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Abstract

This thesis is divided into two parts.

In Chapter 1 we prove a generalization of two classical results of Serre and

Swan on the relation between locally free sheaves and projective modules, by

emphasizing the axiomatic aspect of the problem. We determine a class of ringed

spaces (X,OX) for which the category of locally free sheaves of bounded rank

over X is equivalent to the category of finitely generated projective Γ(X,OX)-

modules. The well-known Serre-Swan theorems for affine schemes, differentiable

manifolds, Stein spaces, etc., are then derived.

In Chapter 2 we study real algebraic vector bundles over a real abelian variety.

The main theorem in this part gives various equivalent criteria for a real algebraic

vector bundle over a real abelian variety to admit a flat holomorphic connection.

In the course of the proof of the main theorem we also derive a version of a result

of Simpson for real abelian varieties.





SYNOPSIS

1 Introduction

This thesis is divided into two parts. The first part is a generalization of two

classical results of Serre and Swan on the relation between locally free sheaves

and projective modules, by emphasizing the axiomatic aspect of the problem.

We determine a class of ringed spaces, (X,OX) for which the category of locally

free sheaves of bounded rank over X is equivalent to the category of finitely

generated projective Γ(X,OX)-modules. The well-known Serre-Swan theorems

for affine schemes, differentiable manifolds, Stein spaces, etc., are then derived.

In the second part we study real algebraic vector bundles over a real abelian

variety. The main theorem in this part gives various equivalent conditions for a

real algebraic vector bundle over a real abelian variety to admit a flat holomorphic

connection. In the course of proof of the main theorem we also derive a version

of a result of Simpson for real abelian varieties.

The summary of my thesis work is given in Section 2 and Section 3. Section

2 is based on the paper [Mor2009]. Section 3 is based on unpublished work of

mine, which is being prepared into a paper for publication.

In the following sections we will assume that all rings are commutative un-

less otherwise mentioned. All compact and paracompact topological spaces are

assumed to be Hausdorff.

2 The Serre-Swan Theorem for Ringed Spaces

It is a well-known theorem due to Serre, that for an affine scheme (X,OX), there

is an equivalence of categories between locally free OX -modules of finite rank, and

finitely generated projective Γ(X,OX)-modules [Ser55, Section 50, Corollaire to

Proposition 4, p. 242]. Later Swan proved the same equivalence when X is a

paracompact topological space of finite covering dimension, and OX is the sheaf

of continuous real-valued functions on X [Swa62, Theorem 2 and p. 277]. The

same equivalence is true for finite dimensional connected Stein spaces, [For67,

Satz 6.7 and Satz 6.8].
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2.1 The Serre-Swan Theorem Let (X,OX) be a ringed space, and A

denote the ring Γ(X,OX). We will denote by OX -mod the category of OX-

modules, and Lfb(X) the full subcategory of OX-mod consisting of locally free

OX-modules of bounded rank. Let A-mod denote the category of A-modules, and

Fgp(A) the full subcategory of A-mod consisting of finitely generated projective

A-modules. We have the canonical functor, Γ(X, •) : OX -mod → A-mod, given

by F 7→ Γ(X,F). We say that the Serre-Swan Theorem holds for a ringed space

(X,OX) if Γ(X,F) is a finitely generated projective module for every sheaf F in

Lfb(X), and the functor Γ(X, •) : Lfb(X) → Fgp(Γ(X,OX)) is an equivalence

of categories.

Recall that an OX -module F is said to be generated by global sections if there

is a family of sections (si)i∈I in Γ(X,F) such that for each x ∈ X , the images

of si in the stalk Fx generate that stalk as an OX,x-module. We will say that F

is finitely generated by global sections if a finite family of global sections (si)i∈I

exists with the above property.

Definition 2.1 Let (X,OX) be a locally ringed space. Then, a subcategory C of

OX-mod is called an admissible subcategory if it satisfies the following conditions:

C1. C is a full abelian subcategory of OX -mod, and HomOX
(F ,G) belongs to

C for every pair of sheaves F in Lfb(X) and G in C, where HomOX
(F ,G)

denotes the sheaf of OX-morphisms from F to G.

C2. Every sheaf in C is acyclic, and generated by global sections.

C3. Lfb(X) is a subcategory of C.

Admissible subcategories naturally arise in many ringed spaces. In the case

of an affine scheme, Qcoh(X), the subcategory of quasi-coherent OX -module,

in the case of differentiable manifold OX-mod itself are examples of admissible

subcategories. Moreover, if (X,OX) is a connected finite-dimensional Stein space,

Coh(X) the category of coherent OX -modules is an admissible subcategory of

OX-mod.

The main theorem of this section is the following:

Theorem 2.2 Let (X,OX) be a locally ringed space, and let A = Γ(X,OX).

Assume that OX-mod contains an admissible subcategory C, and that every sheaf

in Lfb(X) is finitely generated by global sections. Then, Γ(X, •) : Lfb(X) →
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Fgp(A) is an equivalence of categories, i.e., the Serre-Swan Theorem holds for

(X,OX).

Given an A-moduleM , we get a presheaf P(M) on X by defining P(M)(U) =

M ⊗A OX(U) for every open set U of X . We will denote by S(M) the sheaf

associated to the presheaf P(M). Similarly, for a homomorphism u : M → N

of A-modules, we get a homomorphism S(u) : S(M) → S(N) of OX-modules.

Thus, we get a functor S : A-mod → OX -mod. We proved that, if (X,OX) is

as in Theorem 2.2, then S : Fgp(A) → Lfb(X) is a quasi-inverse of Γ(X, •) :

Lfb(X) → Fgp(A).

2.2 Some Special Cases Following are some important examples of locally

ringed spaces for which the Serre-Swan Theorem holds, and can be derived from

Theorem 2.2.

Corollary 2.3 (Serre’s Theorem)[Ser55, Section 50, Corollaire to Proposition

4, p. 242] Let (X,OX) be an affine scheme, and let A denote its coordinate ring

Γ(X,OX). Then, a quasicoherent OX-mdoule F is locally free OX-module of

finite rank if and only if Γ(X,F) is a finitely generated projective A-module. The

functor Γ(X, •) : Lfb(X) → Fgp(A) is an equivalence of categories.

Corollary 2.4 Let (X,OX) be a ringed space such that, X is a paracompact

topological space of bounded topological dimension, and OX is a fine sheaf. Then,

the Serre-Swan Theorem holds for (X,OX).

Corollary 2.5 (Swan’s Theorem)[Swa62, Theorem 2 and p. 277] Let X be a

paracompact topological space of bounded topological dimension, and let CX denote

the sheaf of continuous real-valued functions on X. Let C(X) denote the R-

algebra Γ(X, CX). Then, the functor Γ(X, •) : Lfb(X) → Fgp(C(X)) is an

equivalence of categories.

Another interesting examples are affine differentiable spaces [GS2003, pp. 22,

30, 44], locally ringed spaces (X,OX) whose center is compact [Mul76, Section

3, definition, p. 63], regular ringed spaces [Pie67, p. 8, Definition 10.2], for which

the Serre-Swan Theorem holds.

Let (X,OX) be a Stein space, and let A = Γ(X,OX). Recall that, a topo-

logical module M over the algebra A is called a Stein module if there exists a

coherent OX-module M, such that Γ(X,M) is isomorphic to M [For67, Section

2, p. 383]. Let S-mod denote the category of Stein modules over A.



iv

Corollary 2.6 [For67, Satz 6.7 and Satz 6.8] Let (X,OX) be a finite-dimensional

connected Stein space. Then Γ(X, •) : Coh(X) → S-mod is an equivalence of

category with quasi-inverse S : S-mod → Coh(X). Moreover, the category of

locally free sheaves of finite rank is equivalent to the category of finitely generated

projective A-modules.

3 Real Vector Bundles over Real Abelian Varieties

In this part of the thesis, we study various equivalent conditions for the presence

of real holomorphic connections in a real holomorphic vector bundle over a real

abelian variety. Holomorphic connections in holomorphic bundles over a complex

abelian variety were studied by Balaji and Biswas [BB2009], Biswas [Bis2004],

Biswas and Iyer [BI2007], Biswas and Gómez [BG2008, Theorem 4.1], Biswas

and Subramanian [BS2004]. In the part of this thesis we prove analogues, for real

abelian varieties, of some of the results in the above papers.

3.1 Real Structures on a Ringed Space over C Let (X,OX) be a ringed

space over C. A real structure on (X,OX) is a pair (σ, σ̃) consisting of a con-

tinuous map σ : X → X such that σ2 = 1X , and for every U ⊂ X open,

σ̃U : OX(U) → OX(σ(U)), a C-antilinear ring homomorphism, which is compat-

ible with restrictions, i.e., for every V ⊂ U open in X ,

OX(U)
σ̃U //

ρV,U

��

OX(σ(U))

ρ
σ(V ),σ(U)

��
OX(V ) σ̃V

// OX(σ(V ))

commutes, and such that, σ̃σ(U) ◦ σ̃U = 1OX(U), for every U ⊂ X open.

Let X be a complex manifold and σ : X → X be an anti-holomorphic involu-

tion. Let OX denote the structure sheaf of holomorphic functions on X . Define

σ̃ : OX → OX as follows: For every U ⊂ X open, σ̃U : OX(U) → OX(σ(U)),

by f 7→ f ◦ σ. Then, (σ, σ̃) is a real structure on (X,OX). Moreover all real

structures on complex manifolds are of this form.

Proposition 3.1 If (X,OX) is a complex manifold, and (σ, σ̃) is a real structure

on (X,OX), then the following are true:

1. The involution σ is antiholomorphic.
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2. For any open U ⊂ X, the C-antilinear ring homomorphism σ̃U : OX(U) →

OX(σ(U)) is given by s 7→ s ◦ σ.

In particular the sheaf morphism σ̃ is uniquely determined by the map σ.

We will call a complex manifold with an antiholomorphic involution a real

holomorphic manifold.

Definition 3.2 Let (X,OX) be a ringed space overC, with a real structure (σ, σ̃).

Let F be an OX-module. A real structure on F is a family αF = (αF
U )U∈op(X) of

morphisms of abelian groups αF
U : F(U) → F(σ(U)), such that:

1. The abelian group homomorphisms are compatible with restriction mor-

phisms, that is, for every V ⊂ U open in X the following diagram

F(U)
αF
U //

ρV,U

��

F(σ(U))

ρ
σ(V ),σ(U)

��
F(V )

αF
V

// F(σ(V ))

commutes.

2. For every open subset U of X , αF
σ(U) ◦ α

F
U = 1F(U).

3. αF
U (fs) = σ̃U (f)α

F
U (s), for all f ∈ OX(U) and s ∈ F(U).

A real OX-module is a pair (F , αF) such that F is an OX -module, and αF is

a real structure on F . A real vector bundle over X is a real OX -module (F , αF)

such that the OX-module F is locally free. We sometimes denote by a real sheaf

(F , αF) by just F when no confusion is likely to occur.

Remark 3.3 Let (X,OX) be a ringed space with a real structure (σ, σ̃), and let

F be an OX -module. We will define an OX -module Fσ as follows: For an open

set U of X , Fσ(U) = F(σ(U)) as an abelian group, and for every f ∈ OX(U),

s ∈ Fσ(U), f · s = σ̃U(f)s. Let ϕ : F → G be a homomorphism of OX-modules.

Define, ϕσ : Fσ → Gσ as follows: For every U ⊂ X open, ϕσU : Fσ(U) → Gσ(U),

by ϕσU = ϕσ(U). Then, it is easy to check that Fσ is an OX -module, and ϕσ is a

homomorphism of OX-modules. Hence, we get a functor,

•σ : OX-mod → OX-mod.
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We can rephrase the definition of a real structure on an OX-module F using the

functor •σ . A real structure on an OX-module F is an OX-modules homomor-

phism αF : F → Fσ such that, (αF)
σ
◦ αF = 1F .

Let (X,OX) be a ringed space with a real structure (σ, σ̃). Let OX-modreal

be the category defined as follows:

Ob(OX-modreal) = real OX-modules

=

{

(F , αF)

∣

∣

∣

∣

∣

F is an OX -module, and

αF is a real structure on F

}

.

