t in

general. Euler momentum equation for inviscid flow in an external field in general is given by

∂v
∂ t

+v.∇v =−∇ψ− ∇p
ρ

, (1.11)
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1.2. Analogue model of spacetime geometry

where the potential function of the external conservative field is ψ and pressure at any point of

the fluid is p.

The flow is taken to be vorticity free, i.e, locally irrotational,

∇×v = 0 (1.12)

⇒ v =−∇Ψ, (1.13)

where Ψ is velocity potential. The flow is assumed to be barotropic, i.e., p = p(ρ). In the next

chapter, we will discuss about barotropic and irrotationality condition in details.

Sound speed cs is given by

c2
s =

d p
dρ

(1.14)

Now let’s assume we have a known solution as background flow, i.e., density is ρ0, velocity of

moving medium is v0 and sound speed is cs0. We now find the propagation of sound over such

background flow. Sound is defined as linear perturbation in density and velocity [5], therefore,

we have

v(x, t) = v0 +v′(x, t)

ρ(x, t) = ρ0 +ρ
′(x, t)

In the review [5], they have used a slightly different notation for perturbation. We have discussed

about the perturbation over such velocity and density field in the next chapter in details and also

from a different point of view. ρ0 and v0 are functions of space and time in general. Therefore,

Ψ = Ψ0 +Ψ′. (1.15)

After some manipulations, one gets,

∂µ( f µν
∂ν)Ψ′(x, t) = 0 (1.16)
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where f µν in Cartesian coordinate is given by

f µν =
ρ0

c2
s0


−1

... −v j
0

· · · · · · · · · · · ·

−v j
0

... c2
s0δ i j− vi

0v j
0

 (1.17)

where i, j run over 1, 2, 3 representing three spatial dimensions.

The equation 1.16 represents a wave equation of the linear perturbation of the velocity poten-

tial. In chapter 4, we will be discussing about wave equation of astrophysically more relevant

quantities. Comparing equation 1.16 with equation 1.5

f µν =
√
−ggµν (1.18)

Immediately one can get

det( f µν) = (
√
−g)4g−1 = g =−

ρ4
0

c2
s0

(1.19)

So gµν is given by

gµν =
1

ρ0cs0


−1

... −v j
0

· · · · · · · · · · · ·

−v j
0

... c2
s0δ i j− vi

0v j
0

 (1.20)

The acoustic metric is

gµν =
ρ0

cs0


−(c2

s0− v2
0)

... −v j
0

· · · · · · · · · · · ·

−v j
0

... δi j

 (1.21)

Acoustic metric interval can be expressed as

ds2 =
ρ0

cs0

[
−(c2

s0− v2
0)dt2−2dtv0.dx+dx2] (1.22)

where v0 is the magnitude of the vector, v0.
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1.2. Analogue model of spacetime geometry

1.2.2 General features of the acoustic metric

Lorentzian nature: If the background medium is static (non moving), i.e., the acoustic metric

resembles the Minkowski metric with two exceptions. One is that there is a conformal factor

in front of it and also the sound speed appears in the acoustic metric in stead of speed of light.

Here sound speed plays the role of light speed. The signature of this effective metric is indeed

(−,+,+,+), as it should be to be regarded as Lorentzian.

If the background medium has zero velocity at infinity, the acoustic metric represents analogue

of asymptotically flat spacetime, just like Schwarzschild black hole in Schwarzschild reference

frame is asymptotically flat, Kerr black hole in Boyer-Lindquist coordinate is asymptotically

flat. We will be considering the transonic accretion in certain astrophysical models where the

accretion flow is assumed to have zero speed (chapter 3 and chapter 5) at very large distance,

therefore, the acoustic metric in our coordinate is asymptotically flat.

An emergent phenomena: We begin with the non-relativistic fluid equations, time and space

are absolute according to Newtonian notions [41], but surprisingly, the linear perturbation (sound)

in the medium mimics the massless scalar field equation in a curved spacetime. Therefore, the

sound ‘feels’ a curved spacetime (the acoustic metric) just like a massless scalar field in a real

curved spacetime would have ‘felt’ the curvature of real spacetime. That is why this phenom-

ena is an emergent phenomena and the acoustic spacetime associated with it can also be called

emergent spacetime.

Acoustic Horizon: If we assume the flow of the background medium to be steady (ρ0 = ρ0(x),

v0 = v0(x) and cs0 = cs0(x)), the acoustic metric in equation 1.22 becomes stationary. From

equation 1.22, one can define a proper time and conclude that the world line of a time like ob-

server sitting at a fixed position (x) in space becomes space like in the region/s where v0 > cs0 ( if

there exists such supersonic region/s of flow within the background medium). According to the

discussion in section 1.1, time translation symmetry in stationary spacetime gives rise to killing

vector, whose norm changes as gtt changes sign. Therefore, the region of flow where v0 > cs0

is identified as the ergo region of the analogue spacetime and the surface where v0 = cs0 can be

identified as static limit surface or ergo sphere or killing horizon of the emergent spacetime.

The acoustic metric (equation 1.22) does not have time reversal symmetry, therefore, we make
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Chapter 1. Introduction

a coordinate transformation to make it structurally similar to equation 1.9:

dτ = dt +
v0.dx

c2
s0− v2

0
. (1.23)

Now if the second term in the right hand side is integrable, the coordinate transformation from

the old time coordinate t to the new time coordinate τ is valid (existence of a bijective map

between two new coordinate system). Therefore the integrability condition implies that the

second term on the right hand side
(
= v0.dx

c2
s0−v2

0

)
can be written as ∇F .dx, where F = F (x); we

have in this new coordinate system

ds2 =
ρ0

cs0

[
−(c2

s0− v2
0)dτ

2 +

{
δi j +

vi
0v j

0

c2
s0− v2

0

}
dxidx j

]
. (1.24)

In this new coordinate, (similar to form 1.9), the metric is stationary with time reversal symme-

try. Therefore, the acoustic metric is static in this coordinate. Therefore, for an acoustic metric

to be static the transformation 1.23 needs to exist. Therefore, for a background flow, producing

the emergent spacetime effect, the corresponding spacetime is static if

∇×
(

v0

c2
s0− v2

0

)
= 0⇒ v0×∇(c2

s0− v2
0) = 0 (∵ ∇×v0 = 0) (1.25)

As we have discussed already that for static stationary spacetime, the killing horizon is the event

horizon. Therefore for a transonic flow (the background flow has both subsonic and supersonic

region), if due to symmetry, equation 1.25 is satisfied, the emergent spacetime is static and sim-

ilar to Schwarzschild spacetime 1.7 and the surface where the speed of the background medium

equals the speed of sound, is the analogue of event horizon, i.e., the acoustic horizon. We con-

sider the accretion models where due to the symmetry of the background medium (spherical

symmetry and axial symmetry) and due to the symmetry of the linear perturbation (the linear

perturbations also possess the same symmetry as the background flow, for example axially sym-

metric linear perturbation in axially symmetric background flow), the condition 1.25 is satisfied.

Therefore, we limit ourselves in static emergent spacetime. Thus the assumption of symmetry

is important in producing emergent space-time similar to Schwarszchild black hole.
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1.2. Analogue model of spacetime geometry

For example, a static spherically symmetric (the background density, velocity, sound speed only

depend on the radial distance from the sink) radially ingoing transonic flow, automatically satis-

fying condition 1.25, gives rise to acoustic horizon similar to horizon of a Schwarzschild black

hole. It is worth mentioning that for rotational fluid, in general the local irrotationality condition

may not be satisfied. Carefully choosing designing the background flow, one can simulate black

hole spacetime and even Kerr spacetime is suggested to be simulated in the literature [135]. As

the flow is transonic (say at r = R the ingoing accelerating flow surpasses the thermodynamic

sound speed), linear perturbation in the supersonic region of the flow can not propagate upstream

across that radius to enter the subsonic region of flow. Sound message can not be sent from the

supersonic region of flow (within radius R) to the subsonic region of flow (r > R). In this way,

analogy with the black hole event horizon can be drawn through the behaviour of a linear per-

turbation near r = R (for more details, see [1]). In the case of real spacetime, the propagation

of light is influenced by the spacetime curvature created by the energy-matter distribution. In

the analogue model, the propagation of sound is influenced by the variation of the speed of a

moving medium.

The role of background medium: The acoustic metric components depend on the background

medium, i.e, on the known solution of the flow over which we examine the linear perturbation.

Therefore, by carefully designing the known background solutions, one can realize different

interesting spacetime geometries; for example white hole spacetime, spacetime similar to Kerr

spacetime in general relativity can be mimicked by different flow geometries [5]. In our the-

sis, we focus on astrophysical accretion models to produce such emergent effect. Stationary

solutions (known solution or background solution) of such astrophysical accretion models are

discussed in chapter 3 and in chapter 5 (for self-gravitating spherically symmetric nonrelativis-

tic accretion).

General Covariance: In the case of analogue models of gravity, there is no analogous Ein-

stein equation 1.6 to begin with. Therefore, the analogue models of gravity give the half of the

picture of general relativity, only the kinematic picture not the dynamic picture. We have the

fluid equations: the continuity equation and the momentum equation in the Newtonian frame-

work, where time is universal and space is absolute in sense. Two inertial reference frames
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are related via Galilean transformation. In the next section, we will use Galilean coordinate

transformation. The fluid equations do not transform in a covariant way. The fluid systems,

we are talking about, have a privileged coordinate system and each component of the acoustic

metric has physical meaning, for example; density, velocity of the background medium, appear-

ing in the acoustic metric. For example fluid density is a scalar field, bulk velocity describes

the displacement of a fluid element in background flow per unit amount of Newtonian universal

time. Fluid velocity is a vector under certain coordinate transformations (e.g. rotation in space,

Galilean transformation etc). Thermodynamic sound speed is a scalar quantity. That is why the

components in the acoustic metric do not transform in a covariant way under general coordinate

transformation. This is not the case in the general relativistic context where the metric com-

ponent has no physical meaning rather the metric components merely represents the coordinate

system, i.e, treated as rank 2 tensors. Therefore, we do not expect diffeomorphism invariance

or general covariance in the context of analogue gravity (for more details, see ‘diffeomorphism

invariance’ section in [5]). Therefore, in all analogue models, the background flow is designed

to mimic a real spacetime geometry in curved spacetime written in a particular coordinate sys-

tem. For example, a transonic radially inward spherically symmetric flow, near the critical radius

(the radius where v0 = cs0) produces the acoustic analogue of Schwarzschild spacetime in the

Schwarzschild reference frame.

1.2.3 Geometrical Acoustics

Sound is treated as ray instead of a wave in the geometrical acoustics. The physical difference

between wave and ray is that wave has the tendency to spread over in space (the nature of diffrac-

tion) but ray only follows a particular path (a curve in general) in space. This is quite similar

to the discussion between wave nature and particle nature in Quantum Mechanics. Rays are

defined as lines such that tangent to them at any point in space gives the direction of propagation

of it’s phase. We know from the laws of diffraction that ideally if the wavelength of a wave is

assumed to be zero then there is no diffraction. In the zero wavelength limit, resolution of an

image (in case of light) is infinite. This limit of very short wavelength is the geometrical limit

where the ray nature is a very good approximation.
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As we have discussed in the section 1.1, that massless particle follows lightlike geodesic (ds2 =

0). Now, we are asking that whether sound, satisfying wave equation 1.16, follow the acoustic

analogue of lightlike geodesic ( ds2 = 0 where ds2 is the acoustic metric) or not. For ds2 = 0

between two neighbouring points in the spacetime, sound (linear perturbation) has to propagate

in a certain direction, here the geometrical acoustics (short wavelength-high frequency limit)

becomes useful. Although the limitation is that the wavelength of the sound is always much

greater than the mean free path of the constituent particles. Ultrashot wavelengths modify the

dispersion relation [136]-[140].Therefore, we use basic equation for determining the direction

of rays, by writing

Ψ′ = aeiφ , (1.26)

where the amplitude a is slowly varying function of spacetime coordinate, and the phase φ is

called eikonal. This approximation is called Eikonal approximation [42]. The intensity (energy

flux) of a steady ray never diminishes with distance (because it does not get diffracted) as it trav-

els in space, that is why a is assumed to be a slowly varying function of spacetime coordinate.

The wave vector, having the direction perpendicular to the constant φ surface at fixed time t, is

given by

k =
∂φ(x, t)

∂x
. (1.27)

Angular frequency ω is defined as

ω =−∂φ

∂ t
. (1.28)

We can write the above expressions in tensor notation as

kµ = ∇µφ , (1.29)

where k0 =
∂φ

∂ t = −ω and ki ≡ k = ∇φ(x, t). Therefore, over a short distance from a point in

space at an instant of time, the wavefront (the surface over which the phase is constant) of a

ray is a plane. The normal to that constant phase surface at that point represents the direction

of the ray at that instant of time. Hence, the eikonal wave, having high frequency (or short

wavelength), is insensitive to the variation f µν within short distance in short time around a point
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in spacetime. Using the above expression of linear perturbation in velocity potential in the wave

equation 1.16, we find by equating the real and imaginary part:

kµkµ = 0 (1.30)

∂µkµ = 0. (1.31)

where kµ = hµνkν , hµν are components of the acoustic metric without the conformal factor in

front of them, because equation 1.30 and equation 1.31 does not depend on the overall confor-

mal factor due to the insensitivity of the eikonal wave on the variation of density and overall

conformal factor in front of the physical acoustic metric. Therefore, we write down hµν and hµν

as

hµν =


−(c2

s0− v2
0)

... −v j
0

· · · · · · · · · · · ·

−v j
0

... δi j

 , (1.32)

hµν =
1

c2
s0


−1

... −v j
0

· · · · · · · · · · · ·

−v j
0

... c2
s0δ i j− vi

0v j
0

 . (1.33)

With the above expressions in mind, equation 1.30 refers to the dispersion relation of sound

wave in high frequency-short wavelength limit (Eikonal approximation). Therefore, we find

after some manipulation:

ω =±cs0k+v0.k (1.34)

where k = |k|. We work with the ‘+’ sign in the above equation because in a static medium,

ω = cs0k. The above equation is the dispersion relation of the wave in eikonal limit. ω is linear in

k due to the Lorentzian nature of the wave equation 1.16. We will see violation of the Lorentzian

invariance in the chapter 7 where the dispersion relation is modified because the gravity of the

medium is taken into account. The first term in the right hand side is due to the Doppler effect

(because of moving background medium). This term vanishes if the speed of the background

medium tends to zero, where the emergent spacetime is analogous to Minkowskii spacetime.
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1.2. Analogue model of spacetime geometry

Now using equation of rays [42],

ẋi =
∂ω

∂ki
(1.35)

ẋi, the ith component of the group velocity of the wave, does not depend on wavelength of the

sound, i.e., the medium is dispersive in nature. From the above equation,

dx
dt

= cs0n̂+v0, (1.36)

where n̂ is the unit vector along k. Therefore, we have

−(c2
s0− v2

0)dt2−2dtv0.dx+dx2 = 0 (1.37)

⇒ ds2 = 0. (1.38)

Hence in the geometrical acoustics limit, sound follows null geodesic. The line element from

equation 1.32, given by

ds2|geometric =−(c2
s0− v2

0)dt2−2v0dt.dx+dx2. (1.39)

This is the emergent metric in geometric acoustics regime. The conformal factor does not appear

in the metric because null geodesic is insensitive to the conformal factor.

The equation 1.36 can also be derived by directly using Galilean transformation (for more details

see [5]). Therefore, in the geometric acoustics limit, one does not even need to consider the wave

equation 1.16, i.e, one can start with velocity addition rule by Galilean transformation. Along

the downstream the speed of sound in the laboratory reference frame gets added by the speed

of the medium and along the upstream, the speed of sound gets subtracted by the speed of the

moving medium, illustrated in the figure below;

In the next chapter and in the chapter 7, we are going to make use of the geometrical acous-

tics.
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Figure 1.1: A moving fluid will tip the ‘sound cones’ as it
moves. Supersonic flow will tip the sound cones past the ver-
tical. This figure is taken from [5].

1.3 Structure of the thesis

We will focus on the nature of perturbation from a different point of view, i.e. the Lagrangian

view of perturbation in a fluid and we will make use of such notion to discuss the compati-

bility between the irrotationality condition and the barotropic condition in a fluid (chapter 2).

We examine the phenomena from the reference frame of an observer moving with the back-

ground flow in chapter 2. We discuss again about this issue in astrophysical accretion models

for conical flow in chapter 7. As we have already discussed that the emergent spacetime metric

components depend on the quantities in the background flow, in the case of stationary geometry,

the background medium has to be time independent. Hence, the stationary emergent space-

time is designed by the steady state solutions of the continuity equation and the Euler equation.

We consider some natural systems; some astrophysical accretion models, and we discuss about

steady state accretion solutions in chapter 3 and in chapter 6 (the gravity of the moving medium

is considered). In chapter 4, we discuss about the role of the Bernoulli’s constant in emergent

gravity. We generalize the concept that not only the steady state solutions are governed by the

integrals of motion (the Bernoulli’s constant and mass accretion rate) but also in the linearised

perturbation regime, the linear perturbation does play a crucial role in determining the stability

of the steady state solutions. Therefore, the stability analysis not only determines the stability

of emergent black hole but also it cross checks the very assumption about the stability of the

steady state solutions. In chapter 6, we have discussed about the frequency dependence of the
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stability due to the inclusion of the gravity of the medium. As we have seen in the geometric

acoustics regime that the medium is nondispersive due to the Lorentz invariance of the emergent

spacetime, we discuss about the breaking of the Lorentz invariance in chapter 6 due to inclu-

sion of gravity, i.e, the medium becomes dispersive in nature due to the inclusion of gravity of

the medium. Therefore, the whole thesis thoroughly focuses on some details and key issues to

find some interestingly beautiful aspects of the subject analogue gravity by considering some

astrophysical accretion models as candidate systems available in nature. We work with small

perturbations (in linearised order) in adiabatic flows. We assume the perturbations to have the

same symmetry as the steady state solution corresponding to the accretion model. The emergent

phenomena can also be obtained through the linear perturbation of mass accretion rate [35], i.e.,

analogue gravity also emerges when accretion rate is perturbed. We’ve shown that linear per-

turbation of the Bernoulli’s constant which is the integral solution of the corresponding Euler

equation, also produces similar acoustic geometry. The analysis of such linear perturbation has

astrophysical significance to determine the stability of the steady state solutions. We conclude

that not only the integrals of motion of a accretion problem govern the steady state solutions

but also govern the time dependent solutions (in linear order) of the fluid quantities. Our main

motivation in the thesis is not to simulate artificial/analogue black hole spacetime in laboratory,

rather we focus on the behaviour of the linear perturbations over the steady flow of such ac-

cretion models. We can not observe an effect connected to surface-gravity/Hawking radiation.

Although in the article [75], [146]-[148], the authors have discussed about surface-gravity and

existence of Hawking like temperture in sub-Keplarian axisymmetric accretion flow but there

is no way to experimentally observe such effect directly. We check the stability of the steady

state flow and the validity of the method of linearising density and velocity over the steady state

solutions.
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Chapter 2

Analogue gravity in the light of

Lagrangian Description

We make use of the Lagrangian description of fluid motion to highlight certain features in the

context of spacetime geometry as emergent phenomena in fluid systems. We find by using

Lagrangian Perturbation Theory (LPT), that not all kind of perturbations on a steady state flow

can produce analogue spacetime effect. We make use of Lagrangian description of motion to

examine the propagation of Eikonal wave from the reference frame of the observer moving with

the background flow. We restrict ourselves to nonrelativistic flows.

In that context of emergent gravity, linear perturbation is introduced on the density field and the

velocity field in the flow; the whole approach is done by treating density and velocity as fields

which is the essence of Eulerian description of fluid motion. Here we explore the Lagrangian

description of motion to describe the phenomena from a different point of view and we use LPT

[7], [8] to find certain restrictions on the perturbation itself to mimic massless KG field equation

in a curved spacetime. Just like as before, when we refer other chapters, we use ‘italic’ font.

The contents of this chapter are mostly from our work on Lagarangian perturbation theory in the

field of analogue gravity [118].
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Chapter 2. Analogue gravity in the light of Lagrangian Description

2.1 Lagrangian Description of Fluid Motion

In the Lagrangian description of fluid motion [40], instead of using fluid density and velocity

as fields, one follows the motion of a fluid element [40]. Inviscid fluid equations in Lagrangian

description are given by [40]
dρ

dt
+ρ∇.v = 0 (2.1)

dv
dt

=−∇p
ρ
−∇ψ(x) (2.2)

where ρ, v, p, ψ are fluid density, velocity, fluid pressure and scalar potential corresponding to

external body force respectively. d
dt is Lagrangian time derivative 1. Lagrangian time derivative

is defined as change in some quantity (e.g. density, velocity etc) in unit time while the change is

measured in the reference frame of a particle in flow, unlike Eulerian derivative where the rate

of change of any quantity is measured from a fixed location. The first equation describes the

conservation of mass in a fluid element in motion and the second one describes the equation of

motion by Newton’s law of motion.

The position coordinate of fluid element is given by x(R, t) where x(R,0) = R. The velocity of

the element is

ẋ(R, t) = v (2.3)

‘Dot’ means d
dt . Using equation 2.2 and another initial condition on velocity, one can uniquely

find the position of a fluid element in the flow as a function of time.

Let us consider a steady flow, i.e. ∂ ( )
∂ t = 0. In the steady state flow, we denote the pressure field,

density field and velocity field by p0,ρ0 respectively. The velocity vector of a fluid element,

V(R, t), satisfies the following equation:

dV
dt

=−∇p0

ρ0
−∇ψ(x). (2.4)

Position of the fluid element is X(t) and Ẋ(t) = V.

