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SYNOPSIS

The following summary contains some of my works on Liouville numbers and Mahler

U -numbers during my stay at Harish-Chandra Research Institute as a research scholar.

In Section 2 (resp. in Section 3), we discuss some of the work done in the paper [24]

(resp. in [26]). In Sections 1 and 4, we discuss some of the work done in the paper [25].

1. Baire’s theorem and Liouville numbers
1.1 Definitions and some basic results. In this section, we discuss some

consequences for Liouville numbers from Baire’s Theorem. We start with the following:

Definition 0.0.1 (Liouville number). A Liouville number is a real number ξ such that,

for each integer n ≥ 1, there exists a rational number pn/qn with qn ≥ 2 such that

0 <

∣∣∣∣ξ − pn
qn

∣∣∣∣ ≤ 1

qnn
·

Following [17], any Liouville number is transcendental. The set of all Liouville numbers is

denoted by L. This set L is an uncountable, dense subset of R having Lebesgue measure 0.

Definition 0.0.2 (Gδ–subset). A Gδ–subset of a topological space X is defined to be the

countable intersection of dense open subsets of X.

One can easily see that, L is a Gδ–subset of R.

Let I be an interval of R with at least two points.

Definition 0.0.3 (Nowhere locally constant). A real function f : I → R is nowhere

locally constant if, for every nonempty open interval J contained in I, the restriction to

J of f is not constant.

Definition 0.0.4 (Algebraically dependent). A set of complex numbers x1, . . . , xn (n ≥ 1)

is said to be algebraically dependent if there exists a nonzero polynomial P ∈ Z[X1, X2, . . . , Xn]

such that P (x1, . . . , xn) = 0.

A subset S of C is said to be algebraically independent if no finite subset of S is

algebraically dependent. Note that by our definition, the empty set ∅ is algebraically

independent.
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Definition 0.0.5 (Algebraic set). A subset X ⊆ Rn is called an algebraic set if X

is the zero locus of a finite set {P1, P2, . . . , Pm} of polynomials in n variables with real

coefficients. We denote X by Z(P1, P2, . . . , Pm), if X is an algebraic set defined by the

polynomials P1, P2, . . . , Pm·

The Baire’s Theorem states the following:

Theorem (Baire’s Theorem). In a complete or locally compact space X, any Gδ-subset

is dense.

The main result of [4], which extended the earlier results of [21] and [23], deals with

Gδ–subsets, and reads as follows:

Proposition 0.0.6 (Alniaçik–Saias). Let I be an interval of R with nonempty interior,

G a Gδ–subset of R and (fn)n≥0 a sequence of real maps on I, which are continuous and

nowhere locally constant. Then ⋂
n≥0

f−1
n (G)

is a Gδ–subset of I.

As pointed out by the authors of [4], the proofs of several papers on this topic just

reproduce the proof of Baire’s Theorem. Here we use Baire’s Theorem and deduce a

number of consequences related with Liouville numbers in the next section.

Most results in this chapter are not specific to Liouville numbers: They hold with any

Gδ–subset of R instead of L. We pay attention to use the fact that L is a Gδ–subset of R
rather than other Diophantine properties of L.

The following Proposition 0.0.7 is a generalization of Proposition 0.0.6, where we can

replace the interval I (resp. R) in Proposition 0.0.6 by a topological space X (resp. an

interval J of R).

Proposition 0.0.7. Let X be a complete, locally connected topological space, J an interval

in R and N a set which is either finite or else countable. For each n ∈ N , let Gn be a

Gδ–subset of J and let fn : X → J be a continuous function which is nowhere locally

constant. Then
⋂
n∈N f

−1
n (Gn) is a Gδ–subset of X.

Let X be a (nonempty) complete metric space without isolated point. Then the

following Lemma says that, any Gδ–subset of X will remain a Gδ–subset after removing

a countable subset from it.
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Lemma 0.0.8. Let X be a (nonempty) complete metric space without isolated point and

let E be a Gδ–subset of X. Let F be a countable subset of E. Then E \ F is a Gδ–subset

of X.

As a consequence we prove the following:

Corollary 0.0.9. Let X be a (nonempty) complete metric space without isolated point

and let E be a Gδ–subset of X. Then E is uncountable.

Note 0.0.10. The Lemma 0.0.8 and Corollary 0.0.9 were quoted in [4].

Let I1, . . . , In be non-empty open subsets of R. Suppose that for each j = 1, . . . , n,

let Gj be a Gδ–subset of Ij. By Corollary 0.0.9, the sets G′js are uncountable. Naturally

one can ask the following question.

Question 1. Can we find uncountably many n-tuples (ξ1, . . . , ξn) ∈ G1 × · · · × Gn such

that ξ1, . . . , ξn are algebraically independent (over Q)?

We show that the answer to Question 1 is true. More precisely, we prove the following:

Lemma 0.0.11. Let I1, . . . , In be non-empty open subsets of R. For each j = 1, . . . , n, let

Gj be a Gδ–subset of Ij. Then there exists uncountably many (ξ1, . . . , ξn) ∈ G1×· · ·×Gn

such that ξ1, . . . , ξn are algebraically independent (over Q).

1.2 Applications of Proposition 0.0.6 to Liouville numbers. Let

fn : R→ R be a nonconstant continuous function for each n ∈ N. In this section, we are

interested to study the following questions:

Question 2. Under what conditions on the functions fn : R→ R (n ∈ N) which ensure

the existence of uncountably many Liouville numbers ξ such that fn(ξ) is also a Liouville

number for each n ∈ N?

Question 3. Let n ≥ 2 be an integer and let P ∈ R[X1, X2, . . . , Xn]. Under what

conditions on P which ensure that, the set Z(P ) contains uncountably many points ξ =

(ξ1, ξ2, . . . , ξn) such that ξ′is are Liouville numbers for i = 1, 2, . . . , n?

Since the set of Liouville numbers is a Gδ–subset in R, a direct consequence of Propo-

sition 0.0.6 and Corollary 0.0.9 answers Question 2 affirmatively:

Corollary 0.0.12. Let I be an interval of R with nonempty interior and (fn)n≥1 a se-

quence of real maps on I, which are continuous and nowhere locally constant. Then there
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exists an uncountable subset E of I ∩L such that fn(ξ) is a Liouville number for all n ≥ 1

and all ξ ∈ E.

We deduce some consequences of Corollary 0.0.12. By taking all the f ′ns are same

functions, say f, we get the following Corollary which says that, nowhere locally constant

functions takes uncountably many Liouville numbers to Liouville numbers. More precisely,

Corollary 0.0.13. Let I be an interval of R with nonempty interior and f : I → R a

continuous map which is nowhere locally constant. Then there exists an uncountable set

of Liouville numbers ξ ∈ I such that f(ξ) is a Liouville number.

Simple examples of consequence of Corollary 0.0.13 are obtained with I = (0,+∞)

and either f(x) = t−x, for t ∈ R, or else with f(x) = t/x, for t ∈ R×, which yields Erdős

[11] result on the decomposition of real number:

Theorem (Erdős). To each real number x (x 6= 0) there correspond Liouville numbers

ξ, η, ρ, ζ such that

x = ξ + η = ρζ.

Here after the “Erdős result ”we mean the above theorem “Theorem (Erdős)”.

We deduce also from Corollary 0.0.13 that any positive real number t is the sum of

two squares of Liouville numbers. This follows by applying Corollary 0.0.13 with

I = (0,
√
t) and f(x) =

√
t− x2.

Similar examples can be derived from Corollary 0.0.13 involving transcendental functions:

for instance, any real number can be written eξ + η with ξ and η Liouville numbers; any

positive real number can be written eξ + eη with ξ and η Liouville numbers.

Using the implicit function theorem, we deduce from Corollary 0.0.13 the following

generalization of Erdős’s result which answers the Question 3 for the case n = 2.

Corollary 0.0.14. Let P ∈ R[X, Y ] be an irreducible polynomial such that (∂/∂X)P 6= 0

and (∂/∂Y )P 6= 0. Assume that there exist two nonempty open intervals I and J of R
such that, for any x ∈ I, there exists y ∈ J with P (x, y) = 0, and, for any y ∈ J , there

exists x ∈ I with P (x, y) = 0. Then there exist uncountably many pairs (ξ, η) of Liouville

numbers in I × J such that P (ξ, η) = 0.
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The following Corollary 0.0.15 is a generalization of Corollary 0.0.14 to more than 2

variables, which answers the Question 3 for n ≥ 2.

Corollary 0.0.15. Let ` ≥ 2 and let P ∈ R[X1, . . . , X`] be an irreducible polyno-

mial such that (∂/∂X1)P 6= 0 and (∂/∂X2)P 6= 0. Assume that there exist nonempty

open subsets Ii of R (i = 1, . . . , `) such that, for any i ∈ {1, 2} and any (` − 1)–

tuple (x1, . . . , xi−1, xi+1, . . . , x`) ∈ I1 × · · · × Ii−1 × Ii+1 × · · · × I`, there exists xi ∈ Ii
such that P (x1, . . . , x`) = 0. Then there exist uncountably many tuples (ξ1, ξ2, . . . , ξ`) ∈
I1 × I2 × · · · × I` of Liouville numbers such that P (ξ1, ξ2, . . . , ξ`) = 0.

In [9], using a counting argument together with an application of Bézout’s Theorem,

E.B. Burger proved that an irrational number t is transcendental if and only if there

exist two Q–algebraically independent Liouville numbers ξ and η such that t = ξ + η.

Extending the method of [9], we prove:

Proposition 0.0.16. Let F (X, Y ) ∈ Q[X, Y ] be a nonconstant polynomial with rational

coefficients and t a real number. Assume that there is an uncountable set of pairs of

Liouville numbers (ξ, η) such that F (ξ, η) = t. Then the two following conditions are

equivalent.

(i) t is transcendental.

(ii) there exist two Q–algebraically independent Liouville numbers (ξ, η) with F (ξ, η) = t.

One can easily see that: For any nonzero rational number q and any Liouville number

ξ, both the numbers q+ξ and qξ are Liouville numbers. Therefore, we have an uncountable

subset of Liouville numbers ξ such that q+ξ and qξ are Liouville numbers for each nonzero

q ∈ Q. One can ask the following question.

Question 4. For any countable subset E of R, can we find an uncountable subset S of L

such that t+ ξ and tξ are Liouville numbers for all t ∈ E and ξ ∈ S?

As a consequence of Corollary 0.0.12, we answer Question 4 affirmatively. In fact, we

prove a more general result.

Corollary 0.0.17. Let E be a countable subset of R. Then there exists an uncountable

set of positive Liouville numbers ξ having simultaneously the following properties.

(i) For any t ∈ E, the number ξ + t is a Liouville number.

(ii) For any nonzero t ∈ E, the number ξt is a Liouville number.

(iii) Let t ∈ E, t 6= 0. Define inductively ξ0 = ξ and ξn = etξn−1 for n ≥ 1. Then all
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numbers of the sequence (ξn)n≥0 are Liouville numbers.

(iv) For any rational number r 6= 0, the number ξr is a Liouville number.

In [19], É. Maillet gave a necessary and sufficient condition for a positive Liouville

number ξ to have a p–th root (for a given positive integer p > 1) which is also a Liouville

number: Among the convergents in the continued fraction expansion of ξ, infinitely many

should be p–th powers. He provided explicit examples of Liouville numbers having a p–th

root which is not a Liouville number.

Let I be an interval of R with nonempty interior and ϕ : I → I a continuous bijective

map (hence ϕ is nowhere locally constant). Let ψ : I → I denotes the inverse bijective

map of ϕ. For n ∈ Z, we denote by ϕn the bijective map I → I defined inductively as

usual: ϕ0 is the identity, ϕn = ϕn−1◦ϕ for n ≥ 1, and ϕ−n = ψn for n ≥ 1. Using Corollary

0.0.12, we prove the following result which provides an uncountable set of elements ξ in

I such that the orbit {ϕn(ξ) | n ∈ Z} consists only of Liouville numbers in I.

Corollary 0.0.18. Let I be an interval of R with nonempty interior and ϕ : I → I a

continuous bijective map. Then the set of elements ξ in I such that the orbit {ϕn(ξ) |
n ∈ Z} consists only of Liouville numbers in I is a Gδ–subset of I, hence is uncountable.

2. Liouville fields and some of its properties
2.1 Definitions and main results. By the result of Erdős [11], the set of sums

ξ + η (resp. ξη) where ξ, η ∈ L coincide with R (resp. Rr {0}). Our interest is to study

the following:

Question 1. Can we find a subset S of L which is closed under addition and multiplication

and it is invariant under addition and multiplications by nonzero rational numbers?

Since Q
⋂

L = ∅, therefore for any such S and for any ξ ∈ S, q − ξ and qξ−1 does not

belong to S for any q ∈ Q, and this proves that no subset S of L will satisfy Question 1.

It is therefore interesting to ask the following question.

Question 2. Can we find a subset S of L such that, the numbers ξ+ η and ξη are either

rational numbers or elements of S for all ξ, η ∈ S?

We introduce the notion of a Liouville set which answer Question 2 affirmatively. In

fact, these sets have a very nice algebraic structure namely, their union with the field of

rational numbers forms a subfield of R, which we call a Liouville field (which extend what

was done by É. Maillet in Chap. III of [19]). Before going into the detail, we first give the

definition of Liouville Set.
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Definition 0.0.19 (Liouville set). A Liouville set is a subset S of L for which there exists

an increasing sequence (qn)n≥1 of positive integers having the following property: for any

ξ ∈ S, there exists a sequence
(
bn
)
n≥1

of positive rational integers and there exist two

positive constants κ1 and κ2 such that, for any sufficiently large n,

1 ≤ bn ≤ qκ1n and ‖bnξ‖ ≤
1

qκ2nn
· (1)

Remark 0.0.20. In the definition of a Liouville set, it would not make a difference if

we were requesting the inequalities (1) to hold for any n ≥ 1; it suffices to change the

constants κ1 and κ2. Also, if the assumption (1) is satisfied for some κ1, then it is also

satisfied with κ1 replaced by any κ′1 > κ1. Hence there is no loss of generality to assume

κ1 > 1. One could also add to (1), the condition qn ≤ bn.

Definition 0.0.21 (Liouville field). A Liouville field is a field of the form Q(S), where S

is a Liouville set.

Remark 0.0.22. From the definitions, it follows that, for a real number ξ, the following

conditions are equivalent:

• ξ is a Liouville number.

• ξ belongs to some Liouville set.

• The set {ξ} is a Liouville set.

• The field Q(ξ) is a Liouville field.

If we agree that the empty set is a Liouville set and that Q is a Liouville field, then

any subset of a Liouville set is a Liouville set, and also (see Theorem 0.0.25) any subfield

of a Liouville field is a Liouville field.

For any integer q and any real number x ∈ R, we denote by ‖qx‖ = min
m∈Z
|qx−m|, the

distance of qx to the nearest integer.

Definition 0.0.23. Let q = (qn)n≥1 be an increasing sequence of positive integers and let

u = (un)n≥1 be a sequence of positive real numbers such that un → ∞ as n → ∞. We
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defined by Sq,u, the set of ξ ∈ L for which there exist two positive constants κ1 and κ2,

and, there exists a sequence
(
bn
)
n≥1

of positive rational integers such that

1 ≤ bn ≤ qκ1n and ‖bnξ‖ ≤
1

qκ2unn
·

Denote by n the sequence u = (un)n≥1 := (1, 2, 3, . . . ) with un = n (n ≥ 1). For any

increasing sequence q = (qn)n≥1 of positive integers, we denote by Sq the set Sq,n. Hence,

by definition, a Liouville set is a subset of Sq for some q.

The following lemma provides a large supply of Liouville sets.

Lemma 0.0.24. For any increasing sequence q of positive integers and any sequence u

of positive real numbers which tends to infinity, the set Sq,u is a Liouville set.

The sets Sq,u have the following nice algebraic structure (compare with Theorem I3 in

[19]), namely:

Theorem 0.0.25. For any increasing sequence q of positive integers and any sequence u

of positive real numbers which tends to infinity, the set Q ∪ Sq,u is a field.

We denote this field by Qq,u, and by Qq for the sequence u = n. From Theorem 0.0.25,

it follows that a field is a Liouville field if and only if it is a subfield of Qq for some q.

Another consequence is that, if S is a Liouville set, then Q(S) \Q is a Liouville set.

Note 0.0.26. It is easily checked that if

lim inf
n→∞

un
u′n

> 0,

then Qq,u is a subfield of Qq,u′. In particular, if

lim inf
n→∞

un
n
> 0,

then Qq,u is a subfield of Qq, while if

lim sup
n→∞

un
n
< +∞

then Qq is a subfield of Qq,u.
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Remark 0.0.27. Since the field Qq,u does not contain irrational algebraic numbers, 2 is

not a square in Qq,u. For ξ ∈ Sq,u, it follows that η = 2ξ2 is an element in Sq,u which is

not the square of an element in Sq,u. According to [11], we can write
√

2 = ξ1ξ2 with two

Liouville numbers ξ1, ξ2, then the set {ξ1, ξ2} is not a Liouville set.

Remark 0.0.28. Let N be a positive integer such that N cannot be written as a sum

of two squares of an integer. Then, we show that, for % ∈ Sq,u, the Liouville number

N%2 ∈ Sq,u is not the sum of two squares of elements in Sq,u. Therefore, if we write

N = ζ2 +η2 with two Liouville numbers ζ, η (which is possible by the result of Erdős [11]),

then the set {ζ, η} is not a Liouville set.

Remark 0.0.29. If R ∈ Q(X1, . . . , X`) is a rational fraction and if ξ1, . . . , ξ` are elements

of a Liouville set S such that η = R(ξ1, . . . , ξ`) is defined, then Theorem 0.0.25 implies

that η is either a rational number or a Liouville number, and in the second case S ∪ {η}
is a Liouville set. For instance, if, in addition, R is not constant and ξ1, . . . , ξ` are

algebraically independent over Q, then η is a Liouville number and S ∪ {η} is a Liouville

set. For ` = 1, this yields:

Corollary 0.0.30. Let R ∈ Q(X) be a nonconstant rational fraction and let ξ be a

Liouville number. Then R(ξ) is a Liouville number and {ξ, R(ξ)} is a Liouville set.

Remark 0.0.31. In [19], É Maillet introduced the definition of Liouville numbers corre-

sponding to a given Liouville number. However this definition depends on the choice of a

given sequence q giving the rational approximations. That is why we start with a sequence

q instead of starting with a given Liouville number.

By Theorem 0.0.25, we have an extension field Qq,u of Q. A natural question is whether

Qq,u is a proper extension of Q (for any two sequences q and u)?; or, equivalently, whether

Sq,u is a nonempty set (for any two sequences q and u)? We prove that the sets Sq,u are

either empty or else uncountable and we characterize such sets.

Theorem 0.0.32. Let q be an increasing sequence of positive integers and u = (un)n≥1

be an increasing sequence of positive real numbers such that un+1 ≥ un + 1. Then the

Liouville set Sq,u is non empty if and only if

lim sup
n→∞

log qn+1

un log qn
> 0.

Moreover, if the set Sq,u is non empty, then it has the power of continuum.
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The sets Sq,u enjoy the following topological property:

Proposition 0.0.33. The sets Sq,u are not Gδ subsets of R. If they are non empty, then

they are dense in R.

2.2 Interrelations among the Liouville sets. In this section, we study some

of the relations among the Liouville sets. We first define,

Definition 0.0.34. For any two strictly increasing sequence of real numbers x and y,

their union z of x and y written as x ∨ y, is defined to be an increasing sequence, whose

terms belong either to x or to y.

Notation 0.0.35. For any two sequences x and y, the symbol x ≺ y, we mean x is a

subsequence of y.

The intersection of two nonempty Liouville sets may be empty. More generally, we

show that there are uncountably many Liouville sets Sq with pairwise empty intersections.

Proposition 0.0.36. For 0 < τ < 1, define q(τ) as the sequence (q
(τ)
n )n≥1 with

q(τ)
n = 2n!bnτ c (n ≥ 1).

Then the sets Sq(τ), 0 < τ < 1, are nonempty (hence uncountable) and pairwise disjoint.

If q′ ≺ q, one can easily see that Sq ⊆ Sq′ . But, one may expect that Sq′ may often

contain strictly Sq. Here is an example.

Proposition 0.0.37. Define the sequences q, q′ and q′′ by

qn = 2n!, q′n = q2n = 2(2n)! and q′′n = q2n+1 = 2(2n+1)! (n ≥ 1),

so that q = q′ ∨ q′′. Let λn be a sequence of positive integers such that

lim
n→∞

λn =∞ and lim
n→∞

λn
n

= 0.

Then the number

ξ :=
∑
n≥1

1

2(2n−1)!λn
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belongs to Sq′ but not to Sq. Moreover

Sq = Sq′ ∩ Sq′′ .

If q = q′∨ q′′, then by the observation preceding to the Proposition 0.0.37, we see that

Sq ⊆ Sq′ ∩ Sq′′ . Proposition 0.0.36 gives an example where Sq′ 6= ∅ and Sq′′ 6= ∅, while Sq is

the empty set. In the example from Proposition 0.0.37, the set Sq coincides with Sq′ ∩Sq′′ .
This is not always the case.

Proposition 0.0.38. There exist two increasing sequences q′ and q′′ of positive integers

such that Sq′∨q′′ is a strict nonempty subset of Sq′ ∩ Sq′′.

Note that, if we have a chain of integer sequences: q
1
≺ q

2
≺ · · · ≺ q

n
≺ · · · , then

correspondingly we have a decreasing chain of Liouville sets: Sq
1
⊇ Sq

2
⊇ · · · ⊇ Sq

n
⊇ · · ·

We are interested to know whether the chain Sq
1
⊇ Sq

2
⊇ · · · is stationary after sometime.

In general this is not true. For example, we prove that given any increasing sequence q

of integers, there exists a subsequence q′ of q such that Sq is a strict subset of Sq′ . More

generally, we prove the following:

Proposition 0.0.39. Let u = (un)n≥1 be a sequence of positive real numbers such that

for every n ≥ 1, we have
√
un+1 ≤ un + 1 ≤ un+1. Then any increasing sequence q of

positive integers has a subsequence q′ for which Sq′,u strictly contains Sq,u. In particular,

for any increasing sequence q of positive integers has a subsequence q′ for which Sq′ is

strictly contains Sq.