Let (F , αF), (G, αG) be OX-modules with a real structures. Then define,

Homreal((F , α
F), (G, αG)) = {ϕ ∈ HomOX -mod(F ,G) |ϕ

σ ◦ αF = αG ◦ ϕ}

If (F , αF) is a real OX -module, then a real sheaf (G, αG) is called a real

subsheaf of F if G is a subsheaf of F , and the inclusion morphism i : G → F is

a real morphism. If X is a real holomorphic manifold with an anti-holomorphic

involution σ, then the tangent bundle TX , the co-tangent bundle T ∗X , exterior

algebra bundles are canonically real holomorphic vector bundles. Moreover, if E

is a real vector bundle then the exterior algebra bundles with values in E are

also real. If αE is a real structure on E, then we will denote by the same αE real

structures on all the exterior algebra bundles with values in E.

A real abelian variety X is a complex abelian variety which is a real holo-

morphic manifold such that the corresponding antiholomorphic involution σ is

compatible with the group operation, i.e., σ(x+y) = σ(x)+σ(y) for all x, y ∈ X .

We will denote by R(X) the set of fixed points of σ, i.e., {x ∈ X | σ(x) = x}.

Points in R(X) are called real points. We will denote by τx the translation by x,

for all x ∈ X . If x ∈ R(X), we get σ ◦ τx(y) = τx ◦ σ(y). Then it is easy to see

that the pullback of a real vector bundle E over X , by τx, τx
∗(E) is also real. A

real vector bundle E is called real homogeneous, if τ ∗x(E) is isomorphic to E in

the category of OX-modreal, for all x ∈ R(X).

3.2 Real Flat Connections Let X be a real holomorphic manifold with

antiholomorphic involution σ. Let E be a holomorphic vector bundle on X with a

holomorphic connection D. Define, Dσ : Eσ → Ω1
X(E

σ), as follows, if s ∈ Eσ(U),

Dσ(s) = Dσ(U)(s). This defines a holomorphic connection in Eσ. (Note that
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Ω1
X(E

σ) is canonically isomorphic to Ω1
X(E)

σ
.)

Definition 3.4 Let D be a holomorphic connection in a real holomorphic vector

bundle (E, αE). Then, D is called real if the following diagram commutes,

E
D //

αE

��

Ω1
X(E)

αE

��

Eσ
Dσ

// Ω1
X(E

σ).

Let (X, g) be a real compact Kähler manifold with antiholomorphic involution,

σ. We will denote by µ(E) the slope of E, i.e., µ(E) = degree(E)
rank(E)

. (The degree of a

torsion-free coherent sheaf F over a compact Kähler manifold X of dimension n,

with the Kähler form Φ is deg(F) =
∫

X
c1(F) ∧ Φn−1.)

Definition 3.5 A real holomorphic vector bundle E is called real stable (respec-

tively real semistable) if for every proper real holomorphic coherent subsheaf F

with 0 < rank(F) < rank(E) we have

µ(F) < µ(E), (respectively µ(F) ≤ µ(E)).

The main results in this part of the thesis are as follows.

Theorem 3.6 Let (X, σ) be a real abelian variety, and let (E, αE) be a real

holomorphic vector bundle over X. Then the following are equivalent:

1. The real holomorphic vector bundle (E, αE) admits a real holomorphic con-

nection.

2. The real holomorphic vector bundle (E, αE) is real homogeneous.

3. The real holomorphic vector bundle (E, αE) is real semistable with c1(E) =

c2(E) = 0.

4. The real holomorphic vector bundle (E, αE) admits a filtration

E• : 0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E,

such that Ei is real sub-bundle of (E, αE), cj(Ei) = 0, for j = 1, 2 and

i = 1, . . . , n, and Ei/Ei−1 is real polystable.
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5. The real holomorphic vector bundle (E, αE) admits a real flat holomorphic

connection.

The following is the real analogue of a special case of a result of Simpson

[Sim92, Theorem, p. 39].

Corollary 3.7 Let X be a real abelian variety, and E a real semistable holomor-

phic vector bundle over X, such that c1(E) = c2(E) = 0. Then, E is obtained

by successive extensions of real stable holomorphic vector bundles with vanishing

Chern classes.
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Conventions and Notations

If C is a category, and if X and Y are objects in C, then the set of morphisms from

X into Y will be denoted by HomC(X, Y ), or by Hom(X, Y ) when no confusion

is likely to occur. If X = Y , then the set is denoted by EndC(X) or End(X).

Furthermore, X ∼=C Y or X ∼= Y means that X is isomorphic to Y . If C is a

category, then Cop will denote the opposite category of C, i.e., Ob(Cop) = Ob(C),

and HomCop(X, Y ) = HomC(Y,X), for every X, Y in Cop.

We will assume that all rings are commutative with identity unless otherwise

mentioned. We do not exclude the possibility that the identity element 1 equals

the zero element 0 of A. In that case, A equals the singleton {0}, and is called

a zero ring. However, when we say that A is an integral domain or a field, we

assume that A is not a zero ring. Every homomorphism ϕ : A → B is assumed

to be unital, i.e., ϕ(1) = 1. By an A-module, we means a left A-module. All

A-modules M are assumed to be unital, i.e., 1 · x = x, for all x ∈ M . For any

A-moduleM , and for every set I, we denote by E(I) the direct sum ⊕i∈IEi where

Ei = E for all i ∈ I. Similarly, EI denotes the direct product
∏

i∈I Ei, where

Ei = E for all i ∈ I.

Let X be a topological space, and let B be a base for the topology on X . If

F be a presheaf of sets on B, then we will denote by the same symbol F the

canonical presheaf on X associated to F . Recall that, F is a sheaf on X if and

only if F is a sheaf on B. For a presheaf F and for every pair (U, V ) of open

subsets of X with U ⊃ V , we will denote the sheaf restriction map by ρFV,U or

ρV,U when no confusion is likely to occur.

Let X be a topological space, and F a sheaf on X . The sheaf cohomology

group of the spaceX of degree q and with coefficients in F is denoted byHq(X,F)

[Har77, Chaper III, §. 2, Definition 2.2, p. 207].

All compact and paracompact topological spaces are assumed to be Hausdorff.

Topological manifolds are assumed to be Hausdorff topological spaces with a

countable basis. In particular they are paracompact.

We will denote by C (respectively R) the field of complex numbers (respec-

tively real numbers). A fixed square root of −1 is denoted by ι. The ring of

integers is denoted by Z, and a set of nonnegative integers is denoted by N.





Chapter 1

Introduction

In this thesis we study two problems on vector bundles. The first problem is re-

garding the equivalence between the category of vector bundles over a ringed space

(X,OX), and the category of finitely generated projective Γ(X,OX)-modules.

The other problem concerns, the various equivalent criteria for a real algebraic

vector bundle over a real abelian variety to admit a real flat holomorphic connec-

tion.

The Serre-Swan theorem for ringed spaces

In Chapter 2 we generalize two classical results of Serre and Swan on the relation

between locally free sheaves and projective modules by emphasizing the axiomatic

aspect of the problem.

For any ringed space (X,OX), let OX-mod denote the category of OX-

modules, and Lfb(X) the full subcategory of OX-mod consisting of locally free

OX-modules of bounded rank. Let A = Γ(X,OX), and Fgp(A) the category of

finitely generated projective A-modules. We will say that the Serre-Swan The-

orem holds for a ringed space (X,OX) if for every F in Lfb(X), Γ(X,F) is in

Fgp(A), and the canonical functor Γ(X, •) : Lfb(X) → Fgp(Γ(X,OX)) is an

equivalence of categories. A full abelian subcategory C of OX-mod is called an

admissible subcategory if HomOX
(F ,G) belongs to C for every pair of sheaves F in

Lfb(X) and G in C, every sheaf in C is acyclic, and generated by global sections,

and Lfb(X) is a subcategory of C.

In Section 2.1, we recall various known facts about sheaves which we will be

using in this chapter. In Section 2.2, we prove that the Serre-Swan Theorem holds

for a locally ringed space (X,OX) if every locally freeOX -module of bounded rank

3
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is finitely generated by global sections, and if the category OX-mod contains an

admissible subcategory. The wellknown Serre-Swan Theorems for affine schemes,

differentiable manifolds, Stein spaces etc. are then derived in the last section.

Real vector bundles over a real abelian variety

Holomorphic connections in holomorphic bundles over a complex abelian variety

were studied by Balaji and Biswas [BB2009], Biswas [Bis2004], Biswas and Iyer

[BI2007], Biswas and Gómez [BG2008, Theorem 4.1], Biswas and Subramanian

[BS2004]. In the third chapter we prove analogues, for real abelian varieties, of

some of the results in the above papers.

A real abelain variety is a pair (X, σ), where X is a complex abelian variety,

and σ is an antiholomorphic involution on X which is compatible with the group

operation in X . A real holomorphic vector bundle over (X, σ) is a pair (E, αE),

where E is a holomorphic vector bundle over X , and αE is a family
(

αEU
)

U∈op(X)
of

morphisms of abelian groups αF
U : F(U) → F(σ(U)), which are compatible with

restriction morphisms, such that for every open subset U ofX , αF
σ(U)◦α

F
U = 1F(U),

and αF
U (fs) = f ◦ σαF

U (s), for all f ∈ OX(U) and s ∈ F(U). Let τx : X →

X be the translation by x, for all x ∈ X . A real vector bundle E is called

real homogeneous, if τ ∗x(E) is isomorphic to E in the category of OX-modreal

(Subsection 3.1.3), for all real point x inX (that is, σ(x) = x). A real holomorphic

connection in (E, αE) is a holomorphic connection which is compatible with real

structure in E.

The main theorem in this chapter asserts that the following five conditions

are equivalent: (1) a real holomorphic vector bundle (E, αE) over a real abelian

variety (X, σ) admits a real holomorphic connection. (2) (E, αE) is real homoge-

neous. (3) (E, αE) is real semistable (Definition 3.4.8), and c1(E) = c2(E) = 0.

(4) (E, αE) admits a filtration E• : 0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E, such that

Ei is a real sub-bundle of (E, αE), cj(Ei) = 0, for j = 1, 2 and i = 1, . . . , n, and

Ei/Ei−1 is real polystable. (5) (E, α
E) admits a real flat holomorphic connection.

In Section 3.1, we discuss real structure on a ringed space over C. In the

second section, we show how real structures on a holomorphic manifold come from

antiholomorphic involutions. Also we recall various notions about real abelian

varieties. In some subsections of Section 3.3 and 3.4 we develop real analogues

for geometric notions such as Hermitian metrics, connections, stability, Kähler

manifolds etc. In the last subsection, we prove the main theorem of this chapter.
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Amore detailed introduction to the thesis, including precise definitions, results

and statements of the theorems, is given in the synopsis (p. i).





Chapter 2

The Serre-Swan Theorem for

Ringed Spaces

It is a wellknown theorem due to Serre that for an affine scheme (X,OX), there

is a categorical equivalence between locally free OX-modules of finite rank, and

finitely generated projective Γ(X,OX)-modules [Ser55, Section 50, Corollaire to

Proposition 4, p. 242]. Later Swan proved the same equivalence when X is a

paracompact topological space of finite covering dimension, and OX is the sheaf

of continuous real-valued functions on X [Swa62, Theorem 2 and p. 277]. In this

chapter we will generalize this result to a large class of locally ringed spaces.

In Section 2.1 we recall some background material about sheaves. All facts are

known, and proofs of some facts are given just for the sake of completeness. In

Section 2.2, we will prove that for a locally ringed space (X,OX), the category of

locally free sheaves of bounded rank is equivalent to the category of finitely gen-

erated projective Γ(X,OX)-modules if every locally free OX -module of bounded

rank is finitely generated by global sections, and if the category OX -mod con-

tains an admissible subcategory (Definition 2.2.6). In Section 2.3, we will show

that certain wellknown classes of locally ringed spaces satisfy the above condi-

tions, and hence the Serre-Swan Theorem holds for them. Appendix A is the

list of definitions and results from category theory which we will be using in this

chapter.

7



8 §2.1. Theory of Sheaves

2.1 Theory of Sheaves

We begin this section by giving some examples of locally ringed spaces, and then

we discuss two canonical functors Γ(X, •) and S, which eventually give us the

required equivalence of categories. In this section we collect general facts about

sheaves to the extent necessary for this chapter. In Subsections 2.1.4, 2.1.5, 2.1.6

and 2.1.7, we briefly recall definitions and properties of sheaves of finite type,

sheaves of finite presentation, coherent sheaves, and locally free sheaves. Results

and proofs in this section are mainly taken from [Gro60].