1Lagrangian time derivative is also denoted by D
Dt in some text books and the literature.
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2.2. Linear Perturbations

2.2 Linear Perturbations

We introduce linear perturbations in the fluid quantities as follows,

p(x, t) = p0(x)+ p′(x, t)

ρ(x, t) = ρ0(x)+ρ
′(x, t)

v(x, t) = v0(x)+v′(x, t)

The Eulerian perturbations are denoted by p′, ρ ′ and v′ in linearised order.

The Lagrangian perturbations in LPT are related to the Eulerian perturbations via another vector

field, called Lagrangian displacement, δ (x, t). δ represents the displacement of fluid elements

in space from their position of equilibrium, X(t)s. Therefore, Lagrangian perturbation repre-

sents the net change in pressure and density of a fluid element under sound propagation. The

Lagrangian perturbations in the first order of smallness are given by [7][40]

∆p = p′+δ .∇p0

∆ρ = ρ
′+δ .∇ρ0

∆v =
dδ

dt
=

∂δ

∂ t
(= v′(x, t))+δ .∇v0

where ∆p and ∆ρ are related by

∆p
p0

= γ
∆ρ

ρ0
or

∆p
∆ρ

= c2
s0 (2.5)

where cs0 is the thermodynamic sound speed in the medium, γ is the specific heat ratios, γ = 1

if the perturbation is isothermal in nature. For air, sound propagates adiabatically [40], i.e., no

heat transfer occurs between adjacent volume elements.

We write inviscid irrotational fluid equations in Eulerian description as

∂ρ

∂ t
+∇.(ρv) = 0 (2.6)
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Chapter 2. Analogue gravity in the light of Lagrangian Description

∂v
∂ t

+v.∇v =−∇p
ρ
−∇ψ(x) (2.7)

∇×v = 0 (2.8)

Defining velocity potential as v = −∇Ψ, we find the Euler equation for the perturbed quantity

as

−∇
∂Ψ′

∂ t
+∇(v0.v′) =−

∇p′

ρ0
+

ρ ′

ρ2
0

∇p0 (2.9)

Now from equation 2.5 and from the expression of Lagrangian perturbations,

p′ = c2
s0ρ
′+

(
c2

s0−
d p0

dρ0

)
δ .∇ρ0 (2.10)

Now if the background medium has different kind of stratification than the nature of perturba-

tion, the term in the right hand side of equation 2.9, would involve an extra quantity δ and the

term in the right hand side can not be written as gradient of a quantity, i.e, enthalpy in the per-

turbed medium can not be defined and as a result the motion would not be irrotational in that

case, evident from equation 2.9. For example, let us consider a medium of isothermal stratifi-

cation and the propagating disturbance to be adiabatic in nature, therefore the sound speed is

cs0 =
√

γ p0
ρ0

and d p0
dρ0

= p0
ρ0

= 1
γ
c2

s0, the second term in the right hand side, in equation 2.10 does

not vanish. Similarly, for isothermal sound propagating in a medium of adiabatic stratification,

the same thing happens.

If the back ground medium has same kind of stratification as the nature of disturbance, from

equation 2.10,

p′ = c2
s0ρ
′ (2.11)

From equation 2.9,

∂tΨ′ = v0.v′−
p′

ρ0
(2.12)

Now after some manipulations one can find the field equation for Ψ′(x, t); given by

∂µ( f µν(x)∂ν)Ψ′(x, t) = 0 (2.13)
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2.3. Coordinate Transformation

where

f µν(x)≡ ρ0

c2
s0


−1

... −v′ j

· · · · · · · · · · · ·

−v′ j
... c2

s0δ i j− v′iv′ j

 (2.14)

Now comparing with massless scalar field equation in a curved spacetime in general, one can

find the analogue acoustic metric by using f µν =
√
−ggµν . Then one can write down the

acoustic metric as

ds2 = gµνdxµdxν =
ρ0

cs0

(
−(c2

s0− v2
0)dt2−2v0dt.dx+dx2) (2.15)

Therefore, the emergent spacetime feature through the perturbations in a steady flow can be re-

alized if and only if the perturbation’s nature matches with the stratification of the background

medium 2. Hence the emergent phenomena is restricted to isothermal perturbation in a isother-

mal background medium or adiabatic perturbation in a adiabatic background medium. There-

fore, the flow has to remain barotropic in nature even in the presence of perturbation for the

acoustic analogue of spacetime geometry to emerge. Additionally, if the flow is barotropic in

nature in the presence of sound, then only the flow will be irrotational.

2.3 Coordinate Transformation

Let’s follow the equilibrium position of an element, in the other words, the location of a fluid

element in the absence of any disturbance. The equilibrium position vector is denoted by X(t)

in general. Let the equilibrium position of a particular fluid element be denoted X(R, t) where

X(R,0) = R. This notation indeed uniquely specify a particular fluid which was at R at t = 0;

and at a given time two fluid elements can not be in the same position. The velocity is V(R, t) =

Ẋ(R, t). So far, we have described the motion in a coordinate system (x, t) which is rest in

absolute space [41] or moving with uniform velocity with respect to the absolute space or which

is stationary with the source or sink (if exists) of the system; so that Newton’s law is valid in

the reference frame. Now we try to describe things from the equilibrium position of a particular

2There is another possibility, if the medium is uniform, in that case the emergent spacetime metric is flat; here
we are considering the medium to be stratified in general.
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Chapter 2. Analogue gravity in the light of Lagrangian Description

fluid element which is accelerating in general due to external body force and pressure imbalance

in the system. Coordinate of any point in the system with respect to the new coordinate system

is (x′, t ′). (x′, t ′) is related to (x, t) via Galilean transformation [43], given by

x′ = x−X(R, t) = x−
∫ t

V(R, t)dt−R (2.16)

t ′ = t (2.17)

dx′

dt ′
=

dx
dt
−V(R, t) (2.18)

Therefore, using chain rule of partial derivatives, one can find

∂

∂ t
=

∂

∂ t ′
−V(R, t ′).∇′ (2.19)

∇ = ∇′ (2.20)

As a result, fluid equations, relating the density field and the velocity field, in this new coordinate

system 3 can be written in Eulerian description as

∂ρ

∂ t ′
−V(R, t ′).∇′ρ +∇′.(ρv) = 0 (2.21)

∂v
∂ t ′

+
(
v−V(R, t ′)

)
.∇′v =−∇′p

ρ
−∇′Ψ(x′) (2.22)

In our case, the flow is irrotational, therefore

∇′×v = 0 (2.23)

For the steady flow, ∂ ()
∂ t = 0, therefore we have

∂ρ0

∂ t ′
−V(R, t ′).∇′ρ0 = 0 (2.24)

⇒ ∇′.(ρ0v0) = 0 (2.25)

3The transformation is passive here, it does not change the field rather it changes the coordinate to describe
those fields.
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2.3. Coordinate Transformation

∂v0
∂ t ′
−V(R, t ′).∇′v0 = 0 (2.26)

⇒ v0.∇′v0 =−
∇′p0

ρ0
−∇′Ψ(x′) (2.27)

Therefore, for steady flow the fluid equations (equation 2.25 and equation 2.26) in (x′, t ′) and

(x, t) are same in form.

Linear Eulerian perturbations over the steady flow are introduced in the fluid system in the (x, t)

coordinate system, the equation for Eulerian perturbation fields in the (x′, t ′) coordinate system,

are given by
∂ρ ′

∂ t ′
−V(R, t ′).∇′ρ ′+∇′.(ρ ′v0 +ρ0v′) = 0 (2.28)

∂v′

∂ t ′
+(v0−V).∇′v′+v′.∇′v0 =−

∇′p′

ρ0
+

ρ ′

ρ2
0

∇′p0 (2.29)

One can easily see that again by doing coordinate transformation to (x, t), one recovers the

original equations of the perturbations.

If the nature of perturbation and the stratification of the background medium are of same kind,

one can find the emergent spacetime metric in this new coordinate, as follows

ds2 = gµν(x′, t ′) dx′µdx′ν =
ρ0

cs0

(
−
(
c2

s0− (v0−V)2)dt ′2−2(v0−V)dt ′.dx′+dx′2
)

(2.30)

The metric is no more time independent because (x′, t ′) frame is moving with respect to (x, t)

frame. The same metric can be directly derived from equation 2.15 and using the above coordi-

nate transformation. Sound wave of very short wavelength, i.e, in the eikonal limit (discussed

in the previous chapter), follows null geodesic insensitive to the conformal factor, described by

the acoustic metric in the geometric limit, given by

ds2|geometric = g̃µν(x′, t ′) dx′µdx′ν =
(
−
(
c2

s0− (v0−V)2)dt ′2−2(v0−V)dt ′.dx′+dx′2
)

(2.31)

with the null geodesic condition, given by

ds2|geometric = 0. (2.32)
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Chapter 2. Analogue gravity in the light of Lagrangian Description

As the wavelength of the sound wave is very small, an observer moving with the fluid element

can examine the wave within a very short radius around him such that v0 ≈ V. Therefore, the

acoustic metric perceived by them in the near vicinity around them will be

ds2|geometric =−c2
s0dt ′2 +dx′2. (2.33)

As the frequency of such wave is very high, within a short period of time, the observer moving

with the element, will perceive cs0 to be independent of time. Therefore, in the eikonal limit, an

observer moving with a fluid element (more precisely moving with the background velocity of

the medium), perceives sound in the neighbourhood of him/her as sound moving in a uniform

medium. Within, small distance from that observer, the wavefront of the sound wave is not

only plane but also does not change orientation, i.e., within short distance of the observer, the

sound propagates in a particular direction. This is exactly similar to the principal of equivalence

(discussed in the previous section) that a falling observer feels no gravity. Therefore, under

the above coordinate transformation, in the near vicinity of the fluid element, the emergent

spacetime metric corresponds to acoustic analogue of Minkowski spacetime. Now as the fluid

element moves in (x, t) spacetime, the above coordinate transformation describes the coordinate

transformation to the local inertial frames [37] at X(R, t) at different time. Similarly, in the very

near vicinities of different fluid elements in motion, the emergent spacetime is flat. In chapter 7,

we have discussed about the wavelength of such eikonal wave in astrophysical accretion models,

and in the next chapter, we will be discussing about accretion models to produce emergent

gravity effect.
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Chapter 3

Accretion models, steady state solutions

Except for the supersonic stellar wind fed accretion [44]-[46], accretion flows onto astrophysical

black holes are necessarily supersonic [10]. In a binary system, accretion from the wind of a

star to the compact accretor (neutron star) can be categorised as wind fed accretion. For low

angular momentum accretion with practically constant specific angular momentum, more than

one sonic points may form in such flow and a stationary shock may join two such transonic

solutions passing through two such sonic points [10]-[34]. The formation of such shocks can

be explained through time dependent numerical simulation works [47]-[51]. Such post shock

flow can manifest its properties through the characteristic black hole spectra and can help to

understand the observational signature of the astrophysical black holes in the universe ([52],

[53] and references therein). Such shocked multi-transonic flows are essentially barotropic,

inviscid, irrotational transonic fluid flow under the influence of the strong gravitational field in

presence of gravitational (black hole) event horizon.

It is, however, to be noted that the characteristic black hole spectra for transonic accretion

are usually computed for steady state flow, considering that such steady state is stationary. Time

variability and various kind of fluctuations are, however, not very uncommon in large scale as-

trophysical flows. It is thus imperative to ensure that the steady state integral transonic accretion

solutions are stable under perturbation.

In recent years, much attention have been paid to study the analogue gravity phenomena [5],

[6], [135] in classical (non quantum), where for a supersonic irrotational inviscid flow governed

by a barotropic equation of state, the propagation of the linear acoustic perturbation (sound
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Chapter 3. Accretion models, steady state solutions

wave) within that fluid can be described by acoustic metric and a sonic spacetime can be formed

embedded within such stationary background fluid flow ([1]-[6]). Such sonic geometry contains

an acoustic horizon from where Hawking like radiation may be produced.

Study of such sonic geometries embedded within the transonic accretion flow can thus be

very important to investigate certain novel features of such phenomena. Accreting black holes

is the only system found in the universe where both type of horizons, gravitational as well as

acoustic, can be formed, and the same fluid can pass through both type of horizons as well.

Hence theoretically if one would like to compare the properties of these two types of horizons,

accreting black holes may be considered as the best candidate to study the sonic geometry em-

bedded within it. It is also needless to say that the fluid approximation of the accreting medium

is a very good approximation [9]. Also, in usual analogue models, the gravitational field does

not play any role while formulating the corresponding sonic geometry. For accretion onto astro-

physical black holes (for accretion onto any compact massive astrophysical objects in general),

the gravity determines the dynamics of the fluid and hence the associated acoustic spacetime

itself is influenced by the gravitational field.

For purely classical analogue systems, the detailed analysis of the quantum Hawking like

effects may not always be possible to study, however, the study of the acoustic surface gravity

can have deep significance in such systems. The acoustic surface gravity itself is a rather crucial

entity to understand the flow structure as well as the associated sonic metric, and can thus be

studied independently without looking into the existence of any analogue radiation (of phonons)

like thermal phenomena characterized by their very feeble temperature too impractical to detect

through any present day experimental set up. In recent years, the role of the analogue surface

gravity in studying the non negligible effects associated with the emergence of the stimulated

Hawking effects has been highlighted by examining such effects through the modified disper-

sion relations. Such study have been performed from the purely analytical point of view as well

as within the experimental set up [54]-[59]. The deviation of the Hawking like effects within a

dispersive media [141], i.e., within the fluid under consideration, from the universal behaviour

of the original Hawking effect, depends sensitively on the gradient of the background bulk sta-

tionary velocity, as it has recently been suggested. It is, however, important to note that such

36



3.1. Accretion Models

theory of the non universal feature of the Hawking radiation has been postulated essentially for

the isothermal flow and hence the space gradient for the sound velocity has not been taken into

account. Also, the exact numerical values corresponding to the velocity gradient has not been

possible to found yet and has been approximated by making certain assumptions.

For stationary integral accretion solutions as discussed in aforementioned paragraphs, the

values of the space gradient of both the dynamical flow velocity as well as the speed of propaga-

tion of the acoustic perturbation have been computed very accurately using numerical schemes

[74], [75], [77], [78], [119], [123], [124]. It is thus obvious that the accreting black hole sys-

tems, although may not provide any direct signature of the Hawking like temperature (analogue

temperature arising out from the phonon radiation) can still be considered as a very important

as well as a unique theoretical construct to study the analogue gravity effects. These accretion

models are useful to study analogue gravity because the analytical scheme and numerical tech-

niques to find the density, velocity of the background medium (the quantities to find the acoustic

metric) are readily available; these systems are very interesting due to coexistence of the black

hole horizon and the ‘dumbhole horizon’.

All accreting matter, just like most of the material in the Universe, is in a gaseous form. The

constituent particles, interact directly only by collisions (electromagnetic interaction). If the gas

is approximately uniform over lengthscales exceeding a few mean free paths, the effect of all

these collisions is to randomize the particle velocities about some mean velocity, the velocity

of the gas, v. Viewed in a reference frame moving with a bulk velocity, the particles have a

Maxwell-Boltzmann distribution of velocities, and can be described by a temperature T . Now

one can consider inviscid flow by using Euler equation to describe such inviscid flow. If the

constituent particles do not scatter (for very dilute medium, or dust), the information of some

disturbance (mechanical), can not propagate because any particle do not ‘see’ the others.

3.1 Accretion Models

We consider spherically symmetric and axially symmetric flow of fluid onto star or black hole.

The accretion flow can be divided into the following classes depending on the symmetry of the

flow.
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Chapter 3. Accretion models, steady state solutions

Symmetry in accretion flow

Axially symmetric flow

Vertical EquilibriumConicalConstant disk height

Spherically symmetric flow

3.1.1 Spherically Symmetric Accretion

Fluid elements (for details about fluid element, see [40]) having zero angular momentum falls

freely due to the accretor’s gravitational pull. Thus the flow is inviscid and spherically symmet-

ric. In the next chapter, we are going to analyze the time dependent problem in perturbative way,

and we will see how emergent gravity emerge in such flow through perturbation.

3.1.2 Axially Symmetric Accretion

The inviscid flow assumption requires that the accretion flow is characterized by reasonably

low angular momentum. By low angular momentum flow, we mean sub-Keplarian flow. In

keplerian flow, gravitational pull balances with outward body force. Motion of Saturn’s ring

is an example of keplerian flow. If the flow is sub-keplerian, gravity wins against outward

body force (pressure gradient and specific angular angular momentum), and fluid falls onto the

accretor [34]. Therefore, low angular momentum axisymmetric blackhole accretion [66], [67] is

a good candidate where analogue gravity emerges too [35]. Such weakly rotating sub-Keplerian

flows are ubiquitous in nature; such as detached binary systems fed by accretion from OB stellar

winds ([60], [61]), semi-detached low-mass non-magnetic binaries ([62]), and super-massive

black holes fed by accretion from slowly rotating central stellar clusters ([63] and [64]). In

standard Keplerian accretion disc, turbulence sometimes produce such low angular momentum

flows too (see, e.g., [65], and references therein).

We don’t need to consider viscosity in such weakly rotating sub-keplerian flows due to low

angular momentum of the infalling fluid. There are mainly three disk models for sub-keplerian

disk by categorising them with respect to disk height or thickness H.
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3.2. Gravitational field in the accretion models:

1. Constant Height Disk Model: H is taken to be constant in the simplest possible model, i.e.,

in uniform thickness disk model.

2. Conical Model: In conical model [66] the disk thickness H is proportional to cylindrical

radial distance from the accretor.

3. Vertical equilibrium model: In the most physical disk model, i.e., in the vertical equilibrium

model [67], [68], the disk height H(r) is a function of cylindrical radial distance r from the

accretor such that there is no flow along z direction considering the equatorial plane of the

disk to be on the X-Y plane. Disk height is a function of r such that the disk is in hydrostatic

equilibrium along z− axis, i.e., there is no flow in the z− direction.

In this type of models, due to symmetry, the problem becomes effectively 1+1 dimensional. In

all the cases, there is no flow in the z− direction.

3.2 Gravitational field in the accretion models:

In the nonrelativistic case, the star/accretor, the source of gravity, correspond to the Newtonian

gravitational potential, given by,

Φ0(r) =−
GMBH

r
(3.1)

where r is the radial distance from the accretor, and MBH is the mass of the accretor. By scaling

radial distance by 2GMBH
c2 and potential (energy) by c2, we rewrite, Newtonian potential in the

dimensional form as

Φ0(r) =−
1
2r

(3.2)

Since relativistic effects play an important role in the regions close to the accreting black hole,

Newtonian gravity can not be a good description, Newtonian potential is modified. One can

avoid relatively more complicated pure general relativistic calculations by introducing such

modified potentials, and thus most of the crucial properties of the dynamics of the flow can

be retained with high accuracy. Hence, those potentials are named as ‘pseudo-Kerr’ or ‘pseudo-

Schwarzschild’ potentials, depending on whether they are used to mimic the spacetime around

a rapidly rotating or nonrotating/slowly rotating (Kerr parameter a∼ 0) black hole, respectively.

Here we introduce such potentials. The discussions about these potentials are mostly taken from
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Chapter 3. Accretion models, steady state solutions

the literature [28].

Potential 1:

Φ1(r) =−
1

2(r−1)
(3.3)

The Keplerian distribution of angular momentum, reproduced by this potential 3.3 [69], is ex-

actly same as that obtained in pure Schwarzschild geometry.

Potential 2: In the literature [70], some of the dominant relativistic effects of the accreting

black hole (slowly rotating or nonrotating), are approximated by introducing a modified Newto-

nian potential which is very useful to study the normal modes of the acoustic oscillations within

a thin accretion disk around a compact object (slowly rotating black hole or weakly magnetized

neutron star). The potential is given by,

Φ2(r) =−
1
2r

[
1− 3

2r
+12

(
1
2r

)2
]
. (3.4)

Potential 3: Artemova at al. [71] proposed a potential which produces exactly the same value

of the free-fall acceleration of a test particle at a given value of r as is obtained for a test particle

at rest with respect to the Schwarzschild reference frame and is given by

Φ3(r) =−1+
(

1− 1
r

) 1
2

. (3.5)

Potential 4: Artemova at al. [71] proposed an another potential which produces the value of the

free-fall acceleration which equals to the covariant component of free-fall acceleration of a test

particle in three dimensional space at a given value of r rest with respect to the Schwarzschild

reference frame, given by

Φ4(r) =
1
2

ln
(

1− 1
r

)
. (3.6)

Potential 5 (inclusion of Black hole spin):

Φ5(r) =
1

2r1 (1−β )

[
rβ−1

(r− r1)β−1 −1

]
, (3.7)
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where

r1 =
1
2

(
1+(1−a2)

1
2

)
(3.8)

Z1 = 1+(1−a2)
1
3

[
(1+a)

1
3 +(1−a)

1
3

]
(3.9)

Z2 =
(
3a2 +Z2

1
) 1

2 (3.10)

rin =
3+Z2−[(3−Z1)(3+Z1+2Z2)]

1
2

2 (3.11)

β = rin
r1
−1, (3.12)

and dimensionless black hole spin is a with 0≤ a≤ 1. The above potential [72], [73], the sim-

plest form (in functional form) among all the proposed pseudo-Kerr black hole potentials, nicely

reproduces the dynamics of accretion astrophysics in the Kerr metric within a reasonable New-

tonian framework, especially while simulating the multitransonic accretion flow around rotating

black holes. One can see that as the black hole spin a = 0 in the above form of potential, it takes

the form of 3.3.