3. Mahler fields and some of its properties
3.1 Introduction. We denote the set of Mahler U -numbers by U, the set of Mahler

Um-numbers by Um, and the set of algebraic numbers by A.

It is well known that algebraically dependent numbers belongs to the same Mahler

class. It follows that, αξ ∈ U for all ξ ∈ U and for all nonzero α ∈ A. Naturally, one can

ask the following:

Question 1. Let ξ be a U-number such that ξ ∈ Um for some m ≥ 1. Is it true that

αξ ∈ Um for all nonzero α ∈ A?

In [2], K. Alniacik proved that, if α is a nonzero algebraic number of degree m and

ξ ∈ U1 is a strong Liouville number, then αξ ∈ Um· Therefore, in general, it is not true
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that for a fixed m ≥ 1, ξ ∈ Um implies αξ ∈ Um· By the same reasoning even the weaker

question namely, “whether αξ ∈ Um, for all nonzero α in a number field (i.e., a finite

extension of Q) K and for all ξ ∈ Um?” does not hold. Therefore, one can modify the

Question 1 as follows:

Question 2. Given a number field K, can we find a proper subset Y of U such that

αξ ∈ Y for all ξ ∈ Y and for all nonzero α ∈ K?

Let K be a number field. We define subsets SK,q,u of U (for any increasing sequence

q = (qn)n≥1 of positive integers, and for any unbounded sequence u = (un)n≥1 of positive

real numbers), which answer Question 2 affirmatively. In fact, these subsets have a very

nice algebraic structure: namely the union K
⋃
SK,q,u forms a subfield of C (see Theorem

0.0.45), which extends the results proved in [24]. We denote this field by Kq,u, and we

call Kq,u, a Mahler field of degree m.

Once we have a field structure on Kq,u, the next very beginning question is the follow-

ing:

Question 3. What are all the algebraic extensions of Kq,u?

We study about algebraic extensions of the field Kq,u and we prove that, numbers

which are algebraic over Kq,u are either an algebraic number or a U -number (see Theorem

0.0.53)

For any given algebraic extension K of Q, by Lindemann - Weierstrass theorem, we

see that, K ∩ exp(K×) = ∅. It is interesting to ask the following question.

Question 4. Is there any transcendental extension E of Q such that E ∩ exp(E×) = ∅?

We prove that there are such extensions. In fact, we prove that, eξ /∈ Kq,u for all

ξ ∈ Kq,ur{0} once if the sequence ( un
log qn

)n≥1 is unbounded, and therefore, the extensions

Kq,u of Q answer Question 4 affirmatively (see Theorem 0.0.55).

Since Kq,u is a subfield of C which contains K, P (ξ) ∈ Kq,u for all ξ ∈ Kq,u and for all

polynomial P ∈ K[X]. Our interest is to study whether the similar result hold for power

series with algebraic coefficients. More generally, we study the following question.

Question 5. Let G(z) =
∑∞

n=0 cnz
n be a power series defined over K. What can we say

about the transcendence nature of G(ξ) for ξ ∈ Kq,u?

We prove that, under some conditions of the sequence (cn)n≥1, G(ξ) is either an element

of K or an element of U for all ξ ∈ Kq,u (see Theorem 0.0.56).

3.2 Definitions and main results.
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Definition 0.0.40 (Height of an algebraic number). Let α be an algebraic number with

the minimal polynomial f(X) = a0X
m + · · ·+ am over Z, and let {α1 = α, α2, . . . , αm} be

the set of all Galois conjugates of α. Then, the absolute logarithmic Weil height h(α), of

α is given by

h(α) =
1

m

(
log a0 +

m∑
i=1

log max{1, |αi|}

)
.

while

H(α) = H(f) = max
0≤i≤m

|ai|

is called the usual height of α (and of the polynomial f).

For more details on heights, we refer to Chapter 3 of [30].

Definition 0.0.41 (Um-number). Let ξ be a complex number and let m be a positive

integer. The number ξ is called a U-number of degree m or a Um-number if there exists a

sequence (αn)n≥1 of distinct algebraic numbers of degree m such that

0 < |ξ − αn| < H(αn)−ωn (2)

with ωn →∞ as n→∞, and, for some r ≥ 1, and for all sufficiently large n, we have

H(αn) < H(αn+1) < H(αn)rωn . (3)

Remark 0.0.42. In general, all the αn
′s in the Definition 0.0.41 of Um-number need not

lie in a fixed number field. We are interested to study about those U-numbers for which

all the αn
′s are in some fixed number field K.

Throughout this section, K denote a number field of degree m, q := (qn)n≥1 denote

a strictly increasing sequence of positive integers, and u := (un)n≥1 denote a sequence of

positive real numbers such that limn→∞ un =∞.

Definition 0.0.43 (At-sequence). An At-sequence for an U-number ξ over K with respect

to the sequences q and u is a sequence (αn)n≥1 of distinct elements of K with same degree

t over Q, and two positive constants κ1 and κ2 such that for sufficiently large n, we have

H(αn) ≤ qκ1n and 0 < |ξ − αn| ≤
1

qκ2unn
. (4)
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Notation 0.0.44. We denote by SK,q,u, the set of U-numbers having an At-sequence over

K with respect to the sequences q and u, and, for some positive integer t (note that t ≤ m).

Let Kq,u := K ∪ SK,q,u· The situation when u = n, we denote SK,q,u by SK,q and Kq,u by

Kq· Also, when K = Q, we denote SK,q,u by Sq,u; these sets were first studied in [24] and

the following theorem generalizes a result obtained in [24].

Theorem 0.0.45. For any increasing sequence q of positive integers and any sequence u

of positive real numbers which tends to infinity, the set Kq,u is a subfield of C.

The fields Kq,u are called Mahler fields of degree m.

Remark 0.0.46. Note that if a complex number ξ belongs to a Mahler field Kq,u of degree

m, then it satisfies one of the following statements:

1. It is either an algebraic number of degree at most m, or

2. a U-number of degree at most m.

Example 0.0.47. Let K = Q(i), where i =
√
−1. Then Kq,u = {ξ + iη| ξ, η ∈ Qq,u},

and hence [Kq,u : Qq,u] = [K : Q] = 2.

For any non-constant polynomial P (X) ∈ Q[X], and any ξ ∈ Um (with m ≥ 1), is it

true that P (ξ) ∈ Um? This result is true for m = 1; for m > 1, in general, it is not true.

For example, for each prime number p, set ηp = 1
p

+
∑

n≥1
1

10n!
· Then one can easily see

that η
1
m
p is a Um-number. Therefore, if we set ξp = η

1
m
p and P (X) = Xm, then ξp ∈ Um

but P (ξp) = ηp ∈ U1, see [6, p. 91] for more details. However, we prove the following

result.

Corollary 0.0.48. Let ξ be a Liouville number and let K be a number field of degree m.

Then for any non-constant polynomial P (X) ∈ K[X], we have P (ξ) ∈
⋃m
k=1 Uk·

By the result of Erdős [11] that nonzero real number can be written as a product of

two Liouville numbers, we have, for any nonzero real algebraic number α, there exists a

Liouville number ξ such that αξ ∈ L. But, if α and ξ satisfies some additional conditions,

then we prove that αξ ∈ Udeg(α)·

Corollary 0.0.49. Let m be a positive integer. Let ξ ∈ L and let α be an algebraic number

of degree m over Q. If there exists a sequence

(
an
bn

)
n≥1

of rational numbers which satisfies
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(2) and (3) such that for some κ > 0, H

(
αan
bn

)
≥ aκn for all sufficiently large n, then

αξ ∈ Um·

In [16], LeVeque proved that the sets Um are nonempty for each positive integer m.

The following example gives another proof of this fact.

Example 0.0.50. Let α be an mth root of 2 and let ξ = 1 +
∑∞

n=1
1

3n!
· Then, αξ ∈ Um·

Remark 0.0.51. By the technique employed in the proof of Theorem 0.0.45, we observe

that, for any U-number ξ of degree m and for any nonzero algebraic number α of degree

n over Q, the U-number αξ has degree at most mn, that is, αξ ∈
⋃mn
k=1 Uk·

Remark 0.0.52. By Theorem 2 in [24], the set Sq,u is not empty if and only if lim supn→∞
log qn+1

un log qn
> 0. Moreover, if the set Sq,u 6= ∅, then it has the power of continuum. Since

Sq,u ⊆ SK,q,u, we see that SK,q,u has the power of continuum, if lim supn→∞
log qn+1

un log qn
> 0.

It follows that, if an algebraic number α of degree m over Q together with an element

ξ ∈ Sq,u satisfies Corollary 0.0.49 then SK,q,u
⋂

Um 6= ∅, where K = Q(α).

By Theorem 0.0.45, Kq,u is a field. Our next interest is going to study about algebraic

extensions of Kq,u· Since algebraic extensions of Kq,u are separable, all the finite extensions

of Kq,u are simple extensions. Thus, any finite extensions of Kq,u is of the form Kq,u(η)

for some complex number η which is algebraic over Kq,u·We prove that such an η is either

an algebraic number or a U -number. More precisely, we prove the following:

Theorem 0.0.53. A complex number η is algebraic over a Mahler field Kq,u of degree m

if and only if it is either

(i) an algebraic number, or

(ii) a U-number for which there exists a sequence (βi)i≥1 of complex numbers which are

algebraic of same degree over K with minimal polynomial Pi(X) ∈ K[X] which con-

verges coefficient-wise to a polynomial P (X) ∈ Kq,u[X] such that for all sufficiently

large i,

|η − βi| ≤
1

H(βi)ωi
,

with limi→∞ ωi =∞.
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Remark 0.0.54. By Theorem 0.0.53, the algebraic closure of a Mahler field Kq,u is a

subset of A ∪U.

Regarding Question 4, we prove the following:

Theorem 0.0.55. Let Kq,u be a Mahler field. Suppose that the sequences q = (qn)n≥1 and

u = (un)n≥1 satisfying the property that, the sequence v = (vn)n≥1 defined by vn = un
log qn

,

is unbounded. Then for all ξ ∈ Kq,u, we have eξ /∈ Kq,u· As a consequence, Kq,u ∩
exp(K×q,u) = ∅.

Let K be a number field of degree m and let c = (cn)n≥1 be a sequence of non-zero

elements of K such that H(cn) ≤ qn
κ for some real number κ with 0 < κ < 1. Let

G(z) =
∑∞

n=1

(
cn
qn

)
zn−1 be a power series over K. In [13], G. Karadeniz Gözeri studied

the transcendence of the values of G(z) for Liouville numbers. We study about the

transcendence of the values of the power series G(z) for ξ ∈ SK,q,u· The following theorem

generalize the Theorem 5 in [13].

Theorem 0.0.56. Let Kq,u be a Mahler field of degree m. Suppose that the sequences q, u

and c satisfies the following conditions:

(i) lim inf
n→∞

log qn+1

log qn
= λ > 1,

(ii) lim sup
n→∞

log qn+1

log qn
=∞,

(iii) lim
n→∞

log qn
n

=∞.

(iv) For all sufficiently large n, H(cn) ≤ qκn for some real number κ with 0 < κ < 1.

Then, for all ξ ∈ SK,q,u, either G(ξ) ∈ K or G(ξ) ∈
⋃m
i=1 Ui·

4. Schanuel’s conjecture and U-numbers
4.1 Preliminaries

Definition 0.0.57 (Transcendence degree). For any subfield L of C, the transcendence

degree of L (over Q) is defined to be the cardinality of a maximal algebraically independent

subset of L. We denote the transcendence degree of the field L by trdegQL.

The famous Schanuel’s conjeture states the following:
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Conjecture (Schanuel’s Conjecture). Given Q–linearly independent complex numbers

x1, . . . , xn, the transcendence degree over Q of the field

Q(x1, . . . , xn, e
x1 , . . . , exn) (5)

is at least n.

One may ask whether the transcendence degree is at least n + 1 when the following

additional assumption is made: For each i = 1, . . . , n, one at least of the two numbers xi,

exi is a U -number. We first proceed the case where: for each i = 1, . . . , n, one at least of

the two numbers xi, e
xi is a Liouville number.

We show that for each pair of integers (n,m) with n ≥ m ≥ 1, there exist uncountably

many tuples ξ1, . . . , ξn consisting of Q–linearly independent real numbers, such that the

numbers ξ1, . . . , ξn, e
ξ1 , . . . , eξn are all Liouville numbers, and the transcendence degree

of the field (5) is n + m. For a survey on algebraic independence results related with

Liouville numbers we refer to [29].

4.2 Main results

Theorem 0.0.58. Let n ≥ 1 and 1 ≤ m ≤ n be given integers. Then there exist

uncountably many n-tuples (α1, . . . , αn) ∈ Ln such that α1, . . . , αn are linearly independent

over Q, eαi ∈ L for all i = 1, 2, . . . , n and

trdegQQ(α1, . . . , αn, e
α1 , . . . , eαn) = n+m.

Remark 0.0.59. Theorem 0.0.58, is tight when n = 1: The result does not hold for

m = 0. Indeed, since the set of α in L such that α and eα are algebraically dependent over

Q is countable, one cannot get uncountably many α ∈ L such that trdegQQ(α, eα) = 1.

By an application of Theorem 0.0.58, we have the following analogous result for U -

numbers:

Theorem 0.0.60. Let n ≥ 1 and 1 ≤ m ≤ n be given integers. Then there exist

uncountably many n-tuples (α1, . . . , αn) of U-numbers of degree > 1 such that eαi ∈ UrU1

for all i = 1, 2, . . . , n and

trdegQQ(α1, . . . , αn, e
α1 , . . . , eαn) = n+m.





Chapter 1

Some Consequences of Baire’s

Theorem to Liouville Numbers

1.1 Introduction

A complex number α is said to be an algebraic number if there exists a nonzero poly-

nomial P (X) ∈ Z[X] such that P (α) = 0. We denote the set of algebraic numbers by A.

The rational numbers are clearly algebraic numbers (for example, every rational number

a/b is a root of the polynomial bX−a over Z). There are algebraic irrational numbers (for

example,
√

2). This set A contains some complex numbers which are not real numbers

(for example, the roots of the polynomial equation X2 + 1 = 0). A complex number that

is not algebraic is called a transcendental number.

By definition, every algebraic number is a complex number. A natural question is

whether every complex number is an algebraic number?. This question was left open until

1844, and the first proof of the existence of transcendental number was given by J. Liouville

in 1844. He observed that real algebraic numbers cannot be too “well approximated by

rational numbers” in the following sense.

Theorem 1.1.1 (Liouville, [17]). For any real algebraic number α of degree n > 1, there

exist a positive constant C = C(α) such that the inequality |α − a
b
| > C

bn
holds for all

rational numbers a
b
.

Using this result, Liouville was able to exhibit an explicit example of transcendental

numbers. Indeed, by the above theorem, if ξ is a real number such that for each positive

integer n, there exists a rational number an/bn (bn ≥ 2) with



2 §1.1. Introduction

0 <

∣∣∣∣ξ − an
bn

∣∣∣∣ < 1

bnn
, (1.1)

then ξ is a transcendental number. Any such number ξ is commonly called, a Liouville

number. More precisely:

Definition 1.1.2. A Liouville number is a real number ξ such that, for each positive

integer n, there exists a rational number pn/qn with qn ≥ 2 and

0 <

∣∣∣∣ξ − pn
qn

∣∣∣∣ ≤ 1

qnn
· (1.2)

For example, Liouville himself showed that for any positive integer a ≥ 2, the number∑∞
n=1 a

−n! is a Liouville number, and hence a transcendental number. The set of all

Liouville numbers are denoted by L. This set L is an uncountable, dense subset of R
having Lebesgue measure 0, and

L =
⋂
n≥1

Un with Un =
⋃
q≥2

⋃
p∈Z

(
p

q
− 1

qn
,
p

q
+

1

qn

)
\
{
p

q

}
·

Each Un is dense, since each p/q ∈ Q belongs to the closure of Un. Hence L is a countable

intersection of dense open subsets of R.

Definition 1.1.3. A Gδ–subset of a topological space X is defined to be the countable

intersection of dense open subsets of X.

Thus, L is a Gδ–subset of R. The classic theorem of R. L. Baire about Gδ–subsets in

a complete or locally compact space X states the following:

Theorem (Baire’s Theorem). In a complete or locally compact space X, any Gδ-subset

is dense.

A Gδ–subset is also defined as a set whose complement is meager. In our case, this

complement Lc is the set of non–Liouville numbers

Lc =
{
x ∈ R | there exists κ > 0 such that∣∣∣∣x− p

q

∣∣∣∣ ≥ 1

qκ
for all

p

q
∈ Q with q ≥ 2

}
,
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which has full Lebesgue measure.

In [11], P. Erdős proved that every real number t can be written as t = ξ + η for some

Liouville numbers ξ and η. He gave two proofs of this result. The first one is elementary

and constructive: he splits the binary expansion of t into two parts, giving rise to binary

expansions of two real numbers ξ and η, whose sum is t. The splitting is done in such a

way that both binary expansions of ξ and η have long sequences of 0’s. The second proof

is not constructive, as it relies on Baire’s Theorem. In the same paper, P. Erdős gives

also in the same way two proofs, a constructive one and another depending on Baire’s

Theorem, that every non-zero real number t can be written as t = ξη, where ξ and η

are in L. From each of these proofs, it follows that there exist uncountably many such

representations t = ξ + η (resp. t = ξη) for a given t. Many authors extended this result

in various ways: G.J. Rieger in [21], W. Schwarz in [23], K. Alniaçik in [3], K. Alniaçik

and É. Saias in [4], E.B. Burger in [8, 9]. In [8], Burger extended Erdős’s result to a very

large class of functions, including f(x, y) = x + y and g(x, y) = xy. Here we use Baire’s

theorem and deduce many consequences related with Liouville numbers.

In Section 1.2, we generalize the main result in [4]. In the same section, we prove that

Gδ–subsets of complete metric spaces without isolated points are uncountable. In Section

1.3, we prove that nowhere locally constant continuous functions takes uncountably many

Liouville numbers to Liouville numbers. In Section 1.4, we generalize some of the result

obtained in [8]. In Section 1.4, we also study about zeros (whose co-ordinates are all

Liouville numbers) of polynomials in more variables. In Section 1.5, we prove that for

any countable subset E of R, there exists an uncountable subset S of L such that t+ ξ and

tξ are Liouville numbers for all t ∈ E and ξ ∈ S.

Most results in this chapter are not specific to Liouville numbers. They hold with any

Gδ–subset of R instead of L. We pay attention to use the fact that L is a Gδ–subset of R
rather than other Diophantine properties of L.

1.2 Nowhere locally constant functions and Gδ–subsets

Throughout this chapter, I will denote an interval of R with nonempty interior.

Definition 1.2.1. A function f : I → R is nowhere locally constant if, for every

nonempty open interval J contained in I, the restriction to J of f is not constant.
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The main result of [4], which extends the earlier results of [21] and [23], deals with

Gδ–subsets, and reads as follows:

Proposition 1.2.2 (Alniaçik–Saias). Let G be a Gδ–subset of R, and (fn)n≥0 a sequence

of functions from I to R, which are continuous and nowhere locally constant. Then⋂
n≥0

f−1
n (G)

is a Gδ–subset of I.

As pointed out by the authors of [4], the proofs of several papers on this topic just

reproduce the proof of Baire’s Theorem. Here we use Baire’s Theorem and deduce a

number of consequences related with Liouville numbers in subsequent sections.

The following theorem generalizes Proposition 1.2.2.

Theorem 1.2.3. Let X be a complete, locally connected topological space, J an interval

in R and N a countable set. For each n ∈ N , let Gn be a Gδ–subset of J and let

fn : X→ J be a continuous function which is nowhere locally constant. Then⋂
n∈N

f−1
n (Gn)

is a Gδ–subset of X.

Taking X = R, J = R, and fn is the identity function for each n, we recover Baire’s

Theorem for R.

Proof. Since N is at most countable, it is enough to prove for any n ∈ N that f−1
n (Gn)

is a Gδ–subset of X.

Since fn is continuous, f−1
n (Gn) is a countable intersection of open sets in X. To prove

it is a Gδ–subset of X, we need to prove that f−1
n (Gn) is dense in X. Let V be a connected

open subset of X. Since fn is continuous, fn(V ) is a connected subset of J . Since fn is

nowhere locally constant, fn(V ) consists of at least two elements. Therefore, there exists

an interval (a, b) ⊂ J with non-empty interior such that (a, b) ⊂ fn(V ). Since Gn is a

dense subset of J , (a, b)∩Gn 6= ∅ and hence V ∩ f−1
n (Gn) 6= ∅, which completes the proof

of Theorem 1.2.3.
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1.2.1 Gδ–subsets are uncountable

In this section, we prove that Gδ–subsets of complete metric spaces without isolated points

are uncountable.

Lemma 1.2.4. Let X be a (nonempty) complete metric space without isolated point and

let E be a Gδ–subset of X. Let F be a countable subset of E. Then E \ F is a Gδ–subset

of X.

Proof. We have

E \ F =
⋂
y∈F

E \ {y}

where each E \ {y} is a Gδ–subset of X (since X has no isolated point).

Theorem 1.2.5. Let X be a (nonempty) complete metric space without isolated point and

let E be a Gδ–subset of X. Then E is uncountable.

Proof. If E were countable then by Lemma 1.2.4, E \ E is a Gδ–subset of X, which is

absurd.

Note 1.2.6. The Lemma 1.2.4 and the Theorem 1.2.5 were quoted in [4].

1.3 Liouville numbers and nowhere locally constant

functions

Since the set of Liouville numbers is a Gδ–subset in R, a direct consequence of Proposi-

tion 1.2.2 and Theorem 1.2.5 is the following:

Theorem 1.3.1. Let (fn)n≥1 be a sequence of functions from I to R, which are continuous

and nowhere locally constant. Then there exists an uncountable subset E of I ∩ L such

that fn(ξ) is a Liouville number for all n ≥ 1 and all ξ ∈ E.

We deduce some consequences of Theorem 1.3.1. We first consider the special case,

where all the f ′ns are the same.

Corollary 1.3.2. Let ϕ : I → R be a continuous map which is nowhere locally constant.

