
RESONATING VALENCE BOND STATES – A 

QUANTUM INFORMATION PERSPECTIVE 

By 
SUDIPTO SINGHA ROY 

PHYS08201204007 

Harish-Chandra Research Institute, Allahabad 

A thesis submitted to the  

Board of Studies in Physical Sciences 

In partial fulfillment of requirements  

for the Degree of 

DOCTOR OF PHILOSOPHY 

of  

HOMI BHABHA NATIONAL INSTITUTE 

!  

September, 2017 

























To my parents and sisters 

           





ACKNOWLEDGEMENTS 

It gives me immense pleasure to acknowledge all the people who have supported me 
during the course of my PhD research. First and foremost, my deepest gratitude goes 
out to my supervisor, Prof. Ujjwal Sen, for his guidance throughout my doctoral study. 
He has provided me with critical insights and, at the same time, given me the freedom 
to formulate my ideas. I am equally grateful to Prof. Aditi Sen (De) for her valuable 
suggestions, support and encouragement during my research life. I would be remiss if 
I did not recognize their approachability, sincerity and warmth that made my research 
life enjoyable and rewarding. My heartfelt thanks to Prof. Arun Kumar Pati and the 
members of my advisory committee for always being available for any discussion and 
assistance.  

I would also like to take this opportunity to express my sincerest gratitude to all the 
faculties and researchers at HRI. Academic debates with my fellow colleagues of the 
Quantum Information and Computation (QIC) Group have further enriched my 
research. I also had the opportunity of interacting with several physicists across the 
world, who have been kind enough to share their knowledge and expertise with me. I 
would like to thank Prof. German Sierra at IFS, Madrid, Spain, Prof. Didier Poilblanc 
at CNRS, Toulouse, France, Prof. Stefan Wessel at RWTH, Aachen, Germany. Prof. 
Rosario Fazio at ICTP, Trieste, Italy, Prof. David Rossini at SNS, Pisa, Italy.  

I thank the Department of Atomic Energy, Government of India and HBNI for 
financial support during my doctoral research. My sincere thanks to the HRI 
administrative body, the computer centre, the cluster computation facility and the 
library for providing me a conducive environment for research. I would also like to 
thank to all other nonacademic staffs, mess staffs, gardeners, security staffs, cleaning 
staffs at HRI.  

My years as a doctoral student would not have been interesting if not for fellow 
researchers who made my journey easier. My love and gratitude goes out to all the 
members, past and present, of the QIC group, other friends at HRI, Belur and IIT 
Bombay who made life outside academics, fun and memorable. A special thanks to 
Anindita, Arnab, Arka, Debasis, Tanmay, Ritwik, Himadri da, Suthopa di, Sunil 
Maharaj and Khadiza for always being there and for supporting me in all aspects of 
my life. Many thanks to my childhood friends Abhigyan, Uttam, Mriganka for their 
support and encouragement.  



I would also like to thank all my relatives for their constant support and wishing the 
best for me. Thanks and lots of love to my sisters, Manashi and Tapasi, and my 
brothers-in-law Sanjay da and Pradipta da, for being a constant source of affection and 
encouragement. I will forever be indebted to my mother, Mala Singha Roy and father, 
Hiran Singha Roy for their unconditional love and support during all these years. I 
thank them for giving me a wonderful childhood and guiding me in all aspects of my 
life.  

           



v

URES x

1 Introduction 1

2 Quantum entanglement measures 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Bipartite entanglement measures . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Valence bond entanglement entropy . . . . . . . . . . . . . . . 12
2.2.2 Logarithmic negativity . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Multipartite entanglement measures . . . . . . . . . . . . . . . 15

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Fibonacci sequence and valence bond entanglement entropy 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Resonating valence bond ladder and the Fibonacci sequence . . . . . 19
3.3 Multi-legged quantum spin ladders and recursion relations . . . . . . 23
3.4 Doped RVB ladders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Multipartite entanglement in undoped quantum spin ladders 37
4.0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Characterization of genuine multisite entanglement in Heisenberg lad-
ders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.1 Odd-legged ladders . . . . . . . . . . . . . . . . . . . . . . . . 40

i

LIST OF FIGURES

SYNOPSIS

LIST OF FIGURES

Contents



4.1.2 Even-legged ladders . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Density matrix recursion method (DMRM) . . . . . . . . . . . . . . . 43
4.3 Characterization of genuine multisite entanglement in RVB ladders . 52
4.4 Diverging scaling with converging multisite entanglement . . . . . . . 53
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Multipartite entanglement in doped quantum spin ladders 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Recursion method to generate doped RVB states . . . . . . . . . . . . 60
5.3 Recursion relation for reduced density matrices . . . . . . . . . . . . 66

5.3.1 Open ladder . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.2 Periodic ladder . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Genuine multiparty entanglement in quantum ladders . . . . . . . . . 72
5.5 Trends of genuine multisite entanglement: GS of t-J ladder vs doped

RVB state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Isotropic quantum spin networks in two-dimensions 81
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Isotropic spin network . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3 Single- and two-node Reduced states of the spin network . . . . . . . 84
6.4 Bound on bipartite entanglement . . . . . . . . . . . . . . . . . . . . 91
6.5 Genuinely multipartite entanglement . . . . . . . . . . . . . . . . . . 94
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Summary 99

Bibliography 105

ii



iii



iv



SYNOPSIS
Over the past few decades, developments in the field of quantum information

have led to the discovery of quantum computation and communication networks that

transcend the capabilities of classical systems. Natural candidates to implement an

e�cient and scalable quantum network include interacting spin lattices. In order

to avail such quantum many-body systems as resources for quantum information

processing tasks, an important primary investigation would be necessary to uncover

the intricate details of the distribution of quantum correlations among the subparts of

the systems. In particular, distribution of quantum entanglement in the ground state

configuration of a many-body system provides useful insights on various co-operative

phenomena associated with it . For instance, in noncritical one-dimensional systems,

the entanglement entropy between a contiguous block and the rest of the system

scales with the boundary of the bipartition– an area law. On the other hand, when

the system remains close to a quantum phase transition point, a significant change

in the scaling behavior is observed which includes additional logarithmic corrections.

Down the avenue, several attempts have been made to characterize bipartite as

well as multipartite entanglement properties associated with various strongly corre-

lated systems which undoubtedly emphasize the role of entanglement in detecting

co-operative phenomena. However, quantification and characterization of quantum

entanglement in a complex quantum many-body system in not an easy task to per-

form. One of the primary reasons behind this is the lack of exact analytical form

of the minimum energy configuration of the system. There are only a few cases for

which exact analytical form of the ground state configuration can be obtained and

one needs to rely on various approximation methods, when the size of the system

becomes even moderately large. In this regard, resonating valence bond states have

been emerged as an e�cient ansatz capturing the behavior of frustrated quantum



spin systems, in particular, Heisenberg antiferromagnets. For instance, the super-

conducting states of the t-J ladder can be represented using the short-range doped

resonating valence bond ansatz, which were introduced to describe Mott-insulators

in spin-1/2 Heisenberg antiferromagnets. Over the years, notable progress has been

made which uncover other important aspects of resonating valence bond states, which

includes topological order. While there have been e�orts to characterize quantum

correlations, in particular, multipartite quantum entanglement, present in resonating

valence bond states, there is still much that is left to understand and interpret. In

this thesis, we shed light on the bipartite and multipartite entanglement properties

of the doped as well as undoped resonating valence bond states, on multi-legged

spin-1/2 quantum ladders and isotropic networks in two-dimension and highlight its

importance in quantum information processing tasks.

Following are the main results that are included in this thesis.

• We derive analytical recursion methods to generate resonating valence bond

states defined on doped and undoped multi-legged spin-1/2 quantum ladders.

Subsequently, we investigate the scaling behavior of the valence bond entangle-

ment entropy for these multi-legged quantum ladders, consisting of a large num-

ber of lattice sites. The detailed descriptions are reported in Ref. [1].

• We detect a dichotomy between even- and odd-legged ladders using genuine

multiparty entanglement present in the ground state configuration of Heisen-

berg ladders of moderate size, using exact diagonalization technique. There-

after, using the resonating valence bond states ansatz, we detect the diverg-

ing scaling properties of multiparty entanglement for odd- and even-legged

quantum ladders, in the asymptotic limit. The detailed descriptions are

reported in Ref. [2].

• We investigate the trends of genuine multipartite entanglement in the ground
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state configuration of a Hubbard model with large onsite interactions (t-J

model) of moderate size, using exact diagonalization. We subsequently formu-

late an analytical recursion method to e�ciently estimate multiparty entan-

glement in doped resonating valence bond ladders of large size. The doped

resonating valence bond state is shown to have high fidelity in the relevant

ranges of the Hubbard model for moderate size. The detailed descriptions

are reported in Ref. [3].

• We consider an isotropic quantum network of spin-1/2 particles with a finite

fraction of defects and studied its bipartite as well as multipartite entanglement

characteristics. The detailed descriptions are reported in Ref. [4].

The content of the thesis is split into seven Chapters.

In Chapter 1 (Introduction), we will briefly highlight the importance of character-

ization of quantum correlations present in interacting quantum-many-body systems.

In Chapter 2 (Quantum entanglement measures), we will discuss a few measures

of bipartite as well as multipartite quantum entanglement which we will later use

in the proposed thesis. Thereafter, in Chapter 3 ( Fibonacci sequence and valence

bond entanglement entropy), we derive analytical recursive methods to construct

resonating valence bond states on doped and undoped multi-legged spin-1/2 quan-

tum ladders [1]. We then investigate the behavior of valence bond entanglement

entropy between a contiguous block to the rest of the system with the increase of

the size of the block. This provides useful information regarding the distribution

of entanglement in the ground state configuration. Our results in Chapter 3 are

contained in Ref. [1].

In Chapter 4 (Multipartite entanglement in undoped quantum spin ladders), we

consider the ground state of Heisenberg spin ladders and investigate the odd-even

dichotomy of genuine multiparty entanglement [2] . We found that when the size of

the system remains small, multiparty entanglement measure can capture the even-
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odd dichotomy present in the ground state of the system. However, as the size

of the system is increased to a moderately large value, this even-odd dichotomy of

multiparty entanglement is di�cult to analyze due to increase in computational load.

Interestingly, using the short-ranged resonating valence bond state ansatz, which

emerges as possible ground state of the Heisenberg spin ladders in some parameter

range, we show that though multiparty entanglement measure itself fails to capture

the odd-even dichotomy, its scaling behavior is capable to distinguish the odd-even

dichotomy in Heisenberg ladders, even in the asymptotic limit. The results of this

Chapter are published in Ref. [2].

In Chapter 5 (Multipartite entanglement in doped quantum spin ladders), we

investigate the trends of genuine multipartite entanglement in the ground states of

a Hubbard model with large onsite interactions– the t-J model-via exact diagonal-

ization [3]. Subsequently, for finite hole doping, the short-range resonating valence

bond state is considered to be the ground state of the Hubbard model. We prove that

doped resonating valence bond ladder states are always genuine multipartite entan-

gled. We then formulate an analytical recursion method for the wave function, which

allows us to e�ciently estimate the entanglement as well as other physical quanti-

ties in large doped resonating valence bond ladders. The results of this Chapter are

published in Ref. [3].

In Chapter 6 (Isotropic quantum spin networks in two dimensions), we consider

an isotropic quantum network of spin-1/2 particles with a finite fraction of defects,

where the corresponding wave function of the network is rotationally invariant under

the action of local unitaries, By using quantum information-theoretic concepts like

strong subadditivity of von Neumann entropy and approximate quantum telecloning,

we prove analytically that in the presence of defects, the network sustains genuine

multisite entanglement, and at the same time may exhibit a finite amount of bipartite

entanglement, in contrast to the network with no defects. Our result in this Chapter
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are contained in Ref. [4].

In Chapter 7 (Summary), we provide a brief summary of the results presented in

the thesis.

We believe that the results obtained in the proposed thesis will be important to

strengthen the bridge across the traditional boundaries between the two disciplines–

quantum information theory and quantum many-body physics.
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CHAPTER1
Introduction

“Quantum information is like the information in the dream. If you start even trying
to share it with one person besides yourself and talking about it, you start forgetting
the dream and you only remember what you said about it”—Charles H. Bennett.

One of the fundamental features that distinguish the quantum theory of nature
from the classical one is superposition of quantum states. Absence of information,
even in principle, about the system’s actual state prior to the measurement, validates
that the concept of superposition has no classical analogue. Apart from establishing
itself as a suitable framework for studying and understanding the microscopic details
of physical systems, quantum theory has opened up several revolutionary ideas in the
field of information theory [5–9]. A key feature that is useful in quantum information
protocols is that any superposition of valid quantum states is itself a valid quantum
state. This naturally leads to non-orthogonal states, which model nondistinguish-
able physical situations. Hence, information can be encoded in nondistinguishable
elements as well. In a traditional computer, information is encoded in a series of
bits, and these bits are then manipulated in order to get the desired results. On the
other hand, in the case of a quantum computer, the basic unit of information is a
superposition of bits, referred to as a ‘qubit’, which is manipulated by executing a
series of quantum gates, made of unitary operators [5–9].

In principle, it is always possible to simulate a physical system using a classical
computer. However, it turns out that due to the exponential growth in the number
of degrees of freedom, the system becomes computationally intractable even after
moderate increase in size. Richard Feynman was among the first to mention that
e�cient simulation of a quantum mechanical system can indeed be achieved using
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a machine which works on the quantum mechanical principles [10]. In subsequent
years, David Deutsch and Richard Jozsa [11, 12] came up with a remarkable algo-
rithm which further strengthened Feynman’s intuition. They explicitly show that by
taking advantage of quantum superposition, an exponential speedup in the compu-
tation over any classical machine can be achieved. This brought the attention of the
community to look for further computational tasks where the concepts of quantum
theory can be applied. In 1994, Peter Shor proposed an algorithm to e�ciently find
the prime factors of large integers [13]. Till date, no e�cient classical algorithm for
the prime factorization of a large number is known. In general, we call an algorithm
is e�cient if its execution time i.e. the number of elementary operations required
is asymptotically polynomial in the length of its input. To factor an integer N ,
Shor’s proposed algorithm requires O((log N)2(log log N)(log log log N)) numbers of
operations. Hence, the algorithm runs in a polynomial in time. In the following
years, a few other quantum algorithms were introduced, such as the Grover’s search
algorithm [14,15].

Apart from the above notable progress made in the field of computation, at al-
most the same time, a parallel interest was also growing which considered the possible
application of quantum mechanical concepts to communication process [5–7, 9]. A
celebrated example in this regard is quantum cryptography [16–21]. Conventional
cryptography [22], using classical methods to send secret classical information, con-
sists of three main steps, viz, sharing of a secret classical key between the sender
and the receiver, encryption of the secure message using secret keys by the sender
and decryption of it using the same by the observer which receives that through a
classical channel. The security of the information transfer relies on the secrecy of the
classical key. If an eavesdropper has prior knowledge about the classical key, invading
the classical channel, s/he can retrieve the information without leaving any trace.
However, in a quantum setting, in order to have the knowledge about the classical
information encoded in the quantum states, the eavesdropper has to perform some
measurements which will cause disruption in the system and inevitably leave some
trace.

Another significant development in the realm of quantum information was marked
by the emergence of entanglement, in theory and in practice [23]. Though the non-
intuitive notion of quantum entanglement was brought to light long back in 1935, by
Einstein, Podolsky, Rosen, and Schrödinger [24, 25], it took several years to realize
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that entanglement can indeed be used as a resource to perform quantum informa-
tion processing tasks. In their seminal paper on the EPR paradox [24], Einstein,
Podolsky, and Rosen described quantum entanglement as a ‘spooky action at a dis-
tance’, which led to properties that violated certain intuitively satisfactory tenets of
a physical theory, namely reality and locality, when considered in conjunction. This
was put in an experimentally verifiable form by Bell [26–32].

The idea to use this counter-intuitive feature of quantum theory as a resource
for some physical tasks was not clear until the early 1990s. In particular, in 1993,
Bennett, Brassard, Crepeau, Jozsa, Peres, and Wootters introduced a very simple
and astonishing protocol known as quantum teleportation [33]. The scheme includes
a direct use of quantum entanglement. It demonstrated that using shared quantum
entanglement along with a finite amount of classical communication, an unknown
quantum state can be transferred-“teleported”- from one physical laboratory to an-
other. A year earlier, quantum superdense coding [34] was proposed by Bennett
and Wiesner, which uses shared quantum entanglement and one qubit of quantum
information, in order to transmit two bits of classical information. Furthermore, in
1991, Ekert proposed a variant of quantum key distribution using entanglement [35].

In recent years, development in entanglement theory has not only enriched the
field of quantum information science and made this a vibrant area of research, it
has also a�ected research in several other streams of study [36–42]. One such area,
where the tools of quantum information theory, in particular, quantum entangle-
ment, has been useful, is the study of quantum many-body systems [37, 38, 40, 41].
Over the years, quantum many-body theory has flourished as an independent area
of research, equipped with tools capable of explaining many important concepts, es-
pecially related to low energy physics. Recent developments in the field of quantum
information has been recognized as a new paradigm to understand large complex
quantum systems in a more e�cient way. Traditionally, many-body systems are
studied by the characteristic changes in their properties as responses to external
perturbations [43–45]. Study of the ground state properties of many-body systems
using the tools developed in quantum information may uncover novel physics in these
systems. To this end, in the past decade, several works have been reported which
enhance the importance of quantum entanglement in e�ciently detecting quantum
phase transition points [38,40,46–58,58–61]. For instance, in the seminal papers by
Osterloh et al. [47], and Osborne and Nielsen [50] it has been shown that nonana-
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lyticity in the first derivative of the nearest-neighbor bipartite entanglement, with
respect to the field parameter in the zero-temperature state of the quantum trans-
verse Ising model, can capture the QPT present in this model. Here, the notable fact
is that from the knowledge of few-site entanglement properties, the behavior of the
physical system near the phase transition point can be well-captured. In addition
to this, there are plenty of examples where bipartite as well as multipartite entan-
glement properties have been used along with the conventional order parameters, to
gain complete information about the zero-temperature phase diagram of a complex
quantum system [40, 46, 48–58, 58–63]. For instance, there are physical models for
which conventional order parameters become inadequate and some important prop-
erties related to the phase boundaries remain elusive [62–64].

Apart from the information obtained via the nonanalytic behavior of quantum
entanglement, there are other changes in behavior of entanglement which signal
quantum phase transition points. For example, studies related to ground state en-
tanglement properties of low dimensional gapped quantum systems reveal the fact
that the entanglement between a contiguous block and the rest of the spins, of the
system, scales with the boundary of the bipartition and follows an area law. Con-
trastingly, in critical systems, the scaling behavior deviates from the area law [65]
and has additional logarithmic corrections. Hence, looking at the scaling behavior of
entanglement, one can predict whether or not the system is close to a critical point.
Moreover, in recent years, several works which highlight the role of monogamy of
quantum entanglement in characterizing various properties of many-body systems
have also been reported [66].

In addition to the study of the equilibrium properties related to the quantum
many-body systems, considerable interest have been shown to characterize the trends
of bipartite as well as multipartite properties when the physical system interacts with
its environment [67–70]. Attempts have been made to characterize statistical me-
chanical properties like ergodicity [71–75] of bipartite entanglement, dynamics of
quantum entanglement under sudden quench [70], etc.

Along with the study of the entanglement properties of complex many-body sys-
tems, the concept of quantum entanglement has recently been used to develop nu-
merical techniques in order to e�ciently simulate complex quantum systems [76–81].
In general, the dimension of the Hilbert space of a complex many-body system scales
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rapidly with the increase of system size. Hence, in order to access the ground state
properties of the system, it is necessary to restrict oneself to a moderate-sized system
only. However, in order to examine how fast the properties of the physical system
converges with the size of the system and finally mimics the thermodynamical limit,
one needs to carry out finite-size scaling analysis. Therefore, development of an ef-
ficient tool to simulate complex many-body systems also at relatively large system
sizes is a need of utmost importance. In 1992, S. White et al. came up with an
e�cient simulation technique, known as density matrix renormalization group [76],
where it has been argued that importance should be given to those degrees of free-
doms which are more ‘relevant’ for the description of the system. This indeed reduces
the computational cost to a very low value. It turns out that the number of param-
eters required to describe the systems, in this cases, scales linearly with the size of
the system.

The formalism of density matrix renormalization group was introduced as a gen-
eralization to the existing renormalization group methods, and for quite a long time it
was not clear why such e�cient description of the given complex many-body system
is possible by using relatively less number of parameters. However, very recently, a
plausible explanation in terms of quantum entanglement has been proposed [77]. It
has been realized that in order to simulate a physical system, the relevant components
considered must have a small amount of entanglement. Since its emergence, density
matrix renormalization group has turned out to be a powerful tensor network theory,
and have given birth to many variants [77–81]. In general, such a wide application of
an approximation technique may seem quite astonishing. However, various studies
related to ground state entanglement properties of general many-body systems reveal
that in general, the ground state of a quantum many-body system possess very low
amount of entanglement and hence obeys the area law of entanglement entropy [65].
This opens up the possibility of e�cient representation, even with a low number of
parameters.

Over the years, in these and several other ways quantum entanglement has played
a crucial role in building a bridge between quantum information and quantum many-
body theory. So far, we have mainly discussed the important aspect of studying the
interface between quantum information theory and the quantum many-body sys-
tems, where tools from quantum information have been used to get a deeper insight
into the properties of complex quantum systems. However, it is clear that in order
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to realize a quantum information protocol in the laboratory, one needs to look for
suitable physical systems. For that purpose, quantum many-body systems are po-
tential candidates. Unprecedented quantum control over large numbers of atoms,
as has recently been attained, opens up the possibility of implementing promising
applications in quantum information processing by using these systems [37,82–87].

For an e�cient use of many-body systems for quantum information processing
tasks, it is important to obtain a complete characterization of quantum correlations,
present in the subparts of the quantum system. For instance, if one designs pro-
tocols which demand long-range quantum correlation in some intermediate step of
the scheme, the corresponding physical model needs to be chosen carefully. It may
happen that for certain choices of physical models, the long-range quantum correla-
tion between its various subparts remains suppressed, for all possible values of the
system parameters. And, there are examples which show that presence of disorder
in the system parameters sustain more entanglement than the ordered one [88–96],
which is potentially useful in a communication task.

Along with the characterization of quantum correlation, a challenging task in de-
signing a reliable quantum network is to prevent it from environmental perturbation
or from the presence of defects in the system. This is due to the fact that complete
isolation of a physical system is not possible and in a practical scenario, it is also very
di�cult to have an impurity-free quantum system. In general, quantum correlations
are extremely fragile under the e�ect of environmental perturbation and decreases
to zero very rapidly [97–100]. Thereby, the physical system may become useless
for quantum information processing tasks. Similarly, there are instances where the
introduction of disorders into the system causes significant reduction of quantum
correlation. Hence, it is important to explore the response on quantum correlations
due to the influence of environmental perturbation or impurity.

In this thesis, we consider a rich class of quantum many-body systems, known as
resonating valence bond (RVB) states and characterize their bipartite as well as mul-
tipartite entanglement properties. RVB states were first introduced by Linus Pauling
in 1938 [101], in the context of organic materials like benzene and later extended to
metals. Paul Anderson revived the interest in this concept in 1973 [102–105] while
trying to explain the physics of Mott insulators, where an expected long-range anti-
ferromagnetic order was absent.