Therefore, when one works with these potentials in the non-general relativistic cases, the exter-

nal field (In the last two chapters), ψ(r) = Φα(r), where α runs from 0 to 5. It is also worth

mentioning that the potentials: 3.3 to 3.6, asymptotically reaches the Newtonian potential 3.2

at large r. In the absence of the black hole spin, i.e., considering the potential 1 to potential

4, potential 1 is the best approximation of general relativistic spacetime ( it is the closest to

the effective potential experienced by a moving test particle/fluid in Schwarzschild space-time

[74]), potential 2 is the worst approximation, and potential 4 and potential 3 are the second and

the third best approximations for the dynamics of the slowly rotating accreting fluid (for more

details, see [74]).

However, in the next chapter, we also consider full general relativistic case for spherically sym-

metric spacetime, only to show that the formalism and the methodology of our work (in the next

chapter) is also valid in the pure general relativistic case.
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3.3 Barotropic equation

In the introduction section, we have discussed that the barotropic equation of the fluid plays an

important in the subject, analogue gravity. In the second chapter, we have discussed the com-

patibility between the barotropic condition and irrotationality. Therefore, in the astrophysical

flows, the infalling accreting medium has to obey the barotropic equation, given by

p = F(ρ). (3.13)

In the case of ideal gas, there are two physically possible scenarios (because we are working

with compressible classical fluids satisfying ideal gas law along with barotropic equation. One

can in principle imagine more situations other than adiabatic and isothermal processes. In that

case, we are not very sure about the physicality in those thermodynamic permissible processes.):

the flow isothermal or adiabatic. p ∝ ρ for isothermal relation and p ∝ ργ (1≤ γ ≤ 5
3 ) (the range

is chosen because for γ > 5
3 , the radius of the sonic point for the simplest model of accretion, i.e.,

the Bondi flow, becomes less than equals to zero, see [9]; and γ = 1 corresponds to isothermal

flow, γ > 1 corresponds to adiabatic flow). For adiabatic relation between pressure and density

[40]. γ is the ratio of specific heat at constant temperature and specific heat at constant volume.

3.4 General Formalism

As we have discussed in the Introduction (Chapter-1) that the background steady state solutions

produce the stationary spacetime metric. If the steady state solution is transonic ( by transonic

flow, we mean such flow of medium that the bulk speed of the medium surpasses the sound

speed (the thermodynamic speed)), the interesting feature of General relativity emerge, i.e., the

emergence of a black hole spacetime. Therefore, we seek transonic solution of the fluid equa-

tions in the aforementioned accretion models. Considering three mentioned accretion models,

four different gravitational potentials (pseudo-Newtonian) and two barotropic equations, there-

fore, there are twenty four possibilities. We discuss here steady state solutions for adiabatic flow

in conical disk model under potential 1 and potential 5 (the pseudo Kerr potential). As we have
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3.4. General Formalism

already mentioned that potential 1 gives the best approximation to General relativistic approach

and potential 5 reduces to potential 1 when the black hole spin a is fixed to zero in the poten-

tial 5. Therefore, assuming the flow to be transonic, our first aim will be to find the point (the

radius/surface in three dimensional space in general) where the speed of the medium surpasses

the sound speed.

3.4.1 Fluid equations for conical adiabatic flow

Some calculations of this section are taken from our work [118]. We scale speed by the light

speed (= c), radial distance by Schwarzschild radius (rg =
2GMBH

c2 ), density by MBH
r3

g
, pressure by

MBHc2

r3
g

and angular momentum by crg. Therefore, we work with dimensionless variables. In a

conical flow, accreting fluid falls under gravity, having velocity components along radial and

azimuthal direction, with axial symmetry. The rotating fluid falls into the star/accretor under the

gravitational pull of the accretor through a channel having a solid Θ. The gravity of the medium

is not taken into account, i.e, we are using test fluid approximation in this chapter. In chapter 5,

we consider the gravity of the medium itself. The continuity equation can be written as

∂ρ(r, t)
∂ t

+
1

rH(r)
∂

∂ r
(rH(r)ρ(r, t)v(r, t)) = 0 (3.14)

where ρ(r) and v(r) are the fluid density and radial velocity having spherical symmetry. H(r),

the height of the disk, is proportional to r. Therefore, for a steady flow,we have the expression

of the conserved quantity along the flow, i.e, the mass accretion rate (∵ H ∝ r)

Ṁ = Θρvr2, (3.15)

derived from the steady state continuity equation ( without using the explicit form of H(r)),

given by
d(ρvrH)

dr
= 0. (3.16)
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Chapter 3. Accretion models, steady state solutions

Euler momentum equation is given by

∂v
∂ t

+ v
∂v
∂ r

=−ψ
′(r)− 1

ρ

∂ p
∂ r

+
λ 2

r3 (3.17)

where ψ ′(r) is the external field term and in this case it is gravitational force per unit mass of

fluid exerted by the accretor. λ is the specific angular momentum of the fluid having small value

such that viscosity is negligible [35]. Therefore for a steady flow, we have, another conserved

quantity, i.e, the Bernoulli’s constant, given by

ζ =
1
2

v2 +
∫ d p

ρ
+ψ(r)+

λ 2

2r2 , (3.18)

derived from the equation of motion, given by

v
dv
dr

=− 1
ρ

d p
dr
−ψ

′(r)+
λ 2

r3 . (3.19)

We consider adiabatic relation between pressure and density as

p = Kρ
γ . (3.20)

K is a constant, a function of specific entropy [42]. Therefore, using the barotropic equation and

the above steady state equations, we have

dcs
dr = cs(1− γ)

( 1
2v

dv
dr +

1
r

)
, (3.21)

dv
dr =

2c2
s

r + λ2

r3 −ψ ′(r)

v− c2
s
v

. (3.22)

We seek transonic solution with finite dv
dr . Therefore, there exists a finite radius at which v0 = cs0.

From, the expression of dv
dr , for the physical existence of such a finite radius (=rc), the numerator

of the equation 3.21 has to be zero because already the denominator is zero at that radius. Sound

speed at the critical radius

csc =

√
rcψ ′(rc)

2
− λ 2

2r2
c

(3.23)
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Therefore, we have from the expression of ζ 3.18 and from the aforementioned condition,

ζ − λ 2

2r2
c
−ψ(rc)−

γ +1
4(γ−1)

[
rcψ

′(rc)−
λ 2

r2
c

]
= 0. (3.24)

Therefore, for a given value of ζ , γ , λ under a gravitational potential, we can find the critical

radius (the ‘dumb hole’ horizon or the sonic horizon) [35] [73]. In general

rc = rc(ζ ,γ,λ ). (3.25)

From the expression 3.23, for a physical transonic solution to exist,

ψ
′(rc)>

λ 2

r3
c
. (3.26)

To find the steady state solution for the transonic accretion, we first find dv
dr at the critical radius,

rc. Using L’Hospital’s rule for finding value of a function at a x value where it has 0
0 form, we

get
dv
dr
|r=rc = q, (3.27)

with q satisfying a quadratic equation, as follows

q2 +Bq+C = 0. (3.28)

The coefficients are given by

B = 4csc(γ−1)
(γ+1)rc

, (3.29)

C = 1
γ+1

[
2c2

sc
r2

c
+ 3λ 2

r4
c
+ψ ′′(rc)+

4c2
sc(γ−1)

r2
c

]
. (3.30)

Using equation 3.22, one can find the value of dcs
dr at the critical point. Therefore, using these

values at the critical point as initial conditions, one can find the steady state solution in general

in the conical model (for more details with the other models, see [73][75]).

Now we take the gravitational potential, ψ = Φ1 and Φ5, i.e., we consider two cases. For the
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Chapter 3. Accretion models, steady state solutions

potential Φ1, we find critical point, from the equation (the equation 3.25),

8ζ (γ−1)r2
c(rc−1)2− (γ +1)r3

c +2λ 2(γ +1)(rc−1)2 +4(γ−1)r2
c(rc−1)

−4λ 2(γ−1)(rc−1)2 = 0. (3.31)

For the potential Φ5, we get

4ζ (γ−1) [2ζ r1(1−β )+1]r3−β
c (rc− r1)

β

−r2
c [(γ +1)r1(1−β )+4(γ−1)(rc− r1)]

+2λ 2r1(1−β )(3− γ)r1−β
c (rc− r1)

β = 0. (3.32)

With a = 0 equation 3.32 reduces to equation 3.31. Thus, we can find the steady state transonic

solution under the considered gravitational potentials. In chapter 7, we use the steady state

solution of the the flow under these two gravitational potentials to estimate the wavelength of

the eikonal wave.

3.4.2 On the nature of transonic solution

The nature of solution varies depending on the parameter values. In general, the parameters for

the adiabatic flow are ζ , λ , a and γ . The equation 3.31 and 3.32 can have multiple critical point

solutions depending on the parameter values. In the above figure, region marked by O and I

ζ

ζ

Figure 3.1: The parameter space, the figure is taken from the
work [73].

provide monotransonic solutions exclusively passing through the outer type (located far away
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from the black hole) and the inner type (located close to the black hole) sonic points, respectively.

Region A1, A2 and A3 represents the multi-critical solutions (three critical points). The shaded

region A2 allows shock formation. However, in our work we do not consider discontinuity in

flow, i.e., we do not consider shock. Therefore, in our case, the accretion solution passes through

one critical point. We consider all the regions, and yet we limit ourselves only to the continuous

flow (continuous flow only passes through one critical point) so that in the acoustic space-time

geometry there is no discontinuity in the metric components.
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Chapter 4

Linear perturbation in the Bernoulli’s

constant, emergent spacetime

The contents of this chapter are mostly taken from our work on the emergent spacetime through

the linear perturbation of the Bernoulli’s constant [119]. Mass accretion rate is a quantity hav-

ing a reasonable physical significance in accretion phenomena. Linear perturbation of mass

accretion rate in sub-Keplerian disk accretion in non relativistic framework also behaves like a

massless scalar field in curved space-time [73], i.e., analogue gravity also emerges when accre-

tion rate is perturbed. Several works have been done in general relativistic framework as well.

Linear perturbation of velocity potential in curved space-time background shows analogue grav-

ity effect [76]. Similarly, linear perturbation of mass accretion rate in accretion of perfect fluid

in curved space-time background also shows same effect [76]-[78].

In this chapter, we’ve shown that linear perturbation of another quantity, the Bernoulli’s constant

which is the integral solution of the corresponding Euler equation, also produces similar acous-

tic geometry. The whole work is being done in the non-relativistic framework and relativistic

framework as well. Accretion phenomena of adiabatic flow are chosen to illustrate the fact. Ra-

dial accretion having spherical symmetry as well as disk accretion having axial symmetry are

considered. The linear perturbation technique also has astrophysical significance. We get a wave

equation of the linear perturbation of the Bernoulli’s constant which is similar to the massless

scalar field Klein-Gordon equation in curved space-time geometry. The nature of the solution of
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Chapter 4. Linear perturbation in the Bernoulli’s constant, emergent spacetime

this wave equation tells us whether the existing steady state solutions like steady state solution

for Bondi accretion, are stable or not under such perturbation in the medium. We have done sta-

bility analysis for that and we have concluded that not only the integrals of motion play a crucial

role to determine the dynamics of the accretion flow in steady state but also their linear per-

turbations govern the behaviour of all the dynamical and thermodynamic quantities in the time

dependent problem within the perturbative framework. The correspondence between a classical

(non-quantum) analogue model and the accretion processes onto astrophysical black holes has

been established through the process of linear stability analysis of stationary integral transonic

accretion solutions corresponding to the steady state flow only. That means, only such accreting

black hole systems have been considered which are in steady state. The body of literature in

accretion astrophysics, however, is huge and diverse. There are several steady state flow models

which may not be multitransonic, and there are several excellent works which deal with non

steady hydrodynamic accretion (which may not contain multiple sonic points or shocks) which

may include various kind of time variabilities and instabilities, using complete time-dependent

numerical simulation ( [49], [50], [79]-[108]). We, however, did not concentrate on such ap-

proach. In the present chapter, our main motivation is to explore how the analogue gravity

phenomena can be addressed through the linear stability analysis of steady-state solutions of

hydrodynamic accretion.

4.1 Acoustic gravity in non-relativistic framework

In non-relativistic frame work, fluid velocity is much less than light speed. The momentum con-

servation equations and mass conservation equation for fluid is taken[40] according to Newton’s

laws of dynamics. The continuity equation of fluid is given by

∂ρ

∂ t
+∇.(ρv) = 0 (4.1)
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4.1. Acoustic gravity in non-relativistic framework

where ρ,v are fluid density and velocity respectively. Euler momentum equation for inviscid

flow in an external field in general is given by

∂v
∂ t

+v.∇v =−∇ψ− ∇p
ρ

(4.2)

where the potential function of the external conservative field is ψ and pressure at any point of

the fluid is p.

The flow is taken to be irrotational.

∇×v = 0 (4.3)

Using irrotationality condition one can write Euler equation as

∂v
∂ t

+∇(
1
2

v2 +
∫ d p

ρ
+ψ) = 0. (4.4)

The Bernoulli’s constant, ζ is given by

ζ =
1
2

v2 +
∫ d p

ρ
+ψ (4.5)

For steady irrotational flow it’s a constant along the streamline. Adiabatic sound speed is given

by

c2
s =

d p
dρ

=
γ p
ρ

(4.6)

where γ is the specific ratio of the ideal gas. We mention the sound speed because we work

with barotropic flow, even though γ does not appear in the next sections. We assume there is a

stationary solution in general for the above equations, and we introduce linear perturbations in

the fluid discussed in the next section.

4.1.1 General procedure to obtain the acoustic metric

Linear perturbation of fluid velocity and fluid pressure is introduced as

v(x, t) = v0(x)+v′(x, t)
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Chapter 4. Linear perturbation in the Bernoulli’s constant, emergent spacetime

ρ(x, t) = ρ0(x)+ρ
′(x, t)

where ρ0(x), v0(x) are the stationary solution of fluid density and velocity field and v′(x, t),

ρ ′(x, t) are the introduced linear perturbation terms in the velocity and the density of the fluid.

As a result, the linear perturbation term in the Bernoulli’s constant is given by

ζ
′ = v0.v′+

c2
s0

ρ0
ρ
′ (4.7)

cs0 is the stationary unperturbed sound speed. Continuity equation in terms of linear perturbation

is given by
∂ρ ′

∂ t
+∇.(ρ ′v0 +ρ0v′) = 0 (4.8)

Momentum equation in terms of linear perturbation is given by

∂v′

∂ t
+∇(ζ ′) = 0 (4.9)

We have used equation (4.7) to find the above equation. Using equation (4.7) and equation (4.9)

and taking another partial time derivative in equation (4.8) we get

∂µ( f µν(x)∂ν)ζ
′(x, t) = 0 (4.10)

where f µν(x) in Cartesian coordinate is given by

f µν(x) =
ρ0

c2
s0


−1

... −v j
0

· · · · · · · · · · · ·

−v j
0

... c2
s0δ i j− vi

0v j
0

 (4.11)

where i, j run over 1, 2, 3 representing three spatial dimensions. This f µν is exactly the same as

f µν obtained when velocity potential is perturbed [2]. We mean that the f µν in the wave equa-

tion obtained through the linear perturbation of velocity potential is same as what we obtained

through the linear perturbation of Bernoulli’s constant.
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4.1. Acoustic gravity in non-relativistic framework

Massless scaler field equation in a spacetime background is given by

�ϕ =
1√
−g

(∂µ

√
−ggµν

∂ν)ϕ = 0 (4.12)

where ϕ is the scalar field, gµν is the background metric and g is the determinant of the metric.

Comparing equation (4.12) and equation (4.10)

f µν =
√
−ggµν (4.13)

Immediately one can get

det( f µν) = (
√
−g)4g−1 = g =−

ρ4
0

c2
s0

(4.14)

So gµν is given by

gµν(x) =
1

ρ0cs0


−1

... −v j
0

· · · · · · · · · · · ·

−v j
0

... c2
s0δ i j− vi

0v j
0

 (4.15)

The acoustic metric is

gµν(x) =
ρ0

cs0


−(c2

s0− v2
0)

... −v j
0

· · · · · · · · · · · ·

−v j
0

... δi j

 (4.16)

Acoustic metric interval can be expressed as

ds2 =
ρ0

cs0

[
−(c2

s0− v2
0)dt2−2dtv0.dx+dx2] (4.17)

The same kind of analysis can be done for isothermal flow as well and the metric will be same

except that the definition of sound speed will be different there, in the acoustic metric, sound

speed will be appearing as a constant rather than a function of position vector. The metric

appearing in equation (4.16) has 3+1 dimension. It reduces to 1+1 dimension when symmetries

in the flow is considered. The next section deals with some astrophysical accretion phenomenon

having different kind of symmetries.
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Chapter 4. Linear perturbation in the Bernoulli’s constant, emergent spacetime

4.1.2 Spherically symmetric radial flow

Bondi accretion[9] is spherically symmetric and radial. The Bernoulli’s constant is given by

ζ =
1
2

v2 +
∫ d p

ρ
− GM

r
, (4.18)

where M is the mass of the star and G is gravitational constant. Introducing linear perturbation

in adiabatic flow

v(r, t) = v0(r)+ v(r, t)′

ρ(r, t) = ρ0(r)+ρ(r, t)′

Perturbation in the Bernoulli’s constant is given by

ζ
′ = v0v′+

c2
s0

ρ0
ρ
′ (4.19)

Now in the same way discussed earlier we find that the linear perturbation of the Bernoulli’s

constant obeys massless scalar field equation in acoustic analogue of spacetime background.

∂µ( f µν(r)∂ν)ζ
′(r, t) = 0 (4.20)

where

f µν(r) =
ρ0r2

c2
s0

−1 − v0

−v0 c2
s0− v2

0

 (4.21)

fµν is taken as effective metric[35]. Hence 2×2 effective acoustic metric is given by

ge f f
µν (r) =

1
ρ0r2

−(c2
s0− v2

0) − v0

−v0 1

 (4.22)
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4.1. Acoustic gravity in non-relativistic framework

The right hand side of the equation above equation 4.20 is zero, therefore the dimensionality of

f µν is not an issue. There would be no r2 in f µν . Since we are working in 1+1 D, we construct

ge f f
µν (r), from f µν as described above. Observation of the acoustic metric shows that acoustic

horizon is produced.

Similarly, the same analysis can be done for isothermal flow as well.

4.1.3 Axially symmetric sub-keplerian disk geometries

4.1.4 Vertical equilibrium disk accretion

Continuity equation in cylindrical polar coordinate in disk accretion having axial symmetry and

having no net flow in z direction is given by

∂ ρ̄(r,z)
∂ t

+
1
r

∂

∂ r
(ρ̄(r,z)v̄(r,z)r) = 0 (4.23)

where ρ̄(r,z) and v̄(r,z) are the fluid density and radial velocity at a cylindrical radial distance

r and at height z from the equatorial plane of the disk. Now averaging in z direction over disk

height H
∂ρ(r)

∂ t
+

1
rH(r)

∂

∂ r
(ρ(r)v(r)rH(r)) = 0 (4.24)

where ρ(r) and ρ(r)v(r) are the averaged fluid density and momentum respectively. The prob-

lem is now reduced in 1+1 dimension. Euler momentum equation is given by

∂v
∂ t

+ v
∂v
∂ r

=−ψ
′(r)− 1

ρ

∂ p
∂ r

+
λ 2

r3 (4.25)

where ψ ′(r) is the external field term and in this case it is gravitational force per unit mass of

fluid exerted by the accretor. λ is the specific angular momentum of the fluid having small value.

The Bernoulli’s constant is given by

ζ =
1
2

v2 +
∫ d p

ρ
+ψ(r)+

λ 2

2r2 (4.26)
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Considering thin disk in vertical equilibrium and adiabatic flow, balancing pressure gradient

force term and gravitational force term along z direction, vertical equilibrium condition is given[35]

H(r) = cs(r)
√

r
γψ ′

(4.27)

As a consequence, continuity equation is given by

∂t(ρ
γ+1

2 )+

√
ψ ′

r
3
2

∂r

(
ρ

γ+1
2 vr

3
2√

ψ ′

)
= 0 (4.28)

γ is specific heat ratio. Introducing linear perturbation in the adiabatic flow, perturbation of the

Bernoulli’s constant is given by

ζ
′(r, t) = v0v′+

c2
s0σ

ρ

(γ+1)
2

0

δ (ρ
(γ+1)

2 ) (4.29)

where σ = 2
γ+1 and δ (ρ

(γ+1)
2 ) is linear perturbation in ρ

(γ+1)
2 .

Linear perturbation of the Bernoulli’s constant obeys massless scalar wave equation

∂µ( f µν(r)∂ν)ζ
′(r, t) = 0 (4.30)

where

f µν(r) =
ρ

(γ+1)
2

0 r
3
2

c2
s0σ

√
ψ ′

−1 − v0

−v0 σc2
s0− v2

0

 (4.31)

fµν is taken as effective metric. Hence 2×2 effective acoustic metric is given by

ge f f
µν (r) =

√
ψ ′

ρ

(γ+1)
2

0 r
3
2

−(σc2
s0− v2

0) − v0

−v0 1

 (4.32)

For isothermal flow one similarly gets acoustic metric like equation (4.32) where γ is 1 and

sound speed is a constant number.
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4.1.5 Constant height disk accretion

In case of constant thickness model, H is a constant. The linear perturbation of the Bernoulli’s

constant is given by

ζ
′(r, t) = v0v′+

c2
s0

ρ0
ρ
′ (4.33)

The linear perturbation of continuity equation is given by

∂t(ρ
′)+

1
rH

∂r(rH(ρ ′v0 +ρ0v′)) = 0 (4.34)

where H is a non zero constant number. The linear perturbation of momentum equation is given

by

∂t(v′)+∂r(ζ
′) = 0 (4.35)

Now proceeding in the same way discussed earlier one gets equation of massless scalar field in

curved space time background

∂µ f µν(r)∂νζ
′ = 0 (4.36)

where after taking inverse of f µν(r), fµν(r) can be taken as 2×2 effective metric as

fµν = ge f f
µν (r) =

1
ρ0rH

−(c2
s0− v2

0) − v0

−v0 1

 (4.37)

For conical disk model H ∝ r. Just like the constant height disk model, linear perturbation in

fluid does not have any influence on disk height. Hence the procedure of getting massless Klein

Gordon equation is exactly same and the effective acoustic metric is exactly same as obtained in

constant height disk model. The above expression is structurally same for the conical model.