Then there exists an uncountable set of Liouville numbers ξ ∈ I such that ϕ(ξ) is a

Liouville number.
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1(1) 1Simple examples of consequences of Corollary 1.3.2 are obtain with I = (0,+∞)

and either ϕ(x) = t− x, for t ∈ R, or else with ϕ(x) = t/x, for t ∈ R×, which yield

Erdős above mentioned result on the decomposition of any real number (resp. any

nonzero real number) t as a sum (resp. a product) of two Liouville numbers.

1(2) We deduce also from Corollary 1.3.2 that any positive real number t is the sum of

two squares of Liouville numbers. This follows by applying Corollary 1.3.2 with

I = (0,
√
t) and ϕ(x) =

√
t− x2.

1(3) Similar examples can be obtain from Corollary 1.3.2 involving transcendental func-

tions: for instance, any real number can be written eξ+η for some Liouville numbers

ξ and η; any positive real number can be written eξ + eη for some Liouville numbers

ξ and η.

Let I be an interval of R with nonempty interior and ϕ : I → I be a continuous

bijective map (hence ϕ is nowhere locally constant). Let ψ : I → I denote the inverse

bijective map of ϕ. For n ∈ Z, we denote by ϕn the bijective map I → I defined

inductively as usual: ϕ0 is the identity, ϕn = ϕn−1 ◦ϕ for n ≥ 1, and ϕ−n = ψn for n ≥ 1.

Then by Theorem 1.3.1 we have the following:

Corollary 1.3.3. Let I be an interval of R with nonempty interior and ϕ : I → I
be a continuous bijective map. Then the set of elements ξ in I, such that the orbit

{ϕn(ξ) | n ∈ Z} consists only of Liouville numbers in I, is a Gδ–subset of I (and hence

uncountable).

Proof. This follows by taking X = I, N = Z, Gn = L ∩ I and fn = ϕn for each n ∈ Z in

Theorem 1.2.3.

1.4 Liouville numbers and polynomials

1(4) Let n ≥ 2 be an integer and let P ∈ R[X1, X2, . . . , Xn]. Under what conditions

on P which ensure the existence of uncountably many n-tuples (ξ1, ξ2, . . . , ξn) with

ξ1, . . . , ξn are Liouville numbers such that P (ξ1, ξ2, . . . , ξn) = 0? In this section we

1Throughout this thesis the notation m(n), where m and n are positive integers, refers Remark n in
Chapter m.
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give some affirmative answer to this question. First we consider the case where

n = 2.

Theorem 1.4.1. Let P (X, Y ) =
∑

i∈Λ fi(Y )X i be a polynomial in ∈ R[X, Y ], where Λ is a

finite index set whose cardinality is at least two. Assume that the polynomials fi(Y ) (i ∈ Λ)

are relatively prime in R[Y ]. Suppose that there exists a point (x0, y0) ∈ R2 such that

P (x0, y0) = 0 and (∂/∂Y )P (x0, y0) is different from 0. Then there exist uncountably many

pairs (ξ, η) of Liouville numbers such that P (ξ, η) = 0.

Proof. We use the implicit function Theorem. By implicit function theorem, there exist

neighborhoods U of x0, V of y0 and a unique function ϕ : U → V such that ϕ(x0) = y0

and

P (x, ϕ(x)) = 0 for all x ∈ U. (1.3)

First we shall show that ϕ is nowhere locally constant on U. Suppose not, then there exists

an open interval I contained in U such that the restriction of ϕ to I is constant, say, c.

But by (1.3), P (x, c) = 0 for all x ∈ I. And therefore, P (x, c) is the zero polynomial.

Hence, c is a root of the polynomials fi(Y ) (i ∈ Λ). This contradicts the fact that the

polynomials fi(Y ) (i ∈ Λ) are relatively prime. Hence ϕ is nowhere locally constant on

U. And therefore, Theorem 1.4.1 now follows from Corollary 1.3.2.

1(5) Erdős’s result on t = ξ + η for t ∈ R follows from Theorem 1.4.1 with P (X, Y ) =

X + Y − t, while his result on t = ξη for t ∈ R× follows with P (X, Y ) = XY − t.

1(6) Also, the above mentioned fact (6) that any positive real number t is the sum of two

squares of Liouville numbers follows by applying Theorem 1.4.1 to the polynomial

X2 + Y 2 − t.

1(7) One could also deduce, under the hypotheses of Theorem 1.4.1, the existence of one

pair of Liouville numbers (ξ, η) with P (ξ, η) = 0 by applying Theorem 1 of [8] with

f(x, y) = P (x, y) and α = 0. The proof we gave produces an uncountable set of

solutions.

We extend Theorem 1.4.1 to more than 2 variables:

Corollary 1.4.2. Let ` ≥ 2 and let P (X1, . . . , X`) =
∑

i∈Λ fi(X2, . . . , X`)X
i
1 be a poly-

nomial in R[X1, . . . , X`], where Λ is a finite index set of cardinality at least two. Assume
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that there exist Liouville numbers ξ′3, . . . , ξ
′
` such that the polynomials fi(X2, ξ

′
3, . . . , ξ

′
`)

i ∈ Λ are relatively prime in R[X2]. Suppose that there exists a point (x0, y0) ∈ R2 with

P (x0, y0, ξ
′
3, . . . , ξ

′
`) = 0 and (∂/∂X2)P (x0, y0, ξ

′
3, . . . , ξ

′
`) is different from 0. Then there ex-

ist uncountably many `-tuples (ξ1, . . . , ξ`) of Liouville numbers such that P (ξ1, . . . , ξ`) = 0.

Proof. When ` = 2, this is Theorem 1.4.1. For ` ≥ 3, apply Theorem 1.4.1 to the

polynomial P (X1, X2, ξ
′
3, . . . , ξ

′
`) ∈ R[X1, X2].

1(8) In [9], using a counting argument together with an application of Bézout’s Theorem,

E.B. Burger proved that an irrational number t is transcendental if and only if there

exist two Q–algebraically independent Liouville numbers ξ and η such that t = ξ+η.

Extending the method of [9], we prove the following:

Theorem 1.4.3. Let F (X, Y ) ∈ Q[X, Y ] be a non-constant polynomial with rational

coefficients and t be a real number. Assume that there is an uncountable set of pairs

of Liouville numbers (ξ, η) such that F (ξ, η) = t. Then the two following conditions

are equivalent.

(a) t is transcendental.

(b) there exist two Q–algebraically independent Liouville numbers (ξ, η) so that F (ξ, η) = t.

Proof. Assume t is algebraic. Therefore there exists P (X) ∈ Q[X] \ {0} such that P (t) =

0. For any pair of Liouville numbers (ξ, η) such that F (ξ, η) = t, we have P (F (ξ, η)) = 0.

Since P ◦ F ∈ Q[X, Y ] \ {0}, we deduce that the numbers ξ and η are algebraically

dependent.

Conversely, assume that for any pair of Liouville numbers (ξ, η) such that F (ξ, η) = t,

the numbers ξ and η are algebraically dependent. Since Q[X, Y ] is countable and since

there is an uncountable set of such pairs of Liouville numbers (ξ, η), there exists a nonzero

polynomial A ∈ Q[X, Y ] such that A(X, Y ) and F (X, Y )−t have infinitely many common

zeros (ξ, η). We use Bézout’s Theorem. We decompose A(X, Y ) into irreducible factors

in Q[X, Y ], where Q is the algebraic closure of Q. One of these factors, say B(X, Y ),

divides F (X, Y )− t in Q(t)[X, Y ], where Q(t) denotes the algebraic closure of Q(t).

Assume now that t is transcendental. Write F (X, Y ) − t = B(X, Y )C(X, Y ) where

C ∈ Q(t)[X, Y ]. The coefficient of a monomial X iY j in C is(
∂i+j

∂X i∂Y j

)(
F (X, Y )− t
B(X, Y )

)
(0, 0),
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hence C ∈ Q[t,X, Y ] and C has degree 1 in t, say C(X, Y ) = D(X, Y ) + tE(X, Y ), with

D and E in Q[t,X, Y ]. Therefore B(X, Y )E(X, Y ) = −1, contradicting the fact that

B(X, Y ) is irreducible.

1.5 Liouville numbers and countable subsets of R

1(9) One can easily see that, for any nonzero rational number q and any Liouville number

ξ, both the numbers q + ξ and qξ are Liouville numbers. Therefore, we have an

uncountable set of Liouville numbers ξ such that q+ ξ and qξ are Liouville numbers

for each nonzero q ∈ Q. One can ask that: for any countable subset E of R, can we

find an uncountable subset S of L such that t + ξ and tξ are Liouville numbers for

all t ∈ E and ξ ∈ S? As a consequence of Theorem 1.3.1, we answer this Question

affirmatively. In fact, we prove more general result. More precisely:

Theorem 1.5.1. Let E be a countable subset of R. Then there exists an uncountable set

of positive Liouville numbers ξ having simultaneously the following properties.

(i) For any t ∈ E, the number ξ + t is a Liouville number.

(ii) For any nonzero t ∈ E, the number ξt is a Liouville number.

(iii) Let t ∈ E, t 6= 0. Define inductively ξ0 = ξ and ξn = etξn−1 for n ≥ 1. Then all terms

of the sequence (ξn)n≥0 are Liouville numbers.

(iv) For any rational number r 6= 0, the number ξr is a Liouville number.

Proof. Each of the four following sets of continuous real maps defined on I = (0,+∞) is

countable, hence their union is countable.

The first set consists of the maps x 7→ x+ t for t ∈ E .

The second set consists of the maps x 7→ xt for t ∈ E , t 6= 0.

The third set consists of the maps ϕn defined inductively by ϕ0(x) = x, ϕn(x) = etϕn−1(x)

(n ≥ 1).

The fourth set consists of the maps ψr(x) = xr for any rational number r 6= 0.

We enumerate the elements of the union and we apply Theorem 1.3.1.
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Chapter 2

Liouville Sets and Liouville Fields

2.1 Introduction

We introduce the notions of a Liouville set and of a Liouville field. They extend what

was done by É. Maillet in Chap. III of [19]. In Section 2.3 (respectively in 2.4), we give

an uncountable family of Liouville sets (respectively, Liouville fields). In Section 2.5, we

prove that Liouville sets are either empty or uncountable, and we characterize all such

sets. We also study Liouville sets corresponding to subsequence and to the union of two

sequences.

Throughout this thesis, an admissible pair of sequences (or simply an admissible

pair), we mean a pair (q, u) of sequences q and u, where q := (qn)n≥1 is a strictly increasing

sequence of positive integers and u := (un)n≥1 is an increasing sequence of positive real

numbers such that limn→∞ un =∞. For any integer q and any real number x, we denote

by ‖qx‖ = minm∈Z |qx−m|, the distance of qx to the nearest integer.

2.2 Liouville sets and Liouville fields

The Liouville sets generalize the notion of a Liouville number.

Definition 2.2.1. A Liouville set is a subset S of L for which there exists an increasing

sequence (qn)n≥1 of positive integers having the following property: for any ξ ∈ S, there

exists a sequence
(
bn
)
n≥1

of positive rational integers and there exist two positive constants
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κ1 = κ1(ξ) and κ2 = κ2(ξ) such that, for any sufficiently large n,

bn ≤ qκ1n and ‖bnξ‖ ≤
1

qκ2nn
· (2.1)

2(1) From Definition 2.2.1, it follows that an irrational number ξ is a Liouville number

if and only if the set {ξ} is a Liouville set.

2(2) In the definition of Liouville sets, it would not make a difference if we were requesting

the inequalities (2.1) to hold for any n ≥ 1; it suffices to change the constants κ1

and κ2. Also, if the assumption (2.1) is satisfied for some κ1, then it is also satisfied

with κ1 replaced by any κ′1 > κ1. Hence there is no loss of generality to assume

κ1 > 1.

2(3) One could also add to (2.1), the condition qn ≤ bn. Indeed, if, for some n, bn < qn,

then we set

b′n =

⌈
qn
bn

⌉
bn,

so that qn ≤ b′n ≤ qn + bn ≤ 2qn. (Here dxe denotes the smallest integer not less

than x.)

Denote by an the nearest integer to bnξ and set a′n =
⌈
qn
bn

⌉
an. Then, for κ′2 < κ2

and, for sufficiently large n,

∣∣b′nξ − a′n∣∣ =

⌈
qn
bn

⌉ ∣∣bnξ − an∣∣ ≤ qn
qκ2nn

≤ 1

(qn)κ
′
2n
·

Hence condition (2.1) can be replaced by

qn ≤ bn ≤ qκ1n and ‖bnξ‖ ≤
1

qκ2nn
· (2.2)

2(4) In [19], É Maillet introduces the definition of Liouville numbers corresponding to a

given Liouville number. However this definition depends on the choice of a given

sequence q giving the rational approximations. That is why we start with a sequence

q instead of starting with a given Liouville number.

Example 2.2.2. The set S =
{
ξ | ξ =

∑∞
m=1 a

−m! for some integer a ≥ 2
}

is a Liou-

ville set.
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To prove S is a Liouville set, by definition, we have to find a strictly increasing sequence

(qn)n≥1 of positive integers such that: for each element ξ ∈ S there exists a sequence(
bn
)
n≥1

of positive integers and there exist two positive constants κ1 and κ2 (depends

only on ξ) such that, for any sufficiently large n,

bn ≤ qκ1n and ‖bnξ‖ ≤
1

qκ2nn
· (2.3)

How to find all these recipes? For, first let ξ ∈ S. Then ξ =
∑∞

m=1 a
−m!, for some integer

a ≥ 2. For each integer n ≥ 1, let bn = a(n+1)!. Then, for n ≥ 1, we have bnξ = an + rn

with an =
∑n+1

m=1 a
n!−m! and rn =

∑
m≥n+2 a

n!−m!.

Clearly an is an integer, and

rn =
∑

m≥n+2

an!−m! ≤ a−(n+1)(n+1)!
(
1 + a−1 + a−2 + · · ·

)
< 2−n(n!).

Thus ‖bnξ‖ = rn. This discussion shows that:

(i) we can take (qn)n≥1 to be the sequence, where qn = 2n! for each n ≥ 1,

(ii) and for each ξ =
∑∞

m=1 a
−m! ∈ S, one can take

(
bn
)
n≥1

to be the sequence where

bn = an! for each n ≥ 1, and

(iii) κ1 = κ1(a) to be a real number such that a ≤ 2κ1 and κ2 = 1.

Thus we have proved that S is a Liouville set.

Definition 2.2.3. A Liouville field is a field of the form Q(S), where S is a Liouville set.

2(5) Note that an irrational number ξ is a Liouville number if and only if the field Q(ξ)

is a Liouville field. If we agree that the empty set is a Liouville set and that Q is

a Liouville field, then any subset of a Liouville set is a Liouville set, and also (see

Theorem 2.4.1) any subfield of a Liouville field is a Liouville field.

2(6) Let S be the Liouvile set in Example 2.2.2. By Theorem 2 of Adams [1], the set{
ξ | ξ =

∑∞
m=1 p

−m! for some prime number p
}

is algebraically independent (see

Chapter 4) over Q. Therefore, the transcendence degree (see Chapter 4) of the

Liouville field Q(S) over Q is infinite.
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2.3 The family of Liouville sets (Sq,u)q,u

Definition 2.3.1. Let
(
q, u
)

be an admissible pair. Then Sq,u denote the set of Liouville

numbers ξ for which there exist two positive constants κ1 = κ1(ξ) and κ2 = κ2(ξ) and

there exists a sequence
(
bn
)
n≥1

of positive rational integers with

bn ≤ qκ1n and ‖bnξ‖ ≤
1

qκ2unn
·

2(7) We denote by n the sequence u = (un)n≥1 with un = n (n ≥ 1). For any strictly

increasing sequence q = (qn)n≥1 of positive integers, we denote the set Sq,n by Sq.

Thus, a subset S of L is a Liouville set if and only if it is a subset of Sq for some q.

Lemma 2.3.2. For all admissible pair
(
q, u
)

of sequences q and u, the set Sq,u is a

Liouville set.

Proof. Let (q, u) be an admissible. To prove Sq,u is a Liouville set, we shall show that Sq,u

is a subset of Sq′ for some q′ (and hence Sq,u is a Liouville set by Remark 2(7)). For that,

we define inductively a sequence of positive integers (mn)n≥1 as follows. Let m1 be the

least integer m ≥ 1 such that um > 1. Once m1, . . . ,mn−1 are known, define mn to be

the least integer m > mn−1 for which um > n. Consider the subsequence q′ of q defined

by q′n = qmn . Then Sq,u ⊂ Sq′ , hence Sq,u is a Liouville set.

Example 2.3.3. Let u = (un)n≥1 be a sequence of positive real numbers with u1 ≥ 1 and

un+1 ≥ un + 1 for each n ≥ 1. Define a function f : N→ R>0 by f(1) = 1 and

f(n) = u1u2 · · ·un−1 (n ≥ 2),

so that f(n+1)/f(n) = un for n ≥ 1. We define the sequence q = (qn)n≥1 by qn = b2f(n)c.
Then, for any real number t > 1, the number

ξt =
∑
n≥1

1

btf(n)c

belongs to Sq,u· The set {ξt | t > 1} has the power of continuum, since ξt1 < ξt2 for

t1 > t2 > 1.
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Proof. For each positive integer m ≥ 1, write am
bm

=
∑m

n=1
1

btf(n)c . Since um ≥ m for each

m, and since bxck ≤ bxkc for positive real numbers x and k, we have

bm ≤ btf(1)c . . . btf(m−1)cbtf(m)c ≤ btf(m−1)cm−1btf(m)c

≤ bt(m−1)f(m−1)cbtf(m)c ≤ btum−1f(m−1)cbtf(m)c = btf(m)c2.

Choose a positive real number κ = κ(t) > 0 such that t < 2κ. Let M be a positive

integer such that κf(M) ≥ 2. Then by the use of the inequality bxc≤ bxc2, which holds

for x ≥ 2, we have

bm ≤ btf(m)c2 ≤ t2f(m) ≤ 22κf(m) ≤ b2f(m)c4κ (2.4)

holds for all sufficiently large m ≥M.

Once again the use of the inequality bxck ≤ bxkc, which holds for positive real numbers

x and k, we have

btf(m+1)c ≥ btf(m)cum

for each m ≥ 1. We therefore have,∣∣∣∣ξt − am
bm

∣∣∣∣ =
1

btf(m+1)c
+

1

btf(m+2)c
+ · · ·

≤ 1

btf(m+1)c
+

1

btf(m+1)cum+1
+ · · ·

≤ 1

btf(m+1)c

(
1 +

1

t
+

1

t2
+ · · ·

)
≤ 1

btf(m)cum
(1− 1/t)−1

Now choose a positive integer κ′ = κ′(t) such that

1

btf(m)cum
(1− 1/t)−1 ≤ 1

btf(m)cκ′um
·

Finally, let c = c(t) > 0 be a real number such that t ≥ 2c. We then have∣∣∣∣ξt − am
bm

∣∣∣∣ ≤ 1

b2cf(m)cκ′um
≤ 1

b2f(m)ccκ′um
, (2.5)
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since b2cf(m)c ≥ b2f(m)cc. By (2.4) and (2.5), we have ξt =
∑

n≥1
1

btf(n)c belongs to Sq,u.

2.4 The family of Liouville fields (Qq,u)q,u

2.4.1 The fields Qq,u

Let (q, u) be an admissible pair. We denote the union Q
⋃
Sq,u by Qq,u (respectively by

Qq when u = n). The set Qq,u has the following property (compare with Theorem I3 in

[19]), namely:

Theorem 2.4.1. For all admissible pair (q, u), the set Qq,u is a field.

2(8) From Theorem 2.4.1, it follows that a field is a Liouville field if and only if it is a

subfield of Qq for some q. Another consequence is that, if S is a Liouville set, then

Q(S) \Q is a Liouville set.

2(9) Let R ∈ Q(X1, . . . , X`) be a rational fraction and let ξ1, . . . , ξ` be elements of a

Liouville set S such that η = R(ξ1, . . . , ξ`) is defined. Then by Theorem 2.4.1, η

is either a rational number or a Liouville number, and in the second case S ∪ {η}
is a Liouville set. For instance, if, in addition, R is not constant and ξ1, . . . , ξ` are

algebraically independent over Q, then η is a Liouville number and S ∪ {η} is a

Liouville set. For ` = 1, this yields the following:

Corollary 2.4.2. Let R ∈ Q(X) be a nonconstant rational fraction and let ξ be a Liouville

number. Then R(ξ) is a Liouville number and {ξ, R(ξ)} is a Liouville set.

2(10) As a consequence of Corollary 2.4.2, if S is a Liouville set then for any ξ ∈ S, the

set S ∪ {1/ξ} is a Liouville set.

2.4.2 Proof of Theorem 2.4.1

We first prove the following:

Lemma 2.4.3. Let (q, u) be an admissible pair. Then for any element ξ ∈ Sq,u, we have

1/ξ ∈ Sq,u.
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Proof. By definition, there exists a sequence of positive integers (bn)n≥1 and two positive

real numbers κ = κ(ξ) and κ′ = κ′(ξ) such that

bn ≤ qκn and 0 < ‖bnξ‖ ≤
1

qκ′unn

·

For each n ≥ 1, write ‖bnξ‖ = |bnξ − an| with an ∈ Z. Since ξ 6∈ Q, we have bnξ /∈ Q
for all large values of n; in particular, for sufficiently large n, an 6= 0. Clearly we have∣∣∣anbn ∣∣∣ < |ξ|+ 1

2
< bn, for sufficiently large n. And hence

|an| ≤ b2
n ≤ q2κ

n . (2.6)

Write 1
ξ
− bn

an
= 1

ξan
(−bnξ + an) . Since the sequence (qn)n≥1 is strictly increasing,

|ξ−1| < qn for sufficiently large n. Finally,

∣∣anξ−1 − bn
∣∣ < ∣∣ξ−1

∣∣ |bnξ − an| ≤ 1

qκ′un−1
n

· (2.7)

By (2.6) and (2.7), one can easily see that 1/ξ ∈ Sq,u.

Proof of Theorem 2.4.1. To prove Qq,u is a field, by Lemma 2.4.3, it suffices to show

that for ξ and ξ′ in Qq,u, both ξ− ξ′ and ξξ′ belongs to Qq,u· Let ξ+ = ξ− ξ′ and ξ∗ = ξξ′.