6



The theory of resonating valence bond states, got an important boost when
for the first time, superconductivity was observed for some unexpected oxides like
La≠‰Ba‰CuO

4

[106]. It was argued that in copper oxide lattices, electrons from
neighboring copper atoms interact to form a valence bond, which locks them in
place. However, with doping, these electrons can act as mobile Cooper pairs and are
able to superconduct [105, 107–110]. Soon after this discovery, two key approaches
were developed to deal with these strongly correlated systems: RVB mean field the-
ory (BZA theory) [104] and a gauge theory [111]. The approach of BZA theory
turned out to be very appealing as it naturally leads to a spectrum of fermionic exci-
tations which is indeed known to be the correct spectrum in a one-dimensional model.

In the following years, several other studies came up, where resonating valence
bond states have been considered as a framework to study ground state properties
of various physical systems. One such example is the ground-state properties of the
antiferromagnetic Heisenberg model in two dimensions [112]. The conventional un-
derstanding of spin systems interacting via the Heisenberg antiferromagnetic Hamil-
tonian is that the ground state is close to the Néél state [113]. The Néél state is
gapless to spin excitations. Soon it was realized that for spin-1/2 and low dimensional
lattices with significant frustration, this picture is incorrect. For higher dimensional
lattices, based on numerical analysis with small lattice sizes, support towards the
presence of long-range order was reported [114]. At that time, studies related to var-
ious other lattice geometries, confirms the absence of long-range order [115]. Hence,
the true nature of ground state for higher dimensional antiferromagnets remained
ambiguous. In this regard, notable success has been achieved when the ground state
is modeled using the short-ranged resonating valence bond state ansatz for various
lattice geometries [116–120].

Several analytical and numerical studies support the fact that the importance
of resonating valence bond states is not limited to its use as an ansatz, and there
are physical models for which the system possesses an RVB liquid phase for a finite
region of parameter space [121–125]. In low dimensional systems, one such example
is the ground state configuration of the J

1

-J
2

model at the Majumdar-Ghosh (MG)
point [121]. For higher dimensional lattices like Kagomé [124, 126] and triangular
lattices [127], similar results have also been reported.

7



In subsequent years, considerable interest has also grown for considering variants
of resonating valence bond states. This includes long-ranged resonating valence bond
states as frameworks to study various properties of higher dimensional systems. As
an example, Lee and Feng in Ref. [128] studied numerically how a paramagnetic RVB
state can be modified to become a long-range antiferromagnetically ordered state by
introducing an additional variational parameter. In addition to this, an RVB spin
liquid was proposed as a ground state on a square lattice with further-neighbor
hopping as well as on a triangular lattice [129]. Moreover, a long-range resonating
valence bond state is proposed as a variational wave function for the ground-state
of the S =1/2 antiferromagnetic Heisenberg model on the honeycomb lattice. Using
a recursive method, which constructs dimer and non-dimer variational ansatz states
for the two-legged ladder, properties such as the energy density and spin-correlation
functions have been e�ciently computed [130,131].

Apart from the modeling of ground state or near-ground state wave functions
using resonating valence bond theory, studies related to the topological order of
resonating valence bond states have also received attention [132–136]. In general,
topological properties of a system play important roles when the characterization of
quantum phases are not possible using conventional order parameters. It has been
argued that the resonating valence bond state has topological long-range order. In
recent years, making use of simple tensor-network representations, topological prop-
erties of both critical and gapped topologically ordered RVB wave functions have
been extensively studied [133, 135–137]. The valence bond character of the RVB
wave function suggests the presence of certain types of topological excitations.

Despite its importance, there has not been significant e�orts to characterize quan-
tum correlations, in particular, multipartite quantum entanglement, present in res-
onating valence bond states. However, as mentioned earlier, in order to use this very
rich and complex many-body system for quantum information processing and com-
putation, characterization of the quantum correlations present among its various
subparts is extremely important. Entanglement properties of resonating-valence-
bond states on two-and higher- dimensional lattices have been studied by Chandran
et al. [138]. It was found that though the network is genuinely multipartite entan-
gled, it possesses only a negligible amount of bipartite entanglement. In Ref [139], an
attempt has been made to investigate entanglement properties of doped resonating
valence bond states in relatively small-sized ladders and plaquettes. However, under-
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standing the behavior of entanglement in these systems require further investigation.

Very recently, Dhar et al. in Ref. [140, 141] have proposed an analytical method
to calculate the genuine multipartite entanglement on a square lattice with an arbi-
trary number of sites. In addition to this, in Ref. [142] a comparative study between
the bipartite as well as multipartite entanglement behavior of quantum ladders and
two-dimensional lattices have been carried out which shows that geometry can play
an important role in determining the entanglement properties of multiparty quantum
states.

In this thesis, we attempted to shed further light on this aspect and tried to reveal
some important concepts related to the entanglement properties of the resonating
valence bond states, which were not explored before. In Chapter 2, we present a
brief review of the bipartite and multipartite entanglement measures that we have
considered in our work. Subsequently, in Chapter 3, we introduce the resonating va-
lence bond state which we have considered for our purpose. In the literature, several
variants of resonating valence bond states are available, and it is important to clearly
define the resonating valence bond state that has been considered. Thereafter, we
derive analytical recursive methods to construct resonating valence bond states in
doped and undoped multi-legged spin-1/2 quantum ladders. We then investigate the
behavior of valence bond entanglement entropy between a contiguous block to the
rest of the system with the increase of the size of the block.

In Chapter 4, we consider the ground state of Heisenberg spin ladders and inves-
tigate the odd-even dichotomy of genuine multiparty entanglement. We found that
when the size of the system remains small, multiparty entanglement can capture the
even-odd dichotomy present in the system. However, as the size of the system is
increased to a moderately large value, this dichotomy of multiparty entanglement
appears to become elusive. Interestingly, we show that though multiparty entangle-
ment measure itself fails to capture the odd-even dichotomy, its scaling behavior is
capable of distinguishing it in Heisenberg ladders, even in the asymptotic limit.

In Chapter 5, we investigate the trends of genuine multipartite entanglement in
the ground states of a Hubbard model with large onsite interactions, obtained by
exact diagonalization technique. We find the connection of this model with doped
resonating valence bond ladder states. We show that the latter are always genuine
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multipartite entangled. We then formulate an analytical recursion method for gen-
erating the local density matrices of the wave function, which allows us to e�ciently
estimate the entanglement as well as other physical quantities in large doped res-
onating valence bond ladders. Thereafter, in Chapter 6, we consider an isotropic
quantum network of spin-1/2 particles with a finite fraction of defects, where the
corresponding wave function of the network is rotationally invariant under the ac-
tion of local unitaries. By using quantum information-theoretic concepts like strong
subadditivity of von Neumann entropy and approximate quantum telecloning, we
prove analytically that in the presence of defects, the network sustains genuine mul-
tisite entanglement, and at the same time may exhibit a finite amount of bipartite
entanglement, in contrast to the network with no defects. In Chapter 7, we provide
a brief summary of the results presented in the thesis.
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CHAPTER2
Quantum entanglement measures

2.1 Introduction
In the resource theory of quantum entanglement, separable states are treated as free
resources, whereas entangled states are considered to be the expensive ones [23].
This follows from the realization that local quantum operations and classical com-
munications between the local laboratories are easy to implement in practice, while
operations outside this class are di�cult. The set of local operations and classical
communication is denoted by LOCC.

A pure quantum state, |ÂÍAB, is said to be entangled across the bipartition A : B,
if it cannot be written as

|„ÍA ¢ |„ÍB, (2.1)

where |„ÍA and |„ÍB are the quantum states of the local subsystems A and B re-
spectively. However, as is often the case, complete information about the physical
system may not be available, so that a pure state description of the joint physical
system is not possible. In such a scenario, the joint system must be described by
using the density matrix formalism. A bipartite quantum state, flAB, is said to be
entangled if it cannot be written as a convex sum over product states [143],

flAB =
ÿ

k

pkflk
A ¢ flk

B, (2.2)

where flk
A(flk

B) are the quantum states of the subsystem A(B), pk Ø 0, and q
k pk = 1.
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However, characterization of quantum entanglement, e.g. in complex many-body
systems, demands its proper quantification alongside its detection. Towards that
aim, one needs to search for computable measures of bipartite as well as multipartite
entanglement. In this Chapter, we briefly review a few of such measures of quantum
entanglement, which we later use in the thesis. These measures do not increase, on
average, under local quantum operations and classical communication and their val-
ues become zero when the quantum state is separable. Below we first discuss about
bipartite entanglement measures, which is then followed by the discussions related
to a multiparty entanglement measure.

2.2 Bipartite entanglement measures
A bipartite entanglement measure, E , is a map which takes a density operator, fl,
to a real positive number (in R+). For any pure quantum state, a good measure of
bipartite entanglement always reduces to the entropy of entanglement [144]. Below
we discuss the necessary details of a few computable measures of bipartite entangle-
ment which we have used for our purpose.

2.2.1 Valence bond entanglement entropy

The scaling behavior of entanglement entropy in the ground state of strongly corre-
lated systems has been widely researched in recent years to study critical phenom-
ena [47, 56, 57, 65, 145, 146]. Entanglement entropy is a measure of entanglement in
bipartitions of a pure quantum state, and defined as S(fl) = ≠Tr(fl lnfl), where fl

is the reduced density matrix of any one of the subparts [23, 147]. In noncritical
low-dimensional quantum systems, say of Ñ spins, the entanglement entropy in a
ground state, between a contiguous block of L̃ spins and the rest, consist of Ñ ≠ L̃

spins, of the system often scales with the boundary of the bipartition and follows
an area law [148]. For instance, in one-dimensional spin systems, entanglement en-
tropy often saturates with increasing L̃, as the boundary remains constant for all
bipartitions. In contrast, for critical systems, the scaling behavior deviates from the
area law, and has additional logarithmic corrections [56, 57]. In general quantum
many-body systems, scaling of entanglement entropy and deviation from area law
are believed to be closely related to critical phenomena and also to the ground state
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topology [47, 65, 145, 146]. Although intrinsic to the characteristics of a physical
system, entanglement entropy is not easily computable in all systems. To obtain
the scaling behavior, it is imperative to consider larger systems beyond the realm of
exact diagonalization. Moreover, tensor network approaches such as density matrix
renormalization group [76] and matrix product states [78] seem unsuitable in dimen-
sions higher than one.

!	 ! − !	

Figure 2.1: A dimer covered quantum spin ladder with a bipartition across L̃ : Ñ ≠L̃.
The sites on di�erent bipartite lattices, A and B have been distinguished using two
di�erent colors and the arrow represents dimer connecting two sites one from lattice A
and another from lattice B. The covering contains ai = 2 dimers across the boundary,
shared between the blocks of L̃ and Ñ ≠ L̃, which contributes to the valence bond
entanglement entropy in Eq. (2.4). The above dimer arrangement constitutes a single
covering in the valence bond basis {|„iÍ}. For any given ladder, ZN such coverings
are possible, each with ai singlets present across the boundary.

An alternative approach to estimate the scaling behavior of entanglement en-
tropy in the case when the relevant state is representable as a superposition over
singlet coverings possibly interspersed with holes, is by defining a measure called the
valence bond entanglement entropy (VBEE) [149, 150], which is defined as an aver-
age number of dimers that cross the boundary between two bipartitions. Though
not directly comparable, the VBEE has been used to e�ectively predict the scaling
properties of entanglement entropy in the di�erent phases of the 2D spin-1/2 Heisen-
berg model [149–153], using Quantum Monte Carlo simulations in the valence bond
basis [154], although the predicted corrections to the area law at criticality does not
seem to be comparable [151]. To define the VBEE, we depict the ground state (GS)
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of the Ñ -spin system (Ñ is even) in the dimer-covered valence bond basis ({|„iÍ}),
such that

|�Í
GS

=
ÿ

Wi|„iÍ, (2.3)

where Wi are the coe�cients of each valence bond covering, ‘i’. In doped spin lattices,
each element of the basis represents a complete hole-dimer covering. Let us consider
the ground state, in a bipartition, given by L̃ : Ñ ≠ L̃, such that for the basis state
|„iÍ in the ground state, ai singlets are shared between L̃ and Ñ ≠ L̃, i.e., ai singlets
cross the boundary (see Fig. 2.1). The valence bond entropy is then defined as [149]

S
˜L = 1

q |Wi|
ÿ

i

ai|Wi|. (2.4)

For a given set of parties, Eq. 2.4 provides a bipartite entanglement measure.
However, the set of their values for di�erent L̃, especially when then scaling with
respect to L̃ is considered, provides information about the state’s multiparty entan-
glement as well.

2.2.2 Logarithmic negativity

In order to quantify the amount of bipartite entanglement present in a general two-
qudit system on Cd ¢ Cd, one can use negativity (N ) as a measure of bipartite en-
tanglement. The negativity of a bipartite quantum system is an easily computable
entanglement measure, which is an entanglement monotone- it does not increase
under local operations and classical communications (LOCC) [155]. However, there
exists positive partial transposed (PPT) entangled quantum states [156, 157], for
which negativity fails to detect the presence of entanglement and becomes zero.

For a bipartite quantum state, flAB, its negativity [158–161] N (flAB), is defined as
the absolute value of the sum of the negative eigenvalues of flTA

AB, where flT A

AB denotes
the partial transpose [156,157] of flAB with respect to the subsystem A. Alternatively,
it can also be expressed as

N = ||flTA
AB||

1

≠ 1
2 , (2.5)

where ||M ||
1

is the trace norm of the matrix M .

Using the above definition of negativity, one can obtain the logarithmic negativity
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(E), which is given by

E(fl) = log
2

(2N + 1). (2.6)

Logarithmic negativity is an upper bound of distillable entanglement [160]. Neither
negativity nor logarithmic negativity reduce to the entanglement entropy for pure
states [144].

2.2.3 Multipartite entanglement measures

In the case of a multiparty pure quantum state of n > 2 parties, quantification of
entanglement across its various bipartitions does not always provide complete infor-
mation about its actual entanglement content. It may turn out that across some
bipartitions, the quantum state is separable, while at the same time may possess
nonzero amount of entanglement across other bipartitions. Therefore, in terms of
entanglement content, some of the bipartitions become more important than the oth-
ers. We restrict ourselves to the case when we are mainly interested to know whether
or not the given multiparty pure quantum state is genuinely multiparty entangled.
A multiparty pure quantum state is said to be genuinely multiparty entangled if it
cannot be written as a product in any bipartition.

In general, computation of genuine multiparty entanglement, even for pure quan-
tum states is a nontrivial task. In this section, we discuss a computable measure of
genuine multisite entanglement for pure quantum states, known as the generalized
geometric measure (GGM) [64,162] (see also. [163–171]). However, apart from a few
exemplary cases [172], computability for general mixed quantum states is yet to be
achieved.

For an n-party pure quantum state, |ÂnÍ, the GGM, G is defined as an optimized
fidelity-based distance of the given state from the set of all states that are not
genuinely multiparty entangled:

G(|ÂnÍ) = 1 ≠ �2

max(|ÂnÍ), (2.7)

where �
max

(|ÂnÍ) = max |È‰|ÂnÍ| with |‰Í being an n- party state not genuinely
multiparty entangled. For an n-party pure quantum state, |ÂnÍ, consisting of the

15



parties A
1

, A
2

,. . ., An, Eq. (5.11) can be shown to be equivalent to the form [64,162]

G = 1 ≠ max{⁄2

K:L|K fi L = {Ai}n
i=1

, K fl L = ÿ}, (2.8)

where ⁄K:L is the maximal Schmidt coe�cient in the bipartite split K : L of |ÂnÍ.

We note that all possible bipartitions, K : L, of the system are considered in
Eq. (2.8), with the K subsystem in the above bipartition containing all possible
combinations of Ai, for i = 1, 2, . . . , n. The computation of GGM depends on the
e�cient generation of arbitrary reduced density matrices across all possible biparti-
tions of the given physical system. For states where the reduced density matrices can
be e�ciently generated, the GGM turns out to be an e�ciently computable measure
of genuine multisite entanglement. Additional leverage is obtained if the state is
known to be symmetric and/or the maximal Schmidt coe�cient is known to arise
from a selected subset of all possible bipartitions.

2.3 Summary
In this Chapter, we have discussed computational details of a few bipartite and
multipartite entanglement measures, which we have used in our work.
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CHAPTER3
Fibonacci sequence and valence bond

entanglement entropy

3.1 Introduction
Over the years, entanglement entropy [23, 147] has been an important indicator to
investigate critical behavior [56, 57] and topological order [145, 146] in the ground
states of low-dimensional quantum many-body systems [37,38,41,65]. In particular,
in one-dimensional quantum spin systems, the scaling behavior of entanglement en-
tropy between a contiguous block and rest of the system is di�erent for noncritical
and critical systems [56, 57]. For a large class of quantum spin systems, a more
recently introduced estimator of the scaling characteristics of block entanglement
entropy is the valence bond entanglement entropy [149,150], which is defined as the
average number of dimers (singlets) shared between the relevant blocks of the system.
We have already introduced the measure in Chapter 2. In the valence bond basis,
valence bond entanglement entropy can be computed in antiferromagnetic (AFM)
spin systems in higher dimensions where the entanglement entropy is not numerically
accessible [149–151].

An important class of systems where the valence bond entanglement entropy is
of direct significance is the dimer covered states of the spin-1/2 AFM Heisenberg
model. These states, also known as resonating valence bond states (RVB) [102],
were introduced to study Mott insulators [103] and high-Tc superconductivity in
cuprates [104, 107, 110, 173]. Over the years, the RVB states of strongly-correlated
systems have provided ingredients for investigation of exotic quantum phenom-
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ena ranging from spin liquids, topological phases [127, 132, 174, 175], and quan-
tum correlations [2, 3, 133, 136, 138–142]. An interesting feature of the RVB state
in Heisenberg ladders, with nearest-neighbor (NN) dimers, is that the quantum
state for arbitrary number of spins can be recursively generated from smaller states
[2,3,130,131,140,141,176], with the number of possible dimer coverings given by the
Fibonacci sequences [177,178]. More precisely, the number of coverings in the valence
bond basis, for an N -rung RVB ladder state, is the sum of the possible coverings for
(N ≠ 1)- and (N ≠ 2)-rung RVB ladders [130,131]. This has a direct bearing on the
computation of the valence bond entanglement entropy of the system. For instance,
in RVB states on a spin ladder which have equal-weight superposition of all possible
NN dimer coverings, the valence bond entanglement entropy across any bipartition
can be derived as a function of the number of coverings in each contiguous block on
either side of the bipartition. These numbers are then obtained directly from the
Fibonacci sequence, which for large N increases with the golden ratio, � [179].

In this Chapter, we derive recursion relations and look at possible generalizations
of the Fibonacci sequence for dimer covered quantum spin-1/2 ladders with multi-
ple legs, and with or without the presence of dopants. Using specific spin lattices
in ladder configurations, such as doped and undoped two-, three-, and four-legged
ladders, we show that a recursion relation for these RVB states, in terms of the num-
ber of coverings in the valence bond basis, can be generated to build larger N -rung
states from smaller rung states [2, 3, 140, 141]. For an equal-weight RVB superpo-
sition, a generalized sequence for the number of coverings in these states can be
estimated. These sequences predictably deviate from the usual Fibonacci sequence,
which corresponds to the case for undoped two-leg RVB ladders. Nonetheless, the
generalized sequence allows us to calculate the valence bond entanglement entropy
for these states, and highlight the scaling characteristics for both doped and un-
doped multi-legged Heisenberg ladders. In particular, we observe that the valence
bond entanglement entropy saturates with block size, for both types of dimer covered
ladders, which shows that these states follow the “area law” and are thus noncritical
systems [65]. Further, the entanglement between the blocks, as commensurate with
valence bond entanglement entropy, is dependent on the doping, i.e., it decreases
with increased doping as the average number of shared dimers between the blocks
decreases. However, the scaling behavior remains una�ected, thus showing that the
criticality of the system is independent of the variation in doping concentration.
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This Chapter is organized as follows. In Sec. 3.2 we define the RVB state we
have considered for our work and formulate recursion relation for two-legged ladders.
Thereafter, in Sec. 3.3, we derive the recursion relations for multi-legged ladders and
present the scaling behavior of valence bond entanglement entropy. In Sec. 3.4 we
carried out the same analysis in presence of dopants in the lattice sites. We present
a summary in Sec. 3.5.

3.2 Resonating valence bond ladder and the Fi-
bonacci sequence

In this work, the principal systems of interest are the nearest-neighbor dimer-covered
states, also called the short-range resonating valence bond states, of the spin-1/2
Heisenberg ladders [102]. We begin by defining a bipartite lattice, with two sublat-
tices, A and B, which is a lattice where each site on sublattice A (B) is surrounded by
NNs on sublattice B (A). A dimer or a singlet is formed between any pair of NN spins
belonging to di�erent sublattices, and can be written as [ek, el] = 1Ô

2

(| øk¿lÍ≠| ¿kølÍ),
such that k µ A and l µ B. A single unique covering of the ladder lattice, with
NN dimers, is then given by |„iÍ = ([e

1

, e
2

] ¢ [e
3

, e
4

] ¢ . . . [eN≠1

eN ])i, where the odd
(even) indices belong to sublattice A (B), and Ñ is even. All such unique coverings
together form an overcomplete valence bond basis. The variational RVB state in this
basis, with weights Wi, as in Eq. (2.3), can then be written as

|�
RVB

Í =
˜ZÑÿ

i=1

Wi([e1

, e
2

] ¢ [e
3

, e
4

] ¢ . . . [eN≠1

eN ])i, (3.1)

where Z̃
˜N is the number of all possible coverings or states in the basis {|„iÍ}. In

our work, we consider the originally defined equal-weight resonating valence bond
state, where Wi = 1, ’ i. We note that the state |�

RVB

Í is not normalized and
importantly, {|„iÍ} is not an orthogonal basis. In general, the complexity of the
RVB state is compounded by this lack of orthogonality and the exponential increase
of Z̃

˜N with the size of the system. This renders exact methods unfeasible for cal-
culating quantities such as entanglement entropy in large RVB systems. However,
for two-legged quantum spin ladders, the RVB state and the subsequent number of
coverings can be recursively generated [3,131,140,141], and it is observed that quan-
tity Z̃

˜N is related to the Fibonacci sequence. Such recursion relations have been
shown to be extremely important in calculations pertaining to several important
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Figure 3.1: The dimer coverings (represented by the arrows) in the state |2̄Í, |3̄Í and
|4̄Í. The sites on di�erent bipartite lattices, A and B, have been distinguished using
two di�erent colors.

physical quantities [130, 131, 140, 141, 176], including genuine multipartite entangle-
ment [2,3,140,141]. Here we show how the Fibonacci sequence related to Z̃

˜N allows
us to estimate the valence bond entropy in arbitrary large systems. Let us take a
closer look at the two-legged RVB ladder and the Fibonacci sequence.

Consider |NÍ to be an N -rung, two-legged RVB ladder in which all the lattice
sites are covered by dimers, i.e., the system has no dopants or holes. By considering
the geometry of the 2 ◊ N lattice, and all the NN bonds possible, the state |NÍ
can be recursively built, using the smaller-rung ladders, |N ≠ 1Í and |N ≠ 2Í. The
corresponding recursion relation reads as

|NÍ = |N ≠ 1Í|1Í + |N ≠ 2Í|2̄Í, (3.2)

where |1Í is the single rung dimer state, and |2̄Í is a 2 ◊ 2 ladder with a pair of
singlets connecting the horizontal NN spins (see Fig. 3.1). Therefore, the number of
dimer coverings, ZN , in a 2 ◊ N ladder is given by

ZN = ZN≠1

+ ZN≠2

. (3.3)

We find that Z
1

= 1 and Z
2

= 2, which generates the Fibonacci sequence {ZN}. The
first few terms of the sequence are tabulated below:
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Figure 3.2: The naturally occurring patterns on the Molluscan shell roughly fol-
lows the golden spiral, with the areas of the square blocks following the Fibonacci
sequence.