The only difference is that is that for conical model, H is proportional to r. This is because, in

the conical model, disk height is not perturbed.
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4.2 Acoustic gravity in curved space-time background

In the present chapter, we consider the following metric for static space-time

ds2 =−gttdt2 +grrdr2 +gθθ dθ
2 +gφφ dφ

2 (4.38)

where the metric elements are functions of r and can also be functions of θ and φ . We assume

a perfect fluid with the energy-momentum tensor given by

T µν = (ε + p)vµvν + pgµν (4.39)

with the velocity four-vector normalized as vµvµ = −1 and ε is the internal energy per unit

volume of the fluid. The fluid is assumed to be ideal and so obeys equation of state for ideal gas.

Also it is assumed to be under adiabatic condition i.e it obeys barotropic equation of state, i.e.,

p = kργ . The specific enthalpy of the fluid is given by

h =
ε + p

ρ
(4.40)

The speed of sound for adiabatic flow is given by

c2
s =

∂ p
∂ε

(4.41)

which can be also written as[76]

c2
s =

ρ

h
∂h
∂ρ

(4.42)

In our calculation of acoustic geometry we make use of two basic equations. First one is the

continuity equation given by

∇µ(ρvµ) = 0 (4.43)

and the second one is the irrotationality condition as the fluid is assumed to be irrotational. The

condition is given by

∂µ(hvν)−∂ν(hvµ) = 0 (4.44)
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4.2.1 Spherically symmetric radial flow

In the first case in curved space-time background we derive the acoustic geometry for spherically

symmetric flow. This implies that vθ = vφ = 0 and all the derivatives with respect to θ and φ

vanish. Using µ = t and ν = r in the irrotationality condition equation given by equation (4.44)

gives

∂t(hvr)−∂r(hvt) = 0 (4.45)

In stationary case where ∂t term vanishes the above equation implies ∂r(hvt) = 0. So for station-

ary flow ζ = hvt is a constant of the flow. This is called the specific energy for adiabatic flow or

it can be thought of as the Bernoulli’s constant equivalent in GR. Due to spherical symmetry,

the continuity equation given by equation (4.43) becomes

1√
−g

∂t(
√
−gρvt)+

1√
−g

∂r(
√
−gρv) = 0 (4.46)

where v = vr is the radial velocity. Using the normalization condition of the four-velocity given

vµvµ =−1, vt can be expressed as

vt =

√
1+grrv2

gtt
(4.47)

Now we linearly perturb the radial velocity, density and the Bernoulli’s constant about their

stationary values.

v(r, t) = v0(r)+ v′(r, t) (4.48)

ρ(r, t) = ρ0(r)+ρ
′(r, t) (4.49)

and

ζ (r, t) = ζ0 +ζ
′(r, t) (4.50)

Using these quantities we do linear perturbation of the continuity equation and the irrotaion-

ality condition equation given by equation (4.46) and equation (4.45) respectively.
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Linear perturbation of the irrotationality condition equation gives the following equation

∂rζ
′ = grrh0∂tv′+

grrh0v0c2
s0

ρ0
∂tρ
′ (4.51)

where h0 is the stationary or background value of the enthalpy h and c2
s0 =

ρ0
h0

∂h
∂ρ

again perturbing

ζ = hvt =−gtthvt gives the equation

ζ
′ =−gtth0αv′−

gttvt
0h0c2

s0
ρ0

ρ
′ (4.52)

where α = grrv0
gttvt

0
and we have used the normalization condition of four-velocity to obtain (vt)′ =

αv′. Taking time derivative of the above equation gives

∂tζ
′ =−gtth0α∂tv′−

gttvt
0h0c2

s0
ρ0

∂tρ
′ (4.53)

Using equation (4.51) and equation (4.53) we are able to write ∂tv′ and ∂tρ
′ in terms of ζ ′ only.

Thus we have

∂tv′ =
−1
∆

[
grrh0v0c2

s0
ρ0

∂tζ
′+

gttvt
0h0c2

s0
ρ0

∂rζ
′] (4.54)

∂tρ
′ =

1
∆
[grrh0∂tζ

′+gtth0α∂rζ
′] (4.55)

where ∆ =−grrh2
0c2

s0
ρ0vt

0

Linear perturbation of the continuity equation gives

ρ0α∂tv′+ vt
0∂tρ +

1√
−g

∂r(
√
−gρ0v′+

√
−gv0ρ

′) = 0 (4.56)

taking the time derivative of the above equation gives

∂t(
√
−gρ0α∂tv′)+∂t(

√
−gvt

0∂tρ)+∂r(
√
−gρ0∂tv′)+∂r(

√
−gv0∂tρ

′) = 0 (4.57)
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Substituting ∂tv′ and ∂tρ
′ in the above equation using equation (4.54) and equation (4.55) gives

∂t [

√
−ggrrh0

∆vt
0
{

gtt(vt
0)

2(1− c2
s0)+ c2

s0
gtt

}∂tζ
′]+∂t [

√
−gh0grrv0

∆
{1− c2

s0}∂rζ
′]

+∂r[

√
−gh0grrv0

∆
{1− c2

s0}∂tζ
′]+∂r[

√
−ggrrh0

∆vt
0
{

v2
0grr(1− c2

s0)− c2
s0

grr
}∂rζ

′] = 0
(4.58)

The above equation is of the form ∂µ( f µν∂νζ ′) = 0 with f µν given by after multiplying by -1

f µν =

√
−gρ0

h0


−gtt +(vt

0)
2(1− 1

c2
s0
) v0vt

0(1−
1

c2
s0
)

v0vt
0(1−

1
c2

s0
) grr + v2

0(1−
1

c2
s0
)

 (4.59)

4.2.2 Axially symmetric disk flow

Three low angular momentum disk models (as discussed in previous sections) are considered

for adiabatic flow. The normalization condition is given by

vµvµ =−1 (4.60)

The spherically symmetric diagonal metric of equation (4.38) is considered. We consider the

dynamics only on the equatorial plane (θ = π

2 ) plane of the disk. The accretion flow is irro-

tational, i.e., it obeys equation (4.44). The infalling fluid has a small azimuthal component of

velocity, vφ . From equation (4.60)

(vt)2 =
1+grr(r)v2 +gφφ (r)(vφ )2

gtt(r)
(4.61)

Similarly, equation (4.45) gives the Bernoulli’s constant. Using equation (4.44) and axial sym-

metry of the flow

∂t(hvφ ) = 0

∂r(hvφ ) = 0
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⇒ hvφ = constant = ` (4.62)

hvφ is called specific angular momentum and it is a constant number for non-stationary flow as

well due to irrotationality and azimuthal symmetry. We assume that there is a stationary solution

of the accretion(v0(r),ρ0(r),v
φ

0 (r),ζ0) and linear perturbation is introduced.

v(r, t) = v0(r)+ v′(r, t) (4.63)

ρ(r, t) = ρ0(r)+ρ
′(r, t) (4.64)

vφ (r, t) = vφ

0 (r)+ v′φ (r, t) (4.65)

and

ζ (r, t) = ζ0 +ζ
′(r, t) (4.66)

The symbols carries usual meaning as before. The addition of linear perturbations do not make

the accretion flow to violate irrotationlity, azimuthal symmetry (obvious from the above expres-

sions). The accretion flow is still inviscid and adiabatic. From equation (4.62), linear perturba-

tion term, `′ is given by

`′ = 0 (4.67)

Using equation (4.42) and equation (4.67) we get

v′φ =−
vφ

0 c2
s0

ρ0
ρ
′ (4.68)

Using equation (4.61) and equation (4.68) we get

(vt)′ = α1(r)v′+α2(r)ρ ′ (4.69)
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where

α1(r) =
grrv0

gttvt
0

α2(r) =−
gφφ (v

φ

0 )
2c2

s0
gttvt

0ρ0

Irrotaionality condition gives

∂rζ
′ = f1(r)∂tρ

′− f2(r)∂tv′ (4.70)

where

f1(r) =
grrv0h0c2

s0
ρ0

f2(r) =−grrh0

Using equation (4.69) and expression of ζ (=−hgttvt)

∂tζ
′ =− f3(r)∂tρ

′+ f4(r)∂tv′ (4.71)

where

f3(r) =
gttvt

0h0c2
s0

ρ0
+gtth0α2

f4(r) =−gtth0α1

From equation (4.70) and (4.71) we get

∂tρ
′ = g4(r)∂rζ

′+g2(r)∂tζ
′ (4.72)

∂tv′ = g3(r)∂rζ
′+g1(r)∂tζ

′ (4.73)
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where

gi =
fi

∆
where i ∈ N and i = 1 to 4 where N is the set of natural numbers.

and ∆ = f1 f4− f2 f3 =
grrh2

0c2
s0

ρ0vt
0

Until and unless we don’t have the expression of disk height, we can not use the continuity equa-

tion. In the next section several sub-keplerian (discussed before) disk models are considered.

Vertical equilibrium disk model

The expression of H(r)1 satisfying vertical equilibrium condition is given by [78], [109]

H(r)2v2
φ F(r) =

p
ρ

The linear perturbation of H is H ′ and stationry solution of H is H0(r). Using barotropic equation

and equation (4.68)
∂tH ′

H0
=

β

ρ0
∂tρ
′ (4.74)

where β = c2
s0 +

γ−1
2 .

Continuity equation is given by

1√
−g

∂t(
√
−gρvtH)+

1√
−g

∂r(
√
−gρvH) = 0 (4.75)

Introducing linear perturbation in the fluid and using equation (4.69) and (4.74), one gets after

partially differentiating equation (4.75),

(∂tF1∂t)ρ
′+(∂tF2∂t)v′+(∂rF3∂t)ρ

′+(∂rF4∂t)v′ = 0 (4.76)

1H(r) is not the flow thickness of the disk, this is a dimensionless quantity which appears in continuity equation
after averaging in θ direction.
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where each Fi (i ∈ N, i = 1 to 4) is function of r, the expressions are given below

F1(r) =
√
−g(H0vt

0(1+β )+α2ρ0H0)

F2(r) =
√
−gρ0H0α1

F3(r) =
√
−gH0v0(1+β )

F4(r) =
√
−gρ0H0

Using equation (4.72), (4.73) and (4.76) we get

∂µ( f µν(r)∂ν)ζ
′ = 0 (4.77)

where µ,ν indices run over t and r. 2×2 matrix, f µν is given by

f µν =

√
−gHρ0

h0


−gtt +(vt

0)
2(1− 1+β

c2
s0
) v0vt

0(1−
1+β

c2
s0
)

v0vt
0(1−

1+β

c2
s0
) grr + v2

0(1−
1+β

c2
s0
)

 (4.78)

Constant height disk model

For constant height disk model H ∝ 1
r . H does not change when linear perturbations are intro-

duced in the fluid velocity and density. Now using continuity equation (4.75) and introducing

linear perturbations, one gets after partially differentiating with t

(∂tF1∂t)ρ
′+(∂tF2∂t)v′+(∂rF3∂t)ρ

′+(∂rF4∂t)v′ = 0 (4.79)

where each Fi (i ∈ N, i = 1 to 4) is function of r, the expressions are given below

F1(r) =
√
−g(Hvt

0 +α2ρ0H)

F2(r) =
√
−gρ0Hα1

F3(r) =
√
−gHv0

F4(r) =
√
−gρ0H
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We get in similar fashion,

∂µ( f µν(r)∂ν)ζ
′ = 0 (4.80)

where µ,ν indices run over t and r. 2×2 matrix, f µν is given by

f µν =

√
−gHρ0

h0


−gtt +(vt

0)
2(1− 1

c2
s0
) v0vt

0(1−
1

c2
s0
)

v0vt
0(1−

1
c2

s0
) grr + v2

0(1−
1

c2
s0
)

 (4.81)

Conical disk model

For conical disk model, H is a constant number. H does not change when linear perturbations are

introduced in the fluid velocity and density because H does not depend on those quantities. Now

using continuity equation (4.75) and introducing linear perturbations, one gets after partially

differentiating with t

(∂tF1∂t)ρ
′+(∂tF2∂t)v′+(∂rF3∂t)ρ

′+(∂rF4∂t)v′ = 0 (4.82)

where each Fi (i ∈ N, i = 1 to 4) is function of r, the expressions are given below

F1(r) =
√
−g(Hvt

0 +α2ρ0H)

F2(r) =
√
−gρ0Hα1

F3(r) =
√
−gHv0

F4(r) =
√
−gρ0H

Using equation (4.72), (4.73) and (4.82) we get

∂µ( f µν(r)∂ν)ζ
′ = 0 (4.83)
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where µ,ν indices run over t and r. 2×2 matrix, f µν is given by

f µν =

√
−gHρ0

h0


−gtt +(vt

0)
2(1− 1

c2
s0
) v0vt

0(1−
1

c2
s0
)

v0vt
0(1−

1
c2

s0
) grr + v2

0(1−
1

c2
s0
)

 (4.84)

One trivial observation is that for constant height disk model and conical disk model as the disk

height is not disturbed due to linear perturbations in the fluid, hence putting β to be zero in the

matrix (80) one can obtain f µν for these models.

4.3 Astrophysical significance

The linear perturbation of the Bernoulli’s constant satisfies a wave equation in the case of accre-

tion onto a black hole or a massive body. The generic equation is

∂µ( f µν(X)∂ν)ζ
′ = 0 (4.85)

where ζ ′ = ζ ′(X , t) and X is spherical polar radial coordinate for spherically symmetric accre-

tion or cylindrical polar radial coordinate for axisymmetric accretion. The above equation is

true for both general relativistic framework as well as for Newtonian-gravity framework. The

original fluid equations, i.e., continuity equation, Euler equation, are time dependent partial

differential equations. Here our approach is perturbative, i.e., there is a existing steady state

solution for astrophysical accretion problem and over that we are introducing linear perturbation

of the fluid quantities. Now the solution of ζ ′ of the equations could tell us whether the steady

state solutions are stable under small perturbations or not. As the linear perturbation of density,

velocity are all related to ζ ′, hence if we could find certain conditions under which ζ ′ grows in

time then the other related quantities would grow in time, the perturbation could not be small

at all time, the steady solution of the quantities would not be stable in that case and in that case

a full numerical approach where partial time derivatives in the fluid equations are taken care of

would give a more accurate result in stead of steady state solution.

To find ζ ′, we use the same approach done by Jacobus A. Petterson et al [110]. We take the
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form of the wave to be as

ζ
′(X , t) = Pω(X)eiωt (4.86)

Hence from equation (4.87), we find

ω
2Pω(X) f tt + iω[∂X

(
Pω(X) f Xt)+ f tX

∂X Pω(X)]− [∂X
(

f XX
∂X Pω(X)

)
] = 0. (4.87)

We implement two different methodologies in the next sections to check the stability of the

steady state solutions.

4.3.1 Standing wave analysis

Standing wave means that there will be nodes and antinodes. There will exist a standing wave

across X direction if and only if there are at least two different Xs in space, called nodes, where

the amplitude of the ζ ′(X , t) is zero for all time where unlike θ , φ ; X is a noncompact dimension.

Therefore, there exist at least two radii X1, X2; X1 , X2 such that Pω(X1) = Pω(X2) = 0. Hence

ζ ′ is zero at these two points for all time. Standing wave is produced when two waves moving in

opposite direction superpose with each other in space. When a wave moving along a particular

direction face an obstacle another wave moving along the opposite direction is produced due to

the reflection from that obstacle and in time superposition of these two waves produce standing

wave confined between two points or radii in space. The outer radius, say X2 may be a very large

radius, for example the boundary of the accreting cloud surrounding the star. In case of accretion

on to a black hole, there is no solid surface to produce a standing wave by reflection, i.e., in the

supersonic region of flow, nowhere ζ ′ is zero, i.e., there is no inner radius to confine the wave

between two radii which is required to produce a standing wave. In the case of accretion on to

a compact object like neutron star, on the surface of the star, the accreting fluid collides, hence

the fluid quantities undergo a discontinuity, as a result of this, a shock wall is formed according

to Rankine-Hugoniot relations around the star where the pre shock supersonic inflow becomes

post shock subsonic flow. As in our analysis we are not considering any discontinuity in the fluid

equations. We restrict this analysis for subsonic flows. We consider standing waves because the

wave equation 4.85, being a second order linear differential equation, permits the possibility of
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a superposition (linear combinations) of two waves (one going downstream of the background

flow and the other going upstream of the flow), thus forming a standing wave.

After multiplying the equation (4.87) and then integrating it between X1 and X2 and imposing

the condition of vanishing amplitude of ζ ′ at the two radii, we get

ω
2 =−C

A
(4.88)

where

A =

X2∫
X1

(Pω)
2 f ttdX

C =

X2∫
X1

(∂X Pω)
2 f XX dX

ω2 from the equation 4.88 can be both positive and negative because of the sign in f tt and

f xx. For example, in the non-relativistic spherically symmetric accretion f xx is proportional

to (c2
s0− v2

0) and f tt = 1
ρ0r2 from equation 4.21. Therefore, from the above expression, ω2 is

positive in the subsonic flow region (when both X1 and X2 in the subsonic region) and negative

in the supersonic region of flow (when both X1 and X2 in the supersonic region). For linear

perturbation of mass accretion rate, ω2 happens to be positive in the subsonic region of flow

in both relativistic and nonrelativistic flows [110][77][78]. Since f µν for linear perturbation of

the Bernoulli’s constant and f µν for the linear perturbation of mass accretion rate only differ

by a conformal factor, hence the sign of the conformal factor cancels out in the numerator and

denominator. Hence the conclusion is same for both the perturbations. Hence ζ ′ is of oscillatory

kind, it does not blow up with time. ζ ′, being not blown up, validates the applicability of the

linear stability analysis through standing waves in the subsonic region.

We introduced linear perturbation in the fluid medium by introducing linear perturbation in

density and velocity of the medium. We see that linear perturbation, ζ ′ is the linear combina-

tion of linear perturbation of density and linear perturbation of radial fluid velocity, it has the
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following generic structure for all the cases.

ζ
′(X , t) = fζ ρ(X)ρ ′(X , t)+ fζ v(X)v′(X , t) (4.89)

where fζ ρ(X) and fζ v(X) are the functions of the radial coordinate X .

Linear perturbation of mas accretion rate, λ ′ also has the similar structure.

λ
′(X , t) = fλρ(X)ρ ′(X , t)+ fλv(X)v′(X , t) (4.90)

In other words the above two equations can be expressed as a matrix equation

ζ ′

λ ′

=

 fζ ρ fζ v

fλρ fλv


ρ ′

v′

= f̂

ρ ′

v′

 (4.91)

The expressions of f ′ and ζ ′ for all the cases show that det( f̂ ) is nonzero in general for subsonic

flows, i.e., f̂ is a non-singular matrix. One easy way to see this is that fζ ρ(X) contains c2
s0 but

fζ v(X), fλρ(X), fλv(X) do not contain c2
s0. For subsonic flow, the right hand side of the equation

(4.89) and the right hand hand side of the equation (4.90) do not differ just by a conformal factor

and this implies non-singularity of the matrix f̂ . Hence both ρ ′ and v′ can be expressed as a linear

combination of ζ ′ and λ ′. Now considering the physical situation, X1, X2 are same for both ζ ′

and λ ′. Hence at these two radii, not only ζ ′ and λ ′ vanish but also ρ ′ and v′ vanish. In the next

section we have introduced some thermodynamic quantities like entropy, temperature. Since

ρ ′ is zero at these two radii and the linear perturbations of the thermodynamic quantities like

enthalpy, entropy are proportional to ρ ′, the linear perturbation of all thermodynamic quantities

are zero at these two radii. Similarly the linear perturbation of dynamical quantities like kinetic

energy per unit mass are zero at these two radii because linear perturbation of the dynamical

quantities are proportional to v′ 1.

As the standing wave analysis, valid for subsonic flows, show that both ζ ′ and λ ′ do not blow

in time, the linear perturbation of all the dynamical quantities and the thermodynamic quantities

do not blow in time too. Therefore, the steady state solution for subsonic flows are stable under

1there is an exception, in the case of axially symmetric disk accretion we have seen that v′
φ

∝ ρ ′
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standing wave perturbations (perturbations which are formed due to the superposition of two

travelling sound wave (one going upstream and the other going down stream of the flow). We

discuss about travelling wave in the next section.)

The steady state solutions are governed by the integrals of motions, i.e., Bernoulli’s constant,

mass accretion rate and specific angular momentum (for axisymmetric disk accretion). For the

disk accretion models which we have considered, the linear perturbation of specific angular mo-

mentum happens to be zero due to symmetry ( see equation 4.62). The non-trivial linear pertur-

bations are the perturbation of the accretion rate and the perturbation of the Bernoulli’s constant.

For time dependent case in the linear perturbation method, the time dependent solutions are also

governed by the linear perturbation of these two integrals of motion.

4.3.2 Travelling wave analysis

We study high frequency travelling wave. We assume the wavelength of the wave to be smaller

than the relevant smallest length scale of the problem. We assume the travelling wave to be of

the following form.