2.1.1 Ringed Spaces

Recall that a ringed space is a pair (X,OX) where X is a topological space, and

OX is a sheaf of rings on X .

Definition 2.1.1 Let (X,OX) and (Y,OY ) be two ringed spaces. A morphism

of ringed spaces from (X,OX) to (Y,OY ) is a pair (u, ũ), where

1. u : X → Y is a continuous map.

2. ũ is an assignment which attaches to each open subset V of Y , a homomor-

phism of rings ũV : OY (V ) → OX(u
−1(V )), such that for every pair (V, V ′)

of open subsets of Y with V ⊃ V ′, the diagram

OY (V )
ũV //

ρ
OY
V ′,V

��

OX(u
−1(V ))

ρ
OX

u−1(V ′),u−1(V )
��

OY (V
′)

ũV ′

// OX(u
−1(V ′))

commutes.

We then write that (u, ũ) : (X,OX) → (Y,OY ) is a morphism of ringed spaces.

Let (X,OX) be a ringed space. Then, the identity morphism of (X,OX),

which is denoted by 1(X,OX), is the morphism of ringed spaces (u, ũ) : (X,OX) →

(Y,OY ) defined as follows:

1. u = 1X : X → X .

2. ũ is the assignment which attaches to each open subset V of X , the identity

homomorphism 1OX(V ) : OX(V ) → OX(V ).
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The presheaf axioms imply that (u, ũ) is indeed a morphism of ringed spaces from

(X,OX) to itself.

Let (u, ũ) : (X,OX) → (Y,OY ) and (v, ṽ) : (Y,OY ) → (Z,OZ) be two mor-

phism of ringed spaces. Then, the composition of (u, ũ) and (v, ṽ), which is

denoted by (v, ṽ) ◦ (u, ũ), is the morphism of ringed spaces (w, w̃) : (X,OX) →

(Z,OZ) defined as follows:

1. w = v ◦ u : X → Z.

2. w̃ is the assignment which attaches to each open subset W of Z, the ho-

momorphism wW : OZ(W ) → OX(w
−1(W )) which is the composite of the

ring homomorphisms

OZ(W )
ṽW // OY (v

−1(W ))
ũ
v−1(W ) // OX(w

−1(W ))

where one is using the equality w−1(W ) = u−1(v−1(W )).

Then, it is easy to verify that (w, w̃) is indeed a morphism of ringed spaces from

(X,OX) to (Z,OZ).

Thus, we get a category Rsp, whose objects are ringed spaces, and whose

morphisms are morphisms of ringed spaces.

Let (X,OX) and (Y,OY ) be ringed spaces, and (u, ũ) a morphism from (X,OX)

to (Y,OY ). Then for every x ∈ X , we have a canonical homomorphism of rings,

ux : OY,u(x) → OX,x (2.1)

defined as follows: Let θ ∈ OY,u(x). Then there exist an open neighborhood U of

u(x) in Y , and s ∈ OY (U) such that, (s)u(x) = θ. Since s ∈ OY (U), ũU(s) is a

section of OX on the open neighborhood u−1(U) of x. Therefore, (ũU(s))x is an

element of OX,x. Define ux(θ) = (ũU(s))x. It follows from this definition that, ux

is independent of the choice of a pair (U, s).

Definition 2.1.2 A ringed space (X,OX) is called a locally ringed space if for

every point x ∈ X , the stalk OX,x is a local ring. In that case, the maximal ideal

in OX,x is denoted by mX,x or mx. The residue field OX,x/mX,x of OX,x is denoted

by k(x).
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Definition 2.1.3 Let (X,OX) and (Y,OY ) be locally ringed spaces. Amorphism

of locally ringed spaces from (X,OX) to (Y,OY ) is a morphism of ringed spaces

(u, ũ) : (X,OX) → (Y,OY ) such that, for all x ∈ X , the canonical homomorphism

(2.1) ux : OY,u(x) → OX,x is a local homomorphism, that is, ux(mY,u(x)) ⊂ mX,x.

Locally ringed spaces form a subcategory of the categoryRsp . We will denote

it by LRsp.

Example 2.1.4 Let X be a topological space, and let CX be the sheaf of con-

tinuous real valued functions on X . Then, (X, CX) is a locally ringed space. For

x ∈ X , CX,x is the ring of germs of continuous functions at x, and

mX,x = {(f)x ∈ CX,x | f(x) = 0}.

If u : X → Y is a continuous map, define ũV : CY (V ) → CX(u
−1(V )), by

g 7→ g ◦ (u|u−1(V )). Then, (u, ũ) is a morphism of locally ringed spaces. In fact

ũx((g)u(x)) = (g ◦ u)x ∈ mX,x, if (g)u(x) ∈ mY,u(x).

Similarly if X is a differentiable manifold, and C∞
X is the sheaf of C∞ real

valued functions of X , then (X, C∞
X ) is a locally ringed space.

Example 2.1.5 (Affine Schemes) Let A be a ring. The set Spec(A) of all

prime ideals in A is called the prime spectrum, or just spectrum of A. We will

denote by D(f) = {p ∈ Spec(A) | f /∈ p}. Recall that the family B = {D(f)}f∈A

is a base for the topology of Spec(A). If S is a multiplicative subset of A, S−1A

denote the ring of fraction of A with denominators in S. If S = {fn | f ∈ A, n ∈

N}, then S−1A we will denote by Af . For every f ∈ A, define F(D(f)) = Af .

Then F forms a welldefined sheaf of ring on B [Liu2002, pp. 42–45, 2.3.1]. Let

Ã be the sheaf of ring on Spec(A) associated to the sheaf of ring F on B. For

every p ∈ Spec(A), the stalk of Ã at p is Ãp = Ap, where Ap denotes the ring

S−1A, for S = {f ∈ A | f /∈ p}. Note that, Ap is a local ring with the maximal

ideal pAp. Therefore, (Spec(A), Ã) is a locally ringed space. Let ϕ : B → A be a

homomorphism of rings. Let

aϕ : Spec(A) → Spec(B)

be the continuous map associated to ϕ, that is , aϕ(p) = ϕ−1(p), for all p in

Spec(A). Let g ∈ B, and f = ϕ(g) ∈ A. Then aϕ−1(D(g)) = D(f), and we also
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get a canonical morphism of rings,

ϕg : Bg −→ Af

b

gn
7−→

ϕ(b)

fn
.

This morphism of sheaves on the base B induces a morphism

ϕ̃ : B̃(U) → Ã(ϕ−1(U))

for all open sets U in Spec(B) such that ϕ̃(D(g)) = ϕg for all g ∈ B. This gives

a morphism of ringed spaces

(aϕ, ϕ̃) : (Spec(A), Ã) → (Spec(B), B̃).

In fact, it is easy to see that (aϕ, ϕ̃) is a morphism of locally ringed spaces.

Definition 2.1.6 An affine scheme is a ringed space isomorphic to (Spec(A), Ã)

for some ring A.

Definition 2.1.7 Let k be a field. A ringed space (X,OX) is called a ringed

space over k if for every U ⊂ X open, OX(U) is a k-algebra, and for each pair

(U, V ) of open subsets of X such that U ⊃ V the restriction homomorphism

ρU,V : OX(U) → OX(V )

is a homomorphism of k-algebras. A morphism of k-ringed spaces from (X,OX)

to (Y,OY ) is a morphism of ringed spaces

(u, ũ) : (X,OX) → (Y,OY )

such that for all V ⊂ Y open the ring homomorphism

ũV : OY (V ) → OX(u
−1(V ))

is a homomorphism of k-algebras.

A locally ringed space over k is a ringed space over k which is a locally ringed

space.
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2.1.2 The Functors Γ(X,•) and S

For any ringed space (X,OX), let OX -mod denote the category of OX -modules.

For any ring A, let A-mod denote the category of A-modules. We will denote the

Γ(X,OX)-module of homomorphism of OX -modules F and G by HomOX
(F ,G).

If ϕ ∈ HomOX
(F ,G), and U is an open subset of X , then ϕU : F(U) → G(U)

denotes the homomorphism of OX(U)-modules induced by ϕ. Let A denote the

ring Γ(X,OX) of global sections of OX .

We have a canonical functor

Γ(X, •) : OX-mod −→ A-mod,

defined by, Γ(X, •)(F) = Γ(X,F), and for ϕ ∈ HomOX
(F ,G),

Γ(X, •)(ϕ) = ϕX : Γ(X,F) → Γ(X,G).

Recall that Γ(X, •) is a left exact functor.

Let M be an A-module. Define a presheaf P(M) on X by P(M)(U) =

M ⊗A OX(U) for every open set U of X . Note that, OX(U) is canonically an A-

module. Indeed if f ∈ A, and s ∈ OX(U), then f · s = f |Us ∈ OX(U). Therefore,

P(M)(U) is an OX(U)-module. We will denote by S(M) the sheaf associated to

the presheaf P(M). Similarly for a homomorphism u : M → N , and for every

U ⊂ X open, define (P(M)(u))U = u ⊗ 1OX(U). This morphism of presheaves

induces a morphism of sheaves S(u) : S(M) → S(N). Thus, we get a functor

S : A-mod −→ OX -mod. (2.2)

Since for every x in X , the functor •⊗AOX,x is right exact, the functor S is right

exact.

Remark 2.1.8 Let (X,OX) be a ringed space. For every OX-module F , define

a homomorphism of Γ(X,OX)-modules

ϕF : HomOX
(OX ,F) −→ Γ(X,F)

by ϕF(u) = uX(1), where 1 ∈ Γ(X,OX) is the identity section of OX on X .
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Then, ϕF is an isomorphism, whose inverse

ψF : Γ(X,F) −→ HomOX
(OX ,F)

is given by, ψF(s)U(f) = f · (s|U) for s ∈ Γ(X,F), U ⊂ X open, and f ∈ OX(U).

We say that the morphism of OX -module u = ψF (s) : OX → F is defined by the

section s of F on X . Thus, we get an isomorphism of functors

HomOX
(OX , •) ∼= Γ(X, •).

That is, the OX -module OX represents Γ(X, •), and the identity section 1 ∈

Γ(X,OX) is a universal element for Γ(X, •) (A:10 and A:11). Thus, the pair

(OX , 1) is a representation of Γ(X, •).

More generally, if I is an arbitrary index set, consider the direct sum O
(I)
X =

⊕i∈IOX , and for each i ∈ I, let hi : OX → O
(I)
X denote the canonical injective

morphism from the ith factor OX to O
(I)
X . Then, for every OX-module F , we have

a homomorphism of Γ(X,OX)-modules,

ϕF : HomOX
(O

(I)
X ,F) −→ Γ(X,F)I =

∏

i∈I

Γ(X,F),

u 7−→ ((u ◦ hi)X(1))i∈I .

The map ϕF is an isomorphism, whose inverse

ψF : Γ(X,F)I −→ HomOX
(O

(I)
X ,F)

is given by ψF (s)U(f) =
∑

i∈I fi
(

si|U
)

for s = (si)i∈I ∈ Γ(X,F)I , U ⊂ X open,

and f = (fi)i∈I ∈ O
(I)
X (U). (Since f ∈ O

(I)
X (U), the above sum is a finite sum,

hence welldefined.) Thus, we get

HomOX
(O

(I)
X , •) ∼= Γ(X, •)I . (2.3)

We say that the morphism of OX -modules u = ψF (s) : O
(I)
X → F is defined by

the family of sections s = (si)i∈I of F on X . Let

FI = Γ(X, •)I : OX-mod → Γ(X,OX)-mod,
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be the functor defined by FI(F) = Γ(X,F)I , and FI(u) =
∏

i∈I uX , for u : F ′ →

F a morphism of OX-module. Then, the OX -module, OI
X represents FI , and the

family of sections e = (1)i∈I ∈ FI(OX) is a universal element for FI . Thus, the

pair (O
(I)
X , e) is a representation of FI .

Proposition 2.1.9 For any ringed space (X,OX), the functor S is a left adjoint

of Γ(X, •).