We require to prove that both ξ+ and ξ∗ belongs to Qq,u·

If both ξ and ξ′ are rational numbers, then the result follows. Assume that at least

one of ξ and ξ′, say, ξ is an element of Sq,u· Then there are two positive real numbers

κ1 and κ2 depends only on ξ, and there are sequences of rational integers
(
an
)
n≥1

and(
bn
)
n≥1

such that

1 ≤ bn ≤ qκ1n and 0 <
∣∣bnξ − an∣∣ ≤ 1

qκ2unn
· (2.8)

Now ξ′ has two possibilities: either ξ′ is a rational number, or an element of Sq,u·

The case where ξ′ is a rational number. Let ξ′ = r
s

with r and s ∈ Z, s > 0. We

shall show that ξ+ and ξ∗ belongs to Sq,u· The idea is to prove that ξ+ is approximated

by (san − bn)/bn, and ξ∗ is approximated by ran/sbn·
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For each n ≥ 1, write

b+
n = b∗n = sbn,

a+
n = san − rbn,

a∗n = ran.

Let c be a positive real number such that max{|r|, |s|} ≤ qcn for sufficiently large n. Then,

clearly we have, 1 ≤ b+
n ≤ qκ1+c

n and 1 ≤ b∗n ≤ qκ1+c
n holds for sufficiently large n. Moreover,

0 <
∣∣b+
n ξ

+ − a+
n

∣∣ = s
∣∣bnξ − an∣∣ ≤ 1

qκ̃2unn

,

0 <
∣∣b∗nξ∗ − a∗n∣∣ = |r|

∣∣bnξ − an∣∣ ≤ 1

qκ̃2unn

·

This shows that ξ+ and ξ∗ belongs to Sq,u·

The case where ξ′ is an element of Sq,u· There are constants κ3, κ4 depends on ξ′,

and there are sequences of rational integers
(
cn
)
n≥1

and
(
dn
)
n≥1

such that

1 ≤ dn ≤ qκ3n and 0 <
∣∣dnξ′ − cn∣∣ ≤ 1

qκ4unn
· (2.9)

If ξ+ and ξ∗ are rational numbers, then there is nothing to prove. Assume that they

are irrational numbers. With this assumption we shall show that, ξ+ and ξ∗ ∈ Sq,u· The

idea is to show that: ξ+ is approximated by (andn − cnbn)/bndn and ξ∗ is approximated

by ancn/bndn.

Let κ5 = max{κ1, κ3} and κ6 = min{κ2, κ4}. For each n ≥ 1, set

b+
n = b∗n = bndn,

a+
n = andn − bncn,

a∗n = ancn.

We then have,

1 ≤ b+
n ≤ q2κ5

n and 1 ≤ b∗n ≤ q2κ5
n , (2.10)
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and

bnξ
+ − a+

n = dn(bnξ − an)− bn(dnξ
′ − cn),

b∗nξ
∗ − a∗n = bnξ(dnξ

′ − cn) + cn(bnξ − an).

By (2.8) and (2.9), we have

∣∣b+
n ξ

+ − a+
n

∣∣ ≤ |dn| |bnξ − an|+ |bn| |dnξ′ − cn| ≤ 2qκ5n
qκ6unn

· (2.11)

This inequality together with (2.10) shows that ξ+ ∈ Sq,u·
Finally we prove that ξ∗ ∈ Sq,u· Note that, since ξ′ is the limit of the sequence ( cn

dn
)n≥1,

for sufficiently large n,
∣∣∣ cndn ∣∣∣ ≤ |ξ| + 1 ≤ |dn| . We then have |cn| ≤ |d2

n| ≤ q2κ3
n . From this

inequality, we have

|b∗nξ∗ − a∗n| = |bnξ(dnξ′ − cn) + cn(bnξ − an)|

≤ |bn| |ξ|
1

qκ4unn
+ |cn|

1

qκ2unn

≤ (|ξ|+ 1)q2κ5
n

qκ6unn
· (2.12)

By (2.10) and (2.12), one can easily see that ξ∗ ∈ Sq,u· This completes the proof of

Theorem 2.4.1.

2.4.3 Integers which are not sum of squares of elements of Qq,u

Let N be a positive integer which is not a square of an integer. Let (q, u) be an admis-

sible pair of sequences q and u. Since the field Qq,u does not contain irrational algebraic

numbers, N is not a square in Qq,u· For a given ξ ∈ Sq,u, it follows that η = Nξ2 is an

element in Sq,u which is not the square of an element in Sq,u· According to [11], we can

write
√
N = ξ1ξ2 with two Liouville numbers ξ1, ξ2, then the set {ξ1, ξ2} is not a Liouville

set.

Theorem 2.4.4. Let N be a positive integer such that N cannot be written as a sum of

two squares of integers. Let (q, u) be an admissible pair of sequences q and u. Then for

all % ∈ Sq,u, the Liouville number N%2 ∈ Sq,u is not the sum of two squares of elements in

Sq,u· In particular, N cannot be written as a sum of two squares of elements of Sq,u·
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Proof. Let N be a positive integer such that N cannot be written as a sum of two squares

of integers. We shall show that for each element % ∈ Sq,u, the Liouville number N%2 ∈ Sq,u

is not the sum of two squares of elements in Sq,u· Dividing by %2, we reduce to show that

the equation N = ξ2 + (ξ′)2 has no solution (ξ, ξ′) in Sq,u × Sq,u· For otherwise, we would

have, for suitable positive constants κ1 and κ2 depends on ξ and ξ′ such that∣∣∣∣ξ − an
bn

∣∣∣∣ ≤ 1

qκ2un+1
n

, 1 ≤ bn ≤ qκ1n ,∣∣∣∣ξ′ − a′n
b′n

∣∣∣∣ ≤ 1

qκ2un+1
n

, 1 ≤ b′n ≤ qκ1n .

Hence ∣∣∣∣ξ2 − a2
n

b2
n

∣∣∣∣ ≤ 2|ξ|+ 1

qκ2un+1
n

and

∣∣∣∣(ξ′)2 − (a′n)2

(b′n)2

∣∣∣∣ ≤ 2|ξ′|+ 1

qκ2un+1
n

.

Thus, ∣∣∣∣∣ξ2 + (ξ′)2 −
(
anb
′
n

)2
+
(
a′nbn

)2(
bnb′n

)2

∣∣∣∣∣ ≤ 2(|ξ|+ |ξ′|+ 1)

qκ2un+1
n

·

Using ξ2 + (ξ′)2 = N , we deduce that

∣∣N(bnb′n)2 −
(
anb
′
n

)2 −
(
a′nbn

)2∣∣ < 1.

The left hand side is an integer, hence it is 0. This implies that

N
(
bnb
′
n

)2
=
(
anb
′
n

)2
+
(
a′nbn

)2
.

This is impossible, since the equation x2 + y2 = Nz2 has no solution in positive rational

integers.

2.5 Cardinality of the Liouville sets Sq,u

2(11) Let (q, u) be an admissible pair. By Theorem 2.4.1, Qq,u is a field extension of Q. A

natural question is: under what conditions on the pair (q, u) which ensures that Qq,u

a proper extension of Q ? or equivalently, when the set Sq,u is nonempty? We prove

that the set Sq,u is either empty or uncountable, if the sequence u = (un) satisfies

un+1 ≥ un + 1 for all n ≥ 1. We also characterize such sets.
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Theorem 2.5.1. Let (q, u) be an admissible pair such that un+1 ≥ un + 1 for each n ≥ 1.

Then the Liouville set Sq,u is nonempty if and only if

lim sup
n→∞

log qn+1

un log qn
> 0. (2.13)

Moreover, if the set Sq,u is nonempty, then it has the power of continuum.

To prove Theorem 2.5.1, we need a lemma from the next section.

2.5.1 A lemma on approximation by rational numbers

Lemma 2.5.2. Let ξ and u be two real numbers with u > 0, and let q and s be positive

integers. Assume that there exist rational integers p and r such that p/q 6= r/s and

|qξ − p| ≤ 1

qκu
, |sξ − r| ≤ 1

sκ(u+1)
,

for some positive real number κ with κu > 2. Then we have either 2s > qκu or q > s
κ
2
u.

Proof. From the assumptions, and since p
q
− r

s
= ps−qr

qs
, we have

1

qs
≤ |ps− rq|

qs
≤
∣∣∣∣ξ − p

q

∣∣∣∣+
∣∣∣ξ − r

s

∣∣∣ ≤ 1

qκu+1
+

1

sκ(u+1)+1
·

And hence, qκusκ(u+1) ≤ sκ(u+1)+1 + qκu+1. If q < s, then

qκu ≤ s+
q

sκ
< 2s.

Assume now q ≥ s. We then have,

qκusκ(u+1) ≤ sκus1+κ + qκu+1 ≤ s1+κqκu + qκu+1.

From this we deduce that sκ (sκu − s) ≤ q. Since s ≥ 1, we have

q ≥ sκu − s > sκu − s
κu
2 > s

κu
2 .

This completes the proof of Lemma 2.5.2.
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2.5.2 Proof of Theorem 2.5.1.

Suppose that lim supn→∞
log qn+1

un log qn
= 0. Then, we get, limn→∞

log qn+1

un log qn
= 0. Suppose that

Sq,u is nonempty, and let ξ ∈ Sq,u· Then by Remark 2(3), there exists a sequence
(
bn
)
n≥1

of positive integers and there exist two positive constants κ1 = κ1(ξ) and κ2 = κ2(ξ) such

that, for any sufficiently large n,

qn ≤ bn ≤ qκ1n and ‖bnξ‖ ≤ q−κ2unn . (2.14)

Let N be an integer such that κ2un ≥ 2 for each n ≥ N, and the inequalities (2.14)

are valid for n ≥ N. Since limn→∞
log qn+1

un log qn
= 0, choose an integer M ≥ N such that

qκ1n+1 < q
κ2
2
un

n (2.15)

for each n ≥M. By the choice of M, we deduce that

2bn+1 ≤ b2
n+1 ≤ q2κ1

n+1 < qκ2unn ≤ bκ2unn

for all n ≥M. Moreover, since both the sequence q and u are increasing, by (2.15),

bn ≤ qκ1n < qκ1n+1 ≤ q
κ2
2
un

n+1 ≤ b
κ2
2
un

n+1

for sufficiently large values of n.

Denote by an (respectively, an+1) the nearest integer to ξbn (respectively, ξbn+1).

Lemma 2.5.2 with q replaced by bn and s by bn+1 implies that for large values of n,

an
bn

=
an+1

bn+1

·

This contradicts the assumption that ξ is irrational. This proves that Sq,u = ∅.

Conversely, assume that

lim sup
n→∞

log qn+1

un log qn
> 0.

Then there exists ϑ > 0 and there exists a sequence (N`)`≥1 of positive integers such that

qN` > q
ϑ(uN`−1)

N`−1
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for all ` ≥ 1. Define a sequence (c`)`≥1 of positive integers by

2c` ≤ qN` < 2c`+1.

Let e = (e`)`≥1 be a sequence of elements in {−1, 1}. Define

ξe =
∑
`≥1

e`
2c`
·

It remains to check that ξe ∈ Sq,u and that distinct e produce distinct ξe·

For each sufficiently large n, let ` be the integer such that N`−1 ≤ n < N`, and set

bn = 2c`−1 , an =
`−1∑
h=1

eh2
c`−1−ch , rn =

an
bn
·

We then have

|ξe − rn| =

∣∣∣∣∣ξe −∑
h≥`

eh
2ch

∣∣∣∣∣ ≤ 2

2c`
·

Let κ2 be a positive real number such that κ2 < ϑ. Since n is sufficiently large and

n ≤ N` − 1,

4qκ2unn ≤ 4q
κ2uN`−1

N`−1 =
4q

ϑuN`−1

N`−1

q
(ϑ−κ2)uN`−1

N`−1

≤ 4qN`

q
(ϑ−κ2)uN`−1

N`−1

≤ qN` .

And hence
2

2c`
<

4

qN`
<

1

qκ2unn

for sufficiently large n. Also, choosing κ1 = 1, we have bn = 2c`−1 < qN`−1 ≤ qn. This

proves that ξe ∈ Sq,u, and hence Sq,u is nonempty.

Finally, if e and e′ are two elements of {−1,+1}N for which eh = e′h for 1 ≤ h < ` and,

say, e` = −1, e′` = 1, then

ξe <

`−1∑
h=1

eh
2ch

< ξe′ ,
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hence ξe 6= ξe′ . This completes the proof of Theorem 2.5.1.

2.6 Liouville sets and subsequences

Proposition 2.6.1. Let (q, u) be an admissible pair, and let q′ be a subsequence of q.

Then Sq,u is a subset of Sq′,u (and hence Qq,u is a subfield of Qq′,u).

Proof. By the definition of a subsequence, there is a strictly increasing function f : N→ N
such that q′ = (qf(n))n≥1. Thus f(n) ≥ n for each n ≥ 1. Let ξ ∈ Sq,u· Then there are

two positive real numbers κ1 = κ1(ξ) and κ2 = κ2(ξ) and there are sequences of rational

integers
(
an
)
n≥1

and
(
bn
)
n≥1

such that

1 ≤ bn ≤ qκ1n and 0 <
∣∣bnξ − an∣∣ ≤ 1

qκ2unn
·

Consider the subsequence (bf(n))n≥1 of
(
bn
)
n≥1

. Then for each n ≥ 1,

1 ≤ bf(n) ≤ qκ1f(n) and ‖ bf(n)ξ ‖≤
1

q
κ2uf(n)
f(n)

≤ 1

qκ2unf(n)

·

Thus we have, ξ ∈ Sq′,u·

2(12) It is easily checked that if lim infn→∞
un
u′n
> 0, then Sq,u is a subset of Sq,u′ (and hence

Qq,u is a subfield of Qq,u′). In particular, if lim infn→∞
un
n
> 0, then Sq,u is a subset

of Sq, while if lim supn→∞
un
n
< +∞ then Sq is a subset of Sq,u·

2(13) Let (q, u) be an admissible pair, and let q′ be a subsequence of q. By Proposition

2.6.1, Sq,u ⊆ Sq′,u· . However, if q′ is obtained by removing finitely many terms from

q, then Sq′,u = Sq,u· The question is: given any admissible pair (q, u), can we find a

subsequence q′ of q such that Sq′,u strictly contains Sq,u? We answers this question

affirmatively under some assumptions on the sequence u.

First we look at the following:

Example 2.6.2. Let q = (qn)n≥1 be the sequence, where qn = 2n!, for each n ≥ 1; and

let q′ = (q′n)n≥1 be the subsequence of q consists of those terms indexed by even positive

integers, that is, q′n = q2n = 2(2n)! for each n ≥ 1. Then Sq is a strict subset of Sq′·
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Proof. The method is to construct explicitly an element ξ ∈ Sq′ such that ξ /∈ Sq· Let

λn be a sequence of positive integers such that limn→∞ λn = ∞ and limn→∞
λn
n

= 0 (for

example, one can take λn = b
√
nc). Let

ξ :=
∑
m≥1

1

2(2m−1)!λm
·

We shall show that ξ belongs to Sq′ but not to Sq. For each sufficiently large n, we define

an =
n∑

m=1

2(2n)!−(2m−1)!λm .

Then,

1

q
(2n+1)λn+1

2n

< ξ − an
q2n

=
∑

m≥n+1

1

2(2m−1)!λm

≤ 1

q
(2n+1)λn+1

2n

(1 + 1/2 + 1/22 + · · · )

=
2

q
(2n+1)λn+1

2n

≤ 1

q
nλn+1

2n

·

The right hand side inequality together with the lower bound λn+1 ≥ 1 proves that ξ ∈ Sq′ .

Now we shall show that ξ /∈ Sq· Let κ1 and κ2 be positive real numbers, n a sufficiently

large integer, s is an integer in the interval q2n+1 ≤ s ≤ qκ12n+1 and r an integer. Since

λn+1 < κ2n for sufficiently large n, we have

q
(2n+1)λn+1

2n < q
κ2n(2n+1)
2n = qκ2n2n+1 ≤ sκ2n.

Therefore, if r/s = an/q2n, then

∣∣∣ξ − r

s

∣∣∣ =

∣∣∣∣ξ − an
q2n

∣∣∣∣ > 1

q
(2n+1)λn+1

2n

>
1

sκ2(2n+1)
·

On the other hand, for r/s 6= an/q2n, we have

∣∣∣ξ − r

s

∣∣∣ ≥ ∣∣∣∣ anq2n

− r

s

∣∣∣∣− ∣∣∣∣ξ − an
q2n

∣∣∣∣ ≥ 1

q2ns
− 2

q
(2n+1)λn+1

2n

·
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Since λn →∞, for sufficiently large n,

4q2ns ≤ 4q2nq
κ1
2n+1 = 4q

1+κ1(2n+1)
2n ≤ q

(2n+1)λn+1

2n

and hence
2

q
(2n+1)λn+1

2n

≤ 1

2q2ns
·

Further

2q2ns < sq2n+1 ≤ s2 ≤ sκ2n.

Therefore ∣∣∣ξ − r

s

∣∣∣ ≥ 1

2q2ns
>

1

sκ2n
,

and hence ξ 6∈ Sq′′ .

Theorem 2.6.3. Let u = (un)n≥1 be a sequence of positive real numbers such that for

every n ≥ 1, we have
√
un+1 ≤ un + 1 ≤ un+1. Then any increasing sequence q of positive

integers has a subsequence q′ for which Sq′,u strictly contains Sq,u· In particular, for any

increasing sequence q of positive integers has a subsequence q′ for which Sq′ is strictly

contains Sq·

Proof. Let u = (un)n≥1 be a sequence of positive real numbers such that
√
un+1 ≤ un+1 ≤

un+1. We prove more precisely that for any sequence q such that qn+1 > qunn for all n ≥ 1,

the sequence q′ = (q2n)n≥1 has the property that Sq′,u 6= Sq,u· This proves Theorem 2.6.3,

since any strictly increasing sequence has a subsequence satisfying qn+1 > qunn .

The method of the proof is very similar to Example 2.6.2. Assuming qn+1 > qunn for

all n ≥ 1, we define dn = q
b√unc
2n−1 . We check that the number

ξ =
∑
n≥1

1

dn

satisfies ξ ∈ Sq′,u and ξ 6∈ Sq,u.

Set bn = d1d2 · · · dn and

an =
n∑

m=1

bn
dm

=
n∑

m=1

∏
1≤i≤n,i 6=m

di,
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so that

ξ − an
bn

=
∑

m≥n+1

1

dm
·

It is easy to check from the definition of dn and qn that, for sufficiently large n,

bn ≤ q
b√u1c
1 q

b√u2c
3 . . . q

b√unc
2n−1 ≤ q

n−2+un−1

2n−3 q
b√unc
2n−1 ≤ q

1+b√unc
2n−1 ≤ q

u2n−1

2n−1 ≤ q2n,

and
1

dn+1

≤ ξ − an
bn
≤ 2

dn+1

·

For each n ≥ 1, since dn+1 = q
b√un+1c
2n+1 ≥ q

b√un+1cu2n
2n > qun2n , we deduce∣∣∣∣ξ − an
bn

∣∣∣∣ ≤ 2

qun2n

,

hence ξ ∈ Sq′,u.

Now the only task left is to prove that ξ 6∈ Sq,u· For, let κ1 and κ2 be two positive real

numbers, and let n be sufficiently large positive integer. Let s be a positive integer with

q2n+1 ≤ s ≤ qκ12n+1 and let r be an integer. If r/s = an/bn, then

∣∣∣ξ − r

s

∣∣∣ =

∣∣∣∣ξ − an
bn

∣∣∣∣ > 1

qun2n

>
1

q
κ2u2n+1

2n+1

·

Assume now r/s 6= an/bn. From the inequality∣∣∣∣ξ − an
bn

∣∣∣∣ ≤ 2

q
b√un+1c
2n+1

≤ 1

2qκ1+2
2n+1

,

we deduce that ∣∣∣ξ − r

s

∣∣∣ ≥ ∣∣∣∣rs − an
bn

∣∣∣∣− ∣∣∣∣ξ − an
bn

∣∣∣∣
≥ 1

sbn
− 1

2qκ1+2
2n+1

≥ 1

2qκ1+2
2n+1

≥ 1

q
κ2u2n+1

2n+1

,

for sufficiently large n. This completes the proof that ξ 6∈ Sq,u·
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2.7 Liouville sets and union of two sequences

Let x and y be two strictly increasing sequence of positive integers. Then, the union of

x and y written as x∨y, is the unique increasing sequence of positive integers that belong

to either x or y.

For example, the sequence n is the union of the sequence {1, 3, 5, . . .} and {2, 4, 6, . . .}.

Proposition 2.7.1. For 0 < τ < 1, let q(τ) denote the sequence (q
(τ)
n )n≥1 where

q(τ)
n = 2n!bnτ c (n ≥ 1).

Then the sets Sq(τ), 0 < τ < 1 are nonempty, and for τ 6= τ ′, the Liouville sets corre-

sponding to the union q(τ) ∨ q(τ ′) is empty.

Proof. For a fixed τ in the open interval (0, 1), and for each n ≥ 1,

(1 + 1/n) ≤ (n+ 1)b(n+ 1)τc
nbnτc

=
log q

(τ)
n+1

n log q
(τ)
n

≤ (n+ 1)(n+ 1)τ

nbnτ+1c
≤ (1 + 1/n)(n+ 1)τ

nτ − 1
·

Thus

lim
n→∞

log q
(τ)
n+1

n log q
(τ)
n

= 1.

And therefore, by Theorem 2.5.1 the sets Sq(τ) are nonempty for each τ in the interval

(0, 1). In fact, if (en)n≥1 is a bounded sequence of integers with infinitely many nonzero

terms, then ∑
n≥1

en

q
(τ)
n

∈ Sq(τ) .

Let 0 < τ1 < τ2 < 1. For n ≥ 1, define

q2n = q(τ1)
n = 2n!bnτ1c and q2n+1 = q(τ2)

n = 2n!bnτ2c.

Note that q = (qm)m≥1 is the union of the sequence q(τ1) and q(τ2). One can easily checks

that q is an increasing sequence with

log q2n+1

n log q2n

→ 0 and
log q2n+2

n log q2n+1

→ 0.