Pω(X) = exp

[
n=∞

∑
n=−1

Kn(X)

ωn

]
(4.92)

This form is assumed because when we assume ω to be high, 1
ω

tends to zero. After multiplying

the equation (4.87) by 1
ω2 , we see that the coefficient of the second derivative of Pω(X) is pro-

portional to 1
ω2 . This equation is now structurally somewhat similar to the Schrödinger equation

where to solve by WKB method, we expand the phase of the wave function in a perturbation

series using h̄ (the Planck’s constant) as parameter. Here 1
ω

takes the role of h̄. Using equation

(4.86)in (4.87) and equating the coefficients of ω and ω2, we get

K−1(X) = i
∫ X f Xt±

√
( f Xt)2− f tt f XX

f XX dX (4.93)

K0(X) =−1
2

ln
(√

( f Xt)2− f tt f XX

)
(4.94)

From the expression, it is obvious that K−1(X) is a purely imaginary quantity ( (( f Xt)2 −

f tt f XX) > 0 because the wave equation 4.85 is hyperbolic and one can also check it by putting
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explicitly the values of f µνs in the expression). For consistency in the solution, the following

relation must hold.

ωK−1(X)>> K0(X)>> ... (4.95)

Nonrelativistic framework

In Newtonian-gravity framework, for all the geometries (spherically symmetric accretion and

disk geometries) discussed earlier, K−1(X) and K0(X) have the following general structure.

K−1(X) = i
∫ X 1

v0(X ′)±
√

σcs0(X ′)
dX ′ (4.96)

and

K0(X) = constant+
1
2

ln(v0(X)cs0(X)) (4.97)

where σ = 2
γ+1 for vertical equilibrium disk accretion and σ = 1 for spherically symmetric

accretion and other disk geometries. The expressions are very similar to the case of linear

perturbation of mas accretion rate. At large radii, equation (4.95) is true due to the virtue of high

frequency approximation. The expressions of K−1(X) demonstrates that near the critical point,

for the wave travelling upstream of motion, ∂K−1(X)
∂X is very large near acoustic event horizon (

or dumbhole horizon). The condition (4.95) is well satisfied there. The conclusions are same for

both the cases, i.e., the case of linear perturbation of mas accretion rate and the case of linear

perturbation of the Bernoulli’s constant.

General relativistic framework

The expression of K0 and K−1 is given by

K0(X) = constant+
1
2

ln
(

v0cs0
√

gttgXX

vt
0

Ω(X)

)
(4.98)

and

K−1(X) = i
∫ X

dX

(
v0vt

0(1−
σ

c2
s0
)± 1√

gttgXX cs0
Ω(X)

)
gXX + v2

0(1−
σ

c2
s0
)

(4.99)
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where

σ = 1+β for vertical equilibrium disk model

σ = 1 for spherically symmetric radial accretion and other disk models

Ω(X) = 1 for spherically symmetric radial flow

Ω(X) =

√
σ +gφφ (v

φ

0 )
2(σ − c2

s0) for disk accretion

∂K−1(X)
∂X is very large near the critical point (The critical point is effectively same as the sonic

point, we use the word ‘effectively’ because in the vertical equilibrrium model sound speed gets

modified.) as the denominator approaches zero there. Hence condition (97) is well satisfied near

sonic horizon. For very large X , K0(X), K−1(X) are close to non-relativistic values, the criteria

(97), is true at large X due to the virtue of high ω .

4.4 Summary and Concluding Remarks

In this section, we are going to give some more insights about the problem. Linear perturbation

of several quantities obey massless scalar field equation in acoustic space time background.

Unruh[1] first shown that linear perturbation of velocity potential obeys massless scalar field

equation in curved space time background. In these papers[78] , it is explicitly shown that linear

perturbation of mass accretion rate also gives acoustic metric. In this chapter, we’ve shown that

the Bernoulli’s constant also produces analogue gravity.

For non-general relativistic background flow of adiabatic fluid, the Bernoulli’s constant can

be expressed as an additive term of various energy contribution to the total energy of the system.

If one is interested to learn how the various sources of energy of the system, i.e., gravitational,

mechanical, thermal and rotational, gets perturbed individually, the perturbation scheme of the

Bernoulli’s constant will be of great help to understand such physics and related issues. For in-

stance, one can directly connect the Bernoulli’s constant to some dynamical and thermodynamic
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energy quantities. One can define specific total energy[40] as

E = (
1
2

v2 +ξ +Vext)

where ξ is specific internal energy. After a little manipulation, using equation (4.10), i.e., for

non relativistic case, one can find a set of equations relating some dynamical energy quantities

and thermodynamic quantities for adiabatic flow that

∂µ( f µν(x)∂ν)E ′(x, t)+
γ−1

γ
∂µ( f µν(x)∂ν)h′ = 0

∂µ( f µν(x)∂ν)E ′(x, t)+(γ−1)∂µ( f µν(x)∂ν)ξ
′(x, t) = 0

∂µ( f µν(x)∂ν)E ′(x, t)+(γ−1)(∂µ( f µν(x)∂ν)F ′+ s0∂µ( f µν(x)∂ν)T ′ = 0

∂µ( f µν(x)∂ν)E ′(x, t)+
γ−1

γ
∂µ( f µν(x)∂ν)G′(x, t)+

γ−1
γ

s0∂µ( f µν(x)∂ν)T ′ = 0

where E ′, h′, G′, F ′ and ξ ′ are linear perturbation in E, specific enthalpy, specific Gibbs free

energy, specific Helmholtz’s free energy and specific internal energy. s0 is constant entropy

value for adiabatic case, i.e., s0 = ln( p0
ρ

γ

0
). For isothermal case we find that

∂µ( f µν(x)∂ν)E ′(x, t)+∂µ( f µν(x)∂ν)G′(x, t) = 0

∂µ( f µν(x)∂ν)E ′(x, t)−∂µ( f µν(x)∂ν)F ′(x, t) = 0

For General Relativistic case and for adiabatic flow, ∵ h = g−T s and ζ = hvt , defining α ′ =

(gvt)
′ and β ′ = (T vt)

′

∂µ( f µν(r)∂ν)α
′(r, t)+ s0∂µ( f µν(r)∂ν)β

′(r, t) = 0

Clearly not all energy quantities satisfy the differential equation satisfied by linear perturbation

of the Bernoulli’s constant but if one can perturb only the thermodynamic quantities without

perturbing the dynamical quantities, then one can find again acoustic geometry and do analogue

gravity on that. We introduce here another important finding of related interest. Linear pertur-

bation of any algebraic function of ζ obeys massless scalar field equation in acoustic space time
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if the function and it’s first derivative with respect to ζ exist at the background value, i.e., at ζ0.

The wave equation satisfied by linear perturbation of the function is exactly the same as the wave

equation obeyed by linear perturbation of ζ . Same argument holds for the linear perturbation of

mass accretion rate as well. To prove this, let’s consider an algebraic function of ζ , F(ζ ). We

have

∂µ f µν(x)∂νζ
′ = 0 (4.100)

where ζ is perturbed linearly as

ζ (x, t) = ζ0(x)+ζ
′(x, t)

⇒ F(ζ (x, t)) = F(ζ0(x)+ζ
′(x, t))

= F(ζ0 +ζ
′(x, t))

= F(ζ0)+

(
dF
dζ

)
ζ0

ζ
′(x, t)

= F0 +F ′

ζ0,
(

dF
dζ

)
ζ0

are constant numbers because F(ζ ) and it’s first derivative exist at ζ0 and ζ0 is

a constant of motion. Linear perturbation of F(ζ ) is a constant multiple of ζ ′. Hence linear

perturbation of F(ζ ) obeys exactly same massless scalar field equation as obeyed by ζ ′.

This is another advantage of constants of motion, ζ and f , over the velocity potential ψ , is

that one can construct infinitely many quantities with any of constants of motion, ζ or f, whose

linear perturbation obeys massless scalar field equation in curved space time.

Similar argument holds for the case of mass accretion rate in 1+1 dimension as well. In this

fashion one can construct two disjoint sets of algebraic functions from two independent constants

of motion ζ and f respectively. At this point, we thus argue that the linear perturbation of any

quantity of fluid motion if obeys a massless scalar field equation, that equation will be same as

wave equation satisfied by either of ζ ′ or f ′.

One can also proceed with velocity potential in the analysis instead of the Bernoulli’s con-

stant. Here we have started by analysing the linear perturbation of the Bernoulli’s constant
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Chapter 4. Linear perturbation in the Bernoulli’s constant, emergent spacetime

instead of velocity potential. This is a independent approach to the same problem of analogue

gravity. There is so far no work, of course to the best of our knowledge, analysing linear per-

turbation of velocity potential in the case of vertical equilibrium disk model for both relativistic

and non relativistic case; we find that for vertical equilibrium disk model (not shown for brevity)

∂µ f µν(x)∂νψ
′ = 0 (4.101)

where ψ ′ is linear perturbation of velocity potential, ψ . One can use the relation ∂tψ
′ = ζ ′ to

find

∂µ f µν(x)∂νζ
′ = 0. (4.102)

This is clearly an alternative approach.
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Chapter 5

Steady State Transonic Solution of

self-gravitating spherically symmetric

accretion

Most of the contents of this chapter are taken from our work ’Bondi flow revisited’ [120]. Spher-

ically symmetric Bondi flow [9] studies the dynamics of the infalling test fluids. In the present

chapter, a novel iterative method is introduced to study the effect of the inclusion of the mass

of the accreting material. The growth of the accretor is not considered as a consequence of the

accretion and hence the direct effect of the inclusion of the self gravity is not studied. For usual

astrophysical accretion, the aforementioned approximation, that the accretion rate as well as the

time scale to study the problem is not so large that the mass of the accretor will change – is a

valid approximation.

Steady state accretion of one temperature fluid onto a non spinning stationary (the observer

is in the co-moving frame) accretor is considered. A more appropriate effective gravitational

potential in comparison to what had been assumed by Chia [111] is considered. In that work by

Chia [111], the considered potential which includes the gravity of the medium, does not satisfy

Poission’s equation for gravity.

We find that the inclusion of fluid mass alters the location of the critical point of the flow as

well as the values of the accretion variables measured at the critical point. It is found that the
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Mach number vs radial distance profile, the usual topology of the phase portrait of the Bondi

flow, takes a different form for such massive accretion. The flow profile is characterized using a

realistic set of astrophysically relevant parameters.

5.1 Governing Equations

As steady flow is considered, the Bernoulli’s equation [40] is

v2

2
+
∫ d p

ρ
+ψ(r) = constant (5.1)

where fluid velocity is v, pressure is p and ψ(r) is the gravitational potential due to the accretor

and the infalling fluid itself. ψ(r) satisfying Poisson’s equation is as below,

ψ(r) =−GM
r
− 4πG

r

∫ r

R?

ρ(r)r2dr−4πG
∫ ∞

r
ρ(r)rdr (5.2)

where R? is the radius of the accretor.1 The barotropic equation is

p = Kρ
γ (5.3)

where K is a constant. The sound speed follows the relation,

c2
s =

(
∂ p
∂ρ

)
s
=

γ p
ρ

(5.4)

where s = entropy. The energy of fluid element per unit mass is E2. Fluid velocity at infinity is

zero, so according to Bernoulli’s equation,

v2

2
+

c2
s

(γ−1)
+ψ(r) = E =

c2
s∞

(γ−1)
(5.5)

Physically, infinity is taken to be a large distance such that the potential energy terms are van-

ishing there. This issue discussed in details later in section 5.6. Some dimensionless variables

1We do not scale the the variables similar to the chapter 3, we will use different scaling for simplicity.
2This is the Bernoulli’s constant, ζ having the dimension of energy.
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are defined as

x =
r

GM
c2

s∞

,y =
v

cs∞
,z =

ρ

ρ∞

where cs∞ is the sound speed at infinity and ρ∞ is the density of fluid at infinity. From equation

(5.5), introducing the dimension less variables, we get

y2

2
+

z(γ−1)

(γ−1)
− 1

x
−α

(
I1

x
+ I2

)
= 0 (5.6)

where α = 4πρ∞G3M2c−6
s∞ , I1 =

x∫
x∗

zx2dx and I2 =
∞∫
x

zxdx with x∗= R?

(GM
c2
s∞

)

The mass accretion rate is obtained by integrating the continuity equation (using spherical

symmetry) 4.1,

Ṁ = 4πr2
ρv = 4π(GM)2c−3

s∞ ρ∞x2yz

Another dimensionless variable is defined as λ = x2yz and from the above equation mass accre-

tion rate is proportional to λ . Now, equation (5.6) can be rewritten as follows,

λ 2

2z2 +
(zγ−1−1)
(γ−1)

x4− (1+αI1)x3−αx4I2 = 0 (5.7)

In the next section, we find the differences in critical points of the flow dynamics due to the

inclusion of the gravity of the medium.

5.2 Calculations of Critical Point of the flow

Now, our aim is to maximize the accretion rate. We find x, y, z for which λ is maximized. From

equation (5.7) setting ∂λ

∂x |(x=xc,y=yc,z=zc)= 0 and ∂λ

∂ z |(x=xc,y=yc,z=zc)= 0, we get respectively

4(z(γ−1)
c −1)xc

(γ−1)
−3(1+αI1c)−4αxcI2c = 0 (5.8)
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and

λ
2
c = zγ+1

c x4
c (5.9)

Using equation (5.9), from equation (5.7), we get

z(γ−1)
c xc

2
+

(z(γ−1)
c −1)xc

(γ−1)
−1−α(I1c + xcI2c) = 0 (5.10)

As a consequence we have the following:

The critical values xc, yc and zc correspond to the Mach one, i.e; the transonic curve corresponds

to maximum accretion rate. It is worth mentioning that the Mach number is defined as the ratio

of the speed of the medium and the thermodynamic sound speed.

From definition,

λc = x2
cyczc

Using equation (5.9) and from the expression of Mach number, m

m = v
cs
=ycz

− (γ−1)
2

c = 1

————————————————

We get from equation (5.8) and (5.10), ,

xc

xb
=

1+αI1c

1+α(γ−1)I2c
(5.11)

(
zc

zb
)(γ−1) = (1+α(γ−1)I2c) (5.12)

Using equation (5.9), we get

λc

λb
= (1+αI1c)

2(1+α(γ−1)I2c)
(5−3γ)
2(γ−1) (5.13)
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5.3. Equation of motion of the infalling fluid

where xb, zb, λb are the critical values in the case of spherical Bondi accretion where fluid mass

is not considered. These values are as follows:

xb =
(5−3γ)

4

z(γ−1)
b =

1
2xb

λ
2
b = z(γ+1)

b x4
b

5.3 Equation of motion of the infalling fluid

We have to know the equation of motion of the infalling fluid to find the behaviour of the Mach

number vs radial distance profile for self gravitating steady state Bondi accretion. According to

Euler’s momentum conservation equation,

ρ
Dv
Dt

=−∇p−ρ∇ψ

D
Dt , the Lagrangian derivative, the acceleration of a fluid element in flow, can also be denoted by

d
dt as described in Chapter-2.

ψ is the external potential energy; in our case, ψ is the gravitational potential energy term.

Considering steady flow, we have

v
dv
dr

=− 1
ρ

d p
dr
− GM

r2 −
4πG

r2

∫ r

R?

ρr2dr (5.14)

Considering spherically symmetric steady flow, we get accretion rate from the continuity equa-

tion, although we have already assumed spherical symmetry in the beginning

Ṁ = 4πr2
ρv = constant (5.15)

Considering steady flow, using equation (5.3), (5.4), (5.14), we have
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dv
dr

=
(

2c2
s

r −
GM
r2 − 4πG

r2

∫ r
R?

ρr2dr)

(v− c2
s
v )

(5.16)

Now, using equation (5.15), (5.3), (5.4), we have

dcs

dr
=

cs(1− γ)

2

(
2
r
+

1
v

dv
dr

)
(5.17)

If we can solve these equations we can get the Mach number vs radial distance profile except

sonic sonic point because equation (16) takes 0/0 form at the transonic point. We seek for

transonic solution which has finite velocity gradient at the critical/sonic point.

Applying L’Hospital’s rule there we get a quadratic equation as

Aq2 +Bq+C = 0

where,

A = (1+ γ)

B =
4csc(γ−1)

rc

C =
2c2

sc(2γ−1)
r2

c
− 2GM

r3
c

+4πGρc−
8πG

r3
c

I1c

q =
dv
dr
|critical point

csc is the sound speed at critical point. rc is the radial distance of critical point from the centre

of the accretor. So,

q =
−B±

√
B2−4AC

2A
. (5.18)
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5.4. The Method of iteration

The problem is still unsolvable because we need to know the density profile of the infalling

fluid in the first place to find the values of the dimensionless variables at critical point (which

will serve as the initial conditions to solve differential equations (5.16) and (5.17)) and we have

no idea about the density profile. In the next section, we develop a methodology to solve the

problem.

5.4 The Method of iteration

In equation (5.11), (5.12), (5.13) and (5.16) ρ appears to be a variable about which we have

no information. We assume that even if we include mass of the medium it does not change the

critical values xc, yc, zc and λc abruptly, i.e; we are dealing with a problem where inclusion of

fluid mass effect the system weakly. This issue is discussed in details in section 5.11. We find

the values of the dimensionless quantities from equations (5.11), (5.12) and (5.13) by method

of iteration. We use the value of z as the usual z of spherically symmetric Bondi flow to find

the integrals I1c and I2c and thus the changes in critical parameters is found . xc appears in the

definite integrals I1c and I2c as upper limit and lower limit respectively and we replace xc by

xb(= (5− 3γ)/4) in the 1st iteration. We can compute the critical parameters from equation

(5.11), (5.12) and (5.13). We are considering weak gravitational field due to fluid mass, so we

are satisfied with only the 1st iteration. The values of I1c and I2c in the 1st iteration are as below.

I1c =
∫ xb

x∗
zBondi(x)x2dx (5.19)

I2c =
∫ ∞

xb

zBondi(x)xdx (5.20)

where zBondi(x) is z of the usual Bondi accretion (where the gravity of the medium is not taken

into account.). As there is no proper analytic form for zBondi(x), we find the integrals using the

numerical values of zBondi(x) at different x .
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5.5 The limits of the integrals

xb is the upper limit and lower limit of the integrals, I1c and I2c respectively. x* is the lower limit

of the integral I1c. We can put x* and mass in the equation using values of mass and radius of

some known stars. Alternatively, we can find the radius of a star when the mass of a star is given

from any empirical relation. We use the following emperical relations [112] between mass and

radius of a Main Sequence star.

R?

R�
= 1.06

(
M

M�

)0.945

M < 1.66M� (5.21)

and

R?

R�
= 1.33

(
M

M�

)0.555

M > 1.66M� (5.22)

where R?, R� are the radius of the star and of the Sun and M, M� are the mass of the star and

of the Sun respectively. Thus the lower limit of the integral I1c is fixed. One can use mass and

radius of any kind of stars not necessarily that the accretor has to be a Main Sequence star until

if the relativistic effects are not significant. ∞ appears in the upper limit of the integral I2c. By

∞ we mean some large distance from the accretor where gravity is weak. Let’s call this large

distance to be r∞ and corresponding value of the dimensionlesss parameter to be x∞. The mass,

the energy and γ of the fluid are given. At infinity as the velocity of the fluid is zero, we have

c2
s∞

(γ−1)
− GM

r∞
− 4πG

r∞

∫ r∞

R?

ρr2dr = E (5.23)

We compare the magnitude of the 1st term in potential energy with the specific energy. We set

r∞ to some value such that the term GM
r∞

is negligibly small compared to energy of the infalling

fluid.

Quantitatively, we set a very small quantity Q1 according to our desired precision as below.

Q1 =
(GM

r∞
)

E
(5.24)
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Now we can easily find r∞. We use the density profile of Bondi accretion to evaluate the 2nd

term of the potential energy (whereas the first term of the potential energy at r∞ is −GM
r∞

) in

equation(5.23) (The Method of Iteration which is described in section 5.5). We need the density

of the fluid at infinity. We choose the density of fluid at infinity to be small such that the term

4πG
r∞

∫ r∞
R?

ρr2dr is negligible compared to the energy E of the fluid.

Quantitatively, we set a very small quantity Q2 according to our desired precision as below.

Q2 =
4πG
r∞

∫ r∞
R?

ρr2dr

E

=
[4πGρ∞(GM)3I1∞

r∞c6
s∞

]

E

ρ∞ =
Q2Er∞(E(Y −1))3

4πG(GM)3I1∞
(5.25)

where we have used the method of iteration to find I1∞. As the 2nd and 3rd term of the equation

(5.23) are taken to be negligibly small compared to the energy (E) of the infalling fluid,

E �
c2

s∞
(γ−1)

(5.26)

Using method of iteration and putting the value of r∞ from equation (5.24),

I1c =
∫ xb

x∗
zBondi(x)x2dx (5.27)

I2c =
∫ x∞

xb

zBondi(x)xdx (5.28)

Equation (5.28) is different from equation (5.20), here we have the physical upper limit which

is x∞. Now we can numerically calculate the values I1c and I2c and put them in equation (5.11),

(5.12) and (5.13) to find the changes in the critical parameters due to inclusion of fluid mass.
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5.6 Physical Importance of Q1 and Q2

We can write the energy of infalling fluid at infinity as

E =
c2

s∞
(γ−1)

+EQ

where Q(= Q1+Q2) gives total precision of the problem. Hence in a summary, for a given E,

M, γ and Q, we set at first Q1 to find appropriate r∞ of the problem and setting Q2 accordingly

gives us density of the infalling matter at infinity. If we closely look at the expressions of Q1

and Q2, we see that the ratio

s =
Q2
Q1

=
Mass of the entire medium

Mass of the accretor
(5.29)

where mass of the medium is calculated mass by using density profile of Bondi accretion. We

can intuitively say that greater the value of ratio Q2/Q1 greater the effect of inclusion of fluid

mass, i.e; greater the departure from the usual Bondi accretion.