Proof. Let Γ(X,OX) = A. Let F be an OX -module, and M an A-module. Let

u :M → Γ(X,F) be a homomorphism of A-modules. Consider a homomorphism

of presheaves, such that for every open subset U of X ,

λu :M ⊗A OX(U) −→ F(U)

is given by λu(m⊗A f) = f · u(m)|U , for m ∈ M , and f ∈ OX(U). Let λF ,M(u)

be the morphism of sheaves associated to λu. Thus, we get a map,

λF ,M : HomA(M,Γ(X,F)) −→ HomOX
(S(M),F). (2.4)

We will prove that λ : A-modop ×OX-mod → Set, given by M × F 7→ λF ,M is

an adjunction between Γ(X, •) and S (A:3). So we have to check λ is functorial

in F and M , and λF ,M is a bijection. We must show that for every g :M ′ →M

and ψ : F → F ′, the diagram

HomA(M,Γ(X,F))
λF,M //

Hom(g,Γ(X,ψ))

��

HomOX
(S(M),F)

Hom(S(g),ψ)
��

HomA(M
′,Γ(X,F ′))

λ
F′,M′

// HomOX
(S(M ′),F ′)

(2.5)

commutes. Let u :M → Γ(X,F), then

Hom(S(g), ψ) ◦ λF ,M(u) = ψ ◦ λF ,M(u) ◦ S(g) : S(M ′) → F ′, (2.6)

and

λF ′,M ′ ◦ Hom(g, ψ)(u) = λF ′,M ′(Γ(X,ψ) ◦ u ◦ g) : S(M ′) → F ′. (2.7)

It is enough to check that, this two morphism agrees on the presheaf P(M ′). Let
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U be an open subset of X , and m′ ⊗ s ∈ P(M ′)(U) =M ′ ⊗ OX(U). Then,

ψU ◦ λF ′,M ′(u) ◦ S(g)(m′ ⊗ s) = ψU ◦ λu(g(m
′)⊗ s) = ψU

(

s · u(g(m′))|U

)

= s ·
(

Γ(X,ψ)(u ◦ g(m′))
)

|U

since ψ is a sheaf morphism. Hence, ψU◦λF ′,M ′(u)◦S(g)(m′⊗s) = λF ′,M ′(Γ(X,ψ)◦

u◦g)(m′⊗s). Thus, the two morphisms (2.6) and (2.7) agree, that is, the diagram

(2.5) commutes. Hence, λ is functorial in F and M . It remains to check that

λF ,M is a bijection. Define

ϕF ,M : HomOX
(S(M),F) −→ HomA(M,Γ(X,F)) (2.8)

by ϕF ,M(u)(m) = uX(m ⊗ 1) for u : S(M) → F , and m ∈ M . Now it is easy

to show that λF ,M ◦ ϕF ,M = 1HomOX
(S(M),F), and ϕF ,M ◦ λF ,M = 1HomA(M,Γ(X,F)).

Hence, λF ,M is a bijection. �

2.1.3 The Sheaf of Morphisms from F to G

Let (X,OX) be a ringed space, and let F and G be OX -modules. For every open

subset U of X , define

(

HomOX
(F ,G)

)

(U) = HomOX |U (F|U ,G|U).

Recall that HomOX
(F ,G) is the set of OX -module homomorphisms from F

to G, and it is canonically an Γ(X,OX)-module. If U ⊂ V , we have a canonical

restriction map,

(

HomOX
(F ,G)

)

(V ) −→
(

HomOX
(F ,G)

)

(U).

This defines a sheaf HomOX
(F ,G) called the sheaf of OX-morphisms from F to

G. There is a canonical structure of an OX -module on HomOX
(F ,G) defined as

follows. Let U be an open subset of X , and let v : F|U → G|U be a morphism

of OX |U -modules. Let f ∈ OX(U). Define fu : F|U → G|U by setting, for every

open V ⊂ U ,

(fu)V : F(V ) → G(V ),
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to be (fv)V (s) = f |V · uV (s), s ∈ F(V ).

Definition 2.1.10 For every point x ∈ X , there exists a canonical homomor-

phism of OX,x-modules

ϕx : (HomOX
(F ,G))x −→ HomOX,x

(Fx,Gx) (2.9)

defined as follows. Let α ∈ (HomOX
(F ,G))x, choose an open neighborhood U

of x, and a morphism of OX |U -modules, u : F|U → G|U , such that α equals the

germ of u at x. For each point y ∈ U , let uy : Fy → Gy denote the OX,y-module

homomorphism induced by u (stalk homomorphism). Define

ϕx(α) = ux.

It follows from this definition that ϕx(α) is independent of the choices of U and

u.

Note that the canonical homomorphism ϕx is functorial. The canonical ho-

momorphism ϕx is in general neither injective nor surjective.

Remark 2.1.11 Let F be a presheaf, and G a sheaf on a topological space X .

For each point x ∈ X , let αx : Fx → Gx be a map. Suppose that for every

x ∈ X , every open neighborhood U of x, and for every section s ∈ Γ(U,F), there

exist an open neighborhood V of x in U , and a section t ∈ Γ(V,G), such that

αy((s)y) = (t)y for all y ∈ V . Then, there exists a unique morphism of presheaves

u : F → G such that (u)x = αx for all x ∈ X .

Proposition 2.1.12 Let (X,OX) be a ringed space. For every OX-module G,

the functor

HomOX
(•,G) : OX-modop −→ Γ(X,OX)-mod

is left exact. In particular, the functor

HomOX
(•,G) : OX-modop −→ OX-mod

is left exact.

Proof. We have to show that if F ′ u
→ F

v
→ F ′′ → 0 is an exact sequence of
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OX-modules, then the sequence

0 // HomOX
(F ′′,G)

HomOX
(v,G)

// HomOX
(F ,G)

HomOX
(u,G)

// HomOX
(F ′,G)

is exact. Let w ∈ HomOX
(F ′′,G) be such that HomOX

(v,G)(w) = 0, that is, for

every x ∈ X , and θ ∈ Fx, wx ◦ vx(θ) = 0. Let θ′′ ∈ F ′′
x . Then, there exists θ ∈ Fx

such that vx(θ) = θ′′. Therefore, wx(θ
′′) = wx(vx(θ)) = 0. Hence, wx = 0 for all

x ∈ X , that is, w = 0. Hence, HomOX
(v,G) is injective. Since HomOX

(•,G) is a

functor,

HomOX
(u,G) ◦ HomOX

(v,G) = HomOX
(v ◦ u,G) = 0.

This implies that Im(HomOX
(v,G)) ⊂ Ker(HomOX

(u,G)).

Now let g ∈ Ker(HomOX
(u,G)). Define fx : F ′′

x → Gx as follows. For every

θ′′ ∈ F ′′
x, there exists θ ∈ Fx such that vx(θ) = θ′′. Define, fx(θ′′) = gx(θ). Since

g ∈ Ker(HomOX
(u,G)), fx is well defined. Now it is easy to check the condition

in Remark 2.1.11, which gives a morphism f : F ′′ → G. For all x ∈ X , and

θ ∈ F ′
x,

(HomOX
(v,G)(f))x(θ) = fx ◦ vx(θ) = fx ◦ vx(θ) = gx(θ),

hence, HomOX
(v,G)(f) = g. Thus, Ker(HomOX

(u,G)) ⊂ Im(HomOX
(v,G)).

This proves that, HomOX
(•,G) is left exact. The second statement follows from

the first by putting an arbitrary open subset of X in the place of X . �

Remark 2.1.13 Recall that HomOX
(O

(I)
X ,G) ∼= Γ(X,G)I (2.3). Therefore, if I

is a finite set then

HomOX
(OI

X ,G)
∼= Γ(X,G)I .

Let U be an open subset of X . Then, the above isomorphism of Γ(X,OX)-

modules gives an isomorphism of OX -modules

HomOX
(OI

X ,G)(U) = HomOX |U (O
I
X |U ,G|U)

∼= Γ(U,G)I = G(U)I .

Thus, HomOX
(OI

X ,G)
∼= GI for every finite set I.
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2.1.4 Sheaves of Finite type

Definition 2.1.14 An OX -module F is said to be of finite type if for every point

x ∈ X , there exists an open neighborhood U of x such that F|U is generated by

a finite family of sections of F on U .

The following properties of sheaves of finite type are easy to verify.

Proposition 2.1.15 Let (X,OX) be a ringed space.

1. If u : F → G is a surjective morphism of OX-modules, and if F is of finite

type, then so is G. Thus, every quotient sheaf of a sheaf of finite type is

also of finite type.

2. The direct sum and the tensor product (over OX) of a finite family of sheaves

of finite type are also of finite type.

Proposition 2.1.16 Let F be an OX-module of finite type. Let x ∈ X, and

let s1, s2, . . . , sn be sections of F on an open neighborhood U of x, such that the

family
(

(si)x
)n

i=1
generates Fx. Then, there exists an open neighborhood V of x

in U , such that the family
(

(si)y
)n

i=1
generates Fy for all y ∈ V .

Proof. Since F is of finite type, there exist an open neighborhood U1 of x in

U , and sections t1, . . . , tp ∈ Γ(U1,F) such that the family
(

(ti)y
)p

i=1
generates Fy

for all y ∈ U1. Since the family
(

(sj)x
)n

j=1
also generate Fx, there exist germs

θij ∈ OX,x such that

(ti)x =

n
∑

j=1

θij(sj)x (i = 1, . . . , p).

As the family (θij)i,j is finite, there exist an open neighborhood U2 of x in U1,

and sections fij ∈ Γ(U2,OX) such that θij = (fij)x for all i, j, and

(ti)x =

n
∑

j=1

(fij)x(sj)x (i = 1, . . . , p).

Therefore, there exists an open neighborhood V of x in U such that

(ti)|V =

n
∑

j=1

(fij)|V (sj)|V (i = 1, . . . , p),
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hence, (ti)y =
∑

j (fij)y(sj)y for all y ∈ V . Therefore, (sj)y generates Fy for all

y ∈ V . �

Let F be a sheaf of abelian groups on a topological space X . Recall that the

support of F is the set

Supp(F) = {x ∈ X | Fx 6= 0}.

Note that the support of a sheaf need not be a closed subset of X .

Corollary 2.1.17 If F is an OX-module of finite type, then Supp(F) is a closed

subset of X.

Proof. Let x ∈ X\Supp(F). Then, Fx = 0, hence the germ 0x of the zero

section 0 ∈ Γ(X,F) generates Fx. Thus, by Proposition 2.1.16, there exists an

open neighborhood V of x such that 0y generates Fy, for all y ∈ V , that is, Fy = 0

for all y ∈ V . Therefore, V is an open neighborhood of x in X\Supp(F). �

Corollary 2.1.18 Let F be an OX-module of finite type, and let u : F → G be a

morphism of OX-modules. Let x ∈ X and suppose that the stalk homomorphism

ux : Fx → Gx equals 0. Then, there exists an open neighborhood U of x such that

uy = 0 for all y ∈ V .

Proof. Let H = Im(u). Then H is an OX -submodule of G, and u induces an

exact sequence of OX-modules F
u′ // H // 0 . Since u′ is surjective, and F

is of finite type, by (1) of Proposition 2.1.15, H is of finite type. Since

u′y = uy : Fy → Hy = Im(uy)

for all y ∈ X , we have Hy = 0 if and only if uy = 0. Thus,

Supp(H) = {y ∈ X | uy 6= 0}.

By Corollary 2.1.17, since x ∈ X\Supp(H), there exists an open neighborhood

U of x in X\Supp(H). We have uy = 0 for all y ∈ U . �

Corollary 2.1.19 Let F and G be OX-modules of finite type. Let u : F → G be

a morphism of OX-modules, and x ∈ X. If ux : Fx → Gx is surjective, then there

exists an open neighborhood U of x, such that u|U : F|U → G|U is surjective.
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Proof. Since G is of finite type, Coker(u) = G/Im(u) is also of finite type

(Proposition 2.1.15, (1)). Hence, by Corollary 2.1.17, F = Supp(Coker(u)) is

a closed subset of X . If ux is surjective, the (Coker(u))x = Coker(ux) = 0,

hence x ∈ X\F . Therefore, U = X\F is an open neighborhood of x such that

u|U : F|U → G|U is surjective. �

Corollary 2.1.20 Let F be an OX-module of finite type. Then, for every OX-

module G, and for every point x ∈ X, the canonical homomorphism of OX,x-

modules (2.9)

ϕx : (HomOX
(F ,G))x −→ HomOX,x

(Fx,Gx)

is injective.