No. of dimer coverings ZN

Z
1

Z
2

Z
3

Z
4

Z
5

Z
6

Z
7

Z
8

Z
9

. . .

1 2 3 5 8 13 21 34 55 . . .

It is often said that the Fibonacci numbers are Nature’s numbering system. There
exist an enormous number of examples where the basic structure of naturally occur-
ring patterns, such as phyllotaxis and flowering in plants, arrangement in pine cones
and pineapples, pedigrees in honeybees, and various shell proportions in molluscs
(see Fig. 3.2) follow the Fibonacci sequence (cf. Ref. [177–179]).

An important quantity, from the perspective of general RVB states, is the rate
of divergence of the series {ZN} at large N . For convenience of notation, we denote
this rate as –, although for the Fibonacci sequence it is conventionally denoted as
�, and referred to as the “golden ratio”. So, – = ZN

ZN≠1
and it quantifies the increase

in the number of coverings with increasing rung. For two-legged RVB ladders, – can
be derived as

ZN = –ZN≠1

= –2ZN≠2

, (3.4)
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for su�ciently large N . Now plugging these terms into Eq. (3.3), one can obtain

–2 ≠ – ≠ 1 = 0 =∆ – = 1 +
Ô

5
2 ¥ 1.6180. (3.5)

The approximate value of – is correct to four decimal places. The other value of –

obtained from the equation is negative.

10 20 30 40 50
L

0.4

0.6

0.8

1

S
L

Figure 3.3: Valence bond entanglement entropy in undoped RVB ladders. We exhibit
here the variation of the valence bond entanglement entropy (S

˜L), with increasing
block size of L̃ rungs, for two- (black circles), three- (red squares) and four- (blue
diamonds) legged undoped RVB ladders. The horizontal axis is dimensionless while
the vertical one is in ebits, with the singlet being normalized to ln 2 ebits of entangle-
ment. The plots display the valence bond entanglement entropy for partitions where
L̃ are even number of rungs. For the three-legged ladder, we do not have values for
L̃:N -L̃ partition, where L̃ is odd. However, for the even-legged ladders, the values
for odd L̃ partitions decreases before converging. Importantly, the converged values
are the same at large L̃, irrespective of the small-L̃ variations between odd and even
L̃. The saturation of the valence bond entanglement entropy implies that a straight
line fit is appropriate in this case.

We now look at how the sequence {ZN} can be used to estimate the valence bond
entropy across an arbitrary boundary, for a two-legged RVB ladder with N rungs.
Let us consider the boundary between the L̃ and L̃ + 1 rungs, such that the ladder
is divided into L̃ and N ≠ L̃ rungs. The only coverings that contain a singlet pair
across the boundary between the L̃ and L̃+1 rungs, are those that have the state |2̄Í
at these rungs. Such coverings come from the state, |L̃ ≠ 1Í ¢ |2̄Í

˜L,˜L+1

¢ |N ≠ L̃ ≠ 1Í.
Therefore the total number of singlets, q

i ai = 2Z
˜L≠1

◊ ZN≠˜L≠1

, and the valence
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bond entropy is,
S

˜L =
q

aiq
Wi

ln 2 = 2Z
˜L≠1

ZN≠˜L≠1

ZN

ln 2, (3.6)

as, q
i Wi = ZN , since Wi = 1 ’ i.

Figure 3.3, provides the behavior of valence bond entropy for the two-legged
ladder, with N = 100 rungs. We observe that S

˜L saturates at a relatively low
value of L̃ (≥ 10) rungs. The behavior shows that the valence bond entanglement
entropy follows the area law and saturates with increasing L̃. This is consistent with
exponentially decaying correlations in the system [180, 181], which suggests an area
law for the entanglement entropy [182]. The scaling of valence bond entanglement
entropy, therefore exhibits the behavior of entanglement entropy. The value at which
valence bond entanglement entropy saturates (Ssat) can be expressed in terms of the
quantity –. Consider L̃ = N/2, in Eq. (3.6), and identify Ssat with SN/2

, to have

Ssat = 2ZN/2≠1

◊ ZN/2≠1

ZN

ln 2 = 2ZN/2

–N/2+2

ln 2 = 2p

–2

ln 2, (3.7)

where, from Eq. (3.4), we have used that Zx+y = –yZx for positive integers and large
x and y, and that p = ZN/2

–N/2 is a constant for large N . We will later on comment on
the scaling with respect to the number of spins.

An important question that arises is whether a sequence form of the number
of coverings, ZN , can also be achieved for more complex systems. In subsequent
sections we show that this can be done for higher-legged RVB ladders as well doped
quantum spin ladders. Importantly, this allows us to characterize the valence bond
entanglement entropy in all these systems.

3.3 Multi-legged quantum spin ladders and recur-
sion relations

In this section, we begin with an analysis of the dimer covered states of the three-
and four-legged RVB ladders. The main aim is to obtain a sequence for the number
of coverings in the valence bond basis, similar to the Fibonacci sequence, which
will allow us to estimate the valence bond entanglement entropy and the critical
properties of these systems.

Three-legged RVB ladder– In the previous section, we found that for an undoped
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Figure 3.4: The dimer coverings (represented by the arrows) in the state |÷
1

Í, |÷
2

Í,
|›

1

Í, and |›
2

Í. The states, |÷iÍ and |›iÍ, for i > 2, can be generated upon increasing
the rungs by inserting floating horizontal singlets at the non-edge sites such that no
non-singlet sharing blocks are formed. This can be observed in the above figures by
looking at how |÷

2

Í (|›
2

Í) is generated from |÷
1

Í(|›
1

Í). The sites on di�erent bipartite
lattices, A and B, have been distinguished using two di�erent colors.

two-legged ladder with moderately large rungs, the growth of the number of terms in
the RVB state, described in Eq. (3.1), follows the Fibonacci sequence and the ratio of
two successive elements in that sequence, is exactly equal to the golden ratio. In this
regard, a possible generalization is to study the growth of the dimer coverings when
the number of legs is more than two. For a 3 ◊ N RVB ladder, it is not possible to
have odd number of rungs (N), as this shall result in odd number of spin sites which
cannot accommodate complete singlets. For an even N -rung three-legged ladder, the
RVB state |NÍ can recursively be generated as (not to be confused with the |NÍ in
Eq. 3.2)

|NÍ = |N ≠ 2Í|3̄Í +
N/2≠1ÿ

i=1

|N ≠ 2i ≠ 2Í|÷iÍ, (3.8)
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where the additional terms |3̄Í and |÷iÍ’s are depicted in Figs. 3.1 and 3.4, respectively.
Hence, as in Eq. (3.3), the number of dimer coverings, ZN , follow the relation

ZN = Z
¯

3

◊ ZN≠2

+
N/2≠1ÿ

i=1

ZN≠2i≠2

◊ Z÷i ,

= 3 ZN≠2

+ 2
N/2≠1ÿ

i=1

ZN≠2i≠2

, (3.9)

where, from Fig. 3.1, we observe that Z
¯

3

= 3, and Z÷i = 2, ’ i. Note that we are
using the same notation, ZN , for two-, three- and other multi-legged ladders, where
N is the number of rungs. By rearranging the terms, the above equation can further
be simplified to

ZN = 4 ZN≠2

≠ ZN≠4

. (3.10)

Hence, we observe that though the recursion relation for the three-legged RVB state
does not yield the Fibonacci sequence, a generalized sequence for {ZN} can be ob-
tained. The rate of divergence, at large N , is given by –Õ2 = ZN/ZN≠2

. Using
Eq. (3.10), we obtain

ZN = –Õ2ZN≠2

= –Õ4ZN≠4

–Õ4 ≠ 4–Õ2 + 1 = 0 =∆ –Õ2 = 2 +
Ô

3 ¥ 3.7320, (3.11)

where the higher value of –Õ2 (instead of 2 ≠ Ô
3) is numerically observed. Here the

approximate value of –Õ is correct to four decimal places.The quantity –Õ2 can be
compared with the rate of divergence in the Fibonacci sequence, when one gallops
over every next term in the sequence, which is equal to –2 = �2 and we find that
–Õ2 > –2. Hence, the three-legged ladder o�ers a higher rate of divergence when the
number of rungs are increased, as compared to the two-legged ladder. If we wish
to compare the number of coverings in the two- and three-legged ladders, when the
number of spins are increased (and not the rungs), we must compare –Õ2 with the
number –3. Surprisingly, the two-legged ladder seems to be more complex, in the
sense of having a larger number of coverings, than the three-legged ladder, when
compared with respect to the increasing number of spins.

The valence bond entanglement entropy for the three-legged ladder bipartiton
across L̃:N -L̃ rungs can be obtained from the recursion in Eq. (3.10), by counting
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the number of singlets crossing the boundary. The expression of S
˜L is then given by

S
˜L = 1

ZN

(5Z
˜L≠1

◊ ZN≠˜L≠1

+ 2
N≠˜L≠1ÿ

i=1

Z
˜L≠2

◊ ZN≠˜L≠1≠i) ln 2. (3.12)

The variation of S
˜L with increasing block size L̃, is depicted in Fig. 3.3. Similar to

the two-legged RVB ladder, the valence bond entropy in this case also satisfies the
area law and saturates at large L̃. To obtain the saturation value of valence bond
entanglement entropy, we look at the leading terms in Eq. (3.12) for the partition
L̃ = N/2. This gives us

Ssat = 5
ZN

Z2

N
2 ≠1

(1 + 2
5–Õ2 + 2

5–Õ3 + . . . ) ln 2,

= 5 ◊ ZN/2

–ÕN/2+2

ln 2 = 5pÕ

–Õ2 ln 2, (3.13)

where pÕ = ZN/2
–ÕN/2 , at large N . We observe that the saturation value of valence bond

entanglement entropy is higher than that of the two-legged RVB case. Therefore,
an increase in the number of legs increases the average number of singlets across the
block boundary, when compared on the axis of the number of rungs. See Fig. 3.3.
One can make the same comparison on the axis of the number of spins, instead of
rungs, and although the plots for valence bond entanglement entropy would take o�
in a di�erent manner, as compared to Fig. 3.3, the saturation values would remain
unaltered.

Four-legged RVB ladder– Similarly, one can proceed to obtain the series, {ZN},
for the four-legged RVB ladder. The N -rung state, |NÍ, can again be recursively be
generated as,

|NÍ = |N ≠ 1Í|1Í + |N ≠ 2Í|4̄Í +
N≠2ÿ

i=1

|N ≠ i ≠ 2Í|›iÍ,
(3.14)

where the terms |4̄Í and |›iÍ’s are depicted in Figs. 3.1 and 3.4, respectively. Hence,
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the number of dimer coverings follows the recursive relation

ZN = ZN≠1

Z
1

+ ZN≠2

Z
¯

4

+
N≠2ÿ

i=1

ZN≠i≠2

Z›i ,

= ZN≠1

+ 4ZN≠2

+ 2
N≠2ÿ

i=1

ZN≠i≠2

,

= 2 ZN≠1

+ 3 ZN≠2

≠ 2 ZN≠3

, (3.15)

where we have inserted, Z
1

= 1, Z
¯

4

= 4 and Z›i = 2, and rearranged the terms.
As with two-and three-legged ladders, the rate of increase in the number of dimer
coverings in four-leg RVB ladders, –ÕÕ = ZN

ZN≠1
, for large N is given by the relation

ZN = –ÕÕZN≠1

= –ÕÕ2ZN≠2

= –ÕÕ3ZN≠4

,

–ÕÕ3 ≠ 2–ÕÕ2 ≠ 3–ÕÕ + 2 = 0 =∆ –ÕÕ ¥ 2.8136, (3.16)

where the solution of –ÕÕ, which is positive and greater than unity, has been consid-
ered. The approximate value of –ÕÕ is correct to four decimal places. With respect
to the number of rungs, the comparable rates of divergence for the two-, three-, and
four-legged ladders are respectively –2, –Õ2, and –ÕÕ2. We find that the four-legged
ladder has a much higher rate of divergence that the two- and three-legged ladders.
With respect to the number of spins, for the same set of ladders, the comparable
rates are –6, –Õ4, and –ÕÕ3, respectively, such that the number of spins to compare at
each step are equal, i.e., 2 ◊ 6 = 3 ◊ 4 = 4 ◊ 3. Again, the four-legged ladder has
a much higher rate of divergence than the two-legged ladder, with the three-legged
ladder having the lowest rate.

Using a similar approach to counting the number of dimers across the L̃:N -L̃
rung boundary in the N -rung four-legged RVB ladder, the expression for the valence
bond entropy is given by

S
˜L = 1

ZN

(10 Z
˜L≠1

◊ ZN≠˜L≠1

+ 2
N≠L≠3ÿ

i=1

Z
˜L≠1

◊ ZN≠˜L≠3≠i) ln 2, (3.17)

where the contributions to valence bond entanglement entropy only arise from the
|4̄Í and |›iÍ terms in Eq. (3.8). The variation of S

˜L with the increase of block size
of rungs L̃ is given in Fig. 3.3. There is no significant change of the pattern of the
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increase of S
˜L or area law of the system compared to the two-legged and three-legged

cases. Interestingly, in this case, one can see that the value of the saturation entropy,
Ssat, exceeds the value obtained for the two-legged case. However, it is lower than
that of the value of Ssat, for three-legged undoped ladder. This is due to the fact that
unlike the three-legged case, here the number of dimer coverings those contribute to
valence bond entanglement entropy are less in number due to the di�erence in odd-
even RVB state recursion. As before, one can see that with increasing number of
legs, among all terms contributing to S

˜L, only the first term in Eq. (3.17) dominates,
and hence the saturated value of S

˜L can be written in terms of the diverging rate as
10pÕÕ

–ÕÕ2 ln 2, where pÕÕ = ZN/2
–ÕÕN/2 , at large N .

Figure 3.3 shows the valence bond entanglement entropy for the undoped RVB
ladders with two, three, and four legs and N = 100 rungs. The plots di�er at their
take-o� points and neighborhoods of the same when considered in terms of the num-
ber of spins (instead of the number of rungs), but soon become similar to the ones
depicted in Fig. 3.3. The valence bond entanglement entropy is computable once the
generalized sequence {ZN} and the corresponding divergence rate is estimated. We
observe that the valence bond entanglement entropy in all multi-legged RVB ladders
follow the area law, and saturate with high L̃, which is consistent with the behavior
of entanglement entropy and the exponential decay of quantum correlations in RVB
ladders [180, 181]. In the succeeding section, we look at the possibility of extending
the analysis to RVB ladders when dopants (holes or defects) are introduced. This
considerably increases the inherent complexity in the system, due to the new dimer-
monomer arrangement in the bipartite lattice.

3.4 Doped RVB ladders
The doped quantum spin ladder is a strongly-correlated electron system with an ex-
tremely rich phase structure. Many physical properties of spin lattices undergo signif-
icant changes when some doping or impurity is added to the system. In recent times,
attempts have been made to establish fundamental connections between high-Tc su-
perconductivity and quantum spin fluctuations in underdoped cuprates [183–185].
This also helped to draw attention of the community towards the study of the prop-
erties of doped RVB states [186, 187]. However, presence of dopants in the system,
increases the computational complexity to levels far higher than the undoped cases,
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leading to fast growth of the number of coverings. Computation of quantities such
as entanglement entropy becomes extremely hard even in comparatively smaller sys-
tems as compared to the undoped dimer covered states. Therefore, estimating the
valence bond entropy in terms of some generalized sequence of {ZN}, as done for
undoped ladders, is important and will provide valuable inputs to understand the
critical behavior of doped RVB ladders.

To maintain consistency with the undoped case, we investigate the generalized
series and the valence bond entanglement entropy for doped RVB ladders with two,
three and four legs, for di�erent doping percentage or concentrations. To accommo-
date the doping in the system, we adopt a slightly di�erent notation to represent
the ladder states. We denote the doped RVB ladder with NN dimers as |N, kÍ,
where N be the number of rungs as before, and k is the number of dimers or sin-
glets present in the system that forms a complete covering. The remaining sites
are vacant or are holes in the spin lattice. The doping concentration is then given
by, nh = 1 ≠ ne = 1 ≠ 2k

l◊N
, where ne is the singlet density, and l is the number of

legs. The valence bond basis now consists of complete dimer coverings and holes in
all possible dimer-monomer arrangements in the ladder lattice, such that |„N,k

i Í =
([e

1

, e
2

] ¢ [e
3

, e
4

] ¢ . . . [e
2k≠1

e
2k] ¢ |0Í¢h)i, where |0Í is the hole or dopant present in

h vacant sites. The arrangement of k singlets and h holes leads to the basis states,
{|„N,k

i Í}, and the RVB ladder is then given by |N, kÍ = qZN,k

i=1

W Õ
i |„N,k

i Í.

Let us start with the doped two-leg RVB state and build upon the derivations
for the undoped case.

Two-legged doped ladder– Due to presence of holes at some of the lattice sites,
in addition to the terms in the Eq. (3.2), one can have various other terms in the
recursion. For a two-legged, N -rung RVB ladder with k dimers, the recursion relation
reads as

|N, kÍ = |N ≠ 1, k ≠ 1Í|0, 1Í + |N ≠ 2, k ≠ 2Í|2̄Í

+ |N ≠ 1, kÍ|1, 0Í +
kÿ

i=1

|N ≠ i ≠ 1, k ≠ iÍ|‰iÍ,
(3.18)

Here the term |1, 0Í denotes a single rung with holes at all of its lattice sites, |‰iÍ’s
can be obtained from the terms |2̄Í by inserting hole pairs. All other terms have
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the same meanings as in Eq. (3.2). Using this we find that the number of dimer
coverings in |N, kÍ is given by

ZN,k = ZN≠1,k≠1

Z
1,1 + ZN≠2,k≠2

Z
¯

2

+ ZN≠1,kZ
1,0

+
ÿ

i

ZN≠i≠1,k≠iZ‰i .

= ZN≠1,k≠1

+ ZN≠2,k≠2

+ ZN≠1,k

+ 2
ÿ

i

ZN≠i≠1,k≠i.

= 2ZN≠1,k≠1

+ ZN≠1,k + ZN≠2,k≠1

≠ ZN≠3,k≠3

,

(3.19)

where we have plugged the terms Z
1,1 = 1, Z

¯

2

= 1 and Z‰i = 2, and rearranged the
terms in the sum. Thus we obtain a recursion relation to generate the series {ZN,k}.
From Eq. (3.19), it is clear that the number of dimer coverings has a dependence
on the hole concentration (nh). Similarly, the rate of divergence (–N,k) is a function
of nh, and though a closed analytical form is cumbersome to present, the function
can be numerically estimated using the recursion with relative ease. In Fig. 3.5, we
plot –N,k = ZN,k

ZN≠1,k
, for varying hole concentration (nh) (solid black circles), where

kÕ = k ≠ Nh. We observe that the e�ect of doping in the two-legged RVB ladder
causes –N,k to deviate from golden ratio. Starting o� from the golden ratio at nh

= 0, for low hole concentration, the quantity –N,k increases with nh and reaches its
maximum value at nhc ¥ 0.44. Further increase of hole concentration reduces the
rate of divergence.

The valence bond entanglement entropy for the doped two-legged RVB ladder,
for a fixed nh, is given by

S
˜L = 1

ZN,k

◊ (2
k≠2ÿ

i=0

Z
˜L≠1,k≠2≠iZN≠˜L≠1,i

+ 2
N≠˜Lÿ

i=1

k≠iÿ

j=0

ZN≠˜L≠i,k≠i≠jZ˜L≠1,j) ln 2. (3.20)

Figure 3.6, exhibits the plots for valence bond entanglement entropy in the doped
two-legged RVB ladder, for di�erent values of the nh. We observe that the valence
bond entanglement entropy across the lattice boundary, L̃:N -L̃ rungs, saturates with
increasing L̃ and thus follows the area law. This holds for all hole concentrations.
However, the saturated values of SL decreases with increasing nh, as increasing holes
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Figure 3.5: The changing face of the generalized Fibonacci sequences with increase
in dopants. We exhibit here the rate of increase of the number of coverings ZN,k,
given by –N,k, for di�erent hole concentration nh. For each doped RVB ladder, with
a di�erent number of legs, there is a critical value of hole concentration, nhc , where
–N,k is maximum. All quantities are dimensionless.

or dopants reduce the average number of dimers shared at the boundary.

Three-legged doped ladder– For the three-legged ladder, the doped RVB state
with a large number of lattice sites, can be constructed from smaller system sizes,
following the recursion

|N, kÍ = |N ≠ 1, kÍ|1, 1Í + |N ≠ 1, kÍ|1, 0Í

+
N≠1ÿ

i=1

i+2ÿ

j=0

|N ≠ i + 1, k ≠ i ≠ jÍ|÷j
i Í, (3.21)

where |÷j
i Í’s can be derived directly from the terms |÷iÍ in Eq. (3.9) by introducing

pair of holes. Hence, the number of dimer coverings follows the relation

ZN,k = ZN≠1,k≠1

Z
1,1 + ZN≠1,kZ

1,0

+
N≠1ÿ

i=1

i+2ÿ

j=0

ZN≠i+1,k≠i≠jZ
j
÷i

,

= 2ZN≠1,k≠1

+ ZN≠1,k +
N≠1ÿ

i=1

i+2ÿ

j=0

ZN≠i+1,k≠i≠j,

(3.22)

where we have used, Z
1,1 = 2, Z

1,0 = 1 and Z÷j
i

= 3. For the three-legged doped
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Figure 3.6: Valence bond entanglement entropy in doped RVB ladders. We plot
here the variation of the valence bond entanglement entropy, SL, with increasing
block size of L rungs, for two- (black circles), three- (red squares) and four- (blue
diamonds) legged doped RVB ladders. The four subfigures correspond to di�er-
ent doping concentrations, with nh= 0.1 (top-left), nh = 0.3 (top-right), nh = 0.5
(bottom-left), and nh = 0.8 (bottom-right). The horizontal axes are dimensionless
while the vertical axes are in ebits.

RVB ladder, the rate of divergence –N,k varies with the hole concentration (nh) in
a similar fashion to that observed in case of the doped two-legged ladder (see the
red squares in Fig. 3.5). However, here –N,k reaches its maximum value at a lower
hole density (nhc ¥ 0.38). In addition to this, for an arbitrary doping concentration,
the value of the function –N,k remains higher than that of the value obtained for the
two-legged case. The valence bond entanglement entropy is then given by

S
˜L = 1

ZN,k

◊ (
3ÿ

j=1

j
k≠jÿ

i=0

Z
˜L≠1,k≠j≠iZN≠1≠˜L,i

+ 4
N/4ÿ

i=1

6i≠3ÿ

j=0

ZN≠4i≠˜L≠1,k≠6i≠jZ˜L≠1,j) ln 2, (3.23)

which is plotted for di�erent nh in Fig. 3.6. We observe that valence bond entangle-
ment entropy, S

˜L, follows the area law as in the undoped case. However, due to the
presence of holes or dopants, the saturated value for higher legs decreases in contrast
to the undoped ladders.
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Four-legged doped ladder– We now derive the recursion relation for a doped four-
legged RVB ladder for arbitrary number of rungs (N) and arbitrary hole concentra-
tion (nh). The recursion relation for a four-legged N -rung ladder is given by

|N, kÍ = ZN≠1,k≠2

Z
1,2 + |N ≠ 1, k ≠ 1Í|1, 1Í + |N ≠ 1, kÍ

◊ |1, 0Í +
N≠1ÿ

i=1

i+2ÿ

j=0

|N ≠ i ≠ 1, k ≠ i ≠ jÍ|›i
jÍ, (3.24)

where |›j
i Í can directly be derived from the terms |›iÍ given in Eq. (3.15) by intro-

ducing pair of holes. Hence, the number of dimer coverings follow the recursion

ZN,k = ZN≠1,k≠2

Z
1,2 + ZN≠1,k≠1

Z
1,1 + ZN≠1,kZ

1,0

+
N≠1ÿ

i=1

i+2ÿ

j=0

ZN≠i≠1,k≠i≠jZ›j
i
,

= ZN≠1,k≠2

+ 3ZN≠1,k≠1

+ ZN≠1,k

+ 2
N≠1ÿ

i=1

i+2ÿ

j=0

ZN≠i≠1,k≠i≠j. (3.25)

with Z
1,2 = 1, Z

1,1 = 3, Z
1,0 = 1 and Z›j

i
= 2, which gives us the sequence {ZN,k}.