5.7 Behaviour of the critical parameters

We can now find the critical parameters. We have the mass M of the accretor, E or the tempera-

ture of the fluid at infinity, γ of the fluid as inputs and also we have fixed Q to be 0.02. Choosing

s gives us r∞ and density of fluid at infinity. Our parameter space is γ (4/3 to 5/3), E (0 to 1 in

units of c2). Temperature varies nearly from 10◦K to few hundred degree kelvin (H1 region) for

neutral hydrogen-interstellar medium [113]. This gives a rough idea about the input of specific

energy of the infalling fluid. The specific energy varies in that temperature range nearly of the

order of 10−12 to 10−10 in units of c2 . We have plotted percentage change in the critical values

due to inclusion of fluid mass with the γ-E parameter space. Temperature of the fluid at infinity

is taken to vary nearly in the range of 10◦K to few hundred degree kelvin. We find the shift in

transonic surface due to inclusion of fluid mass for different s.
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Figure 5.1: Behaviour of percentage change in xb where f =
-(Dx/xb)×100 and Dx = (xc− xb)

The planes corresponding to different s seem parallel to γ-E plane because the variations in

xb for different s are incomparable. The whole picture becomes clear when we plot the behaviour

for a single s.
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Figure 5.2: Projection of the surface of Fig. 5.1 for s=1 on
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1.49

1.492

1.494

1.5

1.502

-(D
x/

xb
)x

10
0%

) in logscaleE(c2

2x10-12

f

1.504

1.498

1.496

E= (c2)5x10-14 (c2)

Figure 5.3: Projection of the surface of Fig. 5.1 for s=1 on
(-Dx/xb)x100-E (in log scale) plane.
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Fig. 5.2 and Fig. 5.3 implies that when s and E are given and also total precision Q is given,

the shift in transonic surface does not depend on E and that’s why only a single curve appear in

Fig. 5.2, otherwise there would be several different curves for different Es. We can generate the

surface for s=1 just by translation of the curve in Fig. 5.2 along E axis. The shift in critical point

xb is same for all E for a particular γ and Q. In the Fig. 5.3 the vertical lines signify the same

thing, i.e; the points on a single vertical line gives the percentage change in xb for different γs.

A single vertical line corresponds to a single energy. Actually fixing Q and s of the problem give

Q1 and Q1 in return gives r∞ for a given E. The dependence of changes in critical parameters

on E is somehow wiped out when ρ∞ is calculated after setting Q2 of the problem. Inclusion

of fluid mass decreases the radius of the transonic surface. More the total mass of the medium,

greater the shift in xb is (from figure (5.1)). Relatively small γs give significant changes. We

find the changes in other critical parameters.
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Figure 5.4: Behaviour of percentage change in zb where g =
(Dz/zb)×100 and Dz = (zc− zb)

In the above figures, the colour is dark blue near energy 2× 10−12 because we have worked

with small energy steps near this region of energy, this can be seen in the projection plane too

(Figure 5.3). For brevity, we have not plotted E-(Dz/zb)x100. Similarly, percentage change in

zb does not depend on E and zb increases significantly for γ close to 4/3. Fig. 5.4 implies that if

we increase s we increase the change in zb which is intuitively obvious.

Another important point is that if we compare the percentage changes in zb with xb we see that

inclusion fluid mass effect zb more than xb. The surfaces seem to converge towards γ=1.65.

Similarly, percentage change in λb does not depend on E and it significantly increases for γ

close to 4/3. Observation of Fig. 5.6 shows that λb increases with s. Increasing s increases the
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shift in the critical parameters. Another important observation is that the percentage change in

xb with respect to γ is not only smaller than the other critical parameters but also the variation in

percentage change of xb with γ is negligible compared to that for the other critical parameters.
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One can safely say that percentage change in xb doesn’t depend on γ at all and actually it’s a

function of only one variable, s. Inclusion of fluid mass changes zb much more significantly

than the other critical parameters.

We find how do the critical parameters depend on the mass ratio of the fluid medium and the

star. As percentage change in xb is only a function of s, we fit the data points to find the nature
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Figure 5.8: Dependence of percentage change in xb on s and
data points are fitted. We choose upper limit of s to be 5.

of dependence on s. We obtain an empirical relation as

f = (−Dx
xb
×100) = a+b ln(s) (5.30)

In our case, the positive constants are as a = 1.5 and b = 0.633842. Fig. 5.2 also shows that a

has to be 1.5.
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Figure 5.10: Dependence of percentage change in λb on s.

The changes in critical parameters increase with s. Fig. 5.9 and Fig. 5.10. also shows that why

do the surfaces for zb and λb converge towards γ = 1.65. We see that the separations between

the curves of Fig. 5.9 and 5.10 for γ = 1.33 and 1.41 is greater than the separation between the

curves for γ =1.41 and 1.5.

Equation (5.30) implies that the test fluid approximation is good for s 6 exp(-a/b). This is

the range of s where Bondi’s assumptions and his results are applicable. In our case, that re-

gion corresponds to s 6 0.094 and it’s important to mention that a and b depends on Q. Sim-

ilarly one can fit the same for λb and zb as well and one will find some best fitting curves as

(fλ ,z(γ)+gλ ,z(γ)ln(s)) respectively. We can conclude from Fig. 5.7 and 5.5 that fλ ,z(γ) are mono-

tonically decreasing functions of γ . As the curves for other s have same nature as s=1, gλ ,z(γ)

can not be monotonically increasing function and as the surfaces are not parallel to each other

which is obvious from Fig. 5.6 and 5.4, gλ ,z(γ) has to be also monotonically decreasing function

of γ . Now we find α [111] dependence (see section 5.1) of the percentage change in critical
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Figure 5.11: Dependence of percentage change in λb on α .

parameters. For brevity, we have not plotted the same for xb and zb because they are more or

less of the same nature. Increasing α increases percentage change in the critical parameters. As

percentage change in xb is a slowly varying function of γ , it is also a slowly varying function of

α . We have fitted the above plot as below,
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Figure 5.12: The data points are fitted to the curve
aα3+bα2+cα+d

We have found empirically a cubic polynomial,

h = (
Dλ

λb
)×100 = aα

3 +bα
2 + cα +d (5.31)

The coefficients a, b, c, d depend on s, E and Q. Similarly percentage change in zb and xb have
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cubic dependence on α and in the same way, we can fit them into cubic polynomials (not shown

for brevity).

5.8 Ambiguity of the velocity gradient

Now we calculate du/dr at transonic surface from equation (5.18). We have got the critical pa-

rameters, we use them to find q. Important point is that we use the new value of xc (found by

1st iteration) in I1c appearing in the term C of the quadratic equation of q. Now according to

equation (5.18), we obtain two values of q. As inclusion of fluid mass does not change the nature

of flow abruptly, we choose the value of q which is closer to the value of critical (du/dr) in Bondi

accretion. We plot the behaviour of the derivatives and compare those values with the spherical

Bondi flow. We are calling the solutions of q as below,

q1 =
−B+

√
B2−4AC

2A

q2 =
−B−

√
B2−4AC

2A

we are calling

q =
dv
dr
|Bondi

where dv
dr |Bondi is the value of dv

dr at transonic surface in Bondi accretion.

From the above figure, we see that q2 is much closer to q than q1. As we are considering that

the inclusion of fluid mass does not alter the critical values abruptly (therefore, the sign of q will

be negative which is the considered sign in the case of Bondi flow), we choose q2 over q1.
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Figure 5.13: q1
q , q2

q are plotted against γ with s=3 for compari-
son.

5.9 Mach number vs radial distance profile

Now we have found the initial conditions to find variation of Mach number with radial distance

from the centre of the accretor. We have to numerically solve equation (5.16) and (5.17) simul-

taneously. We have now xc, yc, zc and q2 as initial conditions and we use the numerical values of

density for spherically symmetric Bondi flow. Now Mach number(=u/cs) profile can be found.

fluid mass ignored
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M
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Figure 5.14: Mach number vs radial distance profile where
mass of the Main-Sequence star is 1 solar mass, γ of the fluid
is 1.41 and s=3

Inclusion of fluid mass make the infalling fluid to cross the sound speed nearer to the accretor

(figure (5.15)).
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Figure 5.15: Close view near transonic surface. δ r denotes the
shift in radius of transonic surface in km.

5.10 Validity of Iteration Method

The density profile of the infalling fluid described by Bondi accretion is used in two places.

At first it is used to find the critical parameters by evaluating I1c and I2c and by putting those

values in the equations (5.27) and (5.28). It is used second time to find the Mach Number

vs radial distance profile in the equation (5.16). This method of iteration is valid when the

contributions from the additional terms which are considered to find the effect of inclusion of

fluid mass are small compared to the other relevant terms[114]. Critical parameters satisfy

the Bernoulli’s equation(equation(5.10)). Observing equation (5.8) and (5.10) one can say that

method of iteration is valid when

α(I1c + xcI2c)<< 1 (5.32)

The left hand side of the above inequality denotes the ratio of potential energies due to medium

and the star at the critical point. Consequently, the method of iteration to find the critical param-

eters is valid when the ratio of potential energies at the critical point due to medium and due to

the star(=ψmed
ψstar

) is small.

Momentum equation of fluid is used to find Mach Number vs radial distance profile in equa-

tion (5.16) and (5.17). The method of iteration will be valid to get the phase portrait until and

unless the gravitational force term due to the medium is small compared to the force term due
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Figure 5.16: Dependence of potential energy ratio due to
medium and the star at the critical point xc for different s and
γ

to the star. Using Gauss’s law, the ratio of inverse-square gravitational forces at a distance due

to the medium and due to the star is simply the ratio of fluid-mass and the stellar mass where

the fluid is considered to be inside of the sphere having centre at the origin (in this case due

to spherical symmetry, this is the centre of mass of the star which is also the centre of mass of

the composite system consisting of the star and the medium) and passing through the point in

question. This mass ratio has to be less than unity. This condition should hold at least at the

initial point, i.e; at the critical point xc.

αI1c << 1 (5.33)

From the above expressions, if the inequality (5.32) is satisfied the equation (5.33) is automati-

cally is satisfied.

Surprisingly, for a fixed γ and Q, the mass ratio Mc
M first increases with s(≤ 1) and then after

having a maxima, the mass ratio falls ( see figure (5.17)). Actually, increasing s increases r∞ and

hence increases the extent of the medium and also effects density ρ∞ (where ρ∞ is fixed from Q2

in section (5.6))which is shown in Fig. 5.18.

For a fixed Q of the problem, from equation(5.24) and (5.29),

r∞ =
GM(1+ s)

QE
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Figure 5.17: Dependence of gravitational force ratio due to
medium and the star at the critical point xc for different s and
γ . αI1c is denoted by Mc

M .

Transonic radius, rBondi for Bondi accretion is given by,

rBondi =
GM(5−3γ)

4E(γ−1)

So, the ratio of transonic radius and r∞ is

rBondi

r∞
=

xb

x∞
=

Q(5−3γ)

4(γ−1)(1+ s)
(5.34)

ρ
∞

(   k
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3 )x
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Figure 5.18: Dependence of density of fluid at infinity on s.
Density of the medium at infinity is more or less same for a
particular s for different γ .
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That is how compared to the length scale of the problem, the radius of the medium increases

with s .

Increase in r∞ with s do simultaneously two things having opposite effects. Increase in r∞ in-

creases the extent of the medium which has the tendency to decrease Mc
M and at the same time

it gives more scope to the density of the fluid to increase to high value for small r in the neigh-

bourhood of the star thus increasing Mc
M . One can also conclude this by drawing density profile

of fluid in Bondi accretion for different s. This explains the Fig. 5.17. For x < xc, gravitational

force due to medium is much smaller than that due to the star which is obvious from inequality

(33). With increasing distance from the star, the gravitational force due to the medium begins

to become significant. It becomes equal to the gravitational force due to the star at x = xi ( see

figure (5.19)).
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x i
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Figure 5.19: xi
x∞

is plotted against s. xi
x∞

does not have any γ and
E dependence.

Using Gauss’s law, the total mass of the medium extending from the surface of the star to

xi is equal to the mass of the star. For s=1, xi
x∞

=1, s < 1, xi
x∞

is undefined and s > 1, xi
x∞

<1 for

obvious reasons. For s ≥ 1 or s. 1, at x . xi, the method of iteration starts to become invalid.

For x ≥ xi, this method is invalid. In other words, xi is roughly the upper limit up to which the

Mach number plotted against radial distance from the stellar surface is more or less correct. Fig.

5.20 implies that with the increase in s, one gets less information about the phase portrait of the

whole medium. If the Mach number is plotted against radial distance from the accretor with a

upper limit of dimensionless radial distance, xu << xi then it is correct.
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Figure 5.20: xi
xb

is plotted against s for different γ

Fig. 5.20 shows linear dependence of xi
xb

on s. In Fig. 5.14, xu = 2xb, s=3 and γ =1.41.

It is needless to say that the parameters in the figure (5.14) does not violate xi >> xb because

in figure (5.20), we see that at s = 3, xi
xb
∼ 100. Fig. 5.14 comes same even if the 3rd term in

the numerator of equation(5.16) is not considered because from Fig. 5.17, Mc
M is of the order of

10−6.

5.11 Behaviour in relatively higher values of s

From equation (5.34), for a fixed value of Q and γ , the extent of the medium increases with s

and from Fig. 5.17, one can intuitively argue that Mc
M has a tendency to have very small value for

large value of s. Fig. 5.16 shows a monotonically increasing behaviour of ψmed
ψstar

with s and also

the slope of each curve corresponding to each γ has monotonically decreasing behaviour with

s. Qualitatively, one can say that ψmed
ψstar

will certainly have higher value for relatively large s but

the increment of of ψmed
ψstar

will be very small in that range. Fig. 5.8, Fig. 5.9 and Fig. 5.10 also

indicate same kind of behaviour in the changes of the critical parameters. The following table

shows relatively large s behaviour. The following table gives some quantitative ideas about this

fact.

Critical parameter g is greater than the other parameters. In the section 5.19 this issue is

discussed in details. f comes smaller than the calculated value (from equation (5.30)), i.e; f

varies slowly with s at the range of relatively large values of s. The parameters corresponding

99



Chapter 5. Steady State Transonic Solution of self-gravitating spherically symmetric
accretion

s γ f g h Mc
M

ψmed
ψstar

xi
x∞

xb
x∞

xi
xb

1.33 2.866 9.212 4.550 1.4875×10−8 0.0219 0.262 0.000273 960.761

55 1.41 2.8658 7.349 2.768 4.512×10−9 0.0134 0.262 0.0001676 1566.192

1.5 2.8656 5.987 1.464 1.086×10−9 0.00716 0.262 1.66×10−5 2942.03

1.33 2.888 9.286 4.586 4.613×10−9 0.022 0.215 0.0001515 1420.325

100 1.41 2.8878 7.4088 2.7898 1.3992×10−9 0.013556 0.215 9.2972×10−5 2315.161

1.5 2.8877 6.0356 1.4759 3.36729×10−10 0.007219 0.215 4.95×10−5 4348.675

1.33 2.906 9.348 4.616 5.2318×10−10 0.0222 0.1493 5.084×10−5 2936.422

300 1.41 2.906 7.4579 2.80796 1.58667×10−10 0.0136 0.1493 3.1197×10−5 4785.944

1.5 2.9059 6.07548 1.485 3.818×10−11 0.00726 0.1493 1.66×10−5 8988.9839

1.33 2.9097 9.3607 4.6224 1.891×10−10 0.02226 0.12593 3.05×10−5 4122.938

500 1.41 2.9096 7.46777 2.8116 5.735×10−11 0.01366 0.12594 1.874×10−5 6719.59

1.5 2.9096 6.0835 1.487 1.38×10−11 0.00727 0.12595 9.98×10−6 12620.49

1.33 2.912 9.37 4.6269 4.7427×10−11 0.0223 0.09996 1.52877×10−5 6539.18

1000 1.41 2.912 7.475 2.814 1.4382×10−11 0.01367 0.09997 9.38086×10−6 10657.31

1.5 2.912 6.0896 1.4888 3.461×10−12 0.00728 0.09998 4.995×10−6 20015.73

Table 5.1: Variation with s.

to the validity of iteration method comes good, i.e; the method of iteration is also valid for

relatively large s. xi
x∞

decreases with s, i.e; we’ve less insight about the dynamics of the whole

medium at large s. With increasing s although the total mass of the medium is increased but the

medium is still lightly dense because of the increase in r∞ and decrease in ρ∞ with s. That’s why

the method of iteration is still valid at large s and also f, g and h do not attain large values at this

range. Close observation at the table reflects the fact that not only f but also the other critical

parameters varies slowly at relatively values of s or in other words the curves corresponding

to f, g and h flatten at large s. f, g and h approach value 2.91, 7.48 and 2.814 respectively for

γ = 1.41. For smaller γ these values are bigger and for higher γ these values are smaller. ψmed
ψstar

shows similar behaviour with s. The curves corresponding to ψmed
ψstar

also become flat at large

s giving the possibility of the method of iteration to be valid even at larger s (> 1000). ψmed
ψstar

approaches value, 0.014 for γ =1.41 and smaller values correspond to γ greater than 1.41 and

larger for γ less than 1.41. The above figure shows that ψmed
ψstar

varies linearly and also most of the

variation occurs for small s. This figure depicts the fact that the critical parameter, f converges to

a finite value with increasing s and also method of iteration is valid even at large s because with

increasing s, ψmed
ψstar

does not attain arbitrarily large value rather it tends to converge to a value

smaller than 1. g and h also show similar behaviour. That’s why observing large changes in

critical parameters in the frame work of the method of iteration is not possible.
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Figure 5.21: ψmed
ψstar

is plotted against f for γ=1.41. The areas
under the discrete lines are shaded to distinguish the behaviour
in several ranges of s.

5.12 Isothermal Flow

5.12.1 About isothermal flow

The case where the medium maintains uniform temperature in throughout the whole region of

space. The barotropic equation for isothermal fluid is

p = Kρ (5.35)

where K is a constant.

K =
kBNAT

MA
(5.36)

where kB is Boltzmann constant, NA is Avogadro number (6.023× 1023), T is the constant

temperature of the single component fluid ( we assume the fluid to be of single component for

simplicity. In principle, one can consider multi-component fluid. Since we are not considering

the thermal effect in the accreting medium in the model (just like Bondi did [9]), i.e. thermal

ionization governed by Saha equation [113] is not taken into the model. We assume one compo-

nent medium which is a good approximation in predicting the dynamics of the flow [9] within

reasonable precision. Putting γ = 1 in the previous sections do not give full results. The isother-

mal case is thermodynamically a quite different process from the adiabatic one. Irrespective of
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this fact, we will see substantial differences between adiabatic case and isothermal case in the

following discussions.) and MA is molar weight of the fluid. Sound speed is given by

c2
0 =

(
∂ p
∂ρ

)
T
= K (5.37)

The above equation implies that the sound speed is constant along the flow.

the Bernoulli’s constant (derived from Euler’s momentum conservation equation and assuming

steady flow), b is given by

b =
v2

2
+ c2

0ln(ρ)+ψ(r) (5.38)

where,

ψ(r) =−GM
r
− 4πG

r

∫ r

R?

ρr2dr−4πG
∫ ∞

r
ρ(r)rdr

At a large distance from the star the potential energy terms are negligibly small, one can write

v2

2
+ c2

0ln(ρ)+ψ(r) = c2
0ln(ρ∞) (5.39)

The second term in the above expression (the term corresponding to the integral
∫ d p

ρ
) makes

isothermal case to hugely differ from the adiabatic one. Some dimensionless quantities are

defined as below

x =
r

GM
c2

0

,y =
v
c0
,z =

ρ

ρ∞

Equation (5.39) can be written in terms of dimensionless variables,

y2

2
+ ln(z)− 1

x
−α

(
I1

x
+ I2

)
= 0 (5.40)

where α = 4πρ∞G3M2c−6
0 , I1 =

x∫
x∗

zx2dx and I2 =
∞∫
x

zxdx with x∗= R?

(GM
c2
0
)
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The mass accretion rate is obtained by integrating the continuity equation,

Ṁ = 4πr2
ρu = 4π(GM)2c−3

0 ρ∞x2yz

Dimensionless mass accretion rate,

λ = x2yz (5.41)

Equation (5.40) can now be written as

λ 2

2x4z2 + ln(z)− 1
x
−α

(
I1

x
+ I2

)
= 0 (5.42)

5.12.2 Critical Parameters

The critical points are calculated similarly by optimizing accretion rate (described earlier in

section 5.3). Similarly it can be shown that at the critical point Mach number is unity. The

critical points are
xc

xb
= (1+αI1c) (5.43)

zc

zb
= exp(−2)exp

(
2

1+αI1c
+α

(
I1c

xc
+ I2c

))
(5.44)

λc

λb
=

(
xc

xb

)2 zc

zb
(5.45)

The meaning of the notations are same as before. It is also worth mentioning that putting γ = 2

in equation (5.12), does not give equation (5.44).

Radius of transonic surface increases.

The critical points corresponding to Bondi accretion are

xb = 0.5

zb = exp(1.5)

λb = 0.25exp(1.5)

Similarly it can be shown that Mach number at the critical point, yc is unity.
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5.12.3 Equation of Motion

It can be derived in the same way as discussed in the section 5.4 that

dv
dr

=
(

2c2
0

r −
GM
r2 − 4πG

r2

∫ r
R?