Proof. Let α ∈ (HomOX
(F ,G))x, and suppose that ϕx(α) = 0. Let U and u be

as in Definition 2.1.10. Then ux = ϕx(α) = 0, so by corollary 2.1.18, there exists

an open neighborhood V of x in U such that uy = 0 for all y ∈ V . We must show

that u|V : F|V → G|V is equals 0, which will imply that α = 0. Let W be an

open subset of V . Consider the homomorphism

(

u|V
)

W
= uW : F(W ) → G(W ).

Let s ∈ F(W ). Then, (uW (s))y = uy((s)y) = 0 for all y ∈ W . Since G is a sheaf,

this implies that uW (s) = 0. Therefore, uW = 0 for all W open in V , hence

u|V = 0. �

Corollary 2.1.21 Let (X,OX) be a ringed space such that, X is quasicompact.

Let F be an OX-module of finite type. Then F is finitely generated by global

sections if it is generated by global sections.

Proof. Let (si)i∈I be a family of global sections of F such that the family
(

(si)x
)

i∈I
generates Fx for all x ∈ X . Let x ∈ X . Since F is of finite type, there

exists a finite family (θj)j∈Jx of generators of Fx. As
(

(si)x
)

i∈I
also generates Fx,

there exist a finite subset Ix if I, and aij ∈ OX,x(i ∈ Ix, j ∈ Jx) such that

θj =
∑

i∈Ix

aij(si)x.

Thus, the family
(

(si)x
)

i∈Ix
generates Fx. By Proportion 2.1.16 there exists an

open neighborhood Ux of x, such that the family
(

(si)y
)

i∈Ix
generates Fy for all
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y ∈ Ux. Since X is quasicompact there exists x1, . . . , xn such that ∪ni=1Uxi = X .

This implies that, the family

(

(si)i∈Ixα
)

1≤α≤n

of global sections of F is such that for all x ∈ X their stalk generate Fx. Thus,

F is finitely generated by global sections. �

2.1.5 Sheaves of Finite Presentation

Definition 2.1.22 An OX-module F is said to be is of finite presentation if

for every point x in X , there exist an open neighborhood U of x, and an exact

sequence of OX |U -modules

Op
X |U

u
→ Oq

X |U
v
→ F|U → 0

Proposition 2.1.23 Let F be an OX-module of finite presentation, and let x ∈

X. Then, for every OX-module G, the canonical homomorphism of OX,x-modules

(2.9)

ϕx : (HomOX
(F ,G))x −→ HomOX,x

(Fx,Gx)

is an isomorphism.

Proof. Let U be an open neighborhood of x, on which there exists an exact

sequence of OX |U -modules

Op
X |U

u
→ Oq

X |U
v
→ F|U → 0.

Since the proposition is local with respect to x, we will replace X by U , so X = U .

By Proposition 2.1.12, HomOX
(•,G) is a left exact functor, so we get an exact

sequence of OX -modules

0 → HomOX
(F ,G) → HomOX

(Oq
X ,G) → HomOX

(Op
X ,G).

This induces an exact sequence of OX,x-modules

0 → (HomOX
(F ,G))x → (HomOX

(Oq
X ,G))x → (HomOX

(Op
X ,G))x.
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Since Op
X,x

ux // Oq
X,x

vx // Fx
// 0 is an exact sequence of OX,x-modules, and

since HomOX,x
(•,Gx) is a left exact functor, we get an exact sequence

0 → HomOX,x
(Fx,Gx) → HomOX,x

(Oq
X,x,Gx) → HomOX,x

(Op
X,x,Gx).

Since the canonical homomorphism ϕx is functorial, we have a commutative dia-

gram

0 // (HomOX
(F ,G))

x
//

ϕx

��

(HomOX
(Oq

X ,G))x
//

ϕx

��

(HomOX
(Op

X ,G))x

ϕx

��

0 // HomOX,x
(Fx,Gx) // HomOX,x

(Oq
X,x,Gx) // HomOX,x

(Op
X,x,Gx)

By Remark 2.1.13 there exists a canonical isomorphism HomOX
(Oq

X ,G)
∼= Gq.

Thus, the modules in the second column of the above diagram are identifies

with Gqx and HomOX,x
(Oq

X,x,Gx)
∼= Gqx respectively, and the second vertical arrow

is an isomorphism. For the same reasons, the third vertical arrow is also an

isomorphism. Since the rows of the above diagram are exact, it follows that the

first vertical arrows also is an isomorphism. �

Corollary 2.1.24 Let F and G be OX-modules of finite presentation, and let

x ∈ X. Suppose that f : Fx → Gx is an isomorphism of OX,x-modules. Then

there exist an open neighborhood V of x, and an isomorphism of OX |V -modules

u : F|V → G|V such that ux = f .

Proof. Let g : Gx → Fx be the inverse of f . By Proposition 2.1.23, there

exist an open neighborhood V of x, and sections u ∈ Γ(U,HomOX
(F ,G)) and

v ∈ Γ(U,HomOX
(G,F)) such that ux = f and vx = g. Because,

(u ◦ v)x = ux ◦ vx = f ◦ g = 1Gx and (v ◦ u)x = vx ◦ ux = g ◦ f = 1Fx

the Proposition 2.1.23 again implies that the germs, at x, of u ◦ v and v ◦u equal

those of the corresponding identity morphisms. Therefore, there exist an open

neighborhood U of x in V such that

(u ◦ v)|U = 1G|U and (v ◦ u)|U = 1F|U .

Thus, u|U : F|U → G|U is an isomorphism. �
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2.1.6 Coherent Sheaves

In this subsection we collect some general facts about coherent sheaves which

we will be using in further sections. We use [Ser55] as a reference for coherent

sheaves.

Definition 2.1.25 Let (X,OX) be a ringed space. We say that an OX -module

F is coherent if it satisfies the following conditions:

1. F is of finite type.

2. For every open subset U of X , for every integer p ∈ N, and for every

morphism of OX |U -modules

u : Op
X |U −→ F|U ,

the OX |U -submodule ker (u) of Op
X |U is of finite type.

Let (X,OX) be a ringed space. A sheaf of ideals I in OX is said to be coherent

if it is coherent as an OX -submodule of OX .

Theorem 2.1.26 (Oka’s Coherence Theorem) [GR84, Chapter 2, §5, 2 The-

orem, p. 59] For every positive integer n, the structure sheaf OCn (sheaf of holo-

morphic functions on Cn) is a coherent sheaf of rings.

Since coherence is a local condition Oka’s Theorem implies that for every

complex manifold X , the structure sheaf OX is coherent.

Proposition 2.1.27 Let (X,OX) be a ringed space. Then, every coherent OX-

module is of finite presentation.

Proof. Let x ∈ X . Since F is of finite type, there is an open neighborhood U of

x, and an exact sequence of OX |U -modules

Op
X |U

u
−→ F|U −→ 0 (p ∈ N).

Since F is coherent, K = ker (u) is an OX |U -module of finite type, therefore, there

exist an open neighborhood V of x in U , and an exact sequence

Oq
X |V

v
−→ K|V −→ 0 (q ∈ N).
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Let i : K → Op
X |V be the inclusion morphism, let w = i|V ◦ v : Oq

X |V → Op
X |V .

Then

Oq
X |V

w
−→ Op

X |V
u|V
−→ F|V −→ 0

is exact. �

Remark 2.1.28 The converse of the above proposition is in general not true. It

is however true if OX is coherent (see Corollary 2.1.31 and Corollary 2.1.32).

Proposition 2.1.29 Let (X,OX) be a ringed space, and let F be a coherent

OX-module. Then every OX-submodule of finite type in F is also coherent.

Proof. Let G be an OX -submodule of F of finite type. We only have to check

the second condition in the definition of coherence. Let x ∈ X and let U be an

open neighborhood of x, and let

u : Op
X |U −→ G|U

be a morphism on OX |U -modules. Then

ker (u) = ker (i|u ◦ u : Op
X |U → F|U),

where i : G → F is the inclusion morphism. Since F is coherent, it follows that

ker (u) is of finite type. Therefore, G is coherent. �

Theorem 2.1.30 (Three Lemma) Let

0 −→ F −→ G −→ H −→ 0

be an exact sequence of OX-modules on a ringed space (X,OX). If two of the

OX-modules F , G, H are coherent, then so is the third.

Following are some consequences of Three Lemma.

Corollary 2.1.31 (Corollary to Theorem 2.1.30) The direct sum of a finite

family of coherent OX-modules is coherent.

Proof. If F and G are coherent sheaves, there is an exact sequence

0 −→ F −→ F ⊕ G −→ G −→ 0,
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hence by Theorem 2.1.30 F⊕G is coherent. The corollary follows by induction. �

Corollary 2.1.32 (Corollary to Theorem 2.1.30) If F and G are two coher-

ent OX-modules, and if u : F → G is a morphism of OX-modules, then Im(u),

ker (u), and Coker(u) are coherent OX-modules.

Proof. Since F is of finite type, and since u : F → Im(u) is a surjective mor-

phism, by (1) of Proposition 2.1.15, Im(u) is of finite type. Now by Proposition

2.1.29, since G is coherent, Im(u) is coherent. There are exact sequences

0 −→ ker (u) −→ F
u

−→ Im(u) −→ 0

and

0 −→ Im(u)
i

−→ G −→ Coker(u) −→ 0,

where i : Im(u) → G is inclusion morphism. Theorem 2.1.30 now implies the

coherence of ker (u) and Coker(u). �

Remark 2.1.33 Let Coh(X) be the full subcategory of OX -mod consists of

coherent OX -modules. A subcategory of an abelian category is abelian if con-

tains a zero object, and is closed with respect to finite coproducts, kernels, and

cokernels. Now since OX-mod is an abelian category, by Corollary 2.1.31 and

Corollary 2.1.32, the category Coh(X) is an abelian category.

Corollary 2.1.34 (Corollary to Theorem 2.1.30) If F and G are coherent

OX-modules, then so is HomOX
(F ,G).

Proof. Since the question is local, we may assume that there is an exact sequence

of OX -modules

Op
X

u
−→ Oq

X

v
−→ F −→ 0.

Since HomOX
(•,G) : OX -modop → OX-mod is a left exact functor (Proposition

2.1.12), we get an exact sequence of OX -modules

0 −→ HomOX
(F ,G) −→ HomOX

(Oq
X ,G) −→ HomOX

(Op
X ,G).

Now, by Remark 2.1.13, HomOX
(On

X ,G)
∼= Gn, and is hence coherent (Corollary

2.1.31) for all n ∈ N . Thus, HomOX
(F ,G) is the kernel of a morphism between
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coherent sheaves, and is hence coherent. �

2.1.7 Locally Free Sheaves

Definition 2.1.35 Let (X,OX) be a ringed space. We say that an OX -module

F is locally free if for every point x ∈ X , there exist an open neighborhood U of

x, and a set I, such that F|U ∼= O
(I)
X |U as an OX |U -module.

If A is a nonzero ring, and M a free A-module, any two bases have the

same cardinality [Bou89, Corollary to Proposition 3, p. 294], and this common

cardinality is called the rank of M .

Remark 2.1.36 Let X be a ringed space such that Supp(OX) = X . Let F

be a locally free OX-module, and let x ∈ X . Then, Fx is a free OX,x-module.

Since OX,x 6= 0, the above paragraph implies that the rank of Fx (as a free OX,x-

module) is well defined, we denote it by rkx(F). The definition implies that there

exist an open neighborhood U of x, such that

rky(F) = rkx(F), for all y ∈ U.

Proposition 2.1.37 Let (X,OX) be a ringed space. Let F be an OX-module of

finite presentation, and let x ∈ X. Suppose that Fx is a free OX,x-module of rank

n. Then, n is finite, and there exists an open neighborhood U of x, such that F|U

is a locally free (OX |U)-module of rank n.

Proof. Since Fx is a finitely generated free OX,x-module, the rank n of Fx is

finite. Let u : Fx → On
X,x be an isomorphism of OX,x-modules. Since F and

On
X are of finite presentation, Corollary 2.1.24 implies that there exist an open

neighborhood U of x, and an isomorphism of (OX |U)-modules ϕ : F|U → On
X |U

such that ϕx = u. �

Let (X,OX) be a locally ringed space, and let x ∈ X . If F is any OX -module,

we define,

F(x) = Fx ⊗OX,x
k(x) = Fx/mX,xFx,

where, mX,x is the maximal ideal in OX,x, and k(x) the residue field of X at x.