The rate of divergence, –N,k, as a function of nh, is plotted in Fig. 3.5. In this case,
for 0 < nh . 0.247, the quantity –N,k has a value intermediate between the two- and
three-legged doped ladders. Moreover, –N,k reaches its maximum value, at a hole
concentration (nh ¥ 0.5), which is much higher than that of the previous cases for
doped ladders. Further increase of the hole concentration leads to reduction of the
diverging rate.

The valence bond entanglement entropy for the four-legged RVB ladder is given
by,

S
˜L = 1

ZN,k

◊ (
4ÿ

j=1

j
k≠jÿ

i=0

Z
˜L≠1,k≠j≠iZN≠1≠˜L,i

+ 6
N/4ÿ

i=1

8i≠3ÿ

j=0

ZN≠4i≠˜L≠1,k≠8i+jZ˜L≠1,j) ln 2. (3.26)

Figure 3.6 shows the plots for valence bond entanglement entropy in doped RVB
ladders, with two, three and four legs, and N = 100 rungs.

33



3.5 Summary
The calculation of the valence bond entanglement entropy in dimer-covered systems
can be obtained as a direct consequence of derivation of the sequence for the number
of possible valence bond coverings in the system. These numbers can in turn be
obtained from recursion relations that can be derived for the state of ladder systems.
The recursion relations di�er with the number of legs in ladder, and whether or not
there are dopants in the system. For the two-legged undoped ladder, the sequence
so generated is the well-known Fibonacci sequence, with the golden ratio as the rate
of divergence. For higher-legged ladders, the sequences deviate from the Fibonacci
sequence and have their independent rates of divergence.

Figure 3.3 , shows the scaling of valence bond entanglement entropy (S
˜L) in un-

doped RVB ladders, along di�erent bipartitions of L̃:N -L̃ rungs, where the total
number of rungs (N) has been fixed to 100. The calculations can be readily ex-
tended to a higher number of rungs. We observe that S

˜L saturates for large L̃, which
is typical of the behavior of entanglement entropy in noncritical systems where the
area law is maintained. Some essential properties of the valence bond entanglement
entropy in these undoped RVB ladders is also observed. In particular, the rate of
increase of ZN , the number of dimer coverings, is higher with increasing number of
legs, if we consider the rate with respect to change in number of rungs. Moreover,
the odd-even dichotomy observed in RVB ladders surfaces in the fact that the three-
legged ladder has a higher saturation value of valence bond entanglement entropy
compared to the even-legged ladders. This indicates that the saturated value of va-
lence bond entanglement entropy (Ssat) has independent growth profiles for odd and
even ladders, as can also be expected from the very di�erent recursion relations for
the respective states.

An interesting extension of the technique developed for undoped ladders, using
Fibonacci-type sequences, is to consider doped ladders. The analysis is significantly
more complicated, but has certain similarities with the undoped case. In Fig. 3.6,
we observe the scaling of valence bond entanglement entropy in doped RVB ladders.
The e�ect of doping on the scaling is shown in the four subfigures, with di�erent
values of the nh, the doping concentration. We once more observe that the scaling
of S

˜L follows the area law for all values of nh, but the value of valence bond en-
tanglement entropy decrease with increasing nh, as the average number of singlets
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reduces with increased doping. An important outcome is that the scaling of valence
bond entropy is not a�ected by increased doping. Although, the rate of divergence
of ZN,k, the number of dimer-monomer coverings, is dependent on nh, as shown in
Fig. 3.5, and can vary for di�erent number of legs.

The presence of such generalized sequences to obtain the total number of dimer
or dimer-monomer coverings in a spin lattice may also prove to be useful in more
general settings. Apart from investigating critical phenomena in more complicated
structures, it could be possible to estimate other important physical quantities in
these systems, including entanglement and other information-theoretic and compu-
tationally useful system characteristics.

The results of this Chapter are based on the following paper:

• Sudipto Singha Roy, Himadri Shekhar Dhar, Aditi Sen(De), and Ujjwal Sen,
Fibonacci sequence and valence bond entanglement entropy in doped quantum
spin ladders, arXiv:1712.02726 [quant-ph].
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CHAPTER4
Multipartite entanglement in undoped

quantum spin ladders

4.0.1 Introduction

From the perspective of quantum many-body physics, the ground state of the Heisen-
berg ladder [188–190] is an important physical system with a rich topological order.
The significance of these quantum spin ladders lie in their nontrivial intermedi-
ate properties between one-dimensional (1D) and two-dimensional (2D) spin lat-
tices. For example, specific characteristics of Heisenberg ladders do not extrapolate
trivially from the 1D Heisenberg chain to the 2D square lattice. This is due to
the fact that odd and even Heisenberg ladders show di�erent physical properties:
Even-legged ladders are spin-gapped and have exponentially decaying correlation
lengths while odd-legged ladders are gapless with power-law decay [188–192]. In
recent years, quantum entanglement [23, 193] have been used as a tool to detect
co-operative phenomena and topological order in the ground states of Heisenberg
ladders [37, 43, 47, 64, 145, 146, 194–200]. Interestingly, there have been studies to
understand the even-odd disparity in terms of entropy area law [151, 201], Rényi
entropy [202], entanglement spectra [140], etc. However investigating the odd-even
dichotomy via the scaling of co-operative multisite properties in large Heisenberg
ladders remains an elusive proposition, primarily due to the unavailability of suit-
able analytical and numerical tools.

In this Chapter, we investigate the variation in ground state properties of even
versus odd Heisenberg ladders by analyzing its genuine multisite entanglement. To
characterize the quantity in the ladder states, we use generalized geometric measure
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Figure 4.1: Schematic diagram of an L-legged and M-rung ladder, with M (=M)
and L (=L) number of spin sites along the legs and rungs, respectively. The boundary
condition is shown by a solid line that connects the first and last sites on a specific
leg.

(GGM) [64, 162] (cf. [163–171], which has already been introduced in Chapter 2.
The ground state of the Heisenberg ladder Hamiltonian is obtained using exact di-
agonalization algorithms [203, 204] for moderate system size. We observe that the
genuine multisite entanglement behaves in qualitatively di�erent ways for the ground
states of the odd- and even-legged Heisenberg ladders – thus, detecting the odd-even
dichotomy present in the system. In particular, the GGM increases with increasing
number of ladder “rungs” for odd ladders while it decreases for even ladders. We
subsequently observe that in terms of the behavior of GGM, the ground states of
these ladder Hamiltonians are qualitatively similar to the ground states obtained
from the resonating valence bond (RVB) state ansatz. Simulating the ground state
of the Heisenberg ladders using RVB states allows us to analyze the finite-size scal-
ing of genuine multisite entanglement in relatively large spin lattices by employing
recursion methods [131,140,141,205]. We observe that although the behavior of the
GGMs for odd and even RVB ladders are qualitatively di�erent, they converge to
a single value in the asymptotic limit. Therefore, for ladders with large number of
rungs, as the number of ladder “legs” are increased, the odd versus even demarcation
in terms of GGM vanishes. However, evaluation of the finite size scaling exponent of
multisite entanglement for large lattices reveals that the scaling exponents tend to
diverge for odd and even ladders, as the number of legs are increased, even though
the amount of genuine multisite entanglement converges in the asymptotic limit.
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This Chapter is arranged as follows. In Sec. 4.1, we characterize and compute
the genuine multisite entanglement in ground states of the Heisenberg ladder. We
introduce the RVB ladder states in Sec. 4.2 and discuss the density matrix recursion
method to obtain reduced density matrices. In Sec. 4.3, we compute GGM and
study its behavior for short-ranged RVB ladder states. Subsequently, in Sec. 4.4 we
study the diverging scaling and converging multiste entanglement property of the
multi-legged quantum ladders. We present a summary in Sec. 4.5.

4.1 Characterization of genuine multisite entan-
glement in Heisenberg ladders

In many-body physics, the dichotomy between the physical properties of odd and
even quantum Heisenberg ladders is well known [188–192]. It may now be asked
whether one can identify a physical quantity that would have di�erent limiting val-
ues depending on whether odd- or even-legged ladders are followed to reach the
infinite 2D square lattice. In this section, we answer this question a�rmatively by
identifying a quantum information theoretic quantity that does the job. In particu-
lar, we searched for the answer of the following question, we know that the sequences
of both odd and even numbers mathematically reach the same infinity. The question
is whether limits of functions of odd and even numbers reach the same limiting func-
tion as the respective sequences tend to infinity.

To answer the above question, we start with the behavior of the GGM of the
ground state of spin-1/2 Heisenberg ladders, which have been intensively studied in
strongly-correlated physics in order to investigate exotic quantum phenomena, like
high-Tc superconductivity [188], chiral Mott insulators [206–208] etc. Such studies
are also interesting in view of the fact that Heisenberg models have been implemented
using several experimental settings, ranging from optical lattices to nuclear magnetic
resonance [87,209–216]. The Hamiltonian of a quantum spin-1/2 Heisenberg model,
with nearest-neighbor (NN) interactions, can be written as

Hint = J

4
ÿ

|i≠j|=1

‡̨i · ‡̨j, (4.1)

39



where J(J > 0) represents the NN antiferromagnetic (AFM) coupling constant.
The indices, i and j, denote the sites of an arbitrary L-legged ladder, and ‡̨i(=
‡x

i i + ‡y
i j + ‡z

i k) are the Pauli operators acting on the ith site. The notation
|i ≠ j| indicates that the corresponding summation is over NN sites. Figure 4.1,
shows an L-legged ladder, with M rungs. The model can not be analytically ap-
proached beyond 1D [217]. Though various approximate techniques such as density
matrix renormalization group [76, 218], quantum Monte-Carlo [219], and RVB the-
ory [102, 112, 132, 220] have been used to compute certain correlation and bipartite
entanglement properties, the characterization of genuine multisite entanglement in
large spin systems remains an extremely challenging task.

Under these restrictions, we limit our exact-diagonalization study to moderate-
sized Heisenberg ladders, upto 24 quantum spin-1/2 particles, and examine the GGM
for the one-, two-, and three-legged ladders. We apply numerical algorithms, within
the Lanczos method [203, 204], in order to obtain the ground state of the ladder
Hamiltonian, and compute the GGM. The odd- and even-legged Heisenberg ladders
show qualitatively distinct features if one considers correlation length, energy gap
etc. [190]. We will now see whether such contrast in behavior can be seen by multi-
partite entanglement measure.

4.1.1 Odd-legged ladders

We now consider the GGM of the one- and three-legged (L = 1 and 3) quantum
spin-1/2 Heisenberg ladders as a function of number of rungs, M. Fig. 4.2 displays
the GGM, G, as a function of number of rungs. G exhibits alternating behavior
based on whether the number of rungs, M, is odd or even. This feature can not be
observed in the result obtained via recursion technique of the RVB theory, described
later in this Chapter, as the RVB ansatz naturally requires an even number of rungs.
From Fig. 4.2, it is evident that for both the ladders G increases with increasing M.
As the number of rungs increases, the rate of increment for G slows down rapidly.
Interestingly note that the fluctuations of G between odd and even rungs reduces if
one increases number of legs which can be observed by comparing the red lines (L
= 1) with the blue ones (L = 3) in Fig. 4.2.
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Figure 4.2: The behavior of GGM (G), with increasing even number of rungs (M)
for odd L-legged ladders, in ground states obtained by exact diagonalization of the
Heisenberg Hamiltonian. The red and blue circles represent the behavior obtained
for L = 1 and L = 3 legs, respectively. The solid lines show fits to the data values
using Eq. (4.24). The dashed line serves as a guide to the eye. From the plots one
can conclude that with even rungs, G increases for odd-legged ladders while decreases
for even ones. All quantities are dimensionless.

4.1.2 Even-legged ladders

Similarly, we also consider the GGM of the two-legged ladder (L = 2), as a function
of number of rungs, M (see Fig. 4.3). We observe, G decreases with the increase in
M for even rungs, while for odd rungs, it increases. However, as seen from Fig. 4.3,
the di�erence of GGM between even and odd rungs decreases with the increase of
rungs, and for relatively high values of M, they both correspond to a single line
following the same pattern. The same feature is obtained for L = 1 and L = 3 in
Fig. 4.2. Therefore, we conclude that with even rungs, G increases for odd legged
ladders while decreases for even ones.

At this point, a question that arises is whether the distinct qualitative features
obtained for the GGM using exact numerical simulations of the Heisenberg model
can be modeled by using the RVB ansatz [102, 132]. This is motivated by the fact
that several studies have observed the odd-even dichotomy in Heisenberg ladders
using the RVB ground states [191]. It has been noticed that frustrated quantum
Heisenberg spin models normally possesses short-range dimer states as their ground
states. In particular, the ground states of the J

1

-J
2

model both in 1D and 2D
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Figure 4.3: The behavior of GGM (G), with increasing even number of rungs (M)
for odd L-legged ladders, in ground states obtained by exact diagonalization of the
Heisenberg Hamiltonian. The solid lines show fits to the data values using Eq. (4.24).
The dashed line serves as a guide to the eye. From the plots one can conclude that
with even rungs, G increases for even-legged ladders while decreases for even ones.
All quantities are dimensionless.

[121, 221, 222], the J
1

-J
2

-J
3

AFM Heisenberg model [223, 224], and the frustrated
AFM on the 1/5-depleted square lattice [225], in certain parameter regimes, are the
RVB states. Parallely, a family of rotationally invariant spin-1/2 Klein Hamiltonians
exhibiting ground-state manifolds covered by NN valence bond states have also been
proposed [226]. In this direction, a more systematic approach was proposed in which
dimer models in di�erent two-dimensional lattices like square, hexagonal, kagomé,
are introduced whose exact ground states are valence bond states [127, 227–229].
Further supporting evidence for RVBs being ground states of Heisenberg ladders are
provided in Refs. [173,192,230–232]. Recent results in the tensor-network formalism
reveal that RVB states can be used e�ciently to simulate the ground state properties
of kagomé [124,126] and the J

1

-J
2

square Heisenberg models [233–235].

In our work, we assume short-range RVB states, with NN dimer coverings, as the
possible ground state of spin-1/2 Heisenberg ladders. Numerical investigation of the
ground state from exact diagonalization and the RVB theory, for spin ladders upto
16 spins, provides considerable support for the RVB ansatz from the evaluation of
the fidelity (F) and the normalized relative di�erence in average energy (�E) [236]
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between the exact ground states and the RVB states. For example, for both the
two-legged and three-legged quantum spin ladders, upto 16-spins, F as high as 0.9
and �E as low as 0.04 are obtained. These numerical findings gives us a good moti-
vation for investigating the genuine multisite entanglement properties of the spin-1/2
Heisenberg ladder using the RVB ansatz.

Let us also mention here that RVB theory has been also popularized as a possible
theoretical tool to understand high-Tc superconductivity [107,188] and are important
in investigating co-operative phenomena in quantum many-body systems [37,47,138],
and related to fault-tolerant quantum computation [237].

In the upcoming section, we will derive the recursion relation for the undoped
RVB ladders and compute its few-site reduced density matrices.

4.2 Density matrix recursion method (DMRM)
In this section, we start with a quantum spin-1/2 ladder, with L “legs” and M
“rungs” on a bipartite lattice (A, B), comprised of M(= M) sites along the horizontal
side and L(= L) sites the vertical side. The total number of spins, n (= M.N), is
always even, to allow for complete dimer coverings. Now if the interactions between
the spins are restricted to be short-ranged and isotropic, we assume that only NN
dimer coverings are allowed. The equal weight superposition of all such possible
dimer coverings on the lattice would give us the so-called RVB state, given by

|ÂÍ =
ÿ

C

Ë
|A

1

, B
1

Í ¢ |A
2

, B
2

Í ¢ ....|AN , BNÍ
È

C
, (4.2)

where C refers to a complete dimer covering of the lattice with the summation running
over all the coverings, and |Ai, BjÍ refers to the dimer

|Â≠Í = 1Ô
2

(| øiÍ| ¿jÍ ≠ (| ¿iÍ| øjÍ), (4.3)

formed between spins at sites i and j, on the sublattices A and B, respectively. The
RVB state |ÂÍ is rotationally invariant and is always genuinely multisite entangled
state in the asymptotic limit [141]. Below we present the proof in detail.
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Theorem 1. The undoped RVB ladder state, |ÂÍ, with n lattice sites, containing all
possible coverings of k (k ”= 0) spin dimers, is always genuinely multipartite entan-
gled for all ladder topologies that are periodic or infinite along the rails.

Proof. The RVB state defined in Eq. (4.2), is a pure state. In order to prove that
this superposed state is genuinely multisite entangled, we need to prove that the re-
duced density matrices of the state across any bipartition cannot be pure. Towards
that aim, we first divide the proof into three cases (a) Odd bipartitions, (b) Even
bipartitions and (c) Other bipartitions.

4.2.0.1 (a) Odd bipartitions:

Using the invariance of |ÂÍ under the action of U¢n, one can show that all p-qubit
reduced systems, fl(p) = Trp̄[|ÂÍÈÂ|], obtained by tracing over all but p sites, is always
invariant under U¢p, where U is the local unitary acting on each lattice site. For an
odd numbers of spin-1

2

particles, there is no pure quantum state that is rotationally
invariant. Therefore, one can conclude that any odd bipartition of the system is
always entangled to the rest of the system. For instance, if one considers any single-
site density matrix obeying the rotational invariance property mentioned above, it
would have following mathematical expression,

fl1 = I
2

2 , (4.4)

where I
2

is the identity matrix in C2.

4.2.0.2 (b) Even bipartitions:

Similarly, using the rotational invariance property of the RVB state defined above,
one can show that the nearest neighbor two-site density matrix has the form,

fl(2) = q|Â≠ÍÈÂ≠| + (1 ≠ q)I
4

/4, (4.5)

where |Â≠Í has been defined earlier and I
4

is the identity matrix on C2 ¢ C2 with
≠1

3

Æ q Æ 1. For any nonzero value of the parameter q, fl(2) is always mixed and
hence |ÂÍ is always entangled across any 2:rest bipartitions.
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Figure 4.4: Schematic diagram of two possible bipartitions of a multi-legged quantum
spin ladder (one denoted by solid lines and the other one by broken lines), sharing a
common node and comprised of same number of sites.

4.2.0.3 (c) Other bipartitions:

However, we want to show that all possible bipartitions, irrespective of the number of
sites, are always mixed. To prove this let us assume now that an arbitrary r-site den-
sity matrix (fl(r)) is pure, which implies that |ÂÍ is separable along that r: n≠r. Let
r = r

1

+ j, where j=1 or 2 such that |j| < |r
1

| (|·| is the cardinality of the argument).

For the periodic or infinite ladder, one can always find another equivalent pure
density matrix, fl(s), such that s = s

1

+ j and |r| = |s|, where j-sites overlap. Fig. 4.4
shows one such example of two possible bipartitions with a common node. We started
with the assumption that, both fl(r) and fl(s) are pure. Using strong subadditivity of
von Neumann entropy [238] ,

S(‡) = ≠tr(‡ log
2

‡), (4.6)

one can eventually show that

S(fl(r1)) + S(fl(s1)) Æ S(fl(r1+j)) + S(fl(s1+j)). (4.7)
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Since fl(r) and fl(s) are pure, this implies

S(fl(r1+j)) = S(fl(s1+j)) = 0. (4.8)

Moreover, as S Ø 0, we have S(fl(r1)) = S(fl(s1)) = 0, and therefore S(fl(j)) = 0 imply-
ing fl(j) is pure, which is not true as we have shown above. Hence, the contradiction
implies that all reduced density matrices, fl(r) are mixed and all r: n ≠ r bipartitions
of the given quantum state, |ÂÍ, are entangled.

Figure 4.5: A two-dimensional bipartite lattice, with sublattices A (blue-circles) and
B (yellow-circles).

We note that the above proof does not include the r: n ≠ r bipartitions where no
equivalent fl(r) with overlap is feasible, such as the bipartition between the two legs
of the ladder. However, in such cases, the theorem can be proved using a di�erent
argument. We assume that the legs, Li and LÕ

i of |ÂÍ are pure and thus the entire
state is separable along that N : N . For the above condition to be satisfied, all
reduced states along the rungs, fl(2)

(Lk,LÕ
k)

, ’ k, must be separable. However, as can
be shown by using recursive method, such nearest-neighbor fl(2) states are always
entangled. Hence, the undoped RVB state is genuinely multipartite entangled. ⌅

The RVB state in Eq. (4.2) is unique. This is done by defining the RVB state on a
bipartite lattice (A, B). A bipartite lattice is formulated by dividing the spin lattice
into two sublattices A and B, such that a spin in sublattice A has spins in sublattice
B as its nearest neighbours, and vice-versa. See Fig. 4.5 for schematic representation
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of a two-dimensional lattice with sublattices A (blue-circles) and B (yellow-circles).
In our formalism, we require that all NN dimer states are directed from spins on
sublattice A to spins on sublattice B, which removes possible ambiguity in the sign
of the ground state, and ensures that the defined RVB state is unique.

In Chapter 3, we have derived the recursion relations for multi-legged doped
and undoped quantum spin ladders, considering open boundary condition only. In
this section, for completeness, we first start with the same recursion relation for the
undoped two-legged quantum ladders and subsequently generalize it for periodic sys-
tems. Let the RVB state, defined in Eq. (4.2), for a quantum spin ladder be denoted
by |M, LÍ, with L legs and M rungs. Now, let us consider the system containing
M = M + 2 spins along the rungs, and L = L number of spins along the legs.
For even L, the state with open boundary condition can be generated recursively
as [130,131,140,141,205]

|M + 2, LÍ = |M + 1, LÍ|1Ím+2

+ |M, LÍ|2̄Ím+1,m+2

= |M, LÍ|2Ím+1,m+2

+ |M ≠ 1, LÍ
◊ |2̄Ím,m+1

|1Ím+2

, (4.9)

where |2Ím+1,m+2

and |1Ím+2

correspond to the RVB ladder states, |2, LÍ and |1, LÍ,
respectively, and

|2̄Ím+1,m+2

= |2Ím+1,m+2

≠ |1Ím+1

|1Ím+2

, (4.10)

(see Fig. 4.6). Here, the subscripts denote the rung index. Since, for an L-legged
ladder, the index L is constant in the recursion relations, without loss of generality,
we can remove it in the state description, so that the RVB state is denoted by |MÍ.
Incorporation of the periodic boundary condition leads to the following extension of
Eq. (4.9) [140,141](see Fig. 4.7):

|M + 2ÍP = |M + 2Í
1,m+2

+ |MÍ
2,m+1

|2̄Ím+2,1, (4.11)
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Figure 4.6: The dimer coverings in the state |1Í, |2̄Í and |2Í. The sites on di�erent
bipartite lattices, A and B, have been distinguished using two di�erent colors.

where all the terms on the right can be calculated by using Eq. (4.9) for RVB states
with open boundary condition. Hence, and hereafter, the superscript P will indicate
that periodic boundary condition has been used for the corresponding state. Using
the recursive relation given in Eq. (4.11) we obtain the density matrix characterizing
the periodic RVB ladder system, which is given by

flP
(M+2)

= fl
(M+2)

+ |MÍÈM|
2,m+1

¢ |2̄ÍÈ2̄|
1,m+2

+ (|M + 2ÍÈM|
2,m+1

È2̄|m+2,1 + h.c), (4.12)

where, the term fl
(M+2)

corresponds to the density matrix of the non-periodic RVB
ladder, computed using Eq. (4.9). We call this as density matrix recursion method
(DMRM).