From Theorem 2.5.1, we can deduce that Sq = ∅.
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2(14) If q = q′∨q′′, then by Proposition 2.6.1, we see that Sq ⊆ Sq′ ∩Sq′′ . Proposition 2.7.1

gives an example, where the set Sq is empty. We shall show that this is not the case

always. More precisely, we have the following:

Theorem 2.7.2. There exists two increasing sequences q′ and q′′ of positive integers such

that Sq′∨q′′ is a strict nonempty subset of Sq′ ∩ Sq′′.

The construction takes several steps.

(a) Let (λs)s≥0 be a strictly increasing sequence of positive integers with λ0 = 1. We

define two sequences (n′k)k≥1 and (n′′h)h≥1 of positive integers as follows. The se-

quence (n′k)k≥1 is the strictly increasing sequence formed by those integers n, for

which there exists an integer s ≥ 0 with λ2s ≤ n < λ2s+1, while (n′′h)h≥1 is the

strictly increasing sequence formed by those integers n for which there exists s ≥ 0

with λ2s+1 ≤ n < λ2s+2.

(b) Note that the sequences (n′k)k≥1 and (n′′h)h≥1 completely covers N in the sense that,

each n ∈ N is exactly one of the form: n = n′k for some k ≥ 1, or n = n′′h for some

h ≥ 1. Indeed, if n ∈ N with λ2s ≤ n < λ2s+1 for some s ≥ 0, then n = n′k, where

k = n− λ2s + λ2s−1 − λ2s−2 + · · ·+ λ1 − λ0;

while if λ2s+1 ≤ n < λ2s+2 (s ≥ 0), then n = n′′h. with

h = n− λ2s+1 + λ2s − λ2s−1 + · · ·+ λ2 − λ1.

For instance, when λs = s + 1 (s ≥ 0), the sequence (n′k)k≥1 is the sequence

(1, 3, 5, . . . ) of odd positive integers, while (n′′h)h≥1 is the sequence (2, 4, 6, . . . ) of

even positive integers. Another example is λs = s!, which occurs in the Erdős

paper [11].

(c) When, n = λ2s, we write n = n′k(s) where

k(s) = n−λ2s+λ2s−1−λ2s−2 + · · ·+λ1−λ0 = λ2s−1−λ2s−2 + · · ·+λ1−λ0 < λ2s−1.

Notice that λ2s − 1 = n′′h with h = λ2s − k(s).
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(d) Next, we define two increasing sequences (dn)n≥1 and q = (qn)n≥1 of positive integers

by induction as follows: set d1 = 2, and for each n ≥ 1, let

dn+1 =

kdn if n = n′k,

hdn if n = n′′h,

and qn = 2dn .

(e) For example, when λs = s+1 (s ≥ 0), the sequence (dn)n≥1 is given by the following

formula:

dn+1 =


n(n−2)···2

2n/2
d1 if n is even,

(n−1)(n−3)···2
2(n−1)/2 d1 if n is odd.

(f) Finally, let q′ = (q′k)k≥1 and q′′ = (q′′h)h≥1 be two subsequences of q defined by

q′k = qn′k (k ≥ 1),

q′′h = qn′′h (h ≥ 1).

Hence q is the union of the two sequences q′ and q′′.

(g) Now we check that the number

ξ =
∑
n≥1

1

qn

belongs to Sq′
⋂

Sq′′ (and hence the sets Sq′ and Sq′′ are uncountable by Theorem

2.5.1).

For each n ≥ 1, let

an =
n∑

m=1

2dn−dm .

Then
1

qn+1

< ξ − an
qn

=
∑

m≥n+1

1

qm
<

2

qn+1

·

If n = n′k, then ∣∣∣∣ξ − an′k
q′k

∣∣∣∣ < 2

(q′k)
k



§2.8. Equivalence relation induced by Liouville sets 31

while if n = n′′h, then ∣∣∣∣ξ − an′′h
q′′h

∣∣∣∣ < 2

(q′′h)h
·

This proves ξ ∈ Sq′ ∩ Sq′′ .

(h) Now, we choose λs = 22s for s ≥ 2 and we prove that ξ does not belong to Sq· Notice

that λ2s−1 = 222s−1
=
√
λ2s. Let n = λ2s = n′k(s). We have k(s) <

√
λ2s and∣∣∣∣ξ − an

qn

∣∣∣∣ > 1

qn+1

=
1

q
k(s)
n

>
1

q
√
n

n

·

Let κ1 and κ2 be two positive real numbers and assume s is sufficiently large. Fur-

ther, let u/v ∈ Q with v ≤ qκ1n . If u/v = an/qn, then

∣∣∣ξ − u

v

∣∣∣ =

∣∣∣∣ξ − an
qn

∣∣∣∣ > 1

q
√
n

n

>
1

qκ2nn

for sufficiently large n. On the other hand, if u/v 6= an/qn, then

∣∣∣ξ − u

v

∣∣∣ ≥ ∣∣∣∣uv − an
qn

∣∣∣∣− ∣∣∣∣ξ − an
qn

∣∣∣∣
with ∣∣∣∣uv − an

qn

∣∣∣∣ ≥ 1

vqn
≥ 1

qκ1+1
n

>
2

q
√
n

n

and ∣∣∣∣ξ − an
qn

∣∣∣∣ > 1

q
√
n

n

≥ 1

qnn
·

Hence ∣∣∣ξ − u

v

∣∣∣ > 2

q
√
n

n

− 1

qnn
=

2qnn − q
√
n

n

qnn
≥ 1

qnn

for sufficiently large n. This completes the proof of Theorem 2.7.2.

2.8 Equivalence relation induced by Liouville sets

2(15) We define a binary relation ∼ on L as follows: for ξ, η ∈ L, we say ξ ∼ η if {ξ, η}
is a Liouville set. The relation ∼ is clearly both reflexive and symmetric. We shall

show that ∼ is not transitive.
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Theorem 2.8.1. Let ξ and η be Liouville numbers. Then there exists a subset ϑ of L

having the power of continuum such that for each % ∈ ϑ, the sets {ξ, %} and {%, η} are

Liouville sets.

2(16) By Theorem 2.8.1, the relation ∼ is not transitive. For example, let t be an irrational

real number which is not a Liouville number. Then by a result due to Erdős [11], we

can write t = ξ+η with two Liouville numbers ξ and η. Since any irrational number

in a Liouville fields are Liouville numbers, the set {ξ, η} is not a Liouville Set, that

is ξ � η. But by Theorem 2.8.1, there exists a (in fact uncountably many) Liouville

number % such that ξ ∼ % and % ∼ η. Thus, the relation ∼ is not transitive. Note

that (again by Theorem 2.8.1), the equivalence relation induced by ∼ is trivial.

The proof of Theorem 2.8.1 as a consequence of Theorem 2.5.1 relies on the following

elementary lemma.

Lemma 2.8.2. Let (an)n≥1 and (bn)n≥1 be two strictly increasing sequences of positive

integers. Then there exists a strictly increasing sequence of positive integers (qn)n≥1 sat-

isfying the following properties:

(i) The sequence (q2n)n≥1 is a subsequence of the sequence (an)n≥1.

(ii) The sequence (q2n+1)n≥0 is a subsequence of the sequence (bn)n≥1.

(iii) For n ≥ 1, qn+1 ≥ qnn.

Proof of Lemma 2.8.2. We construct the sequence (qn)n≥1 inductively as follows. Set

q1 = b1 and let q2 be the least integer ai satisfying ai ≥ b1. Once qn is known for some

n ≥ 2, we define qn+1 to be the least integer satisfying the following properties:

• qn+1 ∈ {a1, a2, . . . } if n is odd, qn+1 ∈ {b1, b2, . . . } if n is even.

• qn+1 ≥ qnn.

Proof of Theorem 2.8.1. Let ξ and η be Liouville numbers. There exist increasing se-

quences of positive integers (an)n≥1 and (bn)n≥1 such that

‖anξ‖ ≤ a−nn and ‖bnη‖ ≤ b−nn

for sufficiently large n. Let q = (qn)n≥1 be a strictly increasing sequence of positive integers

satisfying the conclusion of Lemma 2.8.2. Since limn→∞
log qn+1

n log qn
≥ 1, by Theorem 2.5.1,

the Liouville set Sq is nonempty (and hence uncountable). Let % ∈ Sq. We denote by q′
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the subsequence (q2, q4, . . . , q2n, . . . ) of q and by q′′ the subsequence (q1, q3, . . . , q2n+1, . . . ).

We have % ∈ Sq ⊆ Sq′ ∩ Sq′′ . Since the sequence (an)n≥1 is increasing, we have q2n ≥ an,

and hence ξ ∈ Sq′ . Also, since the sequence (bn)n≥1 is increasing, we have q2n+1 ≥ bn,

hence η ∈ Sq′′ . Finally, ξ and % belong to the Liouville set Sq′ , while η and % belong to

the Liouville set Sq′′ .

2.9 A topological property of the sets Sq,u

Proposition 2.9.1. The sets Sq,u are not Gδ subsets of R. If they are nonempty, then

they are dense in R.

Proof. Suppose that Sq,u is nonempty, say, γ ∈ Sq,u· By Theorem 2.4.1, γ+Q is contained

in Sq,u, hence Sq,u is dense in R.

Let t be an irrational real number which is not Liouville. Hence t 6∈ Qq,u, and therefore,

by Theorem 2.4.1, Sq,u ∩ (t + Sq,u) = ∅. This implies that Sq,u is not a Gδ dense subset

of R.
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Chapter 3

Mahler Sets and Mahler Fields

3.1 Introduction

In [18, 1932], K. Mahler using the construction similar to Liouville numbers, classified

the set of complex numbers into four disjoint classes; namely, A-numbers, S-numbers,

T -numbers and U -numbers.1 His idea was to classify complex numbers ξ according to

how the values |P (ξ)|, for nonzero integer polynomials P, approach zero. The class of

A-number is precisely, A, the set of all algebraic numbers. The class of U -numbers are

further divided into classes of type Um-numbers for each m ∈ N. We denote the set

of U -numbers (respectively, of Um-numbers) by U (respectively, by Um)· The class of

U1-numbers is precisely the set of all Liouville numbers2 and therefore coincide with L.

It was an open problem at that time, whether all the classes S-, T - and U - are

nonempty. Mahler himself proved that, with respect to Lebesgue measure, almost all

numbers are S-numbers, and hence the class of S-numbers is nonempty. In fact, he con-

structed many examples of S-numbers. For example, he showed that the Champernowne

number 0.123456789101112..., is an S-number. In [16], W. J. LeVeque proved that the

sets Um are nonempty for each positive integer m. In [22, 1968], W. M. Schmidt proved

the existence of T -numbers, almost thirty five years after the work of Mahler.

In [14], J. F. Koksma using the construction closely analogous to Mahler, classified

the set of transcendental numbers into three disjoint classes; namely, S∗-numbers, T ∗-

numbers and U∗-numbers. His idea was to classify complex numbers ξ according to how

1See the Appendix for the definition of Mahler’s and Koksma’s classifications of complex numbers.
2While collaborating with Professor M. Waldschmidt on Liouville numbers, he suggested to work on

algebraic approximation of complex numbers. This led to the work on this chapter.
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the difference |ξ − α|, for α ∈ A with α 6= ξ, approach zero. In the same paper [14],

J. F. Koksma proved that these two classifications are same; that is, the S∗-, T ∗- and

U∗-classes being in fact identical with the S-, T - and U -classes respectively. Later [31],

E. Wirsing gave a simple proof of these two classifications are same. Here we use the

Koksma definition of U -numbers.

In this chapter we introduce the notions of a Mahler set and of a Mahler field. They

generalize the notions of Liouville sets and of Liouville fields. Mahler sets are subsets of

U, and they have many properties similar to Liouville sets. Like Chapter 2, we give a

family of Mahler sets and Mahler fields (see Section 3.4 and Section 3.5). In Section 3.6,

we prove that the sets Um are nonempty (this was already confirmed by W. J. LeVeque

[16]). In Section 3.7, we classify all the finite extensions of Mahler fields. In Section 3.7.2,

we study quadratic extensions of certain Liouville fields. Section 3.8 is devoted to study

the image of the Mahler fields under the classical exponential function. In Section 3.9,

we discuss the image of those U -numbers lies in Mahler fields under some special power

series with algebraic coefficients.

3.2 Mahler’s U-numbers

The U -numbers are generalization of Liouville numbers in the following sense: A tran-

scendental number ξ is said to be a U-number if there exists a positive integer m with the

property that, to every positive integer n there corresponds to an algebraic number αn of

degree m with height3 H(αn) > 1 such that

|ξ − αn| < H(αn)−n. (3.1)

The least such integer m is called the type of the U -number ξ, and in this case ξ is called

a Um-number. More precisely, we have the following:

Definition 3.2.1. Let m be a positive integer. A complex number ξ is called a Um-

number or a U-number of type m, if for every real number ω > 0 there exists a

sequence (αn)n≥1 of distinct algebraic numbers of degree m such that

0 < |ξ − αn| < H(αn)−ω (3.2)

3See the Appendix for the definition and some properties of the height H(α) of an algebraic number α.
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and if there exist positive real numbers c and κ depending only on ξ and m such that the

relation

|ξ − β| > cH(β)−κ (3.3)

holds for every algebraic number β of degree strictly less than m.

We denote the set of Um-numbers by Um, and we denote the union
⋃
m≥1 Um by U.

The elements of U are called U -numbers.

Example 3.2.2. Let m be a positive integer and let α be a m-th root of unity. Then

ξ =
∑∞

n=1(α
2
)n! is a U-number of type at most ϕ(m), where ϕ is the Euler’s totient

function.

Proof. This can be easily verified. Write ξ =
∑m−1

n=1 (α
2
)n! +

∑∞
n=m 2−n!· Since

∑∞
n=m 2−n!

is a Liouville number (and hence a U -number) and since algebraic dependent numbers

belongs to the same Mahler class [6, p. 86], ξ is a U -number. Since ξ can be approximated

by algebraic numbers of degree at most ϕ(m), ξ is a U -number of type at most ϕ(m).

The following (which is a modification of the example given in [7, p. 153]) is an

example of Um-number for each positive integer m. In fact, it proves that the set of

Um-numbers is uncountable for each positive integer m.

Example 3.2.3. Let m be a positive integer, and let aj be an element of {−1,+1}. Let

ξ be the real positive real m-th root of
(

1 +
∑

j≥1 aj10−j!
)
/2. Then ξ is a U-number type

m.

Proof. It is clear that ξ is a U -number. Indeed, since η = (1 +
∑

j≥1 aj10−j!)/2 is a

Liouville number, and {ξ, η} is algebraically dependent, (by [6, p. 86]) ξ is a U -number.

Moreover, its type does not exceed m. This can be easily verified. For, set

ak = 10k!

(
1 +

k∑
j=1

aj10−j!

)
, bk = 2.10k!, and αk = positive real m-th root of

ak
bk

for all k ≥ 1. Then, since |ak
bk
| < 1, we have H(αk) = 2.10k! and

|ξ − αk| ≤ 2 |ξm − αmk | ≤ 2.10−(k+1)! ≤ 2k+2H(αk)
−k−1. (3.4)

This proves that, type of ξ does not exceed m.
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Now we prove that type of ξ is not less than m. For, let β be a nonzero real algebraic

number of degree n strictly less than m and of height greater than H(α1). Since the

sequence (H(αk))k≥1 is strictly increasing, there exists a positive integer k such that

H(αk) ≤ H(β)2m ≤ H(αk+1) ≤ H(αk)
k+1. (3.5)

By Lemma A.12,

|αk − β| > cH(αk)
−nH(β)−m ≥ cH(αk)

−m−(k+1)/2 (3.6)

for some constant c = c(m,n). By taking H(β) large enough, the index k = k(m) satisfies

cH(αk)
−m+(k+1)/2 > 2k+3

and it follows from (3.4) and (3.6) that |αk − β| > 2 |ξ − αk| . Thus, except for finitely

many algebraic numbers β of degree strictly less than m, we have

|ξ − β| ≥ |αk − β| − |ξ − αk| > |αk − β|/2 > (C/2)H(β)−m−2m2

(3.7)

where C = min1≤n≤m c(n,m). Hence ξ is not a U -number of type strictly less than m.

3.3 Mahler sets and Mahler fields

An algebraic number field (or simply number field) K is a field extension of finite degree

over Q.

3(1) Note that in general, all the αn
′s in Definition 3.2.1 of U -numbers need not lie in a

fixed number field. We are interested to study about those U -numbers for which all

the αn
′s are in some fixed number field K.

Definition 3.3.1. Let K be a number field of degree m over Q. A subset S of U is called a

Mahler set over K, if there exists an increasing sequence q = (qn)n≥1 of positive integers

such that: for each element ξ ∈ S, there exists a sequence
(
αn
)
n≥1

of distinct elements of

K all having same degree over Q, and there exist two positive real numbers κ1 = κ1(ξ)
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and κ2 = κ2(ξ) such that, for each sufficiently large n,

H(αn) ≤ qκ1n and |ξ − αn| ≤
1

qκ2nn
· (3.8)

Definition 3.3.2. Let K be a number field. A field extension K of K is called a Mahler

field over K if K = K(S) for some Mahler set S over K.

Thus, Liouville sets are Mahler sets over Q, and Liouville fields are Mahler fields

over Q.

3.4 The family of Mahler sets (SK,q,u)q,u

3.4.1 The sets SK,q,u

Definition 3.4.1. Let K be a number field of degree m over Q, and let (q, u) be an

admissible pair. Let t be a positive integer such that 1 ≤ t ≤ m. An At-sequence for a

U-number ξ over K with respect to (q, u) (if it exists) is a sequence (αn)n≥1 of distinct

elements of K all having same degree t over Q, with two positive constants κ1 = κ1(ξ)

and κ2 = κ2(ξ) such that for sufficiently large n, we have

H(αn) ≤ qκ1n and 0 < |ξ − αn| ≤
1

qκ2unn
· (3.9)

3(2) Since any infinite subsequence of an At-sequence is also an At-sequence, an At-
sequence for a U -number ξ is not unique. It is clear that, if a U -number ξ has an

At-sequence, then ξ ∈
⋃t
k=1 Uk·

Definition 3.4.2. Let K be a number field of degree m over Q. For any admissible pair

(q, u), let SK,q,u denotes the set of all U-numbers having an At-sequence (for some positive

integer t) over K with respect to the admissible pair (q, u). The situation when u = n, we

denote SK,q,u by SK,q·

Note that, when K = Q, the sets SK,q,u coincide with the sets Sq,u defined in Chapter 2,

and therefore we denote SQ,q,u by Sq,u.

The proof of the following lemma is similar to the proof of Lemma 2.3.2 and we left

to the interesting reader to make necessary changes.
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Lemma 3.4.3. Let K be a number field. Then, for each admissible pair (q, u), the set

SK,q,u is a Mahler set over K.

Example 3.4.4. Let K be a number field of degree m over Q. Let α be a nonzero element

of K of absolute value less than 1. Let q = (qn)n≥1 be the sequence of positive integers

where qn = 2n! for each n ≥ 1. Then ξ =
∑∞

k=1
αk!

2k!
is an element of SK,q·

For each positive integer n, let αn =
∑n

k=1
αk!

2k!
, and let Pn(X) =

∑n
k=1 2n!−k!Xk!. Note

that, for each n ≥ 1, Pn(α) = 2n!αn· Moreover, since Pn(α) ∈ K for each n ≥ 1, Pn(α)

has degree at most m over Q. Also, the length L(Pn) =
∑n

k=1 2n!−k! is bounded above by

22(n!). Thus, by Lemma A.2 and by Theorem A.10,

H(αn) = H(Pn(α)/2n!)

≤ 2m+1H(Pn(α))2m(n!)

≤ 2m(n!)2m+12mL(Pn)H(α)m(m+ 1)m/2

for each n ≥ 1. Hence there exist a positive real number κ1 > 0 depends only on m such

that, for sufficiently large n,

H(αn) ≤ 2(n!)κ1 . (3.10)

Finally, the inequality |α−αn| < 1
2n(n!)

(which can be easily verified) together with (3.10),

we have ξ =
∑∞

k=1
αk!

2k!
is an element of SK,q·

3.5 The family of Mahler fields (Kq,u)q,u

Here after, let K denotes a fixed number field of degree m over Q.

3.5.1 The fields Kq,u

For any admissible pair (q, u), we let Kq,u := K ∪ SK,q,u· The situation when u = n, we

denote Kq,u by Kq· The following theorem generalize Theorem 2.4.1, and provides a large

supply of Mahler fields.

Theorem 3.5.1. For each admissible pair (q, u), the set Kq,u is a field.

3(3) By Theorem 3.5.1, Kq,u is a Mahler field over K, and any Mahler field over K is

a subfield of Kq for some q. Another consequence from Theorem 3.5.1 is that any
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Mahler field over K will be of the form K
⋃
S for some Mahler set S over K. It

follows that, once if we assume the empty set is a Mahler set, then any subset of a

Mahler set is a Mahler set and any subfield of a Mahler field is a Mahler field.

3(4) Suppose that un+1 ≥ un + 1 for sufficiently large n. Then, by Theorem 2.5.1, the set

Sq,u is not empty if and only if lim supn→∞
log qn+1

un log qn
> 0. Moreover, if the set Sq,u 6= ∅

then it has the power of continuum. Since Sq,u ⊆ SK,q,u we see that SK,q,u has the

power of continuum, if lim supn→∞
log qn+1

un log qn
is strictly positive.

The proof of Theorem 3.5.1 is very similar to Theorem 2.4.1. For the sake of complete-

ness we shall give the proof of Theorem 3.5.1 here. It is enough to prove the following:

(a) ξ + η ∈ Kq,u for all ξ, η in Kq,u,

(b) ξη ∈ Kq,u for ξ, η in Kq,u, and

(c) ξ−1 ∈ Kq,u for each nonzero element ξ in Kq,u·

3.5.2 Proof of (a) and (b).

Let ξ and η be elements of Kq,u· If both ξ and η are elements of K, then (a) and (b)

follows trivially. Assume that at least one of ξ and η is not an element of K. Suppose that

ξ is not an element of K. Then, there exist a positive integer t and a sequence (αn)n≥1 of

distinct elements of K all are of degree t over Q, with two positive constants κ1 = κ1(ξ)

and κ2 = κ2(ξ) such that

H(αn) ≤ qκ1n and 0 < |ξ − αn| ≤
1

qκ2unn
·

holds for all sufficiently large n.