We call F(x) the fibre of F at x, it is a k(x)-vector space. The rank of F at x is
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defined by

rkx(F) = dimk(x)F(x).

If rkx(F) = n is independent of x, we say that F is of rank n. If rkx(F) is finite

for all x ∈ X , we say that F is of finite rank. If {rkx(F) | x ∈ X} < ∞, then we

call F is of bounded rank.

Remark 2.1.38 Let (X,OX) be a locally ringed space, and let F be a locally

free OX-module. For x ∈ X , then there exists a set I such that Fx
∼= O

(I)
X,x.

Hence, we get,

F(x) = Fx ⊗OX,x
k(x) ∼= O

(I)
X,x ⊗OX,x

k(x) = k(x)(I).

This implies that, dimk(x)F(x) equals the rank of the freeOX,x-module Fx. Hence

the definition of the rank of F as defined in Remark 2.1.36 is the same as that

of the definition of the rank of F as an OX -module over a locally ringed space

(X,OX).

Let Lfb(X) denotes the full subcategory of OX-mod consisting of locally free

OX-modules of bounded rank.

Proposition 2.1.39 Let (X,OX) be a locally ringed space, and let F be an OX-

module of finite type. Then, the following are equivalent:

1. F is locally free.

2. F is of finite presentation, and for every point x ∈ X, Fx is a free OX,x-

module.

3. For every point x ∈ X, Fx is a free OX,x-module, and the function X → N,

x 7→ rkx(F) is locally constant.

Proof. For any ringed space (1) implies (2) is clearly true. By Proposition 2.1.37,

(2) implies (1) for any ringed space.

By Remark 2.1.36 and Remark 2.1.38 (1) implies (3). Therefore, it remains

to prove (3) implies (1). Let z ∈ X , and let n = rkz(F). By hypothesis, there

exists an open neighborhood U of z, such that rkz(F) = n for all x ∈ U . Let

{θ1, . . . , θn} be a basis of the free OX,z-module Fz. Replacing U by a smaller

set, we may assume there exist sections s1, . . . , sn ∈ Γ(U,F) such that (si)z = θi.
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Let u : On
X |U → F|U be the morphism of OX |U -modules defined by the si.

Then, uz : On
X,z → Fz is an isomorphism. By Corollary 2.1.19, there exists an

open neighborhood V of z in U such that u|U : On
X |U → G|U is a surjective

morphism. Therefore, for all x ∈ V , ux : On
X,x → Fx is a surjective. Since

Fx is free of rank n, there exists an isomorphism ϕx : Fx → On
X,x. The map

ϕx ◦ ux : O
n
X,x → On

X,x is a surjective endomorphism ofOn
X,x. By [Eis95, Corollary

4.4, p. 120], ϕx ◦ ux is an isomorphism. Therefore, ux is an isomorphism for all

x ∈ V , hence u|U : On
X |U → G|U is an isomorphism. This shows that F is locally

free. �

2.2 The Serre-Swan Theorem

In this section we will prove the main theorem of this chapter. We will use results

from Section 2.1 to prove the theorem. We will define a notion of an admissible

subcategory in Subsection 2.2.1. The main theorem and it proof are given in

Subsection 2.2.2.

The functor Γ(X, •) defined in Subsection 2.1.2 is in general not fully faithful.

Let X be a compact Riemann surface, and let OX be a sheaf of holomorphic

functions over X . Then Γ(X,OX) = C. Let L be a line bundle on X , with

negative degree. Then Γ(X,L) = 0, so is End(Γ(X,L)). On the other hand

1L : L → L and 0 : L → L are two distinct morphism of L, hence, EndOX
(L) →

EndC(Γ(X,L)) is not injective, and Γ(X, •) is not fully faithful. But under certain

conditions restriction of Γ(X, •) to a subcategory of OX -mod is fully faithful.

Recall that an OX -module F is said to be generated by global sections if there

is a family of sections (si)i∈I in Γ(X,F) such that for each x ∈ X , the images

of si in the stalk Fx generate that stalk as an OX,x-module. We will say that F

is finitely generated by global sections if a finite family of global sections (si)i∈I

exists with the above property.

Proposition 2.2.1 Let (X,OX) be a ringed space, and let C be a full abelian

subcategory of OX-mod, such that OX belongs to C. Suppose that every sheaf

in C is generated by global sections. Then Γ(X, •) : C → Γ(X,OX)-mod is fully

faithful.

Proof. Let A = Γ(X,OX), and let F ,G ∈ Ob(C). Then, we have to show that
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the homomorphism

ϕF ,G : HomOX
(F ,G) → HomA(Γ(X,F),Γ(X,G)), u 7→ uX (2.10)

is a bijection. First we will prove that ϕF ,G is injective. Let u ∈ HomOX
(F ,G)

be such that uX = 0, we will then show that u = 0. To show this it suffices to

show that ux(w) = 0 for all x ∈ X , and w ∈ Fx. Since F is generated by global

sections, w =
∑n

i=1 ai · (si)x, where ai ∈ OX,x, and si ∈ Γ(X,F), i = 1, . . . , n.

Thus,

ux(w) = ux

(

n
∑

i=1

ai · (si)x

)

=
n
∑

i=1

ai · ux ((si)x)

=

n
∑

i=1

ai · (uX(si))x =

n
∑

i=1

ai · 0 = 0.

Hence we are through. Now we will show that ϕF ,G is surjective. Let α :

Γ(X,F) → Γ(X,G) be a homomorphism of A-modules. For every point x in

X , let us define αx : Fx → Gx as follows. Let w =
∑n

i=1 ai · (si)x in Fx defined as

above. Define

αx(w) =

n
∑

i=1

ai · (α(si))x.

To prove αx is welldefined it is enough to check that if
∑n

i=1 ai · (si)x = 0, then
∑n

i=1 ai · (α(si))x = 0. Consider a homomorphism of OX -modules

ϕ : On
X → F

defined by the family (si)
n
i=1. Then, K = Ker(ϕ) ∈ Ob(C), therefore K is also gen-

erated by global sections. As (a1, . . . , an) ∈ Kx, there exist g1, . . . , gp ∈ Γ(X,K) ⊆

On
X(X) = An, and z1, . . . , zp ∈ OX,x such that (a1, . . . , an) =

∑p

j=1 zj · (gj)x.

Let gj = (gj1, . . . , gjn), for gji ∈ A, i = 1, . . . , n, and j = 1, . . . , p. Then

ai =
∑p

j=1 zj · (gji)x, for i = 1, . . . , n, and
∑n

i=1 gjisi = 0, for j = 1, . . . , p.

Consider,

n
∑

i=1

ai · α(si)x =

n,p
∑

i,j=1

zj · (gji)xα(si)x =

p
∑

j=1

zj ·

(

n
∑

i=1

gjiα(si)

)

x

=

p
∑

j=1

zj ·

(

α

(

n
∑

i=1

gjisi

))

x

= 0.



30 §2.2. The Serre-Swan Theorem

Therefore, αx is a welldefined map for every x in X . Now, we will check that

the αx, (x ∈ X) give rise to a homomorphism of OX -module u : F → G. So

we have to check condition of Remark 2.1.11. Let U be an open neighbor-

hood of x, and let s ∈ F(U). We have as before, sx =
∑n

i=1 ai · (si)x for

some si ∈ Γ(X,F), and for some ai ∈ OX,x, i = 1, . . . , n. Thus, there exist

an open neighborhood V of x in U , and fi ∈ OX(V ), such that ai = (fi)x,

(i = 1, . . . , n), and s|V =
∑n

i=1 fi · si|V . Define t =
∑n

i=1 fi · α(si)|V ∈ G(V ).

Then, αy(sy) = αy (
∑n

i=1(fi)y(si)y) =
∑n

i=1(fi)y(α(si))y = ty, for all y in V . This

proves that, there exists a unique homomorphism u : F → G of OX -modules such

that ux = αx for all x in X . Also it is easy to check that uX = α. �

Recall that a sheaf of abelian groups F over a paracompact space X is fine

if for any locally finite open cover (Ui)i∈I of X there exists a family (ηi)i∈I of

morphisms ηi : F → F(i ∈ I) such that

1. For every i ∈ I, there exists an open neighborhood Vi of X\Ui such that

(ηi)x = 0 : Fx → Fx for all x ∈ Vi.

2.
∑

ηi = 1.

The family (ηi)i∈I is called a partition of unity of F subordinate to the covering

(Ui)i=I . Recall that the support of a sheaf of morphism of an OX -modules η :

F → G is defined as the closure of the set {y ∈ X | (η)y = 0}, and it is denoted by

supp(η). By the first condition of the definition of the fine sheaf, supp(ηi) ⊂ Ui

for all i ∈ I.

Proposition 2.2.2 Let (X,OX) be a ringed space, such that X is a paracompact

topological space, and OX is a fine sheaf. Consider an OX-module F . Let x be a

point in X, U an open neighborhood of x, and s′ ∈ F(U). Then, there exist an

open neighborhood V of x in U , and a global section s of F , such that s|V = s′|V .

In particular, the canonical homomorphism ρx : Γ(X,F) → Fx is surjective, and

hence F is generated by global sections.

Proof. Since paracompact topological spaces are normal, so is X . Therefore,

there exists a closed neighborhood N of x such that N ⊂ U . Let the interior of N

be V and U1 = U , U2 = X\N . Then X = U1 ∪U2. Thus, there exists a partition

of unity subordinate to {U1, U2} of OX , say {η1, η2}. Let M = supp(η1). Define

s1 = (η1)U(1)s
′ ∈ F(U), and s2 = 0 ∈ F(W ), where W = X\M . For z ∈ U ∩W ,
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z /∈ supp(η1), hence (s1)z = (η1)z(1)(s
′)z = 0. Thus, s1|U∩W = s2|U∩W = 0. Note

that, X = U ∪W . Indeed, if z /∈ U , then z /∈ supp(η1), that is, z ∈ W . Since F

is a sheaf, there exists a global section s of F such that s|U = s1, and s|W = s2.

Since V ⊂ X\U2 ⊂ X\supp(η2), we get (η1)z = 1OX,z
for every z ∈ V . Thus, for

every z ∈ V ,
(

s|V
)

z
= (η1)z(1)(s

′)z = (s′)z.

Hence s|V = s′|V . For the second statement, let θ ∈ Fx. Then there exist an

open neighborhood U of x, and s′ ∈ F(U) such that s′x = θ. By the first part,

there exist s ∈ Γ(X,F), and an neighborhood V of x in U such that s|V = s′|V .

Therefore,

(s′|V )x = (s|V )x = (s′)x = θ.

Hence, ρx is surjective. �

It follows from Proposition 2.2.1 that for a ringed space X satisfying the

conditions of Proposition 2.2.2, the functor Γ(X, •) : OX -mod → A-mod is fully

faithful. In particular, if (X,OX) is a differentiable manifold then Γ(X, •) is fully

faithful.

Remark 2.2.3 Let (X,OX) be a ringed space, and let A denote the ring Γ(X,OX).

If C is a subcategory of OX-mod, define A-modC to be the full subcategory of

A-mod consisting of A-modules M such that M ∼= Γ(X,F) for some F in C.

Let C be a subcategory of OX -mod as in Proposition 2.2.1, then Γ(X, •) : C →

A-modC is an equivalence of categories. Indeed, it follows from Proposition 2.2.1

that Γ(X, •) is fully faithful, and by the definition of A-modC, it is essentially

surjective.

Proposition 2.2.4 Let (X,OX) be a ringed space, and let A denote the ring

Γ(X,OX). Suppose C is as in Proposition 2.2.1. Then, the canonical homomor-

phism S(Γ(X,F)) → F is an isomorphism for every sheaf F in C.

Proof. LetM = Γ(X,F). Recall that P(M) denotes the presheaf tensor product

of M and OX over A. Let u′ : P(M) → F be the morphism of presheaves such

that for every open subset U of X , u′U : M ⊗A OX(U) → F(U) is given by

u′U(m ⊗A f) = f ·m|U for m ∈ M and f ∈ OX(U). Let u : S(M) → F be the

morphism of sheaves associated to u′. (Note that, u = λF ,M(1M), where λF ,M
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is (2.4), i.e., u is the counit morphism of F with respect to the adjunction λ,

(A:5).) Thus, ux :M ⊗A OX,x → Fx is such that

ux

(

n
∑

i=1

si ⊗A ai

)

=

n
∑

i=1

ai · (si)x,

for x ∈ X , ai ∈ OX,x, and si ∈ M , i = 1, . . . , n. Since u is a morphism of sheaves

to prove that u is an isomorphism, it is enough to prove that ux is an isomorphism

for every x in X . The sheaf F is generated by global sections, therefore any germ

w belongs to Fx can be written as

w =

n
∑

i=1

ai · (si)x, for some ai ∈ OX,x, and si ∈M, i = 1, . . . , n.