As mentioned earlier, our main interest lies in the multisite entanglement proper-
ties of these RVB ladders. In order to explore this, we first need to have expressions
for all possible reduced density matrices of the system. The maximal Schmidt coef-
ficients obtained from these reduced density matrices allow us to compute the GGM
of the RVB ladder. As the number of spins in the RVB ladder increases, there is
a rapid growth of the number of possible reduced density matrices. However, the
symmetry of a periodic RVB state can be exploited to obtain the maximal Schmidt
coe�cient, which is required to compute GGM without considering all possible re-
duced states. For example, extensive numerical studies upto 16 spins confirm that for
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Figure 4.7: Schematic diagram of the additional term |MÍ
2,m+1

|2̄Í appeared in
Eq. (4.11), due to periodic boundary condition. The sites on di�erent bipartite
lattices, A and B, have been distinguished using two di�erent colors.

an |M, LÍ ladder, optimization over the restricted set of all reduced density matrices
contained within a reduced 2 ◊ L block, say at sites m + 1 and m + 2, is su�cient to
obtain the maximum Schmidt coe�cient for calculating the GGM. The symmetry
and periodicity of the RVB ladder ensures that all reduced 2 ◊ L block, between
any adjacent pair of sites in the lattice, are topologically equivalent. This reduces
the computational di�culty in calculating the genuine multisite entanglement as the
optimization over all reduced states is now limited to a 2 ◊ L block, which can be
analytically derived using a recursion method as discussed in the following segments.

For an RVB ladder with open boundary, the reduced density matrix of a 2 ◊ L
block is obtained by tracing out all the spins except those at the rungs m + 1 and
m + 2, as given by

fl
(m+1,m+2)

= NM|2ÍÈ2|
(m+1,m+2)

+ NM≠1

fl̄m+1

¢ |1ÍÈ1|
(m+2)

+ (|2Ím+1,m+2

È1|m+2

È‰M|m+1

+ h.c.), (4.13)

where NM = ÈM|MÍ and

fl̄m+1

= trm(|2̄ÍÈ2̄|m,m+1

), and (4.14)

È‰M|m+1

= È2̄|m,m+1

ÈM ≠ 1|MÍ. (4.15)

By using Eq. (4.13) we obtain the reduced density matrix for the 2 ◊ L block at
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rungs m+1 and m+2, for the periodic RVB ladder state, flP
(M+2)

, given by Eq. (4.12).
The reduced density matrix is given by

flP
(m+1,m+2)

= flm+1,m+2

+ tr
1···m

Ë
|MÍÈM|

2,m+1

|2̄ÍÈ2̄|
1,m+2

È

+ (|MÍ
2,m+1

|2̄Í
1,m+2

|ÈM + 2| + h.c.),

= flm+1,m+2

+ ›1

m+1,m+2

+ (›2

m+1,m+2

+ h.c.), (4.16)

where

›1

m+1,m+2

= NM≠1

|1ÍÈ1|m+1

¢ fl̄m+2

+ NM≠2

fl̄m+1

¢ fl̄m+2

+ (|1ÍÈ‰M≠1

|m+1

) ¢ fl̄m+2

+ h.c.),

›2

m+1,m+2

= |2Ím+1,m+2

È1|m+1

È‰M|m+2

+ |2Ím+1,m+2

◊
Mÿ

1
ÈKi|m+2

È‰M≠i|m+1

+ fl̄m+1

¢ |1Ím+2

◊ È‰M|m+2

+ 1/N
1

(|K
1

Ím+1

|1Ím+2

)

◊ È1|m+1

Mÿ

i=1
ÈK|m+2

J 1

M≠1

. (4.17)

Here J 1

M = ÈM|M ≠ 1Í and ÈKi|m+1

= m,m+1

È2̄|Ki≠1

Ím with |K
0

Ím = |1Ím. The
recursion relation for the inner product ÈM|MÍ can now be expressed as

NM = N
1

NM≠1

+ N Õ
2

NM≠2

+ 2(≠1)m≠1

ÿ

i
“1

i JM≠1

, (4.18)

where N Õ
2

= È2̄|2̄Í and all the “i’s can be calculated using the linear equation

È“i|2̄Ím,m+1

= (≠1)m≠1

ÿj2

j=j1

“j|“jÍm+1

, (4.19)

where |“jÍ form an independent set of vectors consisting of certain singlet combina-
tions of an (1, N + 2) spin system, e.g |“

1

Í = |1Í.
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For odd L, the recursion relations are much simpler as the number of possible
coverings is lower. The recursion relation for the RVB ladder with periodic boundary
conditions is given by

|M + 2, LÍP = |M, LÍ
1,m|2Ím+1,m+2

+ |M, LÍ
2,m+1

|2Ím+2,1. (4.20)

The reduced density matrix for the 2◊L block, at sites m+1 and m+2, corresponding
to the above state is given by

flP
(m+1,m+2)

= NM|2ÍÈ2|m+1,m+2

+ NM≠2

flm+1

¢ flm+2

+
1
|2Ím+1,m+2

È›3|m+1,m+2

+ h.c.
2

, (4.21)

where

È›3|m+1,m+2

= È2|
1,m+2

ÈM|
2,m+1

|MÍ
1,m, and (4.22)

flm+1

= trm(|2ÍÈ2|m,m+1

). (4.23)

Hence, using Eqs. (4.16) and (4.21) for even- and odd-legged RVB ladders, respec-
tively, one can obtain the reduced density matrices for the 2 ◊ L block necessary
to compute the generalized geometric measure. We note that the maximal Schmidt
coe�cient is obtained by considering the reduced states within the 2 ◊ L block. It
is observed that the maximum Schmidt coe�cients are typically obtained from the
2 : rest or the 4 : rest bipartitions where the reduced spins are nearest neighbors,
though there does not seem to be any distinctive pattern that can systematically
di�erentiate between the typical bipartitions in odd and even ladders. Moreover,
no systematic pattern is observed in which topologically inequivalent reduced states
provide the same maximum Schmidt coe�cient.

We subsequently compare the GGM of the RVB state with that of the ground
state of the Heisenberg ladder obtained by exact diagonalization. Note here that
although we use the above method for calculating the GGM, the same recursion
can be used to calculate other system properties like magnetization, susceptibility,
classical correlators, bipartite entanglement and other quantum correlations, etc. A
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more developed exposition and formalism for the density matrix recursion method
can be obtained in Refs. [140,141].

4.3 Characterization of genuine multisite entan-
glement in RVB ladders
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Figure 4.8: The behavior of GGM (G), with increasing number of rungs (M) in one-
and three-legged ladders, using short-range RVB states. The solid lines show fits to
the data values using the equation given in Eq. (4.24). The dashed line serves as
a guide to the eye. The “two-rung” case for the one-legged ladder is just a singlet-
instead of superpositions over several coverings of singlets, and also correspondingly
provides a value that is drastically di�erent from the higher-rung cases of the same
ladder. We therefore ignore this case from the one-legged ladder case.

Applying the recursion technique, we can investigate the behavior of genuine
multisite entanglement of the RVB state in large quantum spin lattices. For ex-
ample, one can study the finite-size scaling of GGM in L-legged ladders with large
number of rungs and investigate the odd-even dichotomy in the asymptotic limit.
For odd-legged RVB ladders, the GGM initially increases with increasing number
of even rungs, M, before approaching a constant value at large M (see Fig. 4.8),
while for even-legged ladders, the GGM decreases with increasing M, before flat-
tening to a constant for larger number of rungs as shown in Fig. 4.9. Note that the
DMRM approach is not possible to access an odd number of rungs. Importantly,
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we find that the behavior of genuine multisite entanglement of the ground state of
the Heisenberg ladder with even- and odd-legged ladders is qualitatively similar to
results obtained with the RVB ansatz. This is clearly seen by comparing Fig. 4.2
with 4.8, and Fig. 4.3 with Fig. 4.9.
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Figure 4.9: The behavior of GGM (G), with increasing number of rungs (M) in two-
and four-legged ladders using short-range RVB states. The solid lines show fits to
the data values using the equation given in Eq. (4.24). The dashed line serves as a
guide to the eye.

The similarity between the two methods, viz. exact diagonalization of the Heisen-
berg ladder and RVB ansatz on the same lattice, motivates us to perform finite-size
scaling analysis of GGM, by using RVB theory, wherein we can handle large lattice
sizes. The analysis would shed light on the finite-size behavior of multiparty entan-
glement of the original Heisenberg ladder.

4.4 Diverging scaling with converging multisite en-
tanglement

The finite-size scaling of GGM in a pure quantum spin ground state, |ÂÍ, can be
analyzed through the scaling relation, G(|ÂÍ) ¥ Gc(|ÂÍ) ± kn≠x, where, n is the
total number of spins, Gc is an estimated value of GGM at high n, and x is the
“scaling exponent” with which the GGM approaches its asymptote at large n. For
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an L-legged RVB ladder, written as |L, MÍ, the finite-size scaling is given by the
relation,

G(|L, MÍ) ¥ Gc(L) ± kn≠x(L). (4.24)

Using the DMRM method, we have computed the GGM for RVB ladders upto
L < 8, with M = 20. Once can easily extend the computation for higher values of M.
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Figure 4.10: Diverging scaling with converging multisite entanglement. The behavior
of the asymptotic GGM (Gc(L)) and the scaling exponent (x(L)) with increasing L.
We observe that even though, the Gc(L) for odd- and even-legged ladders, converge
with increasing L, the scaling x(L) diverge. All axes are dimensionless. The data
point corresponding to the case of only two “rungs” on the one-legged ladder is not
considered for the fitting. Please see the caption of Fig 4.8 in this regard.

Fig. 4.10 shows the values of Gc(L) and x(L), for di�erent values of L, where the
GGM is scaled upto M = 20 rungs for an RVB ladder of L legs. We observe that
as L increases, the Gc(L) for the odd- ladders converges to that for the even ones.
This is consistent since the pseudo-2D spin ladders slowly approaches the square-2D
lattice, and in the asymptotic limit, one cannot distinguish whether the system was
originally generated by increasing L in an odd- or even-legged ladder. However, we
find that the scaling exponent, x(L), for odd and even ladders, converges to di�er-
ent values with increase of L (see inset of Fig. 4.10). We therefore have a diverging
scaling exponent for odd- and even-legged ladders, even though the corresponding
multisite entanglement converge. The diverging x(L), therefore, shows that the
finite-size scaling of GGM for RVB ladders can highlight the odd-even dichotomy at
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large L. The results show that the GGM for odd RVB ladders converges slower than
that for even ladders at low L, which is reversed as L is increased and holds even at
large L, where Gc(L) for odd and even RVB ladders are indistinguishable.

Therefore, we observe that although the value of genuine multisite entanglement
can not distinguish the odd-legged ladders from the even-legged ones for large lattice
size, the corresponding finite-size scaling exponents are capable of detecting the
di�erence.

4.5 Summary
To summarize, in this Chapter, we investigate the behavior of genuine multipartite
entanglement in the ground state of odd- and even- Heisenberg ladders. Even though
such models have immense fundamental and practical importance, owing in particu-
lar to the dissimilarities on the two sides of the odd-versus-even divide, they are not
analytically accessible. In this work, we began our investigation through exact diag-
onalization techniques to find that the genuine multisite entanglement, as quantified
by the GGM, of the ground state obtained from the odd-legged ladder, increases with
the number of rungs. The opposite is true in the even-legged ladder. This feature
is in good qualitative agreement with the assumption that ground states of odd and
even Heisenberg ladders are RVB states. We perform scaling analyses of the RVB
states on ladders of large system sizes by employing the DMRM, and find that while
the GGM of the RVB states on large ladders converges to a single value independent
of the odd-even parity of the ladders, their scaling exponents diverge from each other.
While the study reported is for the isotropic Heisenberg model, we have carried out
parallel studies for the quantum XXZ model. We observed qualitative similarity
of the results obtained for values of the zz vs. xx anisotropy up to approximately 1.4.

The results of this Chapter are based on the following paper:

• Sudipto Singha Roy, Himadri Shekhar Dhar, Debraj Rakshit, Aditi Sen(De),
and Ujjwal Sen, Diverging scaling with converging multisite entanglement in
odd and even quantum Heisenberg ladders, New J. Phys. 18, 023025 (2016).
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CHAPTER5
Multipartite entanglement in doped

quantum spin ladders

5.1 Introduction
An important yet demanding task in the study of complex quantum system is to
characterize how quantum correlations, in particular multiparty entanglement, are
distributed among the subparts of a strongly correlated systems. This is motivated,
on one hand, by the fact that study of multisite physical quantities in many-body
quantum systems often provide deeper insights into the co-operative phenomena
they exhibit [37, 47]. On the other hand, such investigation can play an important
role for implementation of quantum information processing tasks in the laboratory.
However, estimation of the same remains a challenging task, primarily due to the ex-
ponential growth of the Hilbert space with increasing system size. This is especially
true if we try to obtain analytical expressions or bounds of multisite physical prop-
erties such as entanglement. Therefore, obtaining a general method to characterize
entanglement in multipartite states is crucial to investigate physical phenomena of
a complex system.

In the previous Chapter, we considered one such important many-body system,
e.g. undoped multi-legged quantum spin ladders and studied its multiparty entan-
glement characteristics. In this Chapter, we will consider a more general scenario,
where along with the dimers, one needs to consider holes in the remaining lattice
sites. One of the best framework to study strongly-correlated doped quantum spin
ladders is the t-J model, which is obtained in the limit of large on-site interaction
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  Vacant site/ “Hole”

Figure 5.1: Schematic diagram of a two-legged doped quantum ladder. The sites
on di�erent bipartite lattice A and B, have been distinguished using two di�erent
colors.

from the Hubbard model [239–244]. At half-filling, without doping, the system re-
duces to a Heisenberg ladder with a spin liquid ground state (GS) [188, 192, 245].
Upon doping the spin ladder, studies based on mean-field theory using Gutzwiller
renormalization show that the spin gap is persistent [246–249] which is a tell-tale sign
of strong superconducting fluctuations [188, 192, 245–251]. The t-J model, under fi-
nite doping, exhibits a rich phase diagram, which has been extensively studied for
low-dimensional antiferromagnets (AFM) [252–259]. In particular, in 1D and ladder
configurations, the system possess exotic correlation properties that are characterized
by the Luttinger liquid theory [260–262], as confirmed using exact diagonalization
calculations, and exhibits a rich superconducting (SC) phase for a specific range of
values of J/t and electron density, nel [252–255, 257–259, 263, 264]. Moreover, the
superconducting states of the quantum spin ladder can be represented using the
short-range resonating valence bond (RVB) ansatz [102–105, 110, 111] which were
introduced to describe Mott-insulators.
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In this work, we consider short-range doped resonating valence bond (RVB)
states, and for finite values of the electron density (nel), using the symmetry proper-
ties of the RVB state [2,138,141,142], we prove that the doped RVB ladder is always
genuinely multipartite entangled. To quantify the genuine multiparty entanglement
in large spin ladders, we introduce an analytical recursion method to build the doped
RVB state. The novelty of this recursion method stems from the fact that in a large
spin network with arbitrary electron density (nel), one can analytically compute the
reduced density matrices of the superposition state, thus allowing an exact estima-
tion of the genuine multiparty entanglement using the generalized geometric measure
(G) [162] (cf. Refs. [64,166,195,196,265]). Using the proposed recursion method, we
observe that in the thermodynamic limit, G increases with nel, reaching a maximum
at nc ¥ 0.56, before decreasing for higher nel (cf. [139]).

Interestingly, we further show that the qualitative multipartite features of doped
RVB states are closely mimicked by ground states (GSs) of doped t-J ladders ob-
tained through exact diagonalization for moderate-sized lattices. In particular, we
present a representative case with J/t ¥ 0.6, where we observe that genuine multi-
party entanglement of the GS of the t-J ladder emulates the same of the doped RVB
state. The maximum G occurs at nc ¥ 0.65, close to that obtained using the doped
RVB ansatz. The discrepancy in the values of electron densities need to account for
finite size e�ect. Hence, using the analytical recursion method, one can show that
within the considered parameter range, the trend of genuine multipartite entangle-
ment of the former state qualitatively matches with that of the GS of the latter
model. We note that although we use the recursion method to study multipartite
entanglement, the method can also be employed to investigate other properties like
single-site, two-site physical quantities of the doped RVB ladders for systems with
an arbitrary number of sites. In our calculations, we have considered up to 300 sites,
and though a higher number of sites are accessible through our method, the physical
quantities of interest converge much earlier.

This Chapter is organized as follows. In Sec. 5.2, we present the recursion method
that generates the doped RVB state corresponding to arbitrary electron density.
Thereafter, in Sec 5.3, we propose the recursion relation for density matrices of
multiple sites, considering both periodic as well as open boundary conditions. In
Sec. 5.4, we provide analytical results on genuine multipartite entanglement in the
doped RVB state. In Sec. 5.5, we introduce the t-J model and subsequently compare
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the behavior of G obtained using the doped RVB state ansatz to that obtained via
exact diagonalization of the t-J model. We present a brief summary in Sec. 5.6.

5.2 Recursion method to generate doped RVB states
We begin by considering the doped RVB state containing 2N lattice sites, on a ladder
configuration, with 2k spin-1/2 particles and 2(N ≠ k) holes or vacant lattice sites,
expressed using a bipartite lattice, consisting of sublattices A and B.

The corresponding (unnormalized) wavefunction, with electron density nel =
k/N , is given by

|�Ík,N≠k =
ÿ

i

ri|(an1bn1)(an2bn2) · · · (ank
bnk

)Íi

¢ |hm2k+1hm2k+2 · · · hm2N Íi, (5.1)

where |(anj bnj )Í = 1Ô
2

(|01Í ≠ |10Í)nj represents a dimer, with aj œ A and bj œ B.
|{(anj bnj )}Íi (where {} represents tensor product over the sites ‘j’) represents a
complete dimer covering at occupied sites nj. The holes, |hmj Í = |2Ímj , are at sites
mj, such that

kÿ

j=1

2nj +
2Nÿ

j=2k+1

mj = 2N.ri = 1, ’ i. (5.2)

In general, while considering the RVB ansatz for the ground state of a moderate-
sized doped quantum spin ladder, as described in Eq. (5.1), the number of dimer
coverings in the state increases exponentially with the increase of the electron den-
sity [266, 267]. For example, in a small spin ladder with 5 spins on each leg, the
number of dimer coverings at electron density nel = 0.33 is 94, and at nel = 0.66,
it is equal to 294. Hence, even for small ladders, a direct construction of the RVB
ground state is computationally expensive. Moreover, the Hilbert space also in-
creases rapidly with increase in the number of spins. This makes the analytical
recursion method proposed for studying physical properties of doped RVB states
on large quantum spin ladders, a very important part of our results. We recur-
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sively [2,130,140,205] construct the state |ÂÍk,N≠k, defined in Eq. (5.1) and generate
its reduced states. Though earlier attempts have been made to obtain recursion
relations for physical observables such as the ground state energy [205], the novelty
of our approach lies in the fact that the proposed method recursively constructs the
reduced density matrices of the doped RVB state, which allows us to study quantum
and classical properties, in particular, multipartite entanglement, which in turn are
used to characterize the system. In Chapter 3, we introduced the recursion relation
for the doped two-legged quantum ladders with open boundary condition. In this
Chapter, we first explain the steps to derive the same recursion relation, explicitly.
Thereafter, we generalize the recursion relations considering open boundary condi-
tion.

In order to generate the analytical recursion method, let us begin with an open
2N -site ladder lattice with all vacant sites (holes), which is successively filled with
dimers. We use the notation, |N ≠ k, kÍ to denote the N -rung ladder, |ÂÍk,N≠k,
containing 2k spins filled with dimers and 2(N ≠ k) holes. The state |N ≠ k, kÍ is
achieved by successively filling k dimers in the |N, 0Í state, i.e.,

|N, 0Í k≠æ |N ≠ k, kÍ. (5.3)

As an example, consider an initial configuration with 8 site RVB ladder, doped
with 4 holes. Now the state |2, 2Í mentioned above, can be generated in the following
way:

|4, 0Í k=1≠≠≠≠æ |3, 1Í k=1≠≠≠≠æ |2, 2Í,

where |4, 0Í is the initial lattice with all holes, and |2, 2Í is the final state, for an 8
site RVB ladder, with 2 dimers and 2 pairs of holes.

For an analytical method which allows us to build the superpositions in an arbi-
trary |N ≠ k, kÍ, we propose the generator

|N ≠ k, kÍ = U¢kÕ
=1|N ≠ k + 1, k ≠ 1Í

+ |N ≠ k ≠ 1, 0Í|‰k+1

Í + |N ≠ k ≠ 2, 0Í|‰k+1

Í|1, 0Í,
(5.4)

where U¢kÕ is the operator to add kÕ dimers. The methodology to derive the above
recursion relation and the description of |‰k+1

Í are given below.
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Figure 5.2: Schematic diagram of the blocks L, R, and J in the spin lattice. To
compute G, we obtain the reduced density matrix (flred) corresponding to the sites
1-4 in the R block. The rest of the lattice is traced out. Numerical studies show
that the reduced state flred is su�cient to compute G in doped RVB states.

To facilitate our calculations, we divide the 2N ladder lattice into specific regions
that can be filled with dimers. We start by splitting the initial state |N, 0Í into two
regions, denoted by left (L) and right (R) block, such that

|N, 0Í = |N ≠ 2, 0ÍL ¢ |2, 0ÍR. (5.5)

This is explicitly shown in Fig. 5.2. An important region is the junction (J) block
between L and R blocks, which is shown in Fig. 5.2 using a black-dotted square. The
blocks, excluding overlapping region, can be written as:

|N ≠ 3, 0ÍLÕ ¢ |2, 0ÍJ ¢ |1, 0ÍRÕ ,

where LÕ (RÕ) implies the region L ≠ L fl J (R ≠ R fl J).
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Figure 5.3: Schematic diagram of the states: a) |‰
2

Í, b) |‰
3

Í, c) |‰
3

Í, and the periodic
terms: d) |›Í, and e) |“

1

Í and |“
2

Í, used in the recursion relations.
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JUNCTION

RIGHT BLOCK

LEFT BLOCK

Figure 5.4: Schematic diagram of the scheme to build a doped-RVB state from
a lattice filled with holes, for an 8 site RVB ladder, as given by the process:
|4, 0Í k=1≠≠≠≠æ |3, 1Í, described in Eq. (5.4).