The case where η is an element of K. Let s1 (respectively, s2) be the smallest

positive integer s for which infinitely many ηαn (respectively, infinitely many η+αn) has

degree s over Q.

If η = 0, then both ξη and ξ + η are elements of Kq,u. So, we assume that η 6= 0; and

in this case we shall show that both ξη and ξ+η are elements of Kq,u· The idea is to show

that:

• there exists a subsequence (αnk)k≥1 of (αn)n≥1,
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• and a subsequence (αmk)k≥1 of (αn)n≥1,

such that (ηαnk)k≥1 is an As1-sequence for ξη and (η + αmk)k≥1 is an As2-sequence for

ξ + η.

By Lemma A.8, and since q = (qn)n≥1 is strictly increasing, there exist a constant

κ3 = κ3(ξ, η,m) (recall that m is the degree of K) such that

H(ηαn) ≤ qκ3n and H(η + αn) ≤ qκ3n , (3.11)

holds for all sufficiently large n. Moreover,

0 < |ηξ − ηαn| = |η||ξ − αn| ≤
|η|
qκ2unn

,

and since q = (qn)n≥1 is strictly increasing, there exists a constant κ4 = κ4(ξ, η) such that

0 < |ηξ − ηαn| ≤
1

qκ4unn

, (3.12)

holds for all sufficiently large n. From equation (3.11) and (3.12), we see that ηξ is an

element of Kq,u·
Finally, the inequality

|η + ξ − (η + αn)| = |ξ − αn| ≤
1

qκ2unn

together with (3.11) shows that η + ξ is an element of Kq,u·
The case where η is an element of SK,q,u· There exists a positive integer t′ and

a sequence (βn)n≥1 of distinct elements of K all having same degree t′ over Q with two

positive constants κ5, κ6 depends on η such that

H(βn) ≤ qκ5n and 0 <
∣∣η − βn∣∣ ≤ 1

qκ6unn

for all sufficiently large n.

We shall prove here that ξη is an element of Kq,u, and the proof of ξ+η ∈ Kq,u is very

similar and therefore we omit here.

If ξη is an element of K, then there is nothing to prove. Suppose that ξη /∈ K. Then we

shall show that ξη ∈ SK,q,u. The idea is to show that there exists a subsequence (αnk)k≥1 of



§3.5. The family of Mahler fields (Kq,u)q,u 43

(αn)n≥1 and a subsequence (βmk)k≥1 of (βn)n≥1 such that (αnkβmk)k≥1 is an Ad-sequence

for ξη, where d is the smallest positive integer r for which infinitely many αnkβnk has

degree r over Q.

By the triangle inequality, we have

0 < |ξη − αnβn| ≤ |ξ|
∣∣η − βn∣∣+ |βn|

∣∣ξ − αn∣∣.
Since the sequence (βn)n≥1 is bounded, there exists a positive constant κ7 = κ7(ξ, η,m)

such that ∣∣ξη − αnβn∣∣ ≤ 1

qnκ7un
, (3.13)

holds for all sufficiently large n.

By Lemma A.8, and since qn ≥ 2 for all sufficiently large n,

H(αnβn) ≤ 23mH(αn)mH(βn)m

≤ 23mq(κ1+κ5)m
n

≤ q3m+(κ1+κ5)m
n .

Hence, there exists a positive constant κ8 = κ8(ξ, η,m) depends only on m such that

H(αnβn) ≤ qκ8n , (3.14)

holds for all sufficiently large n.

By (3.14) and (3.13), we see that ξη is an element of Kq,u·

3.5.3 Proof of (c).

Let ξ be a nonzero element of Kq,u· If ξ ∈ K, then (c) follows trivially (since K is a field).

So, we assume that ξ ∈ SK,q,u· Then, there exist a positive integer t′′ and a sequence

(αn)n≥1 of distinct elements of K all having degree t′′ over Q, with two positive constants

κ = κ(ξ) and κ′ = κ′(ξ) such that

H(αn) ≤ qκn and 0 <
∣∣ξ − αn∣∣ ≤ 1

qunκ′n

·
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Now, ξ−1 ∈ Kq,u follows from the following equality∣∣∣∣1ξ − 1

αn

∣∣∣∣ =

∣∣∣∣ 1

ξαn

∣∣∣∣ ∣∣ξ − αn∣∣
and H(αn

−1) = H(αn) for all n ≥ 1. This completes the proof of Theorem 3.5.1. �

The following corollary gives an upper bound for the type of the image of a U -number

ξ, under a polynomial P (X) with algebraic coefficients.

Corollary 3.5.2. Let ξ be a U-number and let L be a field extension of K of degree n

over K. Suppose that there exists a positive integer t such that ξ has an At-sequence over

K with respect to some admissible pair (q, u). Then, for any non-constant polynomial

P ∈ L[X], we have P (ξ) ∈
⋃mn
k=1 Uk·

Proof. First note that, by the assumption, ξ ∈ Lq,u· Moreover, since P (ξ) is a transcen-

dental number for any non-constant polynomial P ∈ L[X], and Lq,u is a field (thanks to

Theorem 3.5.1), P (ξ) ∈ SL,q,u ⊆
⋃mn
k=1 Uk·

3.6 Product of U-numbers with algebraic numbers

3(5) Let β be a nonzero element of K and let ξ be a U -number. Since two algebraically

dependent complex numbers belong to the same Mahler class [6, p. 86], βξ is a

U -number. What is the type of the U-number βξ? We answer this question for a

class of U -numbers which we termed as special U-numbers.

Definition 3.6.1. Let m be a positive integer. A complex number ξ is called a special

U-number of type m if there exists a sequence (αn)n≥1 of distinct algebraic numbers of

degree m such that

0 < |ξ − αn| < H(αn)−ωn (3.15)

with ωn →∞ as n→∞, and, for some r ≥ 1, and for all sufficiently large n, we have

H(αn) < H(αn+1) < H(αn)rωn . (3.16)

By a result in [6, pp. 90-92], a special U -number of type m is indeed a U -number of

type m. Special U -numbers of type 1 are called special Liouville numbers.
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Theorem 3.6.2. Let (q, u) be an admissible pair and let β be a nonzero element of K.

Let ξ be a special U-number of type t such that ξ ∈ SK,q,u. Suppose that there exists an

At-sequence (αn)n≥1 of ξ (over K with respect to (q, u)) which satisfies (3.15), (3.16); and

for some κ > 0, H(βαn) ≥ H(αn)κ for all sufficiently large n. Then βξ ∈ UD, where D

is the smallest integer d for which infinitely many βαn have degree d.

Proof. By the assumption on ξ, the sequence (H(βαn))n≥1 is unbounded; and therefore,

we can assume that

H(βαn) < H(βαn+1) (3.17)

for each n ≥ 1. By Lemma A.8, we have

H(βαn) < 23mH(β)mH(αn)m

for each n ≥ 1. Moreover, the sequence (H(αn))n≥1 is strictly increasing,

23mH(β)m < H(αn)

for sufficiently large n. Thus,

H(βαn) < H(αn)m+1. (3.18)

for sufficiently large n.

Now the inequality (3.18) together with (3.17), we have

H(βαn) < H(βαn+1)

≤ H(αn+1)m+1

< H(αn)rωn(m+1)

≤ H(βαn)r(m+1)ωn/κ (3.19)

for sufficiently large n. By (3.15) and (3.18),

|βξ − βαn| = |β||ξ − αn| < |β|H(βαn)−ωn/m+1. (3.20)

By (3.20) and (3.19), we see that βξ is a UD-number, where D is the smallest integer

d for which infinitely many βαn have degree d.
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Corollary 3.6.3. Let ξ be a special Liouville number and let α be a nonzero element of K

of degree d over Q. If there exists a sequence (an
bn

)n≥1 of rational numbers which satisfies

(3.15) and (3.16) such that for some κ > 0, H(αan/bn) ≥ aκn for all sufficiently large n,

then αξ ∈ Ud·

Proof. By Theorem 3.6.2, it suffices to show that, for sufficiently large n, H(an/bn) ≤ aκ
′
n

for some κ′ > 0. But this can be easily verified. For example, since division of a U -

number by a non-zero integer will not change the type of a U -number, we can assume

that 0 < ξ < 1. By this assumption, H(an/bn) = bn for each n ≥ 1. Moreover, since

ξ−1 ∈ L, there exist a real number κ′ > 0 such that bn < aκ
′
n holds for all sufficiently large

n. We thus have, for sufficiently large n, H(an/bn) ≤ aκ
′
n for some κ′ > 0.

Corollary 3.6.3 can be applied to construct explicit examples of Um-numbers for each

positive integer m.

Example 3.6.4. Let α be an mth root of 2 and let ξ = 1 +
∑∞

k=1
1

3k!
· Then, αξ ∈ Um·

Proof. For each n ≥ 1, let an = 3n!+
∑n

k=1 3n!−k! and bn = 3n!. Since bn < an, H(an/bn) = an

for n ≥ 1. Moreover,

3(n+1)! +
n+1∑
k=1

3(n+1)!−k! < (3 + 1)(n+1)!

< 32(n+1)!.

Hence,

H(
an
bn

) < H(
an+1

bn+1

) < H(
an
bn

)2(n+1) (3.21)

for n ≥ 1. Now ∣∣∣∣ξ − an
bn

∣∣∣∣ =
1

3(n+1)!
+

1

3(n+2)!
+ · · ·

<
1

3(n+1)!−1
<

1

3n(n!)
<

1(
3n! +

n∑
k=1

3n!−k!

)n/2
·

Thus, for n ≥ 1, ∣∣∣∣ξ − an
bn

∣∣∣∣ < 1

H(an
bn

)n/2
· (3.22)
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For n ≥ 1, the minimal polynomial of αan/bn over Z is given by bmnX
m − 2amn , and

hence, H(αan
bn

) = 2amn . Thus, for all n ≥ 1,

amn < 2amn = H(
αan
bn

). (3.23)

By (3.21), (3.22), (3.23) and by Theorem 3.6.2, we see that αξ ∈ Um·

Note. It is clear that, for any admissible pair (q, u), SK,q,u ⊆
⋃m
k=1 Uk· A natural question

is: when SK,q,u
⋂

Um is nonempty ? By Corollary 3.6.3, SK,q,u
⋂

Um 6= ∅ if there exists

an element α ∈ K of degree m over Q, together with an element ξ ∈ Sq,u satisfies

Corollary 3.6.3.

3.7 Finite extensions of Mahler fields

3.7.1 Numbers algebraic over Mahler fields

Let K be a Mahler field over K, and let L be a finite extension of K. Since L is a finite

separable extension of K, L = K(η) for some η ∈ L. In this section, we prove that such a

η is either an algebraic number or a U -number. More precisely, we prove the following:

Theorem 3.7.1. A complex number η is algebraic over a Mahler field K if and only if it

is either

(i) an algebraic number, or

(ii) a U-number for which there exists a sequence (Pi(X))i≥1 of polynomials which are

of same degree over K, and converges coefficient-wise to a polynomial P (X) ∈ K[X]

such that (for each i ≥ 1) there exists a zero βi of Pi(X) satisfies:

|η − βi| ≤
1

H(βi)ωi
, (3.24)

with limi→∞ ωi =∞.

3(6) By Theorem 3.7.1, we see that the algebraic closure of any Mahler field over K is a

subset of A ∪U.

To prove Theorem 3.7.1, we need the following:
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Proposition 3.7.2. Let (Pn)n≥1 be a sequence of polynomials of degree m over C. For

each n ≥ 1, write Pn(X) = a
(n)
0 + a

(n)
1 X + · · · + a

(n)
m Xm; let α

(n)
1 , . . . , α

(n)
m be the set

of zeros of Pn (counted with multiplicity). Suppose that for each k with 0 ≤ k ≤ m,

limn→∞ a
(n)
k = ξk exists. Finally set P (X) = ξ0 + ξ1X + · · ·+ ξmX

m. Then

(a) Pn converges uniformly on every compact subsets of C to the polynomial P (X).

(b) If α1, . . . , αm are the zeros of P (X), then the zeros of Pn’s can be arranged so that

for each k with 1 ≤ k ≤ m, α
(n)
k → αk as n→∞.

Proof. For z ∈ C,

|Pn(z)− P (z)| =
∣∣∣(a(n)

0 − ξ0) + (a
(n)
1 − ξ1)z + · · ·+ (a(n)

m − ξm)zm
∣∣∣

≤
∣∣∣a(n)

0 − ξ0

∣∣∣+
∣∣∣a(n)

1 − ξ1

∣∣∣ |z|+ · · ·+ ∣∣a(n)
m − ξm

∣∣ |z|m.
Let ε > 0 be given, and let k be an integer with 0 ≤ k ≤ m. Since limn→∞ a

(n)
k = ξk, there

exist a positive integer Nk such that |a(n)
k − ξk| < ε for all n ≥ Nk. Let N = max0≤k≤mNk.

We then have,

|Pn(z)− P (z)| < ε(1 + |z|+ · · ·+ |z|m)

for all n ≥ N. This shows that the convergence is uniform on every compact subset of C.
Hence (a) follows. Now (b) follows from the theorem of Hurwitz [27, p. 119].

Proof of Theorem 3.7.1. Let (q, u) be an admissible pair such that K ⊆ Kq,u (such

an admissible pair exists!). Let η ∈ C be algebraic of degree d over K· Let P (X) be the

minimal polynomial of η over K of degree d. If P ∈ K[X], then η ∈ A. Suppose that

P (X) does not belong to K[X]. This means that some of the coefficients of P is in SK,q,u·
So, we can write

P (X) = f(X) + ξ1X
r1 + · · ·+ ξkX

rk ,

where f ∈ K[X], ξ1, ξ2, . . . , ξk are elements of SK,q,u and r1, r2, . . . , rk are non-negative

distinct integers with k ≥ 1.

For each i with 1 ≤ i ≤ k, let (α
(i)
n )n≥1 be a sequence of elements of K all having same

degree over Q, with two positive constants κ1i and κ2i (depends only on ξi) such that

H(α(i)
n ) ≤ qn

κ1i and |ξi − α(i)
n | ≤

1

qκ2iunn
· (3.25)
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Now for each n ≥ 1, let Pn(X) = f(X) +α
(1)
n Xr1 + · · ·+α

(k)
n Xrk and let β

(n)
1 , . . . , β

(n)
d

be the roots of Pn (written with multiplicity). Clearly, the sequence (Pn(X))n≥1 of poly-

nomials converges to P (X) coefficient-wise. And therefore, by Proposition 3.7.2, there

exists an integer j with 1 ≤ j ≤ d such that β
(n)
j → η as n → ∞. Without loss of

generality, we assume that j = 1.

Let B(η,R) be an open ball for which P has no zeros other than η. By Proposition

3.7.2, the sequence (Pn(X))n≥1 converges to P (X) uniformly on compact subsets of C.
Therefore by Rouché’s theorem, P and Pn have the same number of zeros inside B(η,R)

for all sufficiently large n. Hence, for 1 < i ≤ d,
∣∣∣η − β(n)

i

∣∣∣ > R for all sufficiently large n.

Moreover, for each positive integer n,

|Pn(η)| = |Pn(η)− P (η)| ≤
∣∣α(1)

n − ξ1

∣∣ |η|r1 + · · ·+
∣∣α(k)

n − ξk
∣∣ |η|rk

≤ |η|r1 + · · ·+ |η|rk
qκunn

,

where κ = min
1≤i≤k

κ2i· Thus,

∣∣∣η − β(n)
1

∣∣∣ ∏
1<i≤d

∣∣∣η − β(n)
i

∣∣∣ = |Pn(η)| ≤ |η|
r1 + · · ·+ |η|rk

qκunn

·

It follows that, for all sufficiently large n,∣∣∣η − β(n)
1

∣∣∣ ≤ |η|r1 + · · ·+ |η|rk
Rd−1qκunn

≤ c

qκunn

, (3.26)

for some constant c = c(η) > 0.

Write f(X) = k1X
s1 +k2X

s2 +· · ·+klXsl , where s1, s2, . . . , sl are distinct non-negative

integers. For n ≥ 1, let

Fn(Y,X1, . . . , Xl, Z1, . . . , Zk) = X1Y
s1 + · · ·+XlY

sl + Z1Y
r1 + · · ·+ ZkY

rk .

Then,

Fn(β
(n)
1 , k1, k2, . . . , kl, α

(1)
n , α(2)

n , . . . , α(k)
n ) = Pn(β

(n)
1 ) = 0,

and hence, by Lemma A.11 we have

H(β
(n)
1 ) ≤ 33dm

(
H(k1) . . . H(kl)H(α(1)

n ) . . . H(α(k)
n )
)m

(n ≥ 1).
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Thus, for all sufficiently large n, H(β
(n)
1 ) < qκ

′
n for some κ′ > 0. Using this inequality in

(3.26), ∣∣∣η − β(n)
1

∣∣∣ ≤ 1

H(β
(n)
1 )κ′′un

(3.27)

for some κ′′ > 0, holds for all sufficiently large n.

Since the polynomials in the sequence (Pn(X))n≥1 have bounded degree (namely d),

there exists a subsequence (β
(nk)
1 )k≥1 of (β

(n)
1 )n≥1 whose terms have same degree over K.

This proves that η is a U -number for which the sequence (β
(nk)
1 )k≥1 satisfies the condition

(ii) of Theorem 3.7.1.

Conversely, let η ∈ C. If η is an algebraic number, then clearly η is algebraic over

K. So, assume that η is a U -number for which there exists a sequence (βi)i≥1 of complex

numbers which are algebraic of same degree over K which satisfies Theorem 3.7.1. Then

the sequence (βi)i≥1 converges to η and hence by the theorem of Hurwitz [27, p. 119],

P (η) = 0. Since P ∈ K[X], η is algebraic over K, and this completes the proof of Theorem

3.7.1.

3.7.2 Quadratic extensions of the Liouville field Qq,u

Let (q, u) be an admissible pair. Let d be a negative square-free integer, and let K =

Q(
√
d) be the associated imaginary quadratic field. In this section, we prove that Kq,u is

a quadratic extension of Qq,u. More precisely, we have the following:

Theorem 3.7.3. Let K be an imaginary quadratic field. Then for any admissible pair

(q, u), the field Kq,u is a quadratic extension of Qq,u· In other words, for each negative

square-free integer d, Q(
√
d)q,u = Qq,u(

√
d).

Proof. We shall give the proof when d = −1. The proof for the general case is very similar,

and we left to the interesting reader to make necessary changes.

Thus we have K = Q(i), and we shall show that [Kq,u : Qq,u] = 2. To show this, we

prove that Kq,u = Qq,u(i) and hence the result follows, since [Qq,u(i) : Qq,u] = 2. One way

is easy, namely Qq,u(i) ⊆ Kq,u· This follows from the fact that Qq,u ⊆ Kq,u and i ∈ K.

Conversely, let ξ ∈ Kq,u. If ξ ∈ K, then clearly ξ ∈ Qq,u(i) since K ⊆ Qq,u(i). So assume

that, ξ ∈ SK,q,u· Then by definition, there exists a sequence (αn)n≥1 of elements of K of

same degree over Q and two positive constants κ1 and κ2 (depends on ξ ) such that

H(αn) ≤ qκ1n and 0 <
∣∣ξ − αn∣∣ ≤ 1

qκ2unn
·
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For each n ≥ 1, write αn = an
bn

+ i cn
dn

and ξ = Re(ξ) + i Im(ξ). It is well known that

limn→∞ an/bn = Re(ξ) and limn→∞ cn/dn = Im(ξ). We shall show that Re(ξ), Im(ξ) ∈ Qq,u,

and hence the theorem follows.

By Lemma A.2 and Lemma A.8, we have

H(an/bn) = H

(
αn + αn

2

)
≤ 23H(αn + αn) ≤ 29H(αn)2H(αn)2 = 29H(αn)4,

since H(αn) = H(αn). Moreover, the sequence q is increasing, we can find a real number

κ3 > 0 such that

H(an/bn) ≤ qκ3n . (3.28)

Using the inequality Re(z) ≤ |z| (which holds for all nonzero complex numbers z), we

have ∣∣∣∣Re(ξ)− an
bn

∣∣∣∣ ≤ |ξ − αn| ≤ 1

qκ2unn
· (3.29)

By (3.28) and (3.29), we see that Re(ξ) ∈ Qq,u· The proof of Im(ξ) ∈ Qq,u, is very similar

and we left to the reader.

Note. We are not able to prove Theorem 3.7.3 for real quadratic fields. In the proof of

Theorem 3.7.3 we mainly use the following inequality: if α = a+b
√
d is a nonzero element

of an imaginary quadratic field Q(
√
d), with a, b ∈ Q, then |a| ≤ |α| and |b

√
d| ≤ |α|,

which is in general not true for real quadratic fields.

3.8 The exponential function and Mahler fields

The classic Lindemann-Weierstrass theorem states that: for any n ≥ 1 number of Q-

linearly independent algebraic numbers α1, . . . , αn, the transcendence degree of the field

Q(α1, . . . , αn, e
α1 , . . . , eαn) over Q is at least n. As a simple corollary of this result we see

that, for any nonzero algebraic number α, eα is a transcendental number. It follows that

eα /∈ K for any nonzero element α ∈ K. We interested to ask whether a similar result hold

for Mahler fields over K. We shall prove that under some conditions on the admissible

pair (q, u), the Mahler fields Kq,u has the required property, namely: eξ /∈ Kq,u for all

nonzero element ξ ∈ Kq,u. More precisely, we prove the following:

Theorem 3.8.1. Let (q, u) be an admissible pair. Suppose that the sequences q = (qn)n≥1

and u = (un)n≥1 satisfying the property that, the sequence v = (vn)n≥1 defined by vn =
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un
log qn

, is unbounded. Then for all nonzero element ξ ∈ Kq,u, we have eξ /∈ Kq,u·

For the proof of Theorem 3.8.1, we need the following result due to P. L. Cijsouw [10].