ρr2dr)

(v− c2
0
v )

(5.46)

The equation takes 0/0 form at r=rc where rc is the radius of the transonic surface. Applying

L’Hospital rule at the critical point

dv
dr
|criticalpoint =±

√
−

c2
0

r2
c
+

GM
r3

c
+4πG

I1c

r3
c
−2πGρc. (5.47)

I1c and I2c in the expressions can now be evaluated by using method of iteration as discussed

before.

5.12.4 The limits of the integrals

The radius of the star appears in I1c and I2c as lower limit and upper limit respectively. This

issue is discussed in details in section 5.6. x∞ appears as upper limit in the integral I2c. The

dimensionless potential energy terms appearing in the equation (5.40) is negligible at x=x∞. We

choose a small quantity, Q as negative potential energy at x=x∞. Q=Q1+Q2, where

Q1 =
1

x∞
(5.48)

and

Q2 = α(
I1∞
x∞

) (5.49)

where

I1∞ =
∫ x∞

x?
zx2dx

Q1 has to be chosen in such a way that the dimensionless kinetic energy of the fluid y2

2 is
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negligible there. The third term in the potential energy does not appear due to obvious reasons.

One can find x∞ from equation (5.48) and density of the fluid at infinity can be found from

equation (5.49).

ρ∞ =
Q2x∞c6

0
4πG3M2I1∞

(5.50)

We define a dimensionless quantity, s as

s =
Q2
Q1

(5.51)

s gives the mass ratio of the medium and the accretor. The mass of the medium is calculated

using density profile in Bondi accretion.

5.12.5 Changes in Critical parameters

The inputs of the problem are temperature (T) of the fluid, mass ratio of the medium and the

accretor (s) and (Q). It is observed that the changes in the critical parameters don’t depend on

the temperature of the fluid. We set Q to be 0.02 and temperature of the medium, T to be 300◦K

(any temperature can be chosen as there is no temperature dependence of the shift in critical

parameters). Figure 5.22 shows the variation of percentage change in radius of the transonic

2×10−5

4×10−5

8×10−5

10−4

s
0 1 2 3 4 5

f

Figure 5.22: Percentage change in radius of transonic surface,
f= xc−xb

xb
×100
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surface with s. The increment in radius of transonic surface is extremely small. One can safely

ignore the change in xb. Inclusion of fluid mass does nothing to the radius of transonic surface.

This is a difference from the previously considered adiabatic case.

fitting curve
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Figure 5.23: Percentage change in accretion rate, h=λc−λb
λb
×

100 is fitted with a curve.

In the figure 5.23, the data points corresponding to the changes in mass accretion rate with s

is fitted with a curve fitted up to a upper bound in s which is 5. The equation of the fitting curve

is

h = a+b ln(s) (5.52)

where a=1.5553 and b=0.583462. h=0 for s=0.0695. The h values of the figure 5.23 does

not match quite well according to the figure 5.10 because of the aforementioned differences

between isothermal case and adiabatic case. We don’t have to consider inclusion of fluid mass

if s ≤ 0.06955. Percentage change in zb is same as percentage change in λb because xb does not

change. It is clear from equation (5.45). Another mentionable point is that f is same as the mass

ratio of the medium (extending from the surface of the star to the transonic surface) and the star.

Figure 5.22 simply shows that at the transonic surface the gravitational field due to the medium

is negligible compared to the gravity due to the accretor.

The method is still valid for large values of s. The variations become small at the range of

relatively larger values of s.

h converges to 3.04 and ψmed
ψstar

converges to 0.015 at the range of relatively larger s. This is

large s behaviour, it does not match with equation (5.22) and figure 5.23.
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Figure 5.24: Variations of ψmed
ψstar
×103 and h in different ranges

of s. The areas under the discrete lines are shaded to distin-
guish the behaviour in several ranges of s.

As the percentage increment in the radius of transonic surface is negligible, the Mach number

vs radial distance profile isn’t shown for brevity.

5.13 Role of self-gravity

In course of time, fluid is deposited on the star and thus the mass of the star is changed. The main

problem has actually explicit dependence on time. The whole analysis here is done assuming

steady state dynamics. Mass accretion rate for adiabatic flow (calculated from section 5.3 and

section 5.2) is given by

Ṁγ = 4π(GM)2c−3
s∞ ρ∞x2

bybzb(1+0.01h)

= 4π(GM)2c−3
s∞ ρ∞z

γ+1
2

b x2
b(1+0.01h) (5.53)

The last term in the product corresponds to the effect of inclusion of fluid mass. Taking M to be

1 solar mass, density of the medium at infinity to be 5.45153×10−20kg/m3 (one can definitely

work with less precision), E (in c2 unit) to be 1×10−11, γ to be 1.41 and s=3 (These are the

values taken to plot the Mach Number profile), Ṁγ comes to be 3351.465×1010 kg/s.
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Mass accretion rate for isothermal flow (section 5.13)

Ṁisothermal = 4π(GM)2c−3
0 ρ∞x2

bzb(1+0.01h) (5.54)

Taking mass of the star to be 1 solar mass, density of fluid at infinity 1.22×10−18kg/m3, s=3 and

the temperature of the fluid 300◦K, the mass accretion rate for isothermal flow is 7855.104×1010

kg/s.

The Sun’s mass loss per second due to radiation is 0.427×1010 kg/s [115] which is negligible

compared to the mass gain due to accretion process.

As radius of the transonic surface is proportional to the mass of the star, 1 percent change in

mass of the star changes it by 1 percent. 1 percent change in radius of the transonic surface due

to accretion rate is comparable to the decrease in radius of transonic surface due to inclusion of

fluid mass effect in case of adiabatic flow.

Equation (5.54) shows that

∆Ṁisothermal

Ṁisothermal
= 2

∆M
M

1 percent change in the mass of the star changes the accretion rate by 2 percent which is compa-

rable to the change in accretion rate due to inclusion of fluid mass in the picture.

Self gravity becomes as significant as inclusion of fluid mass effect in the picture if the observa-

tion time is such that within that time interval 1 percent change in mass of the star occurs due to

accretion process. 1 percent change in mass of the star occur within the time interval τ .

τ ∼ 0.01M
Ṁ

(5.55)

τ comes to be 0.188 billion years for adiabatic flow and 0.08 billion years for isothermal flow. τ

gives the upper bound in time after which one needs to consider the change in mass of the star to

compute sonic point. One has to reset the mass of the star to (M+0.01M) after time τ . The age

of our universe is 13.6 billion years [116] and the age of most of the stars vary from 1 billion
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years to 10 billion years. The age of the Sun is 4.6 billion years [117]. If the observation time

is of the order of age of the star then self-gravity effect has to be considered but still 188 million

or 80 million is a large time span.

5.14 Relation between f, g, h

For adiabatic flow the changes in the critical parameters are found to be small in the frame of

method of iteration. Mathematically

δxb

xb
<< 1,

δλb

λb
<< 1,

δ zb

zb
<< 1

Now using expression λ 2
b = z(γ+1)

b x4 in section(5.3),

2
δλb

λb
= (γ +1)

δ zb

zb
+4

δxb

xb
(5.56)

Multiplying the above expression by 100,

2h = (γ +1)g−4 f (5.57)

This the relation among the percentage change in critical parameters. Rearranging,

g =
2

(γ +1)
(h+2 f ) (5.58)

In the range of γ (1.33 to 1.66), g is always greater than f. Numerical results show that g is also

greater than h. Numerical results show that f does not depend on γ and h decreases with γ and

from the above expressions, g decreases with γ .

Similarly for isothermal flow using λb = x2
bzb,

h = 2 f +g (5.59)
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Our previous analysis shows that f is negligibly small, so

h≈ g (5.60)

5.15 Summary and Conclusions

We have studied the effect of inclusion of fluid mass in non relativistic spherically symmetric

accretion. We haven’t considered the growth of the accretor during the process of accretion.

We have considered steady flow of infalling fluid and the accretor to be a candidate of Main-

sequence stars. One can do the same analysis by considering any type of stars if general rela-

tivistic features don’t play significant role.

We have designed a methodology to find the changes in spherically symmetric accretion when

fluid mass is taken into account. We have set Q, i.e; the precision of the problem and then we

have considered several accreting systems by choosing the input parameters. We may have in

general several inputs as: mass M of the accretor, γ of the fluid, energy E or constant tempera-

ture T (for isothermal flow) of the fluid, density of the fluid at infinity ρ∞, the mass ratio of the

medium and the accretor and the extent of the medium r∞ etc. Now according to our methodol-

ogy after fixing Q when we take s into account that in return fixes the extent of the medium r∞

according to the input energy E. ρ∞ is then fixed in accordance with γ (4/3 to 5/3 for adiabatic

flow and 1 can be taken for convenience in the case of isothermal flow), E (for adiabatic flow)

or T (for isothermal flow) of the fluid. In a summary, when the five input parameters M, Q, s,

γ and E or T of the problem are given r∞ and ρ∞ are eventually fixed. r∞ and ρ∞ are no longer

independent input parameters. This five input parameters contain the informations about ρ∞ and

r∞. One can start in other way round like by taking input parameters, r∞ and ρ∞ first and then

setting Q of the problem. In that case, our 5 independent parameters would be M, Q, γ , r∞ and

ρ∞. Then one can find the changes in the critical parameters by varying r∞ and ρ∞. That will

be another way of looking at the same problem. Similarly, one can have other several ways of

looking at the same problem.

Now if an arbitrary accreting system is given in such a way that some input parameters are

known then at first we have to check that the known input parameters are sufficient to find any
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solution or not and if the given input parameters are sufficient to analyse the system then we

have to find the precision Q and if Q is close to 1 (the potential energy terms are not negligible

at the boundary of the medium) then the system is outside of our formalism. Otherwise, s of

the problem has to be found. If s of the problem is too small (s lies within the range where test

fluid approximation is valid) then one can safely proceed without including fluid mass effect

otherwise one has to proceed by following the procedure discussed in the above sections.

Using this methodology, we have compared the results with the usual spherically symmetric

Bondi flow and we have found that inclusion of fluid mass changes the nature of flow of the

infalling fluid. Mass accretion rate is increased for adiabatic flow as well as for isothermal flow

and radius of the transonic surface is decreased for adiabatic flow when fluid mass comes into

the picture.

This methodology deals with small changes in critical parameters due to inclusion of fluid mass

effect to get at least a little insight into a more realistic problem where the mass of the medium

plays important role. In the next chapter, we will see that when we consider the effect of

gravity of the medium in the spherically symmetric accretion under Newtonian gravity, we find

instabilities, and the medium becomes dispersive in nature under linear perturbation. Therefore,

considering a more realistic situation, we find that the very assumption about the nondispersive

nature of the medium breaks down. To consider the full scheme, we need to consider the back

reaction, i.e. the growth of the accretor over time. In that case, there will be no steady state

solution of the fluid equations.

Therefore, due to the gravity of the medium, the radius where speed of the medium exceeds the

speed of sound is decreased. In the next chapter, we will be considering linear perturbation over

the steady state solution of this model.
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Chapter 6

Instabilities in nonrelativistic spherically

symmetric self-gravitating accretion

Most of the contents of this chapter are taken from our work on instabilities in Bondi flow with

self-gravity [121]. There are existing works [111], [120] on the correction over the steady state

solutions of Bondi accretion [9] due to the effect of gravity of the accreting medium. We linearise

density, velocity of the flow to analyse the stability of such steady state solutions. Transonic ac-

cretion for inviscid irrotational accretion models are natural systems where analogous blackhole

horizon like effect, i.e. acoustic ‘dumbhole’ appears to be an emergent phenomena through lin-

ear perturbations in certain quantities like mass accretion rate, the Bernoulli’s constant etc [68],

[78], [119],[122]-[124]. So far such works are done for non-self gravitating models of accretion,

here we study the changes if the effect of the gravity of the accreting medium is considered. On

the other hand, linear perturbations are introduced in such system to analyse the stability of the

existing steady state solutions [78], [119], we study the stability of such accretion models, and

we find that there are some changes due to the effect of inclusion of the gravity of the medium.
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6.1 Spherically symmetric self-gravitating accretion model

For steady flow in the system considered in the previous chapter, the conserved quantity arising

from the continuity equation is mass accretion rate, given by

Ṁ = 4πr2
ρv. (6.1)

The steady state solution of this model is considered details in the articles [111], [120].

6.2 Linear perturbation in the system

From now on, we denote the steady state velocity, density, pressure in the medium as v0(r), ρ0(r), p0(r)

respectively.

Introducing linear perturbation in the flow, as

v(r, t) = v0(r)+ v(r, t)′, (6.2)

ρ(r, t) = ρ0(r)+ρ(r, t)′. (6.3)

As pressure, p is a function of density only, p is also perturbed in linear order. Writing the full

continuity and Euler equation as

∂ρ

∂ t
+

1
r2

∂

∂ r
(ρvr2) = 0, (6.4)

∂v
∂ t

+ v
∂v
∂ r

=− 1
ρ

∂ p
∂ r
− GM

r2 −
4πG

r2

∫ r

R?

ρr2dr. (6.5)

Defining a quantity, proportional to the mass accretion rate ( we introduce this quantity for

simplicity, one can in prionciple work with Ṁ as well) as

F =
Ṁ
4π

= ρvr2. (6.6)
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In the steady state, F is a conserved quantity, F0 = ρ0v0r2, under linar perturbation,

F = F0 + r2(ρ0v′+ v0ρ
′) = F0(r)+F ′(r, t). (6.7)

Therefore, in the continuity equation, equating the terms in the first order of smallness, we have

∂ρ ′

∂ t
=− 1

r2
∂F ′

∂ r
. (6.8)

Unlike the non self-gravitating case, after linearising the Euler equation, we have terms from

the gravitational field because the last term in equation (6.5) of the gravitational force, i.e. the

gravitational force due to the medium, involves density. Now using the Euler equation in linear

order and the above equation, we have a wave equation for F ′, given below

∂µ( f µν(r)∂ν)F
′(r, t)+

4πG
r2 F ′(r, t) = 0, (6.9)

where

f µν(r) =
v0

F0

−1 − v0

−v0 c2
s0− v2

0

 . (6.10)

f µν(r) can be related to the acoustic metric [78], [119], [122] as emergent phenomena in the sys-

tem. The timelike killing vector (as the acoustic metric is time independent), becomes spacelike

as v0 > cs0, i.e. after crossing the critical point or sonic point (in the case of transonic accretion

solution) from subsonic region to supersonic region. Therefore, the radius at which v0 = cs0 for

transonic accretion, can be identified as ’dumbhole’ horizon [5]. The paper [120] shows that the

sonic point is shifted towards the accretor due to the inclusion of the gravity of the accreting

medium, therefore the dumbhole horizon has smaller radius than that of in non-self gravitating

transonic Bondi accretion solution. The second term in the wave equation is arising due to the

inclusion of self-gravity; therefore, it can be considered as an interaction term between the per-

turbation in the medium with the gravity of the medium. The inverse square nature in the second

term is due to the Newtonian inverse square gravity. The presence of this new term modifies the
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dispersion relation, using Eikanol approximation [2], [5], we find

ω =
√

c2
s0k2−4πGρ0± v0k. (6.11)

The above dispersion relation (in a reference frame which is moving with the medium) ω − k

is a hyperbolic curve. In this connection we refer to Fig. 1 of our work [142] (not included in

the thesis). The only difference is that here the dispersion relation is locally valid around each

point in the moving frame, and about ’locally’, the issue is discussed in details in chapter 7.

Therefore, for the stability of such high momentum wave propagation,

k ≥
√

4πGρ0

cs0
∀ r in the flow. (6.12)

This criteria is very similar to the Jeans instability criteria [40], except for the fact that ρ0 is a

function of r. The stability criteria is also compatible with the Eikanol approximation of high

momentum wave. To find the minimum possible k, kmin for which the solution is stable, one has

to investigate the function
√

4πGρ0
cs0

. For isothermal flow, cs0 is constant and from the background

solution of the accretion flow [120], [9] (discussed in the previous chapter), ρ0 is maximum at

the surface of the star, ρ0∗. Therefore, for isothermal flow, for stability at all radii in the flow,

kmin =

√
4πGρ0∗

cs0
. (6.13)

This is the stability condition at all radii; for wave number less than kmin, the flow becomes

unstable near the surface of the star. The corresponding value of maximum possible value of λ ,

λmax for stability,

λmax =

√
πc2

s0
Gρ0∗

. (6.14)

For adiabatic flow, p = F(ρ) = kργ , where k is a constant related to the specific entropy [42], γ

is the specific heat ratio; 4
3 < γ < 5

3 . From the expression of sound speed, we get, the maximum

possible value of λ for all r,

λmax =

√
πγk

Gρ
2−γ

0∗
. (6.15)
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For instability, λmax has to be small enough so that the Eikonal approximation is also true.

Therefore, in both the cases instability arises from the medium near the surface of the accretor

for waves having wavelength above certain limit.

The expression of the group velocity from the dispersion relation,

vg =
∂ω

∂k
=

c2
s0k√

c2
s0k2−4πGρ0

± v0. (6.16)

Therefore, relative to the moving medium, the group velocity of such wave is

vg|medium =
c2

s0k√
c2

s0k2−4πGρ0

. (6.17)

Therefore, the dispersion relation is superluminal [5], i.e. the propagation speed ( the group

velocity) of linear perturbation is greater than the thermodynamic speed of sound. For relatively

high momentum wave, v′g is closer to the thermodynamic sound speed. Shorter wavelength

perturbation has less speed. Therefore, the acoustic horizon is not absolute in the model, rather

it depends on the wavelength of perturbation. The frequency dependence of the position of the

acoustic horizon is also there in the quantum model of Bose-Einstein Condensate [5]. Therefore,

this is a classical analogue model of gravity where such thing is observed.

6.3 Linear Stability Analysis of stationary solution

In the previous chapter, we discussed about steady state solution. We found the changes due

to the inclusion of gravity of the medium. Here we consider whether the steady state solution

considered in the previous chapter is stable under linear perturbation or not (as we did in chapter

4). We consider a trial solution of the form [78], [110] F ′(r, t) = Fω(r)eiωt . We have from the

equation (6.9),

ω2Fω f tt− iω[∂r(Fω(r) f rt)+ f tr∂rFω(r)]

−∂r f rr∂rFω(r)− 4πG
r2 Fω(r) = 0. (6.18)
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6.3.1 Standing Wave

A standing wave has vanishing amplitude of perturbation at two different radii, r1 and r2 (r1 <

r2), i.e. Fω(r1) = Fω(r2) = 0. Therefore, we have by integration

Aω
2 +C = 0, (6.19)

where

A =
∫ r2

r1
F 2

ω(r) f tt(r)dr, (6.20)

C =

∫
r2

r1
(∂rFω(r))2 f rr(r)dr−4πG

∫ r2

r1

Fω (r)2

r2 dr.

(6.21)

The expression of frequency is given by

ω
2 =−C

A
. (6.22)

The above equation gives the frequency of such standing wave solution, i.e. the frequency

depends on r1, r2 and the standing wave profile. Hence

ω2 = 1∫ r2

r1

F2
ω (r)

ρ0r2 dr

[∫
r2

r1
(∂rFω(r))2 (c2

s0−v2
0)

ρ0r2 dr
]

− 4πG∫ r2

r1

F2
ω (r)

ρ0r2 dr

[∫ r2

r1

Fω (r)2

r2 dr
]
. (6.23)

The above expression implies that, if both the nodes (at r1 and r2) of such wave lie within the

supersonic region of flow ( the region where v0 > cs0), the stationary flow is unstable (instability

implies ω2 < 0 ) under such perturbation which is also seen in the non self-gravitating case [78],

[110]. In the supersonic region, it is not possible to spatially constraint the perturbation such

that at two different radii, it vanishes at all time. In the subsonic region stability depends on the

two competing terms of the above equation.
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For stability, ω2 > 0∫
r2

r1

(∂rFω(r))2 (c
2
s0− v2

0)

ρ2
r

dr ≥ 4πG

∫ r2

r1

Fω(r)2

r2 dr. (6.24)

The magnitude of Fω(r) has to be such that the assumption about the linearity of perturbation is

valid. As r increases, |∂r(Fω(r))| decreases due to stretching because we assume that between

two radii, there is not a single point where, Fω(r) vanishes. Therefore, assuming that the

two nodes are separated by a long distance, in the bulk region (region around the middle of

the two nodes), ∂r(Fω(r)) is practically zero, making the integrand in the left hand side to

zero. Assuming the integrals are finite at all points, if the separation between the two nodes

increases, the left hand side of the above equation does not increase much as compared to the

right hand side of the above equation. Therefore, after a certain limit (depending on Fω(r))

of distance between the two nodes, stability would not be maintained. Hence, the stationary

solution becomes unstable under such standing wave having wavelength greater than a certain

length. Therefore, due to inclusion of self-gravity in the system, it is not possible to maintain

standing wave with vanishing amplitude at large separation.