Now starting from an initial configuration |N, 0Í, our aim is to reach the final
state |N ≠ k, kÍ by systematically introducing k numbers of dimers in the di�erent
blocks of the lattice. The first dimer is introduced in the initial hole configuration
though the following possible ways:

1. Update the left block: In this step, a dimer is introduced into the L block and
the updated state is

|N ≠ 2, 0ÍL |2, 0ÍR
k=1≠≠æ |N ≠ 3, 1ÍL |2, 0ÍR. (5.6)

2. Update the right block: Similarly, in the next step, a dimer is injected into the
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R block. The updated state looks like

|N ≠ 2, 0ÍL |2, 0ÍR
k=1≠≠æ |N ≠ 2, 0ÍL |1, 1ÍR. (5.7)

3. Update of the junction block: In this step a dimer is introduced in the junction
of the L and R blocks, i.e., the J block. The updated state turns out to be

|N ≠ 2, 0ÍL |2, 0ÍR
k=1≠≠æ |N ≠ 1, 0Í |‰

2

Í |1, 0Í, (5.8)

where the state |‰
2

Í is depicted in Fig. 5.3(a). Now combining the above three
steps, the final state after introduction of a single dimer in the lattice is given by

|N, 0Í k=1≠≠æ |N ≠ 1, 1Í
© |N ≠ 3, 1ÍL |2, 0ÍR + |N ≠ 2, 0ÍL |1, 1ÍR

+ |N ≠ 1, 0Í |‰
2

Í |1, 1Í. (5.9)

For example, consider the initial state |4, 0Í in Eq. (5.4). We have, |4, 0Í =
|2, 0ÍL |2, 0ÍR. Then the state, after introduction of one dimer, would be (see Fig. 5.4
for an illustration of the three update paths)

|4, 0Í k=1≠≠æ |3, 1Í = |1, 1Í |2, 0Í + |2, 0Í |1, 1Í
+ |1, 0Í |‰

2

Í |1, 0Í, (5.10)

where the first two terms are the contributions from the blocks L and R, and the
third term comes from the update of the junction, J . Now after completion of the
first step, we need to introduce one more dimer into the present configuration in
order to continue the iteration process. It can be done following a path similar to
the one described above, i.e., a direct update of the L and R blocks, which is basi-
cally updating all the terms of the state by introducing dimers into the left and right
blocks, and an update, which consists of injecting a dimer at the junction block. The
above scheme can be repeated k times so that the final state contains k dimers and
2(N ≠ k) holes in the lattice. In general, by updating the L, J , and R blocks, with
kÕ = 1 singlets, we obtain the recursive generator expressed in Eq. (5.4).

As mentioned before, here U¢kÕ is the direct update operator to inject kÕ dimers
in the L and R blocks of the state, |N ≠ k + 1, k ≠ 1Í. Subsequently, the second and
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the third terms in Eq. (5.4) correspond to the indirect update of the J block. For
example, the first two terms in Eq. (5.10), |1, 1Í |2, 0Í and |2, 0Í |1, 1Í, is generated
from the direct update of the state |4, 0Í and the third term |1, 0Í |‰

2

Í|1, 0Í emerges
from the indirect update of the junction sites. Note that, there may arise similar
terms due to the update process of the L, R, and the J block. In those cases we need
to carefully include such terms only once in the recursion, so that overcounting of the
terms can be avoided. In Eq. (5.4), we note that the term |‰k+1

Í can be generated
recursively from |‰kÍ by introducing an additional rung to the left and assigning a
dimer along the horizontal direction, as demonstrated in Fig. 5.3, for |‰

2

Í, |‰
3

Í and
|‰

4

Í.

In the succeeding section, we present a detailed discussion on how reduced den-
sity matrices for a block of lattice sites can be obtained from the recursion method.
For the purposes of our study, a block of four sites, in two nearest neighbor (NN)
rungs of the ladder, is su�cient.

5.3 Recursion relation for reduced density matri-
ces

In order to calculate the G of the doped RVB state, we required to derive expressions
for the reduced density matrices, using the generator expressed in Eq. (5.4). Let us
consider the cases for open and periodic ladders separately.

5.3.1 Open ladder

The primary method to build the recursive relations is to divide the lattice into
blocks and junctions. The advantage lies in the fact that these blocks do not over-
lap, and hence can be independently traced to obtain flred needed to calculate the
G. Hence, from the non-periodic ladder state, |N ≠ k, kÍ, by tracing all sites apart
from rungs m ≠ 1 and m, we get the reduced state, flN P

red , of 4-sites , given by
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flN P
red =

2ÿ

i=0

Z(S≠1+i)
(k≠i) |2 ≠ i, iÍÈ2 ≠ i, i| +

k+1ÿ

k1=2

Z(S≠1)

(k≠k1+1)

tr (|‰k1ÍÈ‰k1|)|1ÕÍÈ1Õ|

+
kÿ

k2=2

Z(S)

(k≠k2)

tr (|‰k2ÍÈ‰k2|)|1ÍÈ1| +
1ÿ

i=0

Z(S+i)
(k≠2≠i)tr (|2̄ÍÈ2̄|)|1 ≠ i, iÍÈ1 ≠ i, i|

+
k+1ÿ

k3=3

Z(S)

(k≠k3+1)

(tr (|‰k3ÍÈ‰k3 |)) +
kÿ

k4=2

Z(S)

(k≠k4)

(tr (|‰k4+1

ÍÈ‰k4 |È1|) + h.c.)

+

i=1,
j=k≠2≠iÿ

i=0,j=0

Z(S+i)
(k≠2≠i≠j)

(1/2)j+1(|1Í|1 ≠ j, jÍÈ1 ≠ j, j + 1| + h.c.), (5.11)

where S = N ≠ k ≠ 1, and

ZN≠k
k = ÈN ≠ k, k|N ≠ k, kÍ, (5.12)

and |2̄Í = |0, 2Í ≠ |0, 1Í|1, 0Í.

Numerical studies for a moderate N , suggest that obtaining the reduced state
of a square block of 4 sites for large ladders, which is symmetric for the ladder, is
su�cient for the computation of G. Hence, we use the recursion method to obtain
the 4-site reduced state (flred) at rungs m ≠ 1 and m.

The main advantage in formulating the recursion relation for the entire state, as
expressed in Eq. (5.4), can be seen when one needs to obtain the reduced density
matrix, flred. This is because the terms which correspond to the blocks R and L

are mutually orthogonal to those belong to the junction block J . As a result, in
the expression for flred, one would never get any contribution from the terms that
emanate from |·ÍL(R)

È·|J . Now if one starts from the L and R blocks coverings
and traces out all but the sites of last two rungs (sites (1-4) in Fig. 5.2), then there
would be the following three possibilities,

i) The reduced block contains holes only.

ii) The reduced block contains one singlet and one pair of hole.
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iii) The reduced block contains singlet coverings only.

The first term in Eq. (5.11),

2ÿ

i=0

Z(S≠1+i)
(k≠i) |(2 ≠ i), (i)ÍÈ(2 ≠ i), (i)|

basically corresponds to the above possibilities. As an example, consider an initial
eight-site doped RVB state which includes only one singlet and 3 hole-pairs. The
contribution from the L block and R block would lead to the following terms in the
expression of the doped RVB state, |1, 1ÍL ¢ |2, 0ÍR + |2, 0ÍL ¢ |1, 1ÍR. Therefore, the
reduced state would contain following terms,

a
1

|2, 0ÍÈ2, 0| + a
2

|1, 1ÍÈ1, 1|, (5.13)

where a
1

= Z1

1

, and a
2

= Z2

0

, which can be obtained from Eq. (5.11).

Subsequently, the junction J would generate additional terms in the expression
of the reduced state. As an example, first consider terms which has only one singlet
at the junction block (see Fig. 5.3). Mathematically, those can be expressed as
|·Í¢ |‰kÍ¢ |·Í, where |‰

2

Í and |‰
3

Í are depicted in Fig. 5.3. Now the contributions
from the overlap of those terms are given by second, third, and fourth terms in
Eq. (5.11). Considering, once more, the previous example of an eight-site doped
RVB state containing only one singlet, we can write the contributing term from the
junction as |1, 0Í ¢ |‰

2

Í ¢ |1, 0Í. Hence after tracing out all but the sites those are
at the last two-rungs, we get

flN P
red = a

1

|2, 0ÍÈ2, 0| + a
2

|1, 1ÍÈ1, 1|
+a

3

tr |‰
2

ÍÈ‰
2

| ¢ |1, 0ÍÈ1, 0|, (5.14)

where a
3

= Z1

0

is again evaluated using Eq. (5.11).

Additionally, there may be terms which would contain two horizontal singlets at
the junctions such as |·Í ¢ |2̄Í ¢ |·Í. Those would certainly have non-zero overlap

68



 

(a)

 

(b)

Figure 5.5: Schematic diagram of the blocks L, R, and J in the spin lattice with
periodic boundary condition.

with the L and R block terms. The fifth and sixth terms of Eq. (5.11) correspond
to contribution from these terms. As an example, instead of inserting one singlet if
we now introduce two singlets in the eight-site doped RVB state i.e. |2, 2Í, we would
have terms in the doped RVB state such as |1, 0Í ¢ |2̄Í ¢ |1, 0Í. Hence the reduced
density matrix would have following terms,

a
4

tr |2̄ÍÈ2̄| ¢ |1, 0ÍÈ1, 0| + a
5

/2 |0, 1Í|1, 0ÍÈH|,

where a
4

and a
5

are given by Z1

0

which can be obtained from Eq. (5.11), for
N = 4 and k = 2.
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5.3.2 Periodic ladder

Incorporation of periodic boundary condition, N + 1 © N , leads to additional terms
in the state |N ≠ k, kÍ. Consequently, we find that the number of terms in the ex-
pression of the recursively generated reduced density matrix, flP

red, increases, due to
overlap of di�erent states. These extra terms in flP

red can be redeemed by analyzing
two separate situations, say P

1

and P
2

, corresponding to di�erent boundary terms:

I) P
1

– the end sites of both the legs share a singlet (see Fig. 5.5(a)).

II) P
2

– the end sites of only one of the leg share a singlet and the end site of the
other leg contains holes (see Figs. 5.5(b) and (c))).

Therefore, in the expression of the reduced density matrix, there would be addi-
tional terms due to the overlap of the states in I with itself, and the L and R blocks
(flP1

red) (see Eq. (5.15)) and similarly, the overlap of states in II with itself, and L and
R blocks (flP2

red) (see Eq. (5.16) for N ≠ k = 1 and Eq. (5.17) for N ≠ k = 2).

flP1
red = tr (|’ÍÈ’|) + 1

2

i=1,
j=k≠2≠iÿ

i=0,j=0

Z(S+i)
(k≠2≠i≠j)

31
2

4j

|1 ≠ i, iÍ|1ÍÈi ≠ 1, i + 1|

+ 1
2

j=k≠4ÿ

j=0

Z(S+1)

(k≠4≠j)

31
2

4j

tr (|2̄ÍÈ2̄|) |1ÍÈ1| +
31

2

4j
k6=k≠1,

j=k≠k6≠1ÿ

k6=2,j=0

Z(S)

(k≠k6≠1≠j)

31
2

4j

tr (|‰k6ÍÈ‰k6||1ÍÈ1| + |‰k6Í|1ÍÈ‰k6+1

|) + 1
2

j=k≠4≠iÿ

i=0,j=0

Z(S+1)

(k≠4≠(i+j))

31
2

4i+j

◊ tr (|2̄Í|1ÍÈ1|È2|) + 1
2

i=1

j=k≠3≠i
l=k≠3≠(i+j)ÿ

i=0,j=0,l=0

Z(S+i)
(k≠3≠(i+j+l)

31
2

4j+l

tr (|1Í|1 ≠ i, iÍ|1ÍÈ2̄|È1 ≠ i, i|),

where S = N ≠ k ≠ 1, (5.15)

flP2
red = |“

1

ÍÈ“
1

| + |“
2

ÍÈ“
2

| +
31

2

4k≠3

(|“
1

ÍÈ“
2

| + |“
2

ÍÈ“
1

|) +
Ë
(|“

1

Í + |“
2

Í)(Dk≠2

È1|È2̄|È1Õ|
+ Dk≠1

ÈH|) + h.c.
È
(≠1)k+1/2, where N ≠ k = 1, (5.16)
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flP2
red = (|›ÍÈ›| + |›ÍÈ‰

2

|È1Õ|)(≠1)k/2≠1Dk≠1

, where N ≠ k = 2. (5.17)

The terms |›Í, |“
1

Í, |“
2

Í, and |’Í, along with an illustrative description of the
recursion method is provided in the Figs. 5.3 and 5.5. Dk can recursively be generated
using

Dx = Dx≠1

+ 2Dx≠2

(5.18)

with the initial condition D
0

= D
1

= 1. Now if N ≠ k = 1, periodic states
corresponding to the two types, P

1

and P
2

, would overlap with each other and lead
to the following additional terms in the expression of the total reduced density matrix
of 4-sites given by,

flP12
red = 1/2(k≠3)(≠1)(k+1)/2(|“Í(È“

1

| + È“
2

|) + h.c.)Dk≠3

, (5.19)

where

|“Í = |2̄Í
1,N |N ≠ k ≠ 2, k ≠ 2Í

2,N≠1

. (5.20)

Hence considering all possible periodic boundary terms, the expression of the
reduced density matrix for the system is given by

flP
red = flN P

red + flP1
red + flP2

red + flP12
red . (5.21)

Fig. 5.6 shows the G of a periodic doped RVB state calculated using the recursion
method for upto 300 lattice sites.

The expression of the reduced density matrices obtained using the recursion
method can be applied to compute various bipartite as well as multipartite physi-
cal quantities that characterize the ground state properties of the system, even for
large lattice size. In the following section, we will look at the genuine multipartite
entanglement properties of the doped RVB ladder, which can be e�ciently obtained
using this technique.
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5.4 Genuine multiparty entanglement in quantum
ladders

Here we investigate the multipartite entanglement of a doped quantum spin ladder,
under the RVB ansatz. Since the study of GS properties of t-J Hamiltonian is limited
to numerical simulations and approximate methods, explicit estimation of multipar-
tite entanglement is extremely di�cult for large systems. The doped RVB ansatz for
the GS of the t-J model provides a viable alternative to study such quantities. It is
known that the RVB liquid state with no holes, |�ÍN,0, is rotationally invariant under
the unitary U¢2N , where U is a local unitary acting on a single qubit [138,141,142] In
the composite dimer-hole qutrit space, the doped RVB state, |�Ík,N≠k, is invariant
under unitary operations of the form

Ũ¢2N = (U ü I)¢2N , (5.22)

where ü is the direct sum, I is the scalar 1 and U is an arbitrary single qubit uni-
tary. This invariance property of doped RVB ladders is important in investigating
its multipartite entanglement as shown below.

Theorem 2. The doped RVB ladder state, |�Ík,N≠k, with 2N lattice sites, containing
all possible coverings of k (k ”= 0) spin dimers interspersed with 2(N ≠ k) holes, is
always genuinely multipartite entangled for all ladder topologies that are periodic or
infinite along the rails.

Proof. To prove that |�Ík,N≠k is genuinely multisite entangled, we need to show that
the state is entangled across every possible bipartition or alternatively, we have to
prove that all reduced density matrices of the system are mixed. Using the invariance
of |�Ík,N≠k under the action of Ũ¢2N , one can show that all p-qutrit reduced systems,

fl(p) = Trp̄[|�ÍÈ�|k,N≠k], (5.23)

obtained by tracing over all but p (p̄) sites, is always invariant under Ũ¢p. Hence, a
single qutrit reduced state must have the form,
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fl(1) = p|2ÍÈ2| + (1 ≠ p)/2 I
2

, (5.24)

where I
2

= |0ÍÈ0| + |1ÍÈ1| and p is fixed by the number of holes in the system. The
relation shows that fl(1) is always mixed for p ”= 1. Since all fl(1) are equivalent,
the condition p = 1 is satisfied i� all 2N sites contain holes. Similarly, the nearest
neighbor two-site density matrix has the form,

fl(2) = p
1

|22ÍÈ22| + p
2

/9 I
9

+ p
3

W
2

(q), (5.25)

where I
9

is the identity matrix on C3 ¢ C3 and

W
2

(q) = q|Â≠ÍÈÂ≠| + (1 ≠ q)I
4

/4 (5.26)

is the Werner state [143] with I
4

being the identity operator on the 4-dimensional
space defined in the projected two-qubit spin basis. Now, fl(2) is pure when p

1

= p
2

=
0 and q = 1. Which implies that it is pure i� the entire lattice is either filled with
holes or is a single dimer covering, and these options are disallowed by the premise.
Therefore, fl(1) and fl(2) are always mixed and |�Ík,N≠k is always entangled across
these bipartitions.

However, we want to show that all possible bipartitions, irrespective of the num-
ber of sites, are always mixed. To prove this let us assume now that an arbitrary
p-site density matrix (fl(p)) is pure, which implies that |�Ík,N≠k is separable along
that p: 2N ≠ p. Let p = p

1

+ j, where j=1 or 2 such that |j| < |p
1

| (| · | is the
cardinality of the argument). For the periodic or infinite ladder, one can always find
another equivalent pure density matrix, fl(q), such that q = q

1

+ j and |p| = |q|,
where j-sites overlap. By assumption, both fl(p) and fl(q) are pure. Using strong
subadditivity of von Neumann entropy, S(‡) = ≠tr(‡ log

2

‡), [238] we obtain

S(fl(p1)) + S(fl(q1)) Æ S(fl(p1+j)) + S(fl(q1+j)). (5.27)
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Now

S(fl(p1+j)) = S(fl(q1+j)) = 0, (5.28)

since fl(p) and fl(q) are pure. Since S Ø 0, we have S(fl(p1)) = S(fl(q1)) = 0, and
therefore S(fl(j)) = 0 implying fl(j) is pure, which is not true since all fl(1) and fl(2)

are mixed under finite doping. The contradiction implies that all reduced density
matrices, fl(p) are mixed and all p: 2N ≠ p are entangled.

We note that the above proof does not include the p: 2N ≠ p bipartitions where
no equivalent fl(q) with overlap is feasible, such as the bipartition between the two
legs of the ladder. In that case, we assume that the legs, Li and LÕ

i of |�Ík,N≠k are
pure and thus the entire state is separable along that N : N . For the above condition
to be satisfied, all reduced states along the rungs, fl(2)

(Lk,LÕ
k)

, ’ k, must be separable.
However, as can be shown by using recursive method, such nearest-neighbor fl(2)

states are always entangled. Hence, the doped RVB state is genuinely multipartite
entangled. ⌅

The next step is to quantify the genuine multipartite entanglement in doped RVB
ladders and characterize its variation with the electron density. Towards that aim,
we use the computable measure of genuine multiparty entanglement, generalized
geometric measure (GGM) [162] (cf. [64]), introduced in Chapter 2. Genuine multi-
partite entanglement is a well understood physical property in entanglement theory
(see Ref. [23] ), which essentially captures the presence of entanglement between ev-
ery constituent of a many-body system. In contrast, measures such as entanglement
entropy and entanglement of formation are essentially bipartite entanglement mea-
sure, which do not necessarily say anything about the global entanglement properties
of a many-body state. Although entanglement entropy is important in studying the
decay of quantum correlations and co-operative phenomena such as area laws, it is
not adequate to study the multipartite entanglement properties of many-body sys-
tems.

Presence of multipartite entanglement may give rise to interesting co-operative
properties that are not necessarily exhibited by restricting to bipartite entanglement.
An obvious advantage of using GGM, is that it can be e�ciently calculated through
the reduced density matrices of a many-body quantum state. Here we would like
to reiterate that in order to characterize genuine multiparty entanglement, it is not
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su�cient to use measures such as entanglement entropy, which captures the en-
tanglement between two blocks of the system. In comparison, GGM allows us to
characterize the entanglement between all possible partitions of the system into two,
three, four, ... blocks, which provides insight about the co-operative properties of
the ground state, beyond correlation decay or area laws [163–171]. In the upcom-
ing section we will make a comparative study of the behavior of GGM (G) present
in the ground state of the t-J ladder with that obtained using the doped RVB ansatz.

5.5 Trends of genuine multisite entanglement: GS
of t-J ladder vs doped RVB state

We now consider a quantum spin-1/2 ladder model, consisting of an arbitrary num-
bers of holes and spin particles, and consider the short-ranged RVB state as a frame-
work to study its GS multiparty entanglement properties. The model can be derived
using second order perturbation theory from the Hubbard model in the limit of large
on-site interaction [239–244]. The t-J Hamiltonian on a ladder can be written as

H = ≠t
ÿ

Èi,jÍ,‡
PG (c†

i‡cj‡ + h.c.) PG + J
ÿ

Èi,jÍ
S̨i · S̨j, (5.29)

where ci‡ (c†
i‡) is the fermionic annihilation (creation) operator of spin ‡ (= {ø, ¿

}), and S̨i is the triad of spin-1/2 operators, at site i. The Heisenberg exchange
coupling (J) is isotropic along the rungs and legs while t represents the transfer
energy and the expression Èi, jÍ denotes that the sum is taken over nearest neighbor
(NN) sites. PG is the Gutzwiller projector �i(1 ≠ niøni¿) which enforces at most
single occupancy at each lattice site. This ensures that the undoped state physically
represents a Mott insulator. The t-J model, under finite doping, exhibits a rich phase
diagram [252–262]. Note that these models can potentially be realized in fermionic
ultracold gases at high energy scales [268], For moderate sized t-J ladders, at half-
filling, the Hamiltonian in Eq. (5.29) can be exactly diagonalized, provided certain
properties of the system are invoked. For example, the spin number Hamiltonian,

N̂ =
ÿ

i

(|0ÍÈ0| + |1ÍÈ1|)i, (5.30)
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and the total spin along the z-axis, Ŝz = q
i Sz

i commute with the Hamiltonian,
H. Hence, the Hamiltonian can be block-diagonalized in the (C3)¢2N Hilbert space
basis for di�erent total spin Ŝz and electron density nel = ÈN̂Í/2N . For our case,
we assume that the spins form an initial insulating phase with Ŝz = 0, and with nel

varying from 0 to 1. Note that nel = 0 and 1, correspond to a completely vacant and
occupied lattice, respectively. For nel = 1, the state is an insulating RVB spin liquid.
The doping concentration is denoted by x = 1≠nel. In our work, we have developed
a numerical algorithm [269] based on the Lanczos method, [203] to exactly solve
the composite hole-dimer qutrit system. By dividing the Hilbert space in di�erent
subspaces, according to the hole concentration x and total Ŝz, exact ground state
of the t-J Hamiltonian can be obtained for upto 14 qutrits, with even number of holes.
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Figure 5.6: Genuine multisite entanglement in doped RVB ladder. Variation of
G with nel in doped RVB ladder states, for 2N = 40 (blue circles) and 200 (red
diamonds) lattice sites. The top inset magnifies the encircled region in the plot. The
bottom inset shows the scaling of nc with the log

10

N . The inset shows that as N
increases (plotted up to 300 sites), nc converges to 0.56. This is to be compared to
the result for the systems described by the t-J model in the superconducting regime,
in Fig. 5.7.

Although we have shown that the doped RVB state is always genuinely multiparty
entangled, a quantitative analysis of G requires its computation for large systems.
Using the analytical recursion method proposed in the work, one can recursively
build the doped RVB state and subsequently obtain its relevant reduced density ma-
trices which is necessary to estimate G. Figure 5.6 shows the behavior of the G with
increasing nel. We observe that at nel = 0, G vanishes as expected since it corre-
sponds to a product state, containing only holes. The maximum G is achieved at a
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critical density, nel = nc ¥ 0.56. Interestingly, we find that this critical value of nc

with respect to G corresponds to that of the superconducting phase of the t-J model.