Theorem 3.8.2. Let ξ ∈ C, ξ 6= 0, and α, β be algebraic numbers of height at most

H1 ≥ 3, H2 ≥ 3 and of degree N and M respectively. Then there exists an effectively

computable positive real number C = C(ξ,N,M) such that the following inequality holds:

max{|ξ − α|, |eξ − β|} ≥ exp(−C logH1 logH2). (3.30)

In fact, P. L. Cijsouw computed C explicitly. Indeed one can take C to be C1e
2 log |ξ|N3

1 ,

where C1 is an absolute constant and N1 = [Q(α, β) : Q].

3.8.1 Proof of Theorem 3.8.1.

Let (q, u) be an admissible pair which satisfies the assumptions of Theorem 3.8.1. First

we show that these assumptions implies that eξ does not belong to SK,q,u for all ξ ∈ SK,q,u·
Let ξ be any element of SK,q,u· Then there exists a sequence (αn)n≥1 of distinct elements

of K of fixed degree N over Q and two positive constants κ1 and κ2 (depends only on ξ)

such that for all sufficiently large n,

H(αn) ≤ qκ1n and 0 < |ξ − αn| ≤
1

qnκ2un
· (3.31)

Suppose for the sake of contradiction that eξ ∈ SK,q,u· This assures the existence of a

sequence (βn)n≥1 of distinct elements of K of fixed degree M over Q and there are positive

constants κ3, κ4 (depends on ξ) such that

H(βn) ≤ qn
κ3 and |eξ − βn| ≤

1

qnκ4un
· (3.32)

It is easily seen that for any pair of positive integers s and H, there are only finitely

many algebraic numbers of height at most H, and of degree at most s. Since the terms

of the sequences (αn)n≥1 and (βn)n≥1 respectively are distinct, one can assume that

H(αn) ≥ 3 and H(βn) ≥ 3 for all sufficiently large n.

Set κ5 = min{κ2, κ4} and let κ6 = max{κ1, κ3}. Now applying Theorem 3.8.2 to ξ, we

deduce that
1

qnκ5un
> e−Dκ

2
6(log qn)2
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holds for all sufficiently large n; here D is a constant depends only on ξ and m. (Recall here

thatm is the degree ofK overQ.) From this inequality, we can deduce that un <
Dκ26
κ5

log qn

for all sufficiently large n. Hence the sequence ( un
log qn

)n≥1 is bounded. This contradiction

establish that eξ /∈ SK,q,u for all ξ ∈ SK,q,u·
To complete the proof of Theorem 3.8.1 (by the above discussion and since eα is

transcendental for each nonzero algebraic number α), it suffices to prove the following

two statements.

(i) For any nonzero algebraic number α, eα is not a U -number.

(ii) For any U -number ξ, eξ is a transcendental number.

Proof of the statement (i). Let α be a nonzero algebraic number. Taking ξ = α in

Theorem 3.8.2, we see that for any algebraic number β with height H ≥ 3 and degree d,

|eα − β| ≥ e−C logH

= H−C

for some absolute constant C > 0. By this inequality, one can easily see that, eα is not a

U -number.

Proof of the statement (ii). Let ξ be a U -number of type t. Then to every positive

integer n, there corresponds to an algebraic number αn of degree t with H(αn) > 1 such

that

|ξ − αn| < H(αn)−n. (3.33)

Suppose that eξ is an algebraic number, say β. Let n be a positive integer. Replacing eξ

by β and α by αn in (3.30), we see that

H(αn)−n > |ξ − αn| ≥ e−C1 logH(αn)

= H(αn)−C1

for some absolute constant C1 > 0 and for each sufficiently large n. From this inequality,

we deduce that n < C1. This contradiction proves that eξ is transcendental for each

U -number ξ. This proves (ii), and hence the proof of Theorem 3.8.1 is complete.
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3.9 Formal power series and Mahler fields

Let c = (cn)n≥1 be a sequence of nonzero elements of K, and let F (z) =
∑∞

n=1 cnz
n−1 be

a formal power series associated to the sequence c = (cn)n≥1. In this section, we study

the transcendence of the values of F (z) for U -numbers lies in Mahler fields over K. The

result we prove here is a generalization of Theorem 5 in [13].

Theorem 3.9.1. Let (q, u) be an admissible pair, and let c = (cn)n≥1 be a sequence of

non-zero elements of K. Let G(z) =
∑∞

n=1

(
cn
qn

)
zn−1 be a power series over K. Suppose

that the sequences q, u and c satisfies the following conditions:

(i) lim inf
n→∞

log qn+1

log qn
= λ > 1,

(ii) lim sup
n→∞

log qn+1

log qn
=∞,

(iii) lim
n→∞

log qn
n

=∞.

(iv) For all sufficiently large n, H(cn) ≤ qκn for some real number κ with 0 < κ < 1.

Then, for all ξ ∈ SK,q,u, we have either G(ξ) ∈ K or G(ξ) ∈
m⋃
i=1

Ui·

The proof of Theorem 3.9.1 is more technical, and the method of the proof is very

similar to the proof of Theorem 5 in [13].

Proof. Let ξ ∈ SK,q,u. Then there exists a sequence (αn)n≥1 of elements of K of same

degree over Q and with two positive constants κ1 = κ1(ξ) and κ2 = κ2(ξ) such that for

all sufficiently large n,

H(αn) ≤ qκ1n and 0 < |ξ − αn| ≤
1

qnκ2un
· (3.34)

From the assumption (ii), one can deduce that, for each positive integer n, there

exists an integer mn such that qmn+1 > qunmn . We define q′ := (q′n)n≥1 to be the sequence

of positive integers where q′n = qmn for each n ≥ 1. The idea of the proof is to show that

G(ξ) ∈ Kq′,u. If G(ξ) ∈ K, then there is nothing to prove. So, we assume that G(ξ) /∈ K,
and in this case we prove that G(ξ) ∈ SK,q′,u· To prove G(ξ) ∈ SK,q′,u, it suffices to show

that for some positive integer t, G(ξ) has an At-sequence over K with respect (q′, u).
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For each n ≥ 1, let Gn(z) =
∑n+1

k=1

(
ck
qk

)
zk−1 and let βn = Gmn(αn). Then clearly

βn ∈ K for each n ≥ 1, and has degree at most m over Q. Let d be the smallest positive

integer s such that infinitely many βn has degree s. We will show that the sequence (βn)n≥1

is an Ad-sequence for G(ξ) over K with respect to (q′, u).

There are two conditions needed to verify that (βn)n≥1 is an Ad-sequence for G(ξ)

over K with respect (q′, u). They are the following: there exist two positive constants

κ3 = κ3(ξ) and κ4 = κ4(ξ) such that, for sufficiently large n, we have

(a) H(βn) ≤ (q′n)κ3 , and

(b) 0 < |G(ξ)− βn| ≤ 1
(q′n)κ4un

·

Proof of (a). Let Qn = [q1, . . . , qn+1] be the least common multiple of q1, . . . , qn+1.

From the condition (i), we can find a positive integer N such that for all n ≥ N + 1,

qn < qλ1n+1 where λ1 = 2
λ+1

. By induction, one can easily see that for each integer i with

N + 1 ≤ i ≤ n,

qi < qλ
n−i
1
n . (3.35)

Hence for n ≥ N + 1,

Qn < [q1, . . . , qN+1]qλ
n−N−2
1
n qλ

n−N−3
1
n . . . qλ1n qn

= [q1, . . . , qN+1]q1+λ1+λ21+···+λn−N−2
1

n ≤ [q1, . . . , qN+1]q
1

1−λ1
n .

Moreover, the sequence (qn)n≥1 is strictly increasing, [q1, . . . , qN+1] ≤ qn, for sufficiently

large n, and therefore,

Qn ≤ q
1+ 1

1−λ1
n (3.36)

for all sufficiently large n.

By definition, βn = Gmn(αn) =
mn+1∑
k=1

(
ck
qk

)
αk−1
n , and hence,

βnQmn+1 = a1c1 + a2(c2αn) + a3(c3α
2
n) + · · ·+ amn+1(cmn+1α

mn
n ),

where ai = Qmn+1

qi
for i = 1, 2, . . . ,mn + 1. Thus, we have a polynomial

F (Y,X1, X2, . . . , Xmn+1) = Qmn+1Y − (a1X1 + a2X2 + · · ·+ amn+1Xmn+1)
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with integer coefficients such that F (βn, c1, c2αn, . . . , cmn+1α
mn
n ) = 0. Now by Lemma A.11

and since ai ≤ Qmn+1 for i = 1, 2, . . . ,mn + 1, we have

H(βn) ≤ 32m+(mn+1)mQm
mn+1H(c0)mH(c1αn)m . . . H(cmnαnmn)m.

By condition (iii), one can deduce that qn ≥ 3n for all sufficiently large n. Moreover, since

H(cn) < qκn and H(αn) < qκ1n for each n, by (3.36) and by Lemma A.8, we can find a

positive constant κ3 > 0 such that

H(βn) ≤ qκ3mn (3.37)

for all sufficiently large n. This completes the proof of (a).

Proof of (b). Set R = supz∈B̄(ξ,1)

∣∣G′mn(z)
∣∣ , where B̄(ξ, 1) = {z : |ξ − z| ≤ 1} and G′mn

is the derivative of Gmn . Then, by the mean value theorem,

|Gmn(ξ)− βn| = |Gmn(ξ)−Gmn(αn)| < R

q
κ2umn
mn

. (3.38)

Moreover,

|G(ξ)−Gn(ξ)| =

∣∣∣∣∣ ∑
k≥n+2

(
ck
qk

)
ξk−1

∣∣∣∣∣ ≤ |ξ|n+1
∞∑
i=2

(
|cn+i|
qn+i

)
|ξ|i−2 . (3.39)

By Lemma A.3, |cn| ≤ 2H(cn) for each n ≥ 1; further H(cn) ≤ qκn (thanks to condi-

tion (iv)) for sufficiently large n. Hence,

|G(ξ)−Gn(ξ)| ≤ 2 |ξ|n+1
∞∑
i=2

(
qκn+i

qn+i

)
|ξ|i−2

= 2 |ξ|n+1
∞∑
i=2

(
1

q1−κ
n+i

)
|ξ|i−2

=

(
2 |ξ|n+1

q1−κ
n+2

)
∞∑
i=2

(
qn+2

qn+i

)1−κ

|ξ|i−2 (3.40)

holds for all sufficiently large n.

Since limn→∞
qn+1

qn+2
= 0, there exist a natural number M such that both

∣∣∣ qn+1

qn+2

∣∣∣ and
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∣∣∣ ξqn+1

qn+2

∣∣∣ are strictly less than 1
2

for all n ≥M. Hence by induction, one can show that,

|ξi−2|
(
qn+1

qn+i

)
<

1

2i−2
(3.41)

for a fixed integer n ≥M − 1, and for all i ≥ 2. Using the inequality (3.41) in (3.40), we

have

|G(ξ)−Gn(ξ)| ≤ 4|ξ|n+1

q1−κ
n+2

, (3.42)

holds for all sufficiently large n. Thus, for all sufficiently large n, we have

|G(ξ)−Gmn(ξ)| ≤ 4|ξ|mn+1

q1−κ
mn+2

≤ 4|ξ|mn+1

q
un(1−κ)
mn

·

From the condition (iii), one can deduce that 4|ξ|n+1 ≤ q
un( 1−κ

2
)

n for all sufficiently large

n, and hence by (3.38) and (3.42),

|G(ξ)− βn| = |G(ξ)−Gmn(αn)|

≤ |G(ξ)−Gmn(ξ)|+ |Gmn(ξ)−Gmn(αn)|

≤ 1

q
un( 1−κ

2
)

mn

+
R

q
κ2umn
mn

≤ 1

q
un( 1−κ

2
)

mn

+
R

qκ2unmn

·

Finally, we thus have, for all sufficiently large n ≥M,

|G(ξ)− βn| ≤
1

(q′n)κ4un
(3.43)

for some κ4 > 0. This completes the proof of (b). By (3.37) and (3.43), we see that

G(ξ) ∈ Kq′,u, and hence the theorem follows.

3.10 Concluding remarks

The U -numbers are complex analog of Liouville numbers. They share many properties in

common: for example

(i) both are uncountable sets of Lebesgue measure zero,
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(ii) both are Gδ-subsets, since

L =
⋂
n≥1

Vn with Vn =
⋃
q≥2

⋃
p∈Z

(
p

q
− 1

qn
,
p

q
+

1

qn

)
\
{
p

q

}
,

and

U =
⋂
n≥1

Wn with Wn =
⋃
m≥1

⋃
α∈A∗m

B(α,H(α)−n) \ {α} ,

where A∗m denotes the set of nonzero algebraic numbers of degree m over Q, and

B(α, r) denotes a open ball of radius r with center α in C.

(iii) both sets have Hausdorff dimension zero.

Clearly Um ⊆
⋂
n≥1

⋃
α∈A∗m

B(α,H(α)−n) \ {α}. Since U1 ∩Um = ∅ for m > 1, by Baire’s

theorem, Um∩R (
⋂
n≥1

⋃
α∈A∗m∩R

(α−H(α)−n, α+H(α)−n)\{α}. From this observation

it follows that, there are real U -numbers ξ of type t with 1 < t < m, for which there exists

a sequence (αn)n≥1 of algebraic numbers of degree m such that

|ξ − αn| ≤ H(αn)−n

for all n ≥ 1. This shows that a U -number ξ of type t may be well approximated by

algebraic numbers of degree m > t.

We complete this chapter with two interesting questions for which we do not know

any answers at present.

Problem 1. Given any U -number ξ, can we find an admissible pair (q, u) such that

ξ ∈ Kq,u?

Problem 2. Let K be a number field and let L be a finite extension of K. Is it true that

for any admissible pair (q, u), Lq,u is an algebraic extension of Kq,u? If this is the case,

what can we say about [Lq,u : Kq,u]?



Chapter 4

Some partial results towards

Schanuel’s conjecture for U-numbers

4.1 Introduction

A set of complex numbers {x1, . . . , xn} (n ≥ 1) is said to be algebraically dependent

if there exist a nonzero polynomial P ∈ Z[X1, X2, . . . , Xn] such that P (x1, . . . , xn) = 0.

A subset S of C is said to be algebraically independent if no nonempty finite subset

of S is algebraically dependent. For any subfield L of C, the transcendence degree of

L (over Q) is defined to be the cardinality of a maximal algebraically independent subset

of L. We denote the transcendence degree of the field L by trdegQL.

In 1960, S. Schanuel made a famous conjecture concerning transcendence degree of

certain field extensions over the field of rational numbers. The conjecture reads as follows:

Conjecture (Schanuel). Let n be a positive integer. Then, given any n number of Q–

linearly independent complex numbers x1, . . . , xn, the transcendence degree of the field

Q(x1, . . . , xn, e
x1 , . . . , exn) over Q is at least n.

This conjecture was first stated in a course given by S. Lang [15, pp. 30-31] at Columbia

in the 1960s. This conjecture is one of the major open problems in transcendental number

theory, and if proved, then it includes most of the known results about the algebraic

independence of the values of the exponential function. We are very far from the proof

of this conjecture. For example, we do not know the truth of this conjecture in the
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case n = 2. There are very few cases where the conjecture is proved to be true. The

special case where, x1, x2, . . . , xn are all algebraic numbers is completely solved, and is now

known as, Lindemann-Weierstrass theorem. For n = 1, this is just Hermite-Lindemann

Theorem: For any nonzero complex number ξ, at least one of the two numbers ξ, eξ is

transcendental.

There are other variations of Schanuel Conjecture. Schanuel himself made a similar

conjecture for power series over C, which reads as follows:

Conjecture (Schanuel, power series version). Given any n ≥ 1 Q-linearly independent

formal power series f1(t), f2(t), . . . , fn(t) over C, the field C(t, f1, . . . , fn, e
f1 , . . . , efn) has

transcendence degree at least n over the field C(t).

This conjecture was completely solved by J. Ax in [5].

4.2 Schanuel’s conjecture and Liouville numbers

4(1) Schanuel’s conjecture implies that for any Q-linearly independent complex numbers

ξ1, . . . , ξn (n ≥ 1), the transcendence degree of the field

Q(ξ1, . . . , ξn, e
ξ1 , . . . , eξn) (4.1)

is at least n. One may ask whether the transcendence degree is at least n+ 1 when

the following additional assumption is made: for each i = 1, . . . , n, one at least of

the two numbers ξi, e
ξi is a U -number.

We first proceed the case where: for each i = 1, . . . , n, one at least of the two numbers ξi,

eξi is a Liouville number. We show that for each pair of integers (n,m) with n ≥ m ≥ 1,

there exist uncountably many tuples ξ1, . . . , ξn consisting of Q–linearly independent real

numbers, such that the numbers ξ1, . . . , ξn, e
ξ1 , . . . , eξn are all Liouville numbers, and the

transcendence degree of the field Q(ξ1, . . . , ξn, e
ξ1 , . . . , eξn) is n + m. More precisely, we

prove the following:

Theorem 4.2.1. Let n ≥ 1 and 1 ≤ m ≤ n be given integers. Then there exist uncount-

ably many n-tuples (ξ1, . . . , ξn) ∈ Ln such that ξ1, . . . , ξn are linearly independent over Q,

eξi ∈ L for all i = 1, 2, . . . , n and

trdegQQ(ξ1, . . . , ξn, e
ξ1 , . . . , eξn) = n+m.



§4.2. Schanuel’s conjecture and Liouville numbers 61

4(2) Theorem 4.2.1 is tight when n = 1: the result does not hold for m = 0. Indeed,

since the set of α in L such that α and eα are algebraically dependent over Q is

countable, one cannot get uncountably many α ∈ L such that trdegQQ(α, eα) = 1.

We need the following propositions and a corollary for the proof of Theorem 4.2.1.

Proposition 4.2.2.

Let g1, g2, . . . , gn be polynomials in C[z]. Then the following two conditions are equivalent.

(i) For 1 ≤ i < j ≤ n, the function gi − gj is not constant.

(ii) The functions eg1 , . . . , egn are linearly independent over C(z).

Proposition 4.2.3. Let f1, f2, . . . , fm be polynomials in C[z]. Then the following two

conditions are equivalent.

(i) For any nonzero tuple (a1, . . . , am) ∈ Zm, the function a1f1 + · · · + amfm is not

constant.

(ii) The functions ef1, . . . , efm are algebraically independent over C(z).

Since the functions 1, z, z2, . . . , zm, . . . are linearly independent over C, we deduce

from Proposition 4.2.3 the following:

Corollary 4.2.4. The functions

z, ez, ez
2

, . . . , ez
m

, . . .

are algebraically independent over C.

4(3) For the proof of Proposition 4.2.2 and Proposition 4.2.3, we introduce the quotient

vector space V = C[z]/C and the canonical surjective linear map s : C[z]→ V with

kernel C. Assertion (i) in Proposition 4.2.2 means that s(g1), . . . , s(gn) are pairwise

distinct, while assertion (i) in Proposition 4.2.3 means that s(f1), . . . , s(fm) are

linearly independent over Q.
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4.2.1 Proof of Proposition 4.2.2

(i) ⇒ (ii). We prove this result by induction on n. For n = 1, there is no condition on

g1, the function eg1 is not zero, hence the result is true. Assume n ≥ 2 and assume that,

for any n′ < n, the result holds for n′. Let A1, . . . , An be polynomials in C[z], not all of

which are zero; consider the function

G(z) = A1(z)eg1(z) + · · ·+ An(z)egn(z).

The goal is to check that G is not the zero function. The idea is to show that the associated

function H = e−gnG is not the zero function (and hence G is not the zero function).

Using the induction hypothesis, we may assume Ai 6= 0 for 1 ≤ i ≤ n. Define

hi = gi−gn (1 ≤ i ≤ n−1). From hi−hj = gi−gj, we deduce that s(h1), s(h2), . . . , s(hn−1)

are distinct in V . By definition,

H(z) = A1(z)eh1(z) + · · ·+ An−1(z)ehn−1(z) + An(z).

Write D = d/dz and let N be a positive integer with N > degAn, so that DNAn = 0.

One can easily see that, for any nonzero polynomial A ∈ C[z] and any non-constant

polynomial h ∈ C[z], we can write D(Aeh) = Beh for some nonzero polynomial B ∈ C[z].

Therefore, for i = 1, . . . , n− 1 and for any integer t ≥ 0, we can write

Dt
(
Ai(z)ehi(z)

)
= Ai,t(z)ehi(z)

where Ai,t is a nonzero polynomial in C[z]. By the induction hypothesis, applied to the

functions h1, . . . , hn−1, we have

DNH(z) = A1,N(z)eh1(z) + · · ·+ An−1,N(z)ehn−1(z),

is not the zero function, hence H 6= 0. This proves that G is not the zero function.

(ii) ⇒ (i). If g1−g2 is a constant c, then the pair (eg1 , eg2) is a zero of the linear form

X1 − ecX2 over C.

4.2.2 Proof of Proposition 4.2.3

(i) ⇒ (ii). Assume that for any nonzero tuple (a1, . . . , am) ∈ Zm, a1f1 + · · · + amfm is
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not constant. Consider a nonzero polynomial

P (X1, . . . , Xm) =

d1∑
λ1=0

· · ·
dm∑

λm=0

pλ1,...,λm(z)Xλ1
1 . . . Xλm

m ∈ C[z,X1, . . . , Xm]

and let F be the entire function F = P (ef1 , . . . , efm). Let {g1, . . . , gn} be the set of

functions λ1f1 + · · ·+ λmfm where pλ1,...,λm(z) 6= 0. For 1 ≤ i ≤ n, we set

Ai(z) = pλ1,...,λm(z) ∈ C[z]

where (λ1, . . . , λm) is defined by gi = λ1f1 + · · ·+ λmfm, so that

F (z) = A1(z)eg1(z) + · · ·+ An(z)egn(z).

The assumption on f1, . . . , fm implies that the functions g1, . . . , gn satisfy the assumption

(i) of Proposition 4.2.2, hence the function F is not the zero function. This proves that

the functions ef1 , . . . , efm are algebraically independent over C(z).

(ii) ⇒ (i). If there exists (a1, . . . , am) ∈ Zm \ {(0, . . . , 0)} such that the function a1f1 +

· · ·+ amfm is a constant c, then for the polynomial

P (X1, . . . , Xm) =
∏
ai>0

Xai
i − ec

∏
ai<0

X
|ai|
i

we have P (ef1 , . . . , efm) = 0, therefore the functions ef1 , . . . , efm are algebraically depen-

dent over C (hence over C(z)).