6.3.2 Radially Travelling Wave

The background stationary solution is smooth and continuous at all radii. The background quan-

tities appearing in the linear wave equation, equation (6.18) are smoothly varying, hence we

make use of WKB (Wentzel-Kramers-Brillouin) method [113] to find solution for Fω(r). We

seek solution of the form,

Fω(r) = A(r)eiθ(r), (6.25)

where A(r), the amplitude, is a slowly varying function of r, i.e. it varies slowly compared to

θ(r) [113]. Therefore, the solution gives more accuracy for short wavelength, i.e. in the high

frequency limit.
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Plugging such solution in equation (6.18), the real part and the imaginary part gives respectively

ω2A f tt +2Aω f rtθ ′− f rr(A′′−Aθ ′2)

−A′∂r( f rr)− 4πGA
r2 = 0, (6.26)

ωA∂r( f rt)+2ω f rtA′+ f rr(2A′θ ′+Aθ ′′)

+Aθ ′∂r( f rr) = 0, (6.27)

where A′ = dA
dr , θ ′ = dθ

dr , A′′ = d2A
dr2 , θ ′′ = d2θ

dr2 . From equation (6.27), we find

A2(ω f rt +θ
′ f rr) = constant. (6.28)

Neglecting the term A′′, A′∂r( f rr) in the equation (6.26) (∵ A(r) is slowly varying and the

background quantities are slowly varying with r in comparison to θ(r)), we find

θ
′ =
−ω f rt±ω

√
( f rt)2− f tt f rr + 4πG f rr

ω2r2

f rr . (6.29)

Therefore,

A(r) =
C(

ω

√
( f rt)2− f tt f rr + 4πG f rr

ω2r2

) 1
2
, (6.30)

where C is a constant depending on the initial condition on Fω(r). Putting the values, we get

θ
′
± =

ωv0±ω

√
c2

s0 +
4πGρ0(c2

s0−v2
0)

ω2

c2
s0− v2

0
(6.31)

and

A(r) =C

 ρ0r2

ω

√
c2

s0 +
4πGρ0(c2

s0−v2
0)

ω2

 1
2

. (6.32)
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Therefore, the complete solution can be written as

F ′(r, t) =

 ρ0r2

ω

√
c2

s0+
4πGρ0(c

2
s0−v2

0)

ω2

 1
2

eiωt

×

C+e
i

∫
r

θ ′+(r)dr
+C−e

i

∫
r

θ ′−(r)dr

 , (6.33)

where C+ is the amplitude corresponding to the travelling wave, propagating radially outward

and C− is the amplitude corresponding to the travelling wave, propagating radially inward. One

can easily see this by dropping the term due to the self-gravity in the above equations. Interest-

ingly, the amplitude of such wave is same as the amplitude of the travelling wave for non-self

gravitating case at v0 = cs0. The expression of θ ′± is same as k (in terms of ω and the back-

ground stationary quantities) in the equation (5.11). Therefore, the solution is stable for certain

limit in θ ′±. This is because, we are assuming high frequency wave; by WKB method, we get

the expression of the amplitude in addition. If we look at the frequency spectrum, we see that

the amplitude decreases with the increase in wavenumber.

Alternatively, one can solve the equation (6.18) in high frequency limit by taking a trial solution

of the form, given below

Fω(r) = exp

[
n=∞

∑
n=−1

Kn(r)
ωn

]
. (6.34)

This standard method of travelling wave analysis used in several literature [68], [78] and [110],

[119] would also give same solution found above. This is basically another way of implement-

ing WKB method.

Therefore in summary, we have investigated the time dependent problem in perturbative ap-

proach in the non-relativistic spherically symmetric accretion model in Newtonian gravity. We

find that the linear perturbation in mass accretion rate satisfies a wave equation with an interac-

tion term with gravity due to the inclusion of gravity of the infalling medium. From the wave

equation, we find the acoustic metric and we find that the interaction term with gravity in the

wave equation, modifies the dispersion relation. Unlike the non-self gravitating case, the disper-

sion relation is superluminal, and as a result of this the acoustic dumbhole horizon is not absolute

in our case, rather it’s frequency dependent. This is a classical analogue model of gravity where
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such thing is observed. The inclusion of the gravity of the medium, gives rise to instabilities

which are absent if the gravity of the medium is switched off.
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Chapter 7

Lagrangian description for accreting

astrophysical systems

7.1 Introduction

In the chapter 2, we discussed about the dependence between two conditions, i.e., irrotation-

ality condition and barotropic condition. In the introduction chapter, we derived the massless

scalar field equation of linear perturbation in velocity potential, and we drew the analogy be-

tween the massless scalar field equation in curved spacetime. In chapter 4, we discussed about

linear perturbation of other astrophysically significant quantities. In chapter 2, we also wrote

about the emergent gravity phenomena from the coordinate system of an observer moving with

the background velocity of the medium. We concluded that if the wavelength of the linear per-

turbations is very short (the Eikonal limit [36], [42]), the moving observer in the sufficient near

vicinity of them, will perceive the disturbance as sound wave propagating in a uniform medium;

hence in the near vicinity of that observer in motion, the emergent spacetime is flat, i.e, acoustic

Minkowski spacetime. Therefore, this reference frame is similar to the local inertial frame in

general Theory of relativity. In this chapter, we consider the astrophysical accretion models to

work with some realistic examples and we introduce a procedure to find a rough estimate about

the wavelength of Eikonal waves originated at different positions, such that moving (with the

background flow) observers at those positions in the medium, observe the wave to propagate just
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like waves in a uniform static medium (in the neighbourhood of those observers). The contents

of this chapter is taken our work on LPT in the context of emergent spacetime [118].

7.2 Astrophysical accretion model

In chapter 3, we have discussed about steady state solutions in conical accretion disk model

for barotropic flow under pseudo-Schwarzschild potential and under pseudo-Kerr potential. In

the chapter 4, we have discussed about emergent gravity in accretion models through linear

perturbation. We have shown that the linear perturbation of more astrophysical significant scalar

quantity, the Bernoulli’s constant, also satisfies the massless scalar field equation from which one

derives the acoustic metric. We have concluded in the chapter 4 that linear perturbation of the

conserved quantities (conserved in steady state flow), i.e, mass accretion rate, F (arising from

continuity equation) and the Bernoulli’s constant, ζ (arising from Euler equation), gives rise to

emergent gravity in the time dependent case. In reference to the chapter 2, we can introduce

Lagrangian description of perturbation of these quantities, as

∆ζ = ζ
′+δ .∇ζ0 = ζ

′ (∵ the background flow is steady, ζ0 is constant) (7.1)

∆F = F ′+δ .∇F0 = F ′ (7.2)

Therefore, the

∂µ( f µν(x)∂ν)ζ
′(x, t) = 0

⇒ ∂µ( f µν(x)∂ν)∆ζ (x, t) = 0 (∵ ∇ζ0 = 0) (7.3)

Similar equation holds for the mass accretion rate too. Therefore, the linear perturbation of the

conserved quantities in Lagrangian Perturbation Theory in the time dependent case, gives rise

to emergent gravity too.
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7.3. Estimation of the wavelength of the perturbation

7.3 Estimation of the wavelength of the perturbation

As we have already discussed in chapter 2 that eikonal wave does not see the conformal factor in

the acoustic metric, therefore, we have in the frame of the observer moving with the background

speed of the medium; the metric (equation 2.31),

ds2|geometric = g̃µν(x′, t ′) dx′µdx′ν =
(
−
(
c2

s0− (v0−V)2)dt ′2−2(v0−V)dt ′.dx′+dx′2
)
(7.4)

In the near vicinity of the observer v0 ∼ V, therefore, we can set a very small quantity;

|v0−V|= εV , (7.5)

where ε is a small dimensionless number (<< 1) and V is a quantity having dimension of speed,

we choose this quantity according to the speed scale of the problem. We estimate the measure

of the length around the observer over which the background speed of the medium differ by

εV , this length l gives the measure of the wavelength of the eikonal wave. Therefore, in the

near vicinity of the observer, the acoustic metric of the emergent spacetime is effectively flat

for waves having such short wavelength (≤ l). In other word, the speed of sound is same in all

direction within this length l, and to realize such effect the wavelength of the linear disturbance

has to be ≤ l.

7.4 Conical Adiabatic Flow

The conical disk model is preferred than other models [73], [75] because it is more realistic than

constant height disk accretion model and simpler than vertical equilibrium model. Therefore,

we choose to work with this model only. In connection to chapter 4, we can write the acoustic

metric in geometric limit, as

ds2|geometric =
(
−(c2

s0− v2
0)dt2 +2v0(r)dtdr+dr2) , (7.6)
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where r is cylindrical polar coordinate. The technique of finding, v0 = v0(r) and cs0 = cs0(r)

under Pseudo-Schwarschild and Pseudo-Kerr potential, is discussed in chapter 3. Therefore,

we can design the acoustic metric in such flow depending on the parameter set: [ζ , γ, λ , a].

Let us consider an observer, moving along the x− axis towards the accretor sitting at the origin.

The observer is moving with the background speed of the medium. Therefore,according to the

Galilean transformation given in chapter 2:

x = x′+R−
∫ t

V (R, t)dt, (7.7)

t = t ′, (7.8)

y = y′, (7.9)

As the observer moves towards the accretor, V (R, t) takes the value of the speed of the

background medium. The initial distance of the observer is R. After making a coordinate trans-

formation of the acoustic metric 7.6 to the Cartesian coordinate in two dimension (because the

radial flow is happening on the disk plane), we have (cs0 and v0 are scalar by definition)

ds2|geometric =−(c2
s0− v2

0)dt2 +2v0dt(cosφdx+ sinφdy)

+(cos2φdx2 + sin2φdy2 + sin2φdxdy), (7.10)

where

cosφ = x√
x2+y2

(7.11)

sinφ = y√
x2+y2

. (7.12)

As the observer is moving along the x− axis, in the near vicinity of the observer, φ is roughly

zero, and also as we are considering wave which propagates along the radial direction. The

observer examines wave propagating on the x− axis, therefore

ds2|geometric =−(c2
s0− v2

0)dt2 +2v0dtdx+dx2, (7.13)
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From the observer’s reference frame, the above acoustic metric becomes

ds2|geometric =−(c2
s0− (v0−V )2)dt ′2 +2(v0−V )dt ′dx′+dx′2 (7.14)

In the near vicinity of the observer, along the x− axis |v0−V | = εV . Therefore, according to

the discussion in the previous section,

ds2|geometric =−(c2
s0− ε

2V 2)dt ′2 +2εV dt ′dx′+dx′2. (7.15)

Hence, considering the leading terms in the acoustic metric in the near neighbourhood of the

observer,

ds2|geometric =−c2
s0dt ′2 +dx′2. (7.16)

As we have shown in the Chapter 1, Introduction, that Eikonal wave follows null geodesic,

hence it propagates with same speed cs0 along positive x axis and negative x axis in the close

vicinity of the observer. Therefore, in the near vicinity of the observer, the emergent spacetime

is flat because the short wavelength of perturbation is measured in the accelerated reference

frame. Owing to the axial symmetry of the problem, any observer moving radially towards the

accretor, will have same conclusion while studying radially propagating wave. Now we estimate

the lengthscale l over which the speed of the background medium varies by εV to get an idea

about the wavelength of Eikonal wave at different radii to produce such effect. Therefore, it all

depends on how v0(r) varies with r. As we have shown in the chapter 2 that ∇ = ∇′, we only

try to find the variation in the reference frame fixed with respect to the accretor at the origin.

The faster the variation of v0 with r, smaller the length, l is. In the next section we numerically

compute l by considering suitable εV .
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7.5 Numerical Estimation of the wavelength

As we choose εV small enough, therefore we can relate the length l with step size (step length

to numerically solve the problem) of the problem h by the following manner;

l =
hεV

∆v
, (7.17)

where ∆v is the magnitude of change in background speed for the change of radial distance by

h. We work with magnitudes of change to get an idea about l. l = lc at the critical point (critical

point and sonic point are same in the case of conical flow (see chapter 3). We compute the

variation of log(l/lc) with radial distance. We present the variation in the following figures. We

denote the critical point by C in red in the following figures. We also show the speed variation

of the background medium with the radial distance to get an idea about how speed variation

influences l. In velocity profile, if there is/are a turning point/s, we choose the minimum value

of variation (taking into account variation of speed from both the increasing side and decreasing

side of r around the turning point/s) in background speed around the turning point to set εV .

If there is no turning point in the background velocity profile, we simply set εV = 0.001× vc,

where vc the speed of the background medium at the sonic point. It is quite evident that one

would get a good idea about the variation of l with r by choosing this methodology. We denote

the turning points in the figure as T 1, T 2.. We then vary the parameters of the problem ζ and

λ to see the variation in l at different regions of the parameter space (see figure 3.1 of chapter

3). First we work with pseudo-Schwarzschild potential (potential 2 of chapter 3) and then we

consider Pseudo-Kerr potential (potential 5 in the chapter 3).
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Figure 7.1: Background speed variation (top) and variation in l (bottom). Region in
the parameter space: region with single critical point relatively away from the accretor.
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Figure 7.2: Background speed variation (top) and variation in l (bottom). Region in
the parameter space: region with single critical point situated relatively away from the
accretor.
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Figure 7.3: Background speed variation (top) and variation in l (bottom). Region in
the parameter space: region with three critical points, transonic accretion curve passing
through the farthest (from the accretor) critical point. Formation of sharp peaks at the
turning points in the figure of l− r variation.
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Figure 7.4: Background speed variation (top) and variation in l (bottom). Region in
the parameter space: region with three critical points, transonic accretion curve passing
through the nearest (from the accretor) critical point. Formation of sharp peaks at the
turning points in the figure of l− r variation.
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Figure 7.5: Background speed variation (top) and variation in l (bottom). Region in
the parameter space: region with single critical point situated near the accretor.

Thus we cover each single region of the parameter space. The peaks form at the turning

points because the variation of the background speed becomes increasingly slow around the

turning points, thus resulting into sharp increase in the length l. We can categorise the event

in two divisions. The transonic accretion curve passing through the critical point situated away

from the accretor, belongs to one class, and the transonic accretion curve passing through the

critical point near the accretor belongs to the other one. This is in reference to figure 3.1. In the

above figures, we choose different εV for different set of parameter values (The way of setting

εV is described earlier). Now we try to figure out the dependence of l on parameter values.

Now we look at how the length lc depends on the parameter values by keeping εV fixed. From

equation 7.17,

lc =
εV

|q|
, (7.18)
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where q is the slope of velocity with respect to r at the critical point (see chapter 3). As εV is

chosen to be constant, l ∝ 1
|q| . We find the variation in 1

|q| with the parameter values. The figures
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Figure 7.6: 1
|q| vs λ , region: accretion curve passing through the critical point situated

away from the accretor (top) and 1
|q| vs λ , region: accretion curve passing through the

critical point situated near the accretor (bottom).

clearly show that the length l decreases with the increase of specific angular momentum and it

increases with the decrease in the Bernoulli’s constant.

7.5.1 Variation with the spin parameter of the pseudo-Newtonian poten-

tial

As the velocity profile [52] (considering Pseudo-Kerr potential) looks qualitatively similar to

the Pseudo-Schwarzschild case, we do not show the the variation of log(l/lc) with r, rather we

look at how blackhole spin influences lc in the following figures. Variation of lc with ζ is similar
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Figure 7.7: 1
|q| vs λ , region: accretion curve passing through the critical point situated

away from the accretor; the curves corresponding to different values of a stop at dif-
ferent λ because that’s the end of this kind of region in the parameter space (top) and
1
|q| vs λ , region: accretion curve passing through the critical point situated near the
accretor; the curves corresponding to different values of a start at different λ because
that’s the beginning of this kind of region (which is again the end of the mentioned
region in the top figure) in the parameter space (bottom).

to as before. The figures indicate that lc increases with the decreasing value of spin parameter, a.

If the observer moving with the background flow perturbes the medium at his locations at differ-

ent instants of time, and if the wavelength of such perturbations are small enough, within very

short time within very short distance from that observer the wave propagates with same speed

(the speed of sound in the static medium) along the possible directions. By ‘possible direction’,

we mean radially outward (from the accretor) and radially inward (towards the accretor) in the

Astrophyical models of accreting blackhole. Our aim has been to find the wavelength of such
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wave at different positions. We estimate a lengthscale (= l) such that wave having wavelength

less than or equal to l, propagates with same speed along the available directions. Therefore,

within a short time τ (= l
v0

, the time needed for that observer to cross that distance l. Within l, v0

and cs0 does not vary much), the observer can see the Eikonal wave propagating uniformly with

speed cs0(r) within that distance, l. Our main aim in the chapter has been to find the length l to

have an idea about the maximum wavelength of the Eikonal wave. Therefore, in the observer’s

reference frame, the Eikonal wave corresponding to this maximum wavelength, has time period,

T = l
cs0

(as evident from the dispersion relation 1.34). Hence, T
τ
=m with m being Mach number

at that point. Hence, 1
m represents the number of full cycles, to be measured by the observer such

that within the period of time τ . Waves having wavelength less than or equal to l has time period

less than or equal to T . 1
m is the lower bound of number of cycles (=N ) to be observed by the

moving observer to realize such effect. At the ‘dumbhole’ horizon, N = 1. Thus even if the

arbitrary choice of εV (depending on the choice of precision of the observer on the sensitivity

of the background quantities with distance) makes l arbitrary, we have found a concrete number

which represents the minimum number of cycles of such Eikonal wave to realise such effect (the

event of observing uniformly propagating sound along the relevant directions, as viewed by the

observer moving with the background flow). The variation of m with radial distance is discussed

in details in several works [28]-[30], [35], [52]. From this chapter, we can also have some gen-

eral qualitative beforehand idea (before doing any numerics) about how to find the variation of

l with r from a given velocity profile in general. For example, in the spherically symmetric

accretion (Bondi accretion), the speed of the background medium monotonically decreases with

r along the transonic accretion curve [9] with asymptotically decreasing slope. Therefore, l will

monotonically increase becoming more steeper with r. Again, if there is a extrema in a velocity

profile, in the figure of l− r, around that maxima or minima, there will be sharp peaks. For rel-

ativistic treatment, one needs to write down the fluid equations in covariant form and one needs

to consider the general relativistic LPT.
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Chapter 8

Further scopes and Discussions

We have considered astrophysical accretion models to produce the emergent spacetime geome-

try. So far, we have only discussed about the geometrical aspects regarding this phenomena. We

have not focused on the analogous Hawking radiation event from the analogue blackhole in the

astrophysical accretion models. As the emergent gravity models, represent the kinematic aspects

of the general theory of relativity, there will be analogous phenomena Hawking radiation. In the

accreting astrophysical system, analogue of Hawking radiation is studied in the literature [33].

The main focus of our thesis, have been to study the geometrical aspects of the analogue black

hole spacetime with application in the models of accreting astrophysical system.

The introduction of Lagrangian Perturbation Theory (LPT), gives additional features in the work.

Considering, the eikonal wave in the geometrical limit of acoustics, has given us a different per-

spective to look at the subject. Our analysis of LPT in the context of emergent gravity is so far

restricted to non-relativistic cases, general relativistic treatment can be done in principle. For

example, in the chapter-4, we introduced general relativistic accretion models and we studied

linear perturbation of Bernoulli’s constant, hvt over existing steady state solutions. The second

piece of the puzzle lies on the formulating the expressions for Lagrangian perturbations which

we introduced in the chapter-2. Basically, we have to redefine the relevant fluid quantities in a

suitable general relativistic fashion. In that case, we can even include astrophysical accretion

onto blackhole in the formalism of pure general relativistic treatment.

Inclusion of gravitational effect of the background medium, has added more realistic features in

the problem. As we have shown that due to the inclusion of gravity of the medium, makes it
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dispersive. This might make the problem little more intriguing, if Hawking radiation from such

dispersive medium is studied just like in [143].

One can also work with nonlinear perturbations. In one of our work [125] (not included in the

thesis), it is shown that weakly nonlinear wave in static fluid medium, produces emergent space-

time which has some similarities with gravitational wave propagating in a Minkowski spacetime.

There are also some works in the literature where nonlinear perturbation is studied in the models

of accreting astrophysical system [126]-[129].

We have not considered shocked accretion. Shocked flow in such models of Astrophysical ac-

cretion rise to multi-transonic accretion which produce coexisting analogue blackhole-whitehole

spacetime [33],[123][124]. There are also analogues of rotating blackhole [130][144], we can

also try to find such geometry in the astrophysical accretion models. The challenge of dealing

with rotational fluid is that the vorticity free (locally)-assumption gets modified. I have plans to

work with rotational fluid and to employ such methodology in the context of accretion models

as well.

Astrophysical accretion is a natural phenomena, the theme of our thesis has been to study emer-

gent gravity effect in some models of accretion. In a black hole accretion, there is an event

horizon corresponding to the background spacetime; as the surrounding medium is falling onto

the black hole, it also creates an emergent analogous black hole space time horizon of larger

radii. The physical nature of this acoustic spacetime metric (having the acoustic horizon), de-

pends on the velocity profile, density profile of the barotropic medium. The dynamics of the

medium again depends on the black hole space time. Thus the emergent spacetime has depen-

dence on the real space time too. We highlight certain features in the context of analogue gravity

in astrophysical accretion models. The accretion models, an example of a classical fluid sys-

tems, have been the subject of our thesis.

There are several works in the literature where analogue gravity effect is studied in quantum

fluids. For example in Bose-Einstein Condensate, a quantum fluid system, is a widely studied

candidate system to produce such emergent phenomena [131], [132]. BEC is by definition

inviscid which is an advantage over water like fluids in experiments. Low momentum excita-

tions over a condensate stationary state in dilute gases with strongly repulsive atomic interaction
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between two atoms, satisfying Thomas-Fermi (T-F) approximation of Gross-Pitaevskii equation

[133], give rise to emergent gravity. The recent exciting observation of detecting analogue of

thermal Hawking radiation and its temperature in BEC [134] from an one dimensional flow pro-

ducing a black hole horizon shows the practical possibility of experimental verifications of some

works in the field of emergent gravity in BEC.

In closing, we summarise by stating that accretion models not only describe a natural system

to study emergent gravity but also it produces the geometrical aspects of emergent spacetime

having ‘dumbhole’ horizon in an elegant fashion. It is a rich system from the perspective of dy-

namical systems theory. For example, existence of multiple critical points, existence of turning

points in velocity, makes the system interesting and worth studying in the context of the subject,

emergent gravity.
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