We now consider the behavior of genuine multisite entanglement in the GS of
the periodic t-J ladder, obtained through exact diagonalization. Figure 5.7, shows
the variation of G with nel for di�erent moderately-sized systems. We observe that
the behavior of G is qualitatively equivalent to those corresponding to doped RVB
states (see Fig. 5.6). Below a certain critical density (nc), i.e., in the region where
nel < nc, G scales linearly with nel, independent of J/t. This is due to the fact
that G is obtained from the 1:rest bipartition, where the single-site density matrix
is diagonal in the computational basis, with elements

fl1 = [1 ≠ nel, nel/2, nel/2]. (5.31)

0 0.2 0.4 0.6 0.8 1
n
el

0

0.1

0.2
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0.4
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G

N = 10

N = 12

N = 14

Figure 5.7: Genuine multisite entanglement in the t-J ladder. Variation of G with
nel for the exact GS of the t-J ladder Hamiltonian, given in Eq. (5.29), for N =
10, 12, and 14. G reaches its maximum value at nc ¥ 0.65. Here J/t = 0.66. All
quantities plotted are dimensionless.

When 1 Ø nel Ø nc, the G is a function of both nel and J/t. For the t-J lad-
ders, the maximum G is achieved at a critical density, nc ¥ 0.65 which is close to
that obtained using the doped RVB state ansatz. However, the small discrepancy
in the exact values of the electron densities need to account for finite size e�ect.
Moreover, we infer that this critical density mark the onset of a superconducting
phase in the two-legged t-J ladder. For example in t-J ladder with J/t ¥ 0.6,
the superconducting phase has been predicted to occur for relatively high values of
nel [257], which is close to the critical density corresponding to the G, as obtained
from our analyses. Even though the microscopic theory behind high-Tc supercon-
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ductivity [108,109,263,264,270,271] remains unresolved [272–274], t-J ladder stands
out as an important framework for understanding this novel phenomena. [107, 275]
Furthermore, the short-range RVB ansatz has been pitched to describe the super-
conducting states of the t-J ladder [102–105,110,111].

The RVB state is a possible GS of the half-filled t-J ladder [189] and, upon finite
doping, provides a simple mechanism to describe high-Tc superconductivity. In this
respect, our work indicates that G bears the signature of the t-J ladder entering
into the superconducting phase and even the minimalistically designed doped RVB
state considered in this work supports this feature, at least at the level of multiparty
entanglement. Based on the behavior of both doped RVB states and exact GS of the
t-J Hamiltonian, one can hypothesize that the trend of G can detect the supercon-
ducting phase boundary, irrespective the size of the ladder. Note, however that we
do not claim to detetct a superconducting phase by using the genuine multipartyte
entanglement as an order parameter for the high-Tc superconducting phase. This is
also not the primary intention of our work, which is to construct an e�cient recursive
method for evaluating multiparty observables in large doped RVB states. As an use-
ful spin-o� to our main results, we are able to show that for some parameter ranges,
G may serve as an indicator to whether the system has entered into the SC phase or
not. It is plausible that one would require further physical properties along with the
GGM to identifty all the phases. Since there exists, as yet, no order parameter that
can uniquely identify all the relevant phases of the ground states of doped Hubbard
or t-J model, [43] the applicability of G as a suitable order parameter requires further
investigation.

An important point in our work is the use of a non-variational RVB state as the
GS of the doped quantum spin ladder. It is clear that a variational RVB (vRVB)
state, which lends possible support to d-wave pairing, is a more suitable state to
study the doped ladder. However, vRVB states will, in general, not possess a re-
cursive form that allows computation of reduced states with high e�ciency in large
systems, as the number of parameters to optimize increases exponentially. However,
our results show that by omitting the variation in RVB, we obtain significant advan-
tage in computation power, which allows us to compute G in large doped ladders.
Comparison with exact GS of the t-J ladder shows that the non-variational RVB
state, quite accurately simulates the behavior of G. But we do think that e�cient
recursions for the certain variational RVB states is an important problem for future
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tasks.

5.6 Summary
In this Chapter, we adopted two techniques for studying multisite entanglement in
doped quantum spin ladders. Firstly, we consider the doped RVB states as possible
ground states of the t-J Hamiltonian, which we have shown to be always genuinely
multiparty entangled. To overcome the limitations of exact diagonalization, we in-
troduced a recursion method to generate the doped RVB state and to compute its
reduced density matrices. By using the iterative method, we find that we can com-
pute the genuine multiparty entanglement of doped RVB ladders, for large systems
under finite doping of the ladder. We found that the maximum value occurs at dop-
ing concentration nel = 0.56. Secondly, we use an exact diagonalization method for
the t-J Hamiltonian, for upto 14 sites and observe that the GS of the Hamiltonian
is also genuinely multipartite entangled, with maximum entanglement occurring at
the superconducting phase boundary, where the electron density nel ¥ 0.65.

We note that the primary outcome of our work is an analytical recursion method
to evaluate the genuine multipartite entanglement in RVB ladders with finite dop-
ing. An immediate o�shoot of our results is the connection between maximal en-
tanglement in doped RVB states and the high-Tc superconducting phases of the t-J
Hamiltonian. In this regard, we would like to mention that even though GGM may
apparently be useful in signalling the onset of the high-Tc superconducting phase,
it is possible that the di�erent phases of the Hubbard or the t-J model can not be
completely characterized by just using entanglement. Recently, using the behavior
of multiparty entanglement, attempts have been made to get more accurate insight
about the phase boundaries which emerge in the ground state configuration of XXZ

quantum spin ladders [62, 63]. However, it has been shown that there are regions
in the parameter space at which multiparty entanglement alone fails to a provide a
conclusive phase diagram and one needs to study the behavior of other ground state
properties such as magnetization and spin correlation functions in order to obtain a
complete picture of the di�erent phase boundaries [63].

In a similar vein, for the case of doped ladders, it is plausible that one would
require further physical properties along with the GGM, to characterize di�erent
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phases of the t-J Hamiltonian. This requires further investigations on the model
which are planned in forthcoming works. Apart from this, there has also been at-
tempt to quantify the bipartite entanglement of certain multipartite pure states,
like the Bardeen-Cooper-Schrie�er (BCS) state of superconducting compounds [276]
which shed light on the relation of entanglement to that of the superconducting or-
der parameter. We believe that the extension of such investigations to the case of
high-Tc cuprates may uncover interesting underlying microscopic properties.

In the forthcoming Chapter, we move further and consider physical systems in
higher dimensional lattices viz. the two-dimensional isotropic quantum network and
study the e�ects of doping on its bipartite as well as multipartite entanglement char-
acteristics.

The results of this Chapter are based on the following paper:

• Sudipto Singha Roy, Himadri Shekhar Dhar, Debraj Rakshit, Aditi Sen(De),
and Ujjwal Sen, Analytical recursive method to ascertain multisite entanglement
in doped quantum spin ladders, Phys. Rev. B 96, 075143 (2017).
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CHAPTER6
Isotropic quantum spin networks in

two-dimensions

6.1 Introduction
A critical aspect in the study of quantum networks [7,9,277,278] is the distribution
of entanglement [23] between the nodes [23,37,38,279–294]. For implementation of
quantum protocols such as information transmission [281,282], long-range quantum
teleportation in spin chains [283, 284], and measurement-based quantum computa-
tion [285, 286], engineered generation and modulation of entanglement between the
spins on the lattice is a necessary prerequisite. In several hybrid quantum networks
designed using superconducting or optomechanical cavities [295–299], entanglement
is the key resource enabling the fidelity and speed of information transfer [300, 301]
within the network. In this regard, robustness of entanglement in the presence of
defects is an important requirement in the design of scalable information and com-
putation models.

In our work, we investigate the e�ect of particle loss or defects on the entan-
glement properties of a quantum spin network with a fixed number of lattice sites.
Such defects may destroy physical properties including entanglement in a system, and
hence can adversely a�ect its computational and communication abilities [302–316].
We consider a quantum spin network consisting of spin-1/2 particles on a bipar-
tite lattice, with an isotropic topology and of arbitrary dimensions. The interaction
between the spins is such that the wave function of the spin network consists of
superpositions of all short-range dimer coverings on the lattice [141]. We show,
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using information-theoretic properties such as quantum telecloning [317] and the
strong-subadditivity of von Neumann entropy [238] that even in the presence of a
finite fraction of defects, the spin network sustains a considerable amount of genuine
multisite entanglement. Moreover, the defects may also generate small but finite
bipartite entanglement between two moderately distant sites. We also discuss po-
tential applications of such spin networks in quantum computation.

Figure 6.1: Schematic diagram of a two-dimensional quantum lattice with dimer
coverings.

This Chapter is organized as follows. In Sec. 6.2, we introduce the isotropic
network we have considered in our work. Thereafter, in Sec 6.3, we derive the forms
of the singlet- two-site reduced density matrices. In Sec. 6.4, we provide bounds
on the bipartite entnaglement that the network can sustain. In Sec. 6.5, we prove
that the multiparty quantum state characterizing the quantun network is genuinely
multiparty entangled. We present a brief summary in Sec. 6.6.

6.2 Isotropic spin network
Let us consider a quantum network consisting of N (even) lattice sites shared between
the two sublattices of a bipatite lattice, say A and B (see Fig. 6.1). Each site
is occupied by a spin-1/2 particle such that a spin on sublattice A is surrounded
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by R nearest neighbor (NN) spins on sublattice B, and vice-versa. The network
is isotropic, which implies that the lattice appears the same from the perspective
of any lattice site. Moreover, the quantum state of the network is invariant, upto
a global phase, under identical local unitaries, i.e., the spin state is rotationally
invariant. Such a spin network is in principle equivalent to the spin liquid phases of
certain antiferromagnetic strongly-correlated systems [107, 138, 140, 142], such that
the state consists of equal-weight superposition of all possible dimer coverings. A
dimer between any two NN spin-1/2 particles on a bipartite lattice is given by

|ÂÍij = 1Ô
2

(| øi¿jÍ ≠ | ¿iøjÍ), (6.1)

where i œ A and j œ B. The state of the N -spin quantum network can then be
defined as

�N =
ÿ

k

{
¢Ÿ

iœA,jœB
|ÂÍij}k, (6.2)

where {·}k is the kth (defect-free) unique dimer covering, which is the product of
N /2 dimers across the bipartite lattice. Since |ÂÍij is rotationally invariant under
operations of the form U ¢ U , where U is a unitary acting on a single spin-1/2
particle, the entire state, |�ÍN , is rotationally invariant under the local operation,
U¢N [138]. In presence of defects, description of the state can be mapped to a
three-level basis or the qutrit Hilbert space [3], such that each node of the network is
represented by {|‹

0

Í, |‹
1

Í}, where |‹
0

Í denotes a node with no spin particle (a defect).
The occupied node is |‹

1

Í, representing the spin-1/2 particle with the two-level basis
{| øÍ, | ¿Í}. Hence, the overall state of the network can be expressed by the joint
three-level basis, {|‹

0

Í, |‹
1

Í| øÍ, |‹
1

Í| ¿Í} æ {|’
0

Í, |’ Õ
1

Í, |’ Õ
2

Í}. In this new basis, a
dimer between two NN spins is defined as

|ÂÍij = 1Ô
2

(|’ Õ
1

Íi|’ Õ
2

Íj ≠ |’ Õ
2

Íi|’ Õ
1

Íj), (6.3)

and a defect at node l is written as |’
0

Íl. We note that the (un)primed elements
of the basis represent the spin (un)occupied sites, corresponding to (|‹

0

Í)|‹
1

Í. An
important property of the spin network is its rotational invariance, which is preserved
by considering the distribution of the defects to be such that the remaining spin
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occupied sites always form a complete dimer covering. This is supported by the
fact that in strongly-correlated systems such coverings are known to be energetically
favorable as compared to states where dimer pairs break to form free spins [318,319].
Hence, for an N -spin network containing P nodes with defects, the overall state can
be written as

�̄P
N =

ÿ

k

(
¢Ÿ

iœA,jœB
|ÂÍij ¢ {„l})k, (6.4)

where {„l} = |’
0

Íl1|’
0

Íl2 · · · |’
0

ÍlP and li are the nodes containing the P defects,

Figure 6.2: A two-dimensional bipartite honey- comb lattice, with defects (red-
circles) in the network. The nodes in sublattice A (blue-circles) and B (yellow-
circles), are occupied by spin-1/2 particles.

equally distributed between sublattices A and B, such that the sites i and j (i œ A
and j œ B) are occupied by N ≠ P spins which form a complete dimer covering. D
= P/N gives us the defect density of the network.

6.3 Single- and two-node Reduced states of the
spin network

An important aspect in studying the bipartite and multipartite entanglement proper-
ties in spin networks with defects is to derive the reduced density matrix for arbitrary
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Figure 6.3: Another instance of a two-dimensional bipartite honeycomb lattice, with
defects (red-circles) spread in the network.

single and two nodes. This would allow us to estimate the entanglement between
two nodes in the network, as well as understand the local, single node properties
of the spin network. The state of the quantum network with finite defects, �̄P

N , is
invariant under the three-level local unitary operation

Ũ¢N = (1 ü U)¢N =
Q

a 1 0
0 U

R

b
¢N

, (6.5)

where U is a 2◊2 unitary operator acting on the spin space {|’ Õ
1

Í, |’ Õ
2

Í}, and each node
of any term of �̄P

N contains either a defect or is part of a dimer. The invariance of
�̄P

N is significant in analysing the entanglement properties of the quantum network,
and it can be shown that the reduced state, fl(x), for any x nodes, obtained by tracing
over all but x (say, x̄) nodes from the state �̄P

N , is also invariant under the action of
Ũ¢x. To elaborate, fl(x) = Trx̄[|�̄ÍÈ�̄|] = q

x̄ |È„x̄|�̄Í|2, where {|„x̄Í} forms a complete
basis over the system of x̄ sites. Now,

fl(x) =
ÿ

x̄

|È„x̄|Ũ¢N |�̄Í|2, (6.6)
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due to the invariance property of |�̄ÍÈ�̄|. Therefore,

fl(x) =
ÿ

x̄

|È„x̄|Ũ¢x̄Ũ¢x|�̄Í|2 = Ũ¢x(
ÿ

x̄

|È„̃x̄|�̄Í|2)Ũ¢x†, (6.7)

where |„̃x̄Í = Ũ¢x̄†|„x̄Í forms another basis of the system of x̄ nodes. The invariance
of fl(x) allows us to obtain the expressions for the reduced states of single and two
nodes.

For instance, let fl(1) be a single node reduced state, such that it satisfies

Ũfl(1)Ũ † = fl(1). (6.8)

Let us denote, fl(1) = fl(1)

ij and Ũ = uij, where {i, j} = {1, 2, 3}. Now from
definition of Ũ , u

1j = uj1

= ”
1j ’ j, and the unitarity of U in the spin space demands,

ukluú
lkÕ = ”kkÕ , for {k, kÕ, l} = {2, 3}. This gives us

(Ũfl(1)Ũ †)ij =
ÿ

jÕk

uijÕfl(1)

jÕkuú
kj, (6.9)

and the invariance is satisfied if

fl(1)

ij = uijÕfl(1)

jÕkuú
kj”ijÕ”kj = uiifl

(1)

ij uú
jj. (6.10)

For Ũ , it is known that uiiuú
ii = 1, for i = {1, 2, 3}. Hence, for all single-node

reduced states, the invariance holds if and only if fl(1)

ij is diagonal, i.e., fl(1)

ij = pi ”ij,
such that q

i pi = 1, and p
2

= p
3

. Therefore, the single site reduced density matrix
at site a is given by

fl(1)

a = diag{p
1

, p
2

/2, p
2

/2} = p
1

|’
0

ÍÈ’
0

|a + p
2

I
2

2 , (6.11)

where I
2

= (0 ü I
2

), with I
2

being the identity matrix in the spin space {|’ Õ
1

Ía, |’ Õ
2

Ía}.
Note that the single-site density matrix in the absence of defects is just I

2

/2.

Let us illustrative the approach to determing the reduced state fl(1). From
Figs. 6.4(a)-(b), one observes that the a single-node state may either contain a
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a) b)

c) d)

Figure 6.4: (Color online). a) Single node containing a spin-1/2 belonging to a dimer,
b) Single node containing a defect, c) A NN two-node containing a dimer, and d) A
NN two-mode containing a pair of defects.

spin-1/2 particle, which is a part of a dimer, or a defect. The first arrangement
has several possibilities depending on the orientation of the dimer. However, the two
arrangements do not overlap or produce cross terms as basis formed by the remain-
ing sites in each case are orthogonal to each other. This is due to the fact that the
distribution in Fig. 6.4(a), contains P = 4, holes in the remaining sites, whereas the
arrangement in Fig. 6.4(b), has P = 3, rendering the remaining state orthogonal. All
possible distributions of the type (a) lead to I

2

= (0 ü I
2

), with I
2

being the identity
matrix in the spin space, {|’ Õ

1

Í, |’ Õ
2

Í}, as defined in the main text. The arrangement
in (b) leads to the state |’

0

ÍÈ’
0

|. Hence, the one-node reduced density matrix has
the general form,
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fl(1) = diag{p
1

, p
2

/2, p
2

/2} = p
1

|’
0

ÍÈ’
0

| + p
2

I
2

2 . (6.12)

For very low defect densities, D ¥ 0, p
2

¥ 1 ∫ p
1

. Evidently, in the other limit,
D ¥ 1, p

1

¥ 1 ∫ p
2

. However, in general, estimating the probabilities, p
1

and p
2

,
for arbitrary P and N is intractable due to the overcomplete defect-dimer basis.
Therefore, it is clear that for all values of D, except the case where all nodes have
a defect (no spins) or D = 1, the one-node reduced state is mixed and thus always
entangled to the rest of the system. As shown in the main text, this is a crucial
point in determing the genuine multipartite entanglement of the spin network.

Similarly, one can obtain the analytical expression for the reduced two-node states
invariant under the local unitary operation, Ũ ¢ Ũ . For an arbitrary pair of nodes a

and b, where a œ A and b œ B, the reduced density matrix is given by

fl(2)

ab = pÕ
1

|’
0

’
0

ÍÈ’
0

’
0

|ab + pÕ
2

IÕ
4

/4 + pÕ
3

W(q), (6.13)

where pÕ
i Ø 0 ’ i, and q

i pÕ
i = 1. The diagonal matrix

IÕ
4

=
ÿ

i

|’
0

’ Õ
iÍÈ’0

’ Õ
i|ab + |’ Õ

i’0

ÍÈ’ Õ
i’0

|ab. (6.14)

W(q) is the Werner state [143] on C2 ¢ C2, where C2 is spanned by {|’ Õ
1

Í, |’ Õ
2

Í},
so that

W(q) = q|ÂÍÈÂ|ab + (1 ≠ q) I
4

/4, (6.15)

for ≠1/3 Æ q Æ 1, with |ÂÍab = 1Ô
2

(|’ Õ
1

’ Õ
2

Í ≠ |’ Õ
2

’ Õ
1

Í)ab being the spin dimer and

I
4

=
2ÿ

i,j=1

|’ Õ
i’

Õ
jÍÈ’ Õ

i’
Õ
j|ab, (6.16)

being the identity matrix.

Let us now consider the case for the reduced states of two NN nodes, or two ar-
bitrary nodes, where each node belongs to a di�erent sublattice. In Figs. 6.4(c)-(d),
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a) b)

c) d)

Figure 6.5: (Color online). a) A NN two node containing a spin-1/2 belonging to a
dimer in sublattice B and a defect in sublattice A, b) same two node now containing
a spin-1/2 belonging to a dimer in A and a defect in B, c)-d) Another instance of
the arrangement a)-b), respectively, at a di�erent pair of nodes.

we present the two quintessential components of the density matrix. The arrange-
ment in (c) shows the case where both nodes have a spin. There are several possible
arrangements but two broad possibilities emerge: the nodes share a dimer or the
nodes have spins which are part of di�erent dimers. This case is reminiscent of a
two-node state in a network with no defects and gives us the Werner state, W(q), as
the rotationally invariant two-node density matrix.

W(q) = q|(i, j)ÍÈ(i, j)| + (1 ≠ q) I
4

/4, (6.17)

where ≠1/3 Æ q Æ 1 and I
4

is the identity matrix in the two-qubit spin space.
The arrangement in (d) contains two defects, and gives the state, |’

0

’
0

ÍÈ’
0

’
0

|. We
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note once more that this arrangement has no overlap with the former, and hence no
cross-terms.

However, other terms will arise for the arrangements shown in Fig. 6.5, where
one site has a defect and the other has a part of the spin dimer. This arrangements
give rise to state of the form: |’

0

’ Õ
1

ÍÈ’
0

’ Õ
1

|, |’
0

’ Õ
2

ÍÈ’
0

’ Õ
2

|, |’ Õ
1

’
0

ÍÈ’ Õ
1

’
0

|, and |’ Õ
2

’
0

ÍÈ’ Õ
2

’
0

|.
No cross terms arise due to the distribution of the dimers and defects in the system.
To elaborate, cross terms, such as |’

0

’ Õ
1

ÍÈ’
0

’ Õ
2

|, do not exist as the reduced single
nodes, for occupied nodes, is always I

2

. Moreover, terms such as |’
0

’ Õ
1

ÍÈ’ Õ
1

’
0

|, do not
occur as there exists no overlap between these states. In Fig. 6.5(a)-(b), and also
(c)-(d), one can see that the distribution of defects is such that, the remaining sites
in arrangements (a) and (b) (also, (c) and (d)) are orthogonal. This is due to the
fact that defects occupy nodes equally distributed between sublattice A and B, to
allow the remaining spins to form a complete dimer covering. In arrangement (a),
where P = 4, there will be two defects in B and one in A among the remaining
nodes, since the reduced state (red-circle) contains the other defect in A. However,
arrangement (b) will have two defects in A and one in B, rendering the basis states
for the remaining sites orthogonal to each other. This will always be the case for all
N and P . The two-node reduced state is thus given by,

fl(2) = pÕ
1

|’
0

’
0

ÍÈ’
0

’
0

| + pÕ
2

IÕ
4

/4 + pÕ
3

W(q), (6.18)

where

IÕ
4

= |’
0

’ Õ
1

ÍÈ’
0

’ Õ
1

| + |’
0

’ Õ
2

ÍÈ’
0

’ Õ
2

| + |’ Õ
1

’
0

ÍÈ’ Õ
1

’
0

| + |’ Õ
2

’
0

ÍÈ’ Õ
2

’
0

|. (6.19)

Once more, it is not possible to estimate the terms pÕ
1

, pÕ
2

, pÕ
3

, and q, for arbitrary
isotropic lattice, with any N and P . One of the main objectives of the main text is
to obtain more information on the these quantities, which allow us to estimate the
bipartite entanglement properties of the spin network.

Hence, Eqs. (6.12) and (6.18) give us the analytical expressions for the single-
and two-node reduced density matrices of the spin network with finite defects rep-
resented by the state |�̄ÍN ≠P . We observe that fl(1)

a and fl(2)

ab are dependent on the
defect density, D = P/N . For instance, for D = 0, which corresponds to a spin
network with no defects, p

2

= pÕ
3

= 1. For large networks with a small number of
defects, D π 1, p

1

π p
2

, and pÕ
3

∫ {pÕ
1

, pÕ
2

}. However, exact values of pi’s, pÕ
i’s, and
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q are di�cult to compute and are intractable, even for simple 2D lattices. This is
due to the fact that the ennumeration of arrangements in a defect-dimer covering is
known to be NP-complete [267]. This makes the estimation of entanglement proper-
ties of these spin networks a formidable task. We show that by using concepts from
quantum information theory (QIT), such as strong-subadditivity of von Neumann
entropy and quantum telecloning, one can unearth substantial details about the bi-
partite and multipartite entanglement of these quantum spin networks.