4.2.3 Proof of Theorem 4.2.1

We are now in position to prove Theorem 4.2.1, which states that for integers n and

m with 1 ≤ m ≤ n, there are uncountably many n-tuples (α1, . . . , αn) ∈ Ln such that

α1, . . . , αn are linearly independent over Q, eαi ∈ L for all i = 1, 2, . . . , n and

trdegQQ(α1, . . . , αn, e
α1 , . . . , eαn) = n+m.

Let us start the proof. Let n and m be integers such that 1 ≤ m ≤ n. We shall prove
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the assertion by induction on m ≥ 1. Assume m = 1. We prove the result for all n ≥ 1.

For each nonzero polynomial P (X0, X1, . . . , Xn) ∈ Q[X0, . . . , Xn] in n + 1 variables with

rational coefficients, we define a function

fP : C→ C by fP (z) = P (z, ez, . . . , ez
n

).

Using Corollary 4.2.4, we deduce that the set Z(fP ), of all zeros of fP in C, as the

zero locus of a non-zero complex analytic map fP , is discrete in C. Hence its intersection

with R, say ZP , is discrete in R. Therefore, R \ ZP is both open and dense in R. From

Proposition 1.2.2 and Baire’s theorem, it follows that the set

E =
{
α ∈ L | eα

j ∈ L for j = 1, . . . , n
}
∩

⋂
P∈Q[X0,...,Xn]\{0}

(R\ZP )

is a Gδ–subset of R. Therefore, by Corollary 1.2.5, E is uncountable. For any α ∈ E, the

numbers α, eα, eα
2
, . . . , eα

n
are in L and are algebraically independent over Q. Since α is

a Liouville number, α2, . . . , αn are also Liouville numbers and α, α2, . . . , αn are linearly

independent over Q (and they are trivially algebraically dependent over Q). We then

have

trdegQQ(α, α2, . . . , αn, eα, . . . , eα
n

) = n+ 1

and we conclude that the assertion is true for m = 1 and for all n ≥ 1.

Assume that 1 < m ≤ n. Also, suppose the assertion is true for m − 1 and for all

n ≥ m − 1. In particular, the assertion is true for m − 1 and n − 1. Hence, there are

uncountably many n− 1 tuples (α1, . . . , αn−1) ∈ Ln−1 such that α1, . . . , αn−1 are linearly

independent over Q; eα1 , . . . , eαn−1 are Liouville numbers and

trdegQQ(α1, . . . , αn−1, e
α1 , . . . , eαn−1) = n+m− 2. (4.2)

Choose such an (n− 1)-tuple (α1, . . . , αn−1). Consider the following subset of R :

E ′ = {α ∈ R | α, eα are algebraically independent over Q(α1, . . . αn−1, e
α1 , . . . , eαn−1)}

(4.3)

If P (X, Y ) ∈ Q(α1, . . . , αn−1, e
α1 , . . . , eαn−1)[X, Y ] is a polynomial, we define an ana-

lytic function f(z) = P (z, ez) in C. Since z, ez are algebraically independent func-

tions over C (by Corollary 4.2.4), f is a nonzero function when P is a nonzero poly-
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nomial. Therefore, the set of zeros of f in C is countable when P (X, Y ) is nonzero.

Since there are only countably many polynomials P (X, Y ) with coefficients in the field

Q(α1, . . . αn−1, e
α1 , . . . , eαn−1), we conclude that R\E ′ is countable. Therefore F = E ′ ∩L

is uncountable. For each α ∈ F , the two numbers α, eα are algebraically independent over

Q(α1, . . . , αn−1, e
α1 , . . . , eαn−1). From (4.2) we deduce

trdegQQ(α1, . . . , αn−1, α, e
α1 , . . . , eαn−1 , eα) = n+m.

This completes the proof of Theorem 4.2.1. �

4(4) The proof of Theorem 4.2.1 shows that, it can be extended to any Gδ−subset of C.
Thus we have the following:

Theorem 4.2.5. Let n ≥ 1 and 1 ≤ m ≤ n be given integers. Let E be a Gδ−subset of

C. Then there exist uncountably many n-tuples (ξ1, . . . , ξn) ∈ En such that ξ1, . . . , ξn are

linearly independent over Q, eξi ∈ E for all i = 1, 2, . . . , n and

trdegQQ(ξ1, . . . , ξn, e
ξ1 , . . . , eξn) = n+m.

4.3 Schanuel’s conjecture and U-numbers

Proposition 4.3.1. Let G be a Gδ−subset of C. Then for any line L in C, G r L is a

Gδ−subset of C.

Proof. By Baire’s theorem it is enough to prove that, for every open dense subset E of

C, E r L is a dense open subset of C. So, let E be an open dense subset of C. Since L is

closed and E is open, E r L is open in C. Let F be any open subset of C. Then F r L

is open, and hence, E ∩ (F rL) is nonempty. But this implies F ∩ (E rL) is nonempty.

This proves the proposition.

It is clear that U is a Gδ–subset of C (see Section 3.10). Combining Proposition 4.3.1

(where we take L = R) with Theorem 4.2.5, we have the following:

Theorem 4.3.2. Let n ≥ 1 and 1 ≤ m ≤ n be given integers. Then there exist uncount-

ably many n-tuples (ξ1, . . . , ξn) of U-numbers of degree > 1 such that eξi ∈ U r U1 for all

i = 1, 2, . . . , n and

trdegQQ(ξ1, . . . , ξn, e
ξ1 , . . . , eξn) = n+m.
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4.4 Schanuel’s conjecture and Gδ-subsets

4(5) Let n be a positive integer, and let ξ1, . . . , ξn be Q-linearly independent complex

numbers. To each such an n-tuple (ξ1, . . . , ξn), we associate the following set:

E(ξ1,...,ξn) := {c ∈ C | trdegQQ(cξ1, cξ2, . . . , cξn, e
cξ1 , ecξ2 , . . . , ecξn) ≥ n+ 1}.

In this section, we prove that for any n-tuple (ξ1, . . . , ξn) of Q-linearly independent

complex numbers, E(ξ1,...,ξn) is a Gδ−subset of C. In fact, we prove a more general

result, which was suggested by Professor M. Waldschmidt in a personal communi-

cation.

Theorem 4.4.1. Let ξ1, . . . , ξn, η0, η1, . . . , ηt be n + t + 1 complex numbers, with n ≥ 1

and t ≥ 0. Assume ξ1, . . . , ξn are Q-linearly independent, η0 6= 0 and η1/η0, . . . , ηt/η0 are

algebraically independent over Q. Then there exists a Gδ-subset E of C such that for all

c ∈ E, the numbers

cη0, cη1, . . . , cηt, e
cξ1 , . . . , ecξn (4.4)

are algebraically independent over Q; in other terms

trdegQQ(cη0, cη1, . . . , cηt, e
cξ1 , . . . , ecξn) = n+ t+ 1. (4.5)

Proof. From the assumption on the ξ′is, and since η0 6= 0, the numbers ξ1/η0, . . . , ξn/η0 are

linearly independent over Q. Hence, the polynomials fi(Z) = ξiZ/η0, for i = 1, 2, . . . , n

satisfies the condition (i) of Proposition 4.2.3. Therefore, the functions eξ1Z/η0 , . . . , eξnZ/η0

are algebraically independent over C(Z).

To each nonzero polynomial P ∈ Z[Y1 . . . , Yt, Z,X1, . . . , Xn], we associate an entire

function FP from C to C by the formula:

FP (z) = P (zη1/η0, . . . , zηt/η0, z, e
zξ1/η0 , . . . , ezξn/η0).

Since η1/η0, . . . , ηt/η0 are algebraically independent over Q, the polynomial

Gp(Z,X1, . . . , Xn) = P (Zη1/η0, . . . , Zηt/η0, Z,X1, . . . , Xn) (4.6)

is a nonzero polynomial in Q(η1/η0, . . . , ηt/η0)[Z,X1, . . . , Xn]. Moreover, the functions

eξ1Z/η0 , eξ2Z/η0 , . . . , eξnZ/η0 are algebraically independent over C(Z); the same is true over
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Q(η1/η0, . . . , ηt/η0)(Z). Hence, FP (z) is not the zero function, and therefore the function

FP (η0z) is also not the zero function. It follows that the set Z(FP (η0z)) of zeros of the

nonzero analytic map FP (η0z), is discrete in C. Hence its complement is a dense open

subset of C. Thus by Baire’s theorem, the set

E =
⋂

P∈Z[Y1,...,Yt,Z,X1,...,Xn]\{0}

C \ Z(FP (η0z))

is a Gδ subset of C.
If c ∈ E, then for any nonzero polynomial P ∈ Z[Y1 . . . , Yt, Z,X1, . . . , Xn] we have

FP (cη0) 6= 0. That is, P (cη0, cη1, . . . , cηt, e
cξ1 , . . . , ecξn) 6= 0. In other words,

trdegQQ(cη0, cη1, . . . , cηt, e
cξ1 , . . . , ecξn) = n+ t+ 1.

This completes the proof of Theorem 4.4.1.

By taking t = 0, and η0 = ξ1 in Theorem 4.4.1 we get the following:

Theorem 4.4.2. Let ξ1, ξ2, . . . , ξn be n complex numbers with n ≥ 1, and they are linearly

independent over Q. Then, there exists a Gδ-subset E of C such that for all c ∈ E, we have

trdegQQ(cξ1, cξ2, . . . , cξn, e
cξ1 , ecξ2 , . . . , ecξn) ≥ n+ 1.
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Appendix A

Heights and Mahler’s classification

A.1 Height of an algebraic number

Here we recall some of the properties of absolute logarithmic Weil height and of (usual)

height of an algebraic number which will be needed for our thesis. We also prove some

new results here.

Definition A.1. Let α be an algebraic number with the minimal polynomial f(X) =

a0X
m + · · ·+ am over Z, and let {α1 = α, α2, . . . , αm} be the set of all Galois conjugates

of α. Then, the absolute logarithmic Weil height h(α), of α is given by

h(α) =
1

m

(
log a0 +

m∑
i=1

log max{1, |αi|}

)
.

while

H(α) = H(f) = max
0≤i≤m

|ai|

is called the usual height, or simply height, of α (and of the polynomial f).

Throughout this section, let α be denote an algebraic number of degree m over Q,
and let K = Q(α). It is known that every element of K is of the form P (α) for some

polynomials P (x) ∈ Q[x]. We are interested to study the relationship between H(α) and

H(P (α)). First, we recall some of the results in this direction.

Lemma A.2. [7, p.222] Let a, b, and c be integers with c 6= 0. Then we have

H

(
aα + b

c

)
≤ 2m+1H(α) max{|a|, |b|, |c|}m.

Lemma A.3. [16, p.224] Let φ(X) and φ1(X) be two polynomials with integer coefficients

of degree d and d1 respectively such that φ1(X) divides φ(X). Let α1, α2, . . . , αd be the zeros

of φ(X) (counted with multiplicity). Then

max
1≤k≤d

|αk| ≤ 2H(φ)

69
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and there is a constant c > 0 that depends only on d1, such that

H(φ1) < cH(φ)d1+1.

The following Lemma is due to C. L. Siegel.

Lemma A.4. Following the notations of Lemma A.3, we have

H(φ1) ≤ d!

d1!
H(φ)

The following lemma gives an upper bound for the absolute logarithmic Weil height

of sum and product of elements of K.

Lemma A.5. [30, p.75] For any algebraic numbers γ and β we have

(i) h(γβ) ≤ h(γ) + h(β)

(ii) h(γ + β) ≤ log 2 + h(γ) + h(β).

Lemma A.6. [30, p.80] For any algebraic number γ of degree d over Q, we have

1

d
logH(γ)− log 2 ≤ h(γ) ≤ 1

d
logH(γ) +

1

2d
log(d+ 1).

Corollary A.7. For any algebraic number γ, we have

eh(γ) ≤ 2H(γ).

Proof. If γ is a rational number, say γ = a
b
, then

h(γ) =

{
log|b|, if a ≤ b;

log|a|, if a > b,

and hence the result follows trivially.

For otherwise, by Lemma A.6, we have

h(γ) ≤ 1

d
log
(√

d+ 1H(γ)
)
.
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Therefore,

eh(γ) < ((d+ 1)H(γ))1/d

<
d
√
d+ 1H(γ),

where d is the degree of γ over Q. Since d
√
d+ 1 ≤ 2 for d ≥ 2, the result follows.

The following lemma gives an upper bound for the height of sum and product of

elements of K.

Lemma A.8. Let γ, β be elements of K. Then we have

(i) H(γβ) ≤ 23mH(γ)mH(β)m.

(ii) H(γ + β) ≤ 24mH(γ)mH(β)m.

Proof. Let N be the degree of γβ over Q. Then, by Lemma A.5 and Lemma A.6, we have

1

N
logH(γβ) ≤ log 2 + h(γβ)

≤ log 2 + h(γ) + h(β).

By Corollary A.7, and since N ≤ m, we have

H(γβ) ≤
(
2eh(γ)eh(β)

)m
≤ 23mH(γ)mH(β)m.

This proves (i).

Now we prove the result for the sum γ + β. Since the degree of γ + β (over Q) is at

most m, by Lemma A.5 and Lemma A.6, we have

logH(γ + β) ≤ m(log 2 + h(γ + β))

≤ m(2 log 2 + h(γ) + h(β)).



72 §A. Heights and Mahler’s classification

Using Corollary A.7, we have

H(γ + β) ≤ 22memh(γ)emh(β)

≤ 24mH(γ)mH(β)m,

which proves (ii).

In the following, let P (X) = a0X
r + · · · + ar denote a non-constant polynomial of

degree r ≤ m over Z and let s be the degree of P (α) over Q. Let ΦP : Z[X] → Z[X] be

the ring homomorphism defined by X 7→ P (X).

Proposition A.9. For all Q(X) ∈ Z[X], we have

H(ΦP (Q)) ≤ (deg(Q) + 1)H(Q)[(r + 1)H(P )]deg(Q).

Proof. Let Q(x) = c0x
d + · · ·+ cd be a polynomial of degree d over Z. Then, by definition

ΦP (Q(x)) =
d∑

n=0

cn(a0x
r + · · ·+ ar)

n.

By the multinomial theorem, we have

ΦP (Q(x)) =
d∑

n=0

cn
∑

n0+n1+···+nr=n

(
n

n0, n1, . . . , nr

)
an0

0 a
n1
1 . . . anrr x

rn0+···+2nr−2+nr−1 ,

where

(
n

n0, n1, . . . , nr

)
= n!

n0!n1!···nr!
, and the inner sum is over all n-tuples (n0, n1, . . . , nr)

of non-negative integers.

By interchanging the sum, one can write ΦP (Q(x)) =
dr∑
i=0

bix
i, where

bi =

di∑
n=0

cn
∑

n0,n1,...,nr≥0,
n0+n1+···+nr=n,

rn0+···+2nr−2+nr−1=i

(
n

n0, n1, . . . , nr

)
an0

0 a
n1
1 . . . anrr .
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Hence by definition,

H(ΦP (Q)) = max
0≤i≤dr

|bi| ≤ H(Q)
d∑

n=0

∑
rn0+···+nr−1=i

(
n

n0, n1, . . . , nr

)
H(P )n (4.7)

where the inner sum is over all n-tuples (n0, . . . , nr) of non-negative integers that add up

to n.

From (4.7), one can easily deduce that, H(ΦP (Q)) ≤ (d+ 1)H(Q)H(P )d(r + 1)d.

The following theorem relates the height of P (α) with the height of α.

Theorem A.10. Let Q be the minimal polynomial of P (α) of degree d over Z. Then,

H(P (α))1/d

2L(P )
√
m+ 1

≤ H(α) ≤ (dr)!

m!
(d+ 1)H(P (α)) [(r + 1)H(P )]d . (4.8)

Proof. Let Q be the minimal polynomial of P (α) of degree d over Z. Then α is a root of

ΦP (Q), and hence, the minimal polynomial of α divides ΦP (Q) over Z. By Lemma A.4,

we have H(α) < (dr)!
m!
H(ΦP (Q)). By using Proposition A.9, we have

H(α) ≤ (dr)!

m!
(d+ 1)H(P (α)) [(r + 1)H(P )]d . (4.9)

By Lemma A.6, we have

1

d
logH(P (α))− log 2 ≤ h(P (α))

≤ logL(P ) + rh(α)

≤ logL(P ) +m

(
1

m
logH(α) +

1

2m
log(m+ 1)

)
≤ logL(P ) + logH(α) + log(m+ 1)

1
2 .

Hence

H(P (α))
1
d ≤ 2L(P )H(α)

√
m+ 1. (4.10)

From (4.9) and (4.10), the result follows.

Suppose that β is algebraic over K. Then the following lemma gives an upper bound
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for the height of β in terms of the heights and degrees of the coefficients occur in the

minimal polynomial of β over K.

Lemma A.11 ([12]). Let n be a positive integer, and let α1, α2, . . . , αn be algebraic

numbers belong to K. Let F (Y,X1, . . . , Xn) be a nonconstant polynomial in the variables

Y,X1, . . . , Xn over Z, and with degree at least one in Y . Suppose that γ is an algebraic

number with F (γ, α1, α2, . . . , αn) = 0. Then,

H(γ) ≤ 32dm+(d1+···+dn)m(HFH(α1)d1 · · ·H(αn)dn)m (4.11)

where HF is the maximum of the absolute values of the coefficients of F, di is the degree

of Xi (i = 1, 2, . . . , n) in F and d is the degree of Y in F.

The following lemma gives the lower bound for the difference between two distinct

nonzero algebraic numbers (see [7, pp. 153-154] for more details).

Lemma A.12. Let α and β be two distinct nonzero algebraic numbers of degree n and

m, respectively. Then there exists a constant c = c(n,m) such that

|α− β| > cH(α)−mH(β)−n. (4.12)

A.2 Mahler’s and Koksma’s classification of complex numbers

In this section, we define the Mahler’s and Koksma’s classifications of complex numbers.

The materials here are taken from [7]. For more details on both the classifications and

also for a literature survey on these topics, we refer to Chapter 3 of [7].

The Mahler classification of complex numbers can be obtained by the following

algorithm.

(i) For any complex number ξ, we put

ωm(ξ,N) = inf |P (ξ)| ,

where the infimum is taken over all polynomials P (X) with rational integer coeffi-

cients such that deg(P ) ≤ m,H(P ) ≤ N, and P (ξ) 6= 0.
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(ii) Then, we put

ωm(ξ) = lim sup
N→∞

− logωm(ξ,N)

logN
, ω(ξ) = lim sup

m→∞

ωm(ξ)

m
.

(iii) (Mahler’s classification). Finally, ξ is called an

• A-number, if ω(ξ) = 0;

• S-number, if 0 < ω(ξ) <∞;

• T -number, if ω(ξ) =∞ and ωm(ξ) <∞ for all m ≥ 1;

• U -number, if ω(ξ) =∞ and there exists positive integerm0 such that ωm(ξ) = ∞
for all m ≥ m0.

The Koksma’s classification of complex numbers can be obtained in a similar

way as we obtained the Mahler’s classification. The algorithm is given below:

(i) For any complex number ξ, we first put

ω∗m(ξ,N) = inf |ξ − α| ,

where the infimum is taken over all algebraic numbers α of degree at most m and

height at most N such that α 6= ξ.

(ii) Then, we put

ω∗m(ξ) = lim sup
N→∞

− log (Nω∗m(ξ,N))

logN
, ω∗(ξ) = lim sup

m→∞

ω∗m(ξ)

m
.

(iii) (Koksma’s classification) Koksma classified the complex numbers as A∗-, S∗-,

T ∗-, or U∗-numbers in the same way as Mahler did, but with ω∗ in place of ω. Thus,

ξ is called an

• A∗-number, if ω∗(ξ) = 0;

• S∗-number, if 0 < ω∗(ξ) <∞;

• T ∗-number, if ω∗(ξ) =∞ and ω∗m(ξ) <∞ for all m ≥ 1;

• U∗-number, if ω∗(ξ) = ∞ and there exists positive integer m0 such that

ω∗m(ξ) =∞ for all m ≥ m0.
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[21] G. J. Rieger, Über die Lösbarkeit von Gleichungssystemen durch Liouville–

Zahlen. Arch. Math. (Basel) 26 (1975), 40–43.

[22] W. M. Schmidt, Mahler’s T -numbers, Proc. Sympos. Pure Math., vol. 20,

Amer. Math. Soc., (1971), 275–286.

[23] W. Schwarz, Liouville–Zahlen und der Satz von Baire. Math.-Phys. Semester-

ber. 24 (1977), no. 1, 84–87.



Bibliography 79

[24] K. Senthil Kumar, R. Thangadurai and M. Waldschmidt, Liouville numbers,

Liouville sets and Liouville fields, To appear in Proc. Amer. Math. Soc.

[25] K. Senthil Kumar, R. Thangadurai and M. Waldschmidt, Liouville numbers

and Schanuel’s conjecture, Arch. Math. (Basel) 102 (2014), no. 1, 59–70.

[26] K. Senthil Kumar, Fields of Mahler’s U-numbers, preprint.

[27] E. C. Titchmarsh, The Theory of Functions, Second Edition, Oxford University

Press, 1939.

[28] M. Waldschmidt, Algebraic independence of transcendental numbers. In:

Gel’fond’s method and its developments. Perspectives in mathematics, 551–

571, Birkhuser, Basel-Boston, Mass., 1984.
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Index of special symbols

A is the set of algebraic numbers.

q is a strictly increasing sequence of positive integers.

u is an unbounded sequence of positive real numbers.

dxe is the smallest integer greater than x.

C is the set of complex numbers.

bxc is the largest integer less than x.

H(α) is the height of the algebraic number α.

Im(ξ) is the imaginary part of the complex number ξ.

Z is the set of integers.

L is the set of Liouville numbers.

N is the set of positive integers.

K is a number field.

Q is the set of rational numbers.

R is the set of real numbers.

Re(ξ) is the real part of the complex number ξ.
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82 Glossary

i is a square root of −1.

trdegQL is the transcendence degree of the field L over Q.

Um is the set of Um-numbers.

x ∨ y is the union of the sequences x and y.

U is the set of U -numbers.
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