Define α =
∑n

i=1 si ⊗A ai. Then

ux(α) = ux

(

n
∑

i=1

si ⊗A ai

)

=

n
∑

i=1

ai · (si)x = w.

Therefore, ux is surjective. Now we will show that ux is injective. Let w =
∑n

i=1 si ⊗A ai, where si ∈ M , and ai ∈ OX,x, i = 1, . . . , n, and suppose that

ux(w) =
∑n

i=1 ai · (si)x = 0. Consider the morphism ϕ : On
X → F of OX-modules

defined by the family (si)
n
i=1. Then, K = Ker(ϕ) belongs to C, and (a1, . . . , an)

belongs to Kx. Therefore, there exist g1, . . . , gp ∈ Γ(X,K) ⊆ On
X(X) = An, and

z1, . . . , zp ∈ OX,x such that

(a1, . . . , an) =

p
∑

j=1

zj · (gj)x.

Let gj = (gj1, . . . , gjn), where gji ∈ A, i = 1, . . . , n, and j = 1, . . . , p. Then,

ai =
∑p

j=1 zj · (gji)x for i = 1, . . . , n, and
∑n

i=1 gjisi = 0, for j = 1, . . . , p. Thus,

w =
n
∑

i=1

si ⊗A ai =

n,p
∑

i,j=1

si ⊗A zj · (gji)x =

n,p
∑

i,j=1

(gjisi)⊗A zj

=

p
∑

j=1

(

n
∑

i=1

gjisi

)

⊗A zj = 0.
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Therefore, ux is injective. �

Remark 2.2.5 One can also prove Proposition 2.2.1 using Proposition 2.2.4.

Indeed we can define the inverse of a morphism ϕF ,G (2.10). If v is the inverse of

u in Proposition 2.2.4, then for all x in X ,

vx : Fx −→ Γ(X,F)⊗A OX,x,

w 7−→

n
∑

i=1

si ⊗A ai,

where w =
∑n

i=1 ai·(si)x, ai ∈ OX,x, si ∈ Γ(X,F), i = 1, . . . , n. Let uG be the unit

morphism of G with respect to the adjunction λ, (2.4), i.e., uG = ϕG,Γ(X,G)(1S(M))

(2.8). Then, the inverse of ϕF ,G is given by

ψ : HomA(Γ(X,F),Γ(X,G)) −→ HomOX
(F ,G),

α 7−→ uG ◦ S(α) ◦ v.

2.2.1 Admissible Subcategories

Definition 2.2.6 Let (X,OX) be a locally ringed space. Then, a subcategory C

of OX -mod is called an admissible subcategory if it satisfies the following condi-

tions:

C1. C is a full abelian subcategory of OX -mod, and HomOX
(F ,G) belongs to

C for every pair of sheaves F in Lfb(X) and G in C, where HomOX
(F ,G)

denotes the sheaf of OX-morphisms from F to G.

C2. Every sheaf in C is acyclic, and generated by global sections.

C3. Lfb(X) is a subcategory of C.

Admissible subcategories naturally arise in many ringed spaces. In Section

2.3 we will see that, in the case of an affine scheme, Qcoh(X), the subcategory of

quasi-coherent OX -module, in the case of differentiable manifold OX-mod itself

are examples of admissible subcategories. We will also see some more examples

of an admissible subcategories.
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Corollary 2.2.7 [Corollary to Proposition 2.2.4] Let (X,OX) be a locally ringed

space, and let A denote its ring of global sections. Assume that OX-mod contains

an admissible subcategory C. Then, every finitely generated projective module P

is isomorphic to Γ(X,S(P )).

Proof. Every finitely generated projective module is finitely presented, therefore

we get an exact sequence,

Ap
α
→ Aq → P → 0, for some p, q ∈ N.

Applying the functor S, and by Proposition 2.2.4 we get an exact sequence

Op
X

ψ(α)
→ Oq

X → S(P ) → 0,

where ψ is as in Remark 2.2.5. Since C is an admissible subcategory by C3 sheaf

Om
X is in C for every integer m, and so by C1 the sheaf S(P ) ∈ Ob(C). Also

Γ(X, •) is an exact functor restricted to the category of acyclic OX-modules, it

follows that

Ap
ψ(α)X
−→ Aq → Γ(X,S(P )) → 0

is an exact sequence. By Remark 2.2.5, ψ(α)X = α. Therefore, Γ(X,S(P )) ∼= P ,

being cokernels of the same map. �

2.2.2 Main Theorem

Let (X,OX) be a ringed space, and A denote the ring Γ(X,OX). Let Fgp(A)

denote the full subcategory of A-mod consisting of finitely generated projec-

tive A-modules. We say that the Serre-Swan Theorem holds for a ringed space

(X,OX) if Γ(X,F) is a finitely generated projective module for every sheaf F in

Lfb(X), and the functor

Γ(X, •) : Lfb(X) → Fgp(Γ(X,OX))

is an equivalence of categories. In this subsection we will prove that if OX -mod

contains an admissible subcategory, and if all sheaves in Lfb(X) are finitely

generated by global sections then the Serre-Swan Theorem holds for (X,OX). To

prove the theorem we will need some preliminary results.



§2.2. The Serre-Swan Theorem 35

Proposition 2.2.8 Let (X,OX) be a locally ringed space, and let A denote the

ring Γ(X,OX). Assume that OX-mod contains an admissible subcategory C. If

a locally free sheaf of bounded rank F is finitely generated by global sections, then

Γ(X,F) is a finitely generated projective A-module.

Proof. By the hypothesis, there exists a surjective morphism u : On
X → F for

some n ∈ N. Consider the exact sequence of OX -modules

0 → K → On
X

u
→ F → 0 (2.11)

where K = ker u. Since F is locally free of bounded rank, by [Gro57, Corollaire

to Proposition 4.2.3, p. 189]

Ext1OX
(F ,K) ∼= H1(X,HomOX

(F ,K)).

As C is an admissible subcategoryHomOX
(F ,K) ∈ Ob(C). HenceHomOX

(F ,K)

is acyclic. Therefore, Ext1OX
(F ,K) = 0, and consequently the exact sequence

(2.11) splits. This implies that On
X
∼= F ⊕K. Thus

An ∼= Γ(X,On
X)

∼= Γ(X,F)⊕ Γ(X,K).

This proves that Γ(X,F) is a finitely generated projective A-module. �

Remark 2.2.9 Let F and G be OX -modules of finite presentation. Let x ∈ X ,

and suppose that the OX,x-modules Fx and Gx are isomorphic. Then, there

exists an open neighborhood U of x such that the OX |U -modules F|U and G|U

are isomorphic [Gro60, Chap. 0, 5.2.7, pp. 46-47]. This is immediately follows

from Corollary 2.1.24.

Lemma 2.2.10 Let (X,OX) be a ringed space, and let F be an OX-module of

finite presentation. Let x ∈ X, and suppose that Fx is a free OX,x-module. Then

there exist an open neighborhood U of x, and n ∈ N, such that F|U is isomorphic

to On
X |U .

Proof. Since Fx is a free OX,x-module, there exists an integer n ∈ N such that

OX,x-modules On
X,x and Fx are isomorphic. All locally free sheaves of finite type

are of finite presentation, hence On
X is of finite presentation. From Remark 2.2.9

there exists an open neighborhood U of x such that F|U ∼= On
X |U .
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Remark 2.2.11 One can prove Lemma 2.2.10 using Fitting ideals. Indeed, let

M be a finitely generated A-module. For r ∈ N we denote the r-th Fitting ideal

of M by Fr(M). Let (X,OX) be a ringed space, and consider an OX -module

G of finite presentation. We denote the r-th Fitting ideal sheaf of G by Fr(G),

for r ≥ 0. For every x ∈ X , (Fr(G))x = Fr(Gx), and the ideal sheaf Fr(G) is of

finite type as an OX -module. Since Fr(G) is of finite type, if (Fr(G))x = OX,x,

then there exists an open neighborhood U of x such that (Fr(G))y = OX,y, for

all y in U (This follows from Proposition 2.1.16). Also, by Corollary 2.1.17 the

support of Fr(G), that is the set {x ∈ X | (Fr(G))x 6= 0} is closed in X . Further

let x ∈ X , and an OX,x-module Gx is free of rank n. Then there exists an open

neighborhood U of x such that for all y ∈ U , Gy is a free OX,y-module of rank

n. (This follows from the fact that, if M is a free A-module of rank q, then

Fr(M) = 0 for 0 ≤ r < q, and Fr(M) = A for r ≥ q [Nor76, Exercise 1, p. 90],

and converse is true if A is a local ring [Eis95, Propostion 20.8, p. 500].) Now

since G is of finite type, by Proposition 2.1.39, G|U ∼= On
X |U .

Lemma 2.2.12 Let (X,OX) be a locally ringed space, and let A denote the ring

Γ(X,OX). Then for every finitely generated projective A-module P , the sheaf

S(P ) is a locally free OX-module of bounded rank.

Proof. It is given that, an A-module P is finitely generated and projective, hence

it is of finite presentation. Therefore, we get an exact sequence of A-modules

Ap → Aq → P → 0, for some p, q ∈ N.

Since the functor S is right exact, and S(Am) ∼= Om
X for all m ∈ N, we get an

exact sequence of OX -modules

Op
X → Oq

X → S(P ) → 0.

This shows that S(P ) is of finite presentation. Since for every x ∈ X , OX,x is

a local ring, and P is a finitely generated projective module P ⊗A OX,x is a free

OX,x-module of finite rank. We denote the rank rkx(S(P )) of the sheaf S(P ) at

every point x in X by nx. Therefore, P ⊗A OX,x is isomorphic to Onx

X,x. Now

by Lemma 2.2.10 S(P ) is a locally free OX -module. Also the family of integers

(nx)x∈X is bounded above by q, so the sheaf S(P ) is of bounded rank.

Now we are ready for giving proof of the main theorem.
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Theorem 2.2.13 Let (X,OX) be a locally ringed space, and let A = Γ(X,OX).

Assume that OX-mod contains an admissible subcategory C, and that every sheaf

in Lfb(X) is finitely generated by global sections. Then, Γ(X,F) is a finitely gen-

erated projective module for every sheaf F in Lfb(X), and Γ(X, •) : Lfb(X) →

Fgp(A) is an equivalence of categories, i.e., the Serre-Swan Theorem holds for

(X,OX).

Proof. It follows from Proposition 2.2.8 that, if an OX -module F is locally free

of bounded rank then Γ(X,F) is finitely generated projective A-module, hence

the restriction of the functor Γ(X, •) from the subcategory Lfb(X) to the sub-

category Fgp(A) is welldefined. Since Lfb(X) is a subcategory of the admissible

subcategory C, Proposition 2.2.1 implies that, Γ(X, •) is fully faithful. By Corol-

lary 2.2.7, if P is finitely generated projective module, then P is isomorphic to

Γ(X,S(P )). The sheaf S(P ) is locally free of bounded rank is follows from Lemma

2.2.12. Hence the functor Γ(X, •) : Lfb(X) → Fgp(A) is essentially surjective.

Therefore, Γ(X, •) is an equivalence of categories. Moreover, S is a quasi-inverse

of Γ(X, •) is a consequence of Proposition 2.2.4 and Lemma 2.2.12.

2.3 Some Special Cases

In this section we will discuss some important examples of locally ringed spaces for

which the Serre-Swan Theorem holds. In Subsections 2.3.8, 2.3.10 we discussed

examples of affine scheme and topological space respectively. Subsections 2.3.3

and 2.3.5 we showed the Serre-Swan Theorem holds for C∞-differentiable spaces

and Stein spaces.

2.3.1 Serre’s Theorem

Let A be a ring, and let (X,OX) denote (Spec(A), Ã) the corresponding affine

scheme. Recall that for every A-module M , we can define an OX -module M̃ .

This is defined by

FM(D(f)) =Mf , f ∈ A.