6.4 Bound on bipartite entanglement
We begin by investigating the bipartite entanglement properties of the state, given
by Eq. (6.18), between any two arbitrary sites (a œ A and b œ B) of the quantum
spin network. The condition of positive partial transposition (PPT) [156, 157] is
given by [pÕ

3

(1 ≠ 3q)]/4 Ø 0. Therefore, fl(2)

ab has a negative-partial-transpose (NPT),
and hence is entangled, i� q > 1/3, which is the same criterion as that for the Werner
state. To obtain a more specific criteria for the bipartite entanglement properties of
the spin network with defects, one needs to estimate the bounds on the parameter
q in terms of the defect in the network. To this e�ect, we use a QIT concept called
quantum telecloning [317], which combines the concept of quantum teleportation [33]
and quantum cloning [320]. While teleportation provides the fidelity with which a
quantum state can be transferred to M parties using shared bipartite entanglement
and classical communication, quantum cloning provides the optimal fidelity with
which M copies of a quantum state can be prepared. Consider a site a (œ A) with
M sites surrounding it, given by {bi} (œ B), giving rise to M reduced states, flabi .
We suppose that an ancillary system in an arbitrary quantum state, |–Í, is brought
near the site a. This can be teleported to the site bi, using the channel flabi , with
some optimal fidelity, Ftele. If all flabi ’s are the same (a has M equidistant neighbors
bi in an isotropic state), then the state |–Í can be teleported to M sites with fidelity
Ftele. However, using an optimal cloning machine, M copies of a d-dimensional
quantum state, |–Í, can only be produced with a fidelity,

Fclo = 2M + (d ≠ 1)
M(d + 1) . (6.20)

Therefore,
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Ftele Æ Fclo, (6.21)

and we obtain an upper bound on the fidelity with which M copies of a quantum
state can be remotely prepared.

Let us now consider the quantum state of the system under consideration as the
required resource for the remote protocol where an unknown qutrit, |–Í, is brought
near site a, and M copies of it are to be prepared at M sites, {bi}, on the isotropic
network. The M equivalent two-site density matrices, fl(2)

abi
, are of the form given in

Eq. (6.18). The fidelity of teleporting |–Í from near site a to site bi, is obtained from
the maximal singlet fraction,

F = max ÈÂs|�(fl(2)

abi
)|ÂsÍ, (6.22)

where the maximization is over all local operations and classical communication
protocols, �, and where |ÂsÍ is a maximally entangled state on Cd ¢ Cd . The
teleportation fidelity is then given by [320]

Ftele = (Fd + 1)/(d + 1), (6.23)

where d = 3 for the qutrit. For

|ÂsÍ = 1Ô
3

(|’ Õ
1

’ Õ
2

Í ≠ |’ Õ
1

’ Õ
2

Í + |’
0

’
0

Í) (6.24)

and for � as the identity operation,

F Õ = ÈÂs|fl(2)

abi
|ÂsÍ Æ F. (6.25)

Using Eq. (6.18), for fl(2)

abi
, we obtain

F Õ = pÕ
1

/3 + (pÕ
3

/3)[(3q + 1)/2]. (6.26)
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Therefore, for d = 3, we obtain

Ftele Ø (F Õd + 1)
(d + 1) = pÕ

1

+ pÕ
3

[(3q + 1)/2] + 1
4 , and (6.27)

Fclo = 2M + (d ≠ 1)
M(d + 1) = 1

2 + 1
2M . (6.28)

As discussed earlier, Ftele Æ Fclo, and using Eqs. (6.27) and (6.28), we obtain an
upper bound on the parameter q in fl(2)

abi
, given by

q Æ 1
3

A
2
pÕ

3

≠ 1
B

≠ 2
3pÕ

3

3
pÕ

1

≠ 1
M

4
. (6.29)

As we know the two-site density matrix is entangled if q > 1/3, the above relation
provides us important indicators about the bipartite entanglement between two sites
of the lattice. For relatively small number of defects in the lattice, pÕ

1

π pÕ
3

, such
that pÕ

1

/pÕ
3

¥ 0. Hence,

q Æ (1/3)(1 + 2/M + ”), (6.30)

where ” = 2/pÕ
3

≠ 2, with ” æ 0 as pÕ
3

æ 1. Hence, the upper bound on q decreases
as the number of copies, M, increases. For example, let us consider an isotropic
2D square lattice with a low number of defects. We consider the telecloning of a
qutrit from a site to its four NNs (M = 4), so that the bound on q for NN two-party
reduced density matrices is given by q Æ 1/2+”/3. Hence, the NN state with highest
bipartite entanglement for the isotropic 2D square lattice is given by Eq. (6.18), with
q = 1/2 + ”/3.

Similarly, let us consider the telecloning of a qutrit to R nodes ({b
1

, b
2

, . . . , bR}),
x edges away from node a, such that M = R. Alternatively, one may consider R to
be the number of nodes contained in the area formed by concentric circles of radius
r > x and r Æ x + xÕ, where xÕ π x (see Figs. 6.6). For large x, all the R nodes can
be considered as equidistant from node a. R increases with x, and we have

q Æ 1/3 + ”/3. (6.31)
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x

Figure 6.6: Possible two-node reduced states, represented by Eq. (6.18), between a
central node (encircled red) and a set of M distant nodes, separated by approxi-
mately x edges. The central node belongs to sublattices A, with the distant nodes
belonging to sublattice B. These two-node states form the channel for the quantum
telecloning protocol discussed in the main text.

We observe that as ” æ 0, q Æ 1/3 and the states fl(2)

abi
(i = 1, 2, . . . , R) are

separable, since fl(2)

abi
is then a mixture of three unentangled states. Figure 6.7 shows

that the permissible upper limit on bipartite entanglement, as quantified by logarith-
mic negativity [156, 157, 159–161], is finite for any two sites in the isotropic lattice
with defects but decreases as the number of equidistant isotropic pairs (M) increases.

6.5 Genuinely multipartite entanglement
We now show that an N -spin network with P defective nodes, given by |�̄ÍP

N , such
that P < N , is always genuine multipartite entangled. For a pure multiparty quan-
tum state to be genuinely multipartite entangled, it must be entangled across all
possible bipartitions of the system. This requires that the reduced density matrices
across all possible bipartitions must necessarily be mixed. From Eqs. (6.12) and
(6.18), for D < 1, we observe that the reduced single- and two-node reduced states
are always mixed. Hence, the state |�̄ÍP

N is entangled across all single:rest and
two:rest bipartitions. Now we need to show that |�̄ÍP

N is entangled across the other
possible bipartitions.
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Figure 6.7: Maximum permissible bipartite entanglement. We show the upper bound
on entanglement due to quantum telecloning, quantified using logarithmic negativity
(E(fl)), for the two-party reduced state fl(2)

ABi
, for M = 4, 20, 100, and Œ, as a function

of 1≠pÕ
3

. The plot shows that the maximum permissible entanglement decreases as M
increases. Interestingly, in the absence of defects (pÕ

3

= 1) no bipartite entanglement
is present as M æ Œ. The vertical axis is in ebits, while the horizontal one is
dimensionless.

Consider the reduced state, fl(x) = Trx̄[(|�ÍÈ�|)P
N ], for any arbitrary but fixed set

of x nodes. Let us assume that fl(x) is pure and thus |�̄ÍP
N is separable along the

x : (N ≠ x) bipartition. Let x = (x̃ \ 1) fi y, where y is one specific node. Since, the
spin network is isotropic, there shall always exist an equivalent but spatially di�erent
set of xÕ nodes, such that both xÕ and x contain an equal number of nodes and the
node y is common to both reduced sets. Hence, xÕ = (x̃Õ \ 1) fi y. Now, fl(xÕ

) is also
pure, by the symmetry of the isotropic lattice. Applying the strong subadditivity of
von Neumann entropy (S(·)) [238], we obtain

S(fl(x̃\1)) + S(fl(x̃Õ\1)) Æ S(fl(x̃\1)fiy) + S(fl(x̃Õ\1)fiy). (6.32)

As fl(x) and fl(xÕ
) are pure,

S(fl(x̃\1)fiy) = S(fl(x̃Õ\1)fiy) = 0. (6.33)

Since S(fl) is non-negative, S(fl(x̃\1)) = S(fl(x̃Õ\1)) = 0, and this implies that S(fl(y))
= 0 or fl(y) is pure. However, y is a single node, and from Eq. (6.12) all single node
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reduced states are mixed, for D < 1. Hence fl(y) is mixed and the initial assump-
tion that fl(x) is pure does not hold. Therefore, fl(x) must always be mixed and thus
|�̄ÍN ≠P is entangled across all x : (N ≠ x) bipartitions. This proves that |�̄ÍN ≠P

is genuine multipartite entangled for spin networks with finite defects. The above
method can also be extended to prove that infinite spin networks are entangled
across infinite line of bipartition. For example, the isotropic spin state, |�̄Í, defined
on an infinite 2D lattice is always entangled across infinite lines on the lattice. This
proves that the entire multiparty state of the isotropic spin network is genuinely
multiparty entangled, except in the extreme case where all spins are lost (D = 1), so
that the state becomes a product of vacuum nodes, given by |’(1)

0

Í¢ |’(2)

0

Í · · ·¢ |’(N )

0

Í.

6.6 Summary
The single- and two-node reduced states in Eqs. (6.12) and (6.18), respectively, are
defined for the quantum spin network with finite defects. Without defects, the net-
work can be mapped to the two-qubit space, spanned by {|’ Õ

1

Í, |’ Õ
2

Í}. The single-node
reduced density matrix is then I

2

/2 (p
1

= 0, p
2

= 1 in Eq. (6.12)) and the two-node
reduced state is given by the Werner state, W(q) (pÕ

1

= pÕ
2

= 0, pÕ
3

= 1). Since, the
single-node state is always mixed, using the approach discussed earlier, but applied
to the case of zero defects, it can be shown that the quantum spin network is always
genuine multisite entangled. Finite defects in the network do not destroy the multi-
party entanglement, but for the extreme case, where all spins are lost (D = 1).

In the absence of defects, the condition of bipartite entanglement between any
two arbitrary nodes reduces to q Æ (1/3)(1 + 2/M), since ” = 0. Again, consider-
ing the example of an isotropic 2D square lattice, in the limit M æ Œ, we obtain
q Æ 1/3, and the upper bound ensures that the system has no long-range bipartite
entanglement [37]. However, in the presence of finite defects, the upper bound may
allow a small but finite entanglement, as q Æ (1/3)(1+”). Hence, presence of defects
in quantum spin networks may not qualitatively a�ect the presence of genuine multi-
partite entanglement in the system but, counterintuitively, may permit the presence
of finite bipartite entanglement between moderately-distant sites, in contrast to the
spin network with no defects.

In summary, our work primarily aims at highlighting the response to defects of
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the distribution of entanglement, both bipartite as well as multipartite, in a partic-
ular prototype of quantum spin networks. Our results show that presence of finite
defects do not a�ect the presence of multisite entanglement properties of the net-
work, while, interestingly, finite moderate-range bipartite entanglement may emerge.
This shows that isotropic spin networks that can be obtained as dimerized ground
states of spin Hamiltonians provide a robust model for implementation of quantum
protocols in presence of defects.

The spin network considered in our work is a useful tool in realization of solid-
state quantum computation protocols, in particular as realistic dimer models for
fault tolerant topological computation [127, 145, 146, 194, 237, 321–324]. Moreover,
the state under study is closely related to interpolations of the projected entangled
pair states [325–327], which are valuable resources for measurement-based quantum
computation [285,286]. Such spin network states, provide the necessary resource for
measurement-based quantum computation [328–335] and may potentially be more
accessible in many-body architectures (e.g. in photonic and ultracold gas systems),
as they may appear as natural ground states [127,215,336–338].

The results of this Chapter are based on the following paper:

• Sudipto Singha Roy, Himadri Shekhar Dhar, Debraj Rakshit, Aditi Sen(De),
and Ujjwal Sen, Response to defects in multi- and bipartite entanglement of
isotropic quantum spin networks, arXiv:1607.05195 [quant-ph].
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CHAPTER7
Summary

The quantum mechanical description of nature is radically di�erent from what we
require, if we wish to understand and describe most of our experiences in our ev-
eryday life. In classical theory, complete information of any physical system can, in
general, be obtained via proper characterization of its subparts. On the contrary,
for quantum systems, there may be scenarios for which full knowledge about the
system may fail to provide complete information about its subparts. A celebrated
example is the singlet. The singlet is a maximally entangled state, and for all such
states, though a complete characterization of the properties related to the composite
system is always possible, one remains totally ignorant about the physical states of
the subparts when those are probed locally. In other words, in this case, all the
information remain hidden in the shared correlation.

Over the last two decades or so, this non-intuitive property of quantum theory
has given rise to the birth of many revolutionary ideas related to computation and
information theory. Schemes have been proposed where quantum entanglement have
been used as a resource to accomplish tasks which cannot be realized under the realm
of classical theory, or are severely less e�cient in the latter. Many e�cient algorithms
have been proposed which surpass the capability of their classical counterparts. Us-
ing fundamental concepts related to quantum theory, secure classical communication
networks have been proposed, in which any intervention of an eavesdropper, armed
with arbitrary quantum devices, can be traced e�ciently.

Apart from its applications in information theory and computation, quantum en-
tanglement has turned out to be an e�cient tool to detect many important properties
related to other interdisciplinary areas of physics as well. One such vibrant area of re-
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search is the interface between quantum information and many-body systems. Over
the last two decades, many important works have reported where entanglement have
been emerged as an e�cient detector of quantum phase transition points for various
complex quantum systems. It has also been argued that distribution of ground state
entanglement sometime may provide a clearer picture about all the phase transition
boundaries, when characterized together with the conventional order parameters. In
addition to this, many useful techniques have been proposed to simulate complex
many-body systems on a large number of lattice sites, in an e�cient way.

These theoretical developments were soon brought to fruition, at least to a cer-
tain extent via experimental realization in some small-to-moderate scale quantum
networks in laboratories. These include quantum networks fabricated by embedding
quantum atoms in the optical cavities, where qubits can be represented by long-lived
internal atomic and molecular states in electronic ground states, or in metastable
excited electronic states, which can be manipulated by optical and microwave fields.
The accuracy of neutral atom quantum computing lies on several factors, such as
well developed cooling and trapping techniques. These techniques indeed provide
an ideal platform to use these networks for large-scale quantum computation. At
present, these trapping and cooling techniques are being extended to molecules.

The main goal of these techniques is to implement various theoretical quantum
protocols in real physical systems. To this end, one of the main challenges is to
protect them from environmental perturbations. As is often the case, quantum
correlation, in particular, quantum entanglement, turns out to be fragile to environ-
mental perturbation, and one needs to design the quantum network in a way so that
environmental e�ects can be suppressed to some extent. In addition to this, defects
in the quantum system occur unavoidably in real materials and can now also be en-
gineered artificially in, e.g., cold gas experiments. Usually, such defects or disorders
play destructive roles by diminishing physical properties like magnetization, classical
correlators, and quantum correlations.

Therefore, in order to design a quantum network to accomplish any information
processing tasks, one must have proper knowledge about the distribution of quan-
tum entanglement among its various subparts. In this thesis, we have considered one
such rich and complex quantum many-body system, viz. the resonating valence bond
states, constructed on various lattices geometries and have characterized its various
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bipartite as well as multipartite entanglement properties. The physics of resonating
bond states have arguably started to become appealing since superconductivity was
discovered for some unusual materials. In case of conventional superconductors, the
element exhibits superconducting properties via its transition from a metallic state
to a superconducting state. On the contrary, for high-TC superconductivity, the par-
ent system is a Mott insulator which upon doping starts exhibiting superconducting
properties. It was argued that in copper oxide lattices, electrons from neighboring
copper atoms interact to form a valence bond, which locks them in place. Hence, a
plausible description of high-Tc superconductivity can indeed be obtained in terms
of a doped resonating valence bond state formalism.

Besides this, notable success has also been achieved for the description of ground
state properties of certain higher dimensional lattices using the framework of short-
ranged resonating valence bond theory. E�cient analytical techniques to deal with
multi-legged ladder systems, based on the variational resonating valence bond state
ansatz have also been proposed. In addition to this, various other important prop-
erties of resonating valence bond states, which include the presence of topological
order, reveals phase properties of many complex quantum systems which remain
elusive when studied using the behavior of conventional order parameters.

Over the years, the resonating valence bond technique has turned out to be an
e�cient technique to provide insight about many useful properties related to vari-
ous complex quantum systems. In addition to this, using extensive numerical and
analytical techniques, a signature of resonating valence bond liquid phases have also
been identified for some complex quantum systems. It is therefore natural to explore
the possibility of employing resonating valence bond states as potential candidates
for designing quantum information and computation networks. One such example
is the one-way quantum computation in which resonating valence bond states have
turned out to be an appealing candidate. Topological quantum computation is an-
other network which may find resonating valence bond states as a possible substrate.
In this Chapter, we present a summary of the main results that we have obtained in
this thesis.

In Chapter 1, we have briefly highlighted the importance of characterization of
quantum correlations present in states of interacting quantum-many-body systems.
In Chapter 2, we have discussed a few measures of bipartite as well as multiparty
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quantum entanglement which we have later used in this thesis. Thereafter, in Chap-
ter 3, we derived analytical recursive methods to construct resonating valence bond
states in doped and undoped multi-legged spin-1/2 quantum ladders. We found that
though for two-legged undoped quantum ladders, the number of dimer coverings with
the increase of the number of ladder-rungs, follow the Fibonacci sequence, significant
deviations result, if we introduce doping into the system or extend to multi-legged
doped and undoped quantum ladders. Using the analytical recursion method, we
then investigated the behavior of valence bond entanglement entropy between a con-
tiguous block to the rest of the system with the increase of size of the block. This
provides useful information regarding the scaling of entanglement in the ground state
configuration of the system. We found that the ground state entanglement follows
the area law and this property remains invariant even if finite amount of doping is
introduced into the system.

In Chapter 4, we considered the ground state of Heisenberg spin ladders and
investigated the odd-even dichotomy of genuine multiparty entanglement. We found
that when the size of the system is small, multiparty entanglement measure can cap-
ture the odd-even dichotomy present in the system. It turned out that for odd-legged
quantum ladders, multiparty entanglement increases with the increase of system size,
whereas for the even one, it shows the opposite behavior. However, as the size of
the system is increased to a moderately large value, this odd-even dichotomy of
multiparty entanglement appears to become elusive. In order to capture the behav-
ior of multiparty entanglement even for large lattices, one needs to look for other
“order parameters” to detect the dichotomy. Interestingly, over the years, many
properties of these strongly coupled quantum ladders systems have been successfully
characterized using the framework of the short-ranged resonating valence bond state
ansatz, which emerges as possible ground state of the Heisenberg spin ladders in
some parameter range, we derived an analytical recursion method which provided
all possible reduced density matrices of the system, even in the limit of large lattice
sites. We further showed that those reduced states can indeed be useful to quantify
the amount of multiparty entanglement present in the quantum state. By performing
a comparison with the result obtained via the exact diagonalization techniques, we
found that the behavior of multiparty entanglement obtained using short-ranged res-
onating valence bond states encapsulates the qualitative features that are obtained
for both the ladders, and hence can serve as an e�cient tool to capture the behavior
in the asymptotic limit. By doing finite-size scaling analysis, we showed that though
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multiparty entanglement measure itself fails to capture the odd-even dichotomy, its
scaling behavior is capable of distinguishing same, even in the asymptotic limit.

Thereafter, In Chapter 5, we investigate the trends of genuine multipartite entan-
glement in the ground states of a Hubbard model with large onsite interactions, viz.
the t-J model, obtained by exact diagonalization technique. Subsequently, for finite
hole doping, the short-range doped resonating valence bond state was considered to
be the ground state of the Hubbard model. We prove that doped resonating valence
bond ladder states are always genuine multipartite entangled. We then formulated
an analytical recursion method for the wave function, which allowed us to e�ciently
estimate the entanglement as well as other physical quantities in large doped resonat-
ing valence bond ladders. From the behavior of multiparty entanglement obtained
from the doped resonating valence bond state ansatz, we showed that multiparty en-
tanglement has an explicit dependence on the hole concentration of the system and
at high doping scales linearly with the doping concentration. Thereafter, it reaches
to a maxima at some finite value of the doping concentration, and decays for further
increase of the doping . In order to compare the behavior of multiparty entanglement
obtained using the short-ranged resonating valence bond ansatz to that of the exact
diagonalization results, we made a comparative study for small systems and found
quantitative agreement of both the behavior. Note, however that we did not claim
to detect a high Tc superconducting phase by using the genuine multipartite entan-
glement as an order parameter. This was also not the primary motivation of our
work, which was to construct an e�cient recursive method for evaluating bipartite
as well as multiparty observables in large doped RVB states. As an useful spin-o� to
our main results, we are able to show that for some parameter ranges, genuine mul-
tiparty entanglement may serve as an indicator to whether the system has entered
into the superconducting phase or not. It is plausible that one would require further
physical properties along with the genuine multiparty entanglement, to identify all
the phases. Since there exists, as yet, no order parameter that can uniquely identify
all the relevant phases of the ground states of doped Hubbard model, the applica-
bility of genuine multiparty entanglement as a suitable order parameter may merit
further investigation.

In Chapter 6, we considered an isotropic quantum network of spin-1/2 particles
with a finite fraction of defects, where the corresponding wave function of the net-
work is rotationally invariant under the action of local unitaries. By using quantum
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information-theoretic concepts like strong subadditivity of von Neumann entropy and
approximate quantum telecloning, we prove analytically that even in the presence of
defects, the network sustains genuine multisite entanglement, and at the same time
may exhibit finite amount of bipartite entanglement, in contrast to the network with
no defects.

We believe that the results obtained will be useful in general for analysis and un-
derstanding of resonating valence bond states, and in particular for their utilization
in quantum information processing protocols. A large number of questions remain
open, including the question of error corrected quantum protocols in resonating va-
lence bond-type systems.
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Magnetism, eds. U. Schollwöck, J. Richter, D. J. J. Farnell and R.F. Bishop,
Lecture Notes in Physics, 645 (Springer, Berlin, 2004).

[223] M. Mambrini, A. Lauchli, D. Poilblanc, and F. Mila, Plaquette valence-bond
crystal in the frustrated Heisenberg quantum antiferromagnet on the square lat-
tice, Phys. Rev. B 74, 144422 (2006).

[224] B. Kumar, Quantum spin models with exact dimer ground states, Phys. Rev.
B 66, 024406 (2002).

[225] I. Bose and A. Ghosh, Exact ground and excited states of frustrated antiferro-
magnets on the CaV4O9 lattice, Phys. Rev. B 56, 3149 (1997).

[226] K. S. Raman, R. Moessner, and S. L. Sondhi, SU(2)-invariant spin- 1
2 Hamilto-

nians with resonating and other valence bond phases, Phys. Rev. B 72, 064413
(2005).

[227] R. Moessner, S. L. Sondhi, and P. Chandra, Phase diagram of the hexagonal
lattice quantum dimer model, Phys. Rev. B 64, 144416 (2001).

[228] G. Misguich, D. Serban, and V. Pasquier, Quantum Dimer Model on the
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