If D(f) ⊃ D(g), then S ′
f ⊂ S ′

g, where for any multiplicative subset S of A

S ′ = {s′ ∈ A | as′ ∈ S for some a ∈ A}
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is the saturation of S, and Sf = {fk | k ∈ N}. Identifying S−1M with S ′−1M , we

define
ρf,g : S

′
f
−1
M −→ S ′

f
−1
M

ρf,g

(m

s

)

=
m

s
∈ S ′

g
−1
M, for m ∈M, s ∈ S ′

f .

This define a sheaf FM on the base B = {D(f) | f ∈ A} of X . The associated

sheaf onX is denoted by M̃ , it is called the sheaf on X associated to the A-module

M , and is an OX -module. If u :M → N is a homomorphism of A-modules, then

for every f ∈ A, there exist a homomorphism of Af -modules

uf :Mf −→ Nf

uf

(m

s

)

=
u(m)

s
, for m ∈M and s ∈ Sf .

This induces a homomorphism of OX -modules

ũ : M̃ −→ Ñ

such that ũD(f) = u for all f ∈ A. Then this defines a fully faithful, faithfully

exact and additive functor

•̃ : A-mod −→ OX -mod

M −→ M̃.

Remark 2.3.1 Let (X,OX) is an affine space, and let A = Γ(X,OX). Hence

(X,OX) ∼= (Spec(A), Ã), so we identify (X,OX) with (Spec(A), Ã). Let M be

an A-module. Recall that the canonical functor (2.2) S : A-mod → OX -mod is

such that S(M)
p
= P(M)

p
, for all p ∈ X . Hence we get,

S(M)
p
∼= P(M)

p
=M ⊗A Ap =Mp

∼= (M̃)
p
.

Moreover these isomorphisms are natural, that is, the functors S and •̃ are iso-

morphic.

Definition 2.3.2 Let (X,OX) be a ringed space. We say that an OX -module F

is quasicoherent if for every point x ∈ X , there exist an open neighborhood U of
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x such that F|U is the cokernel of a morphism of OX |U -modules,

u : O
(I)
X |U −→ O

(J)
X |U ,

where I and J are arbitrary index sets, that is, if there exists an exact sequence

of OX |U -modules.

O
(I)
X |U

u
−→ O

(J)
X |U

v
−→ F|U −→ 0

for some open neighborhood U of every point x ∈ X .

Let Qcoh(X) denote the full subcategory of OX-mod consists of quasicoherent

OX-modules. If M is an A-module, then since a free resolution exists for every

module, and the functor •̃ is exact, M̃ is quasicoherent. Moreover the functor

•̃ : A-mod −→ Qcoh(X)

is an equivalence of categories with quasi-inverse

Γ(X, •) : Qcoh(X) −→ A-mod

[Gro60, Théorème (I.4.1), p. 90].

Remark 2.3.3 Recall that, an A-module M is said to be finitely presented if it

is the cokernel of an A-module homomorphism Ap → Aq for some p, q ∈ N or,

equivalently, if there exists an exact sequence of A-modules of the form Ap →

Aq → M → 0 with p, q ∈ N. Following are two facts about finitely presented

modules which we will use in later propositions.

1. Let (fi)i∈I be a finite family of elements of a ring A, generating the ideal

A of A. For an A-module M to be finitely presented, it is necessary and

sufficient that, for every index i, the Afi-module Mfi be finitely presented

[Bou98, Chapter II, §5.1, Corollary to Proposition 3, p. 109].

2. Let S be a multiplicative subset of A, and let N , M be A-modules. If M is

finitely presented, then the natural S−1A-module homomorphism

ϕ : S−1(HomA(M,N)) → HomS−1A(S
−1M,S−1N)

ϕ
((u

s

))(m

t

)

=
u(m)

st
,
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wherem ∈M , s, t ∈ S and u ∈ HomA(M,N), is an isomorphism. [Eis95, Chapter

2, Proposition 2:10, p. 68]

Remark 2.3.4 Let X be a topological space, and B a base for the topology on

X . For any presheaf F on X , let FB denote the presheaf on B induced by F .

If u : F → G is a morphism of presheaves in X , let uB : FB → GB denote the

induced morphism of presheaves on B.

Let F be a presheaf on X , and F ′ the associated sheaf on X . Let G be

another sheaf on X . Suppose that u : FB → GB is a morphism of presheaves on

B. Then, there exists a unique morphism of sheaves on X , u′ : F ′ → G, such

that (u′ ◦ i)B = u, where i : F → F ′ is the canonical morphism of presheaves on

X . If uB is an isomorphism of presheaves on B then u is also an isomorphism of

sheaves on X . This can be proved using Remark 2.1.11.

Proposition 2.3.5 [Gro60, Chapter I, (ii) of Corollaire (I.3.12), p. 88] If M and

N are A-modules, there exists a canonical morphism of OX-modules

v : (HomA(M,N))˜−→ HomÃ(M̃, Ñ).

If M is finitely presented, then v is an isomorphism.

Proof. Let F = (HomA(M,N))˜ and G = HomÃ(M̃, Ñ). Let B = {D(f) | f ∈

A}. Then, for all B = D(f) ∈ B

F(B) = Γ(D(f), (HomA(M,N))˜) = (HomA(M,N))f = Sf
−1(HomA(M,N))

where Sf = {fn |n ≥ 0} and G(B) = HomÃ|B
(M̃ |B, Ñ |B). Recall that there exist

a canonical isomorphism of ringed spaces (D(f), Ã|D(f)) ∼= (Spec(Af), Ãf), and

if we identified these two ringed spaces, there exists a canonical isomorphism of

Ãf -modules M̃ |D(f) = M̃f . Therefore, G(B) = HomÃf
(M̃f , Ñf). Since •̃ is fully

faithful functor, there exists a canonical isomorphism

HomÃf
(M̃f , Ñf) ∼= HomAf

(Mf , Nf).

By (2) of Remark 2.3.3, we have a unique homomorphism of Sf
−1A-modules

ϕ : Sf
−1(HomA(M,N)) −→ HomSf

−1A(Sf
−1M,Sf

−1N)
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such that

ϕ
((u

s

))(m

t

)

=
u(m)

st
,

where u ∈ HomA(M,N), m ∈ M and s, t ∈ Sf . Thus, we get a homomorphism

of Af -modules

uB = ϕ : F(B) −→ G(B).

If B ⊃ B′ are two members of B, then

u′B ◦ ρB′,B = ρB′,B ◦ uB.

Therefore, the uB define a morphism of presheaves on B, u : FB → GB. By

Remark 2.3.4, there exists a unique morphism of OX -modules v = u′ : F → G

such that vB = uB for all B ∈ B (since F is a sheaf on X). If M is finitely

presented, then by (2) of Remark 2.3.3 each vB = uB = ϕ is an isomorphism.

Since F and G are sheaves, this implies that v = u′ is an isomorphism of sheaves

on X (by Remark 2.3.4). �

Proposition 2.3.6 Let A be a ring, and (X,OX) the associated affine scheme.

Let M be an A-module. Then, M̃ is an OX-module of finite presentation if and

only if M is a finitely presented A-module.

Proof. If M is finitely presented, then M̃ is of finite presentation is follows from

the fact that •̃ is an exact functor. Suppose M̃ is an OX -module of finite pre-

sentation. As the principal open subsets {D(f)}f∈A form a basis of the topology

of X , and as X is quasi-compact, we may assume that there exists a finite open

covering X = ∪iD(fi) such that M̃ |D(fi) admits a finite presentation, that is there

exists an exact sequence of OX |D(fi)-modules

(

OX |D(fi)

)pi →
(

OX |D(fi)

)qi → M̃ |D(fi) → 0, for some pi, qi ∈ N

for all i. Since X|D(fi) = (Ãfi) and M̃ |D(fi) = (M̃fi), this gives an exact sequence

of Afi-modules,

Apifi → Aqifi → Mfi → 0, for some pi, qi ∈ N

since •̃ is faithfully exact. By (1) Remark 2.3.3, M is a finitely presented A-

module. �
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Lemma 2.3.7 Let A be an affine scheme, and (X,OX) the associated affine

scheme. Let F and G are quasicoherent OX-modules. If F is of finite presentation

then HomOX
(F ,G) is also quasicoherent. In particular, if F is locally free OX-

module then HomOX
(F ,G) is quasicoherent.

Proof. Since F and G are quasicoherent F ∼= M̃ , and G ∼= Ñ where Γ(X,F) =

M , and Γ(X,G) = N . By Proposition 2.3.6, since F is of finite presentation M

is finitely presented A-module. Hence by Proposition 2.3.5,

(HomA(M,N))˜∼= HomÃ(M̃, Ñ)

(note that Ã = OX). Since (HomA(M,N))˜ is quasicoherent so is HomÃ(M̃, Ñ).

For any ringed space locally free sheaves are finitely presentation, hence second

statement is true. �

Corollary 2.3.8 (To Theorem 2.2.13) [Ser55, Section 50, Corollaire to Propo-

sition 4, p. 242] Let (X,OX) be an affine scheme, and let A denote its coordinate

ring Γ(X,OX). Then, a quasicoherent sheaf F is locally free OX-module of fi-

nite rank if and only if Γ(X,F) is a finitely generated projective A-module. The

functor Γ(X, •) : Lfb(X) → Fgp(A) is an equivalence of categories, with a quasi-

inverse •̃ : Fgp(A) → Lfb(X).

Proof. The functor •̃ is an equivalence of categories from A-mod to Qcoh(X),

with quasi-inverse Γ(X, •) : Qcoh(X) → A-mod [Gro60, Chap. I, Théorème

(1.4.1), p. 90]. Since A-mod is an abelian category so is Qcoh(X). Now by

Lemma 2.3.7 the category Qcoh(X) satisfies condition C1 of Definition 2.2.6.

Quasicoherent OX-modules over an affine scheme are acyclic [Liu2002, Theorem

2.18, p. 186]. Let sheaf F be an quasicoherent sheaf, and M = Γ(X,F). Then

F ∼= M̃ , and M̃ is clearly generated by global sections. Obvious Lfb(X) is a

subcategory of Qcoh(X), hence Qcoh(X) is an admissible subcategory. Since X

is quasicompact, by Corollary 2.1.21 locally free sheaves of finite rank are finitely

generated by global sections. Therefore, the corollary will follows from Theorem

2.2.13.
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2.3.2 Swan’s Theorem

Let F be a sheaf over a topological space X , and S a closed subset of X . Then,

F(S) is defined as

F(S) = lim
−→
U⊃X

F(U).

Recall that a sheaf F over a space X is soft if for any closed subset S ⊂ X

the restriction mapping

Γ(X,F) −→ Γ(S,F)

s 7−→
(

(s)x
)

x∈S

is surjective. Every soft sheaf S over a paracompact space is acyclic [Wel80,

Chapter II, Theorem 3.11, (a) 2, p. 56].

Consider a ringed space (X,OX) as in Proposition 2.2.2. Further, assume that

X is of bounded topological dimension. Then, locally free sheaves of bounded

rank over X are finitely generated by global sections. This fact is standard when

(X,OX) is a differential manifold [Wel80, Chap. III, Proposition 4.1], and the

proof in the general case is similar.

Corollary 2.3.9 (To Theorem 2.2.13) Let (X,OX) be a ringed space such

that, X is a paracompact topological space of bounded topological dimension, and

OX is a fine sheaf. Then, the Serre-Swan Theorem holds for (X,OX).

Proof. The category OX-mod clearly satisfies C1 and C3 of Definition 2.2.6.

Since X is a paracompact topological space, fine sheaves on X are soft ([Wel80,

Chapter II, Proposition 3.5, p. 53]) and hence acyclic. Since OX is a fine sheaf,

every OX-module is fine ([Wel80, Chapter II, Example 3.4(e), p. 53] and hence

acyclic. Also by Proposition 2.2.2 F is generated by global sections, hence

OX-mod satisfies C2. From the previous paragraph every sheaf F in Lfb(X) is

finitely generated by global sections. Now the corollary follows applying Theorem

2.2.13, with C = OX -mod. �

The sheaf of continuous real-valued functions on a paracompact topological

space is a fine sheaf. Hence, the following is an immediate consequence of Corol-

lary 2.3.9.

Corollary 2.3.10 [Swa62, Theorem 2 and p. 277] Let X be a paracompact topo-

logical space of bounded topological dimension, and let CX denote the sheaf of con-

tinuous real-valued functions on X. Let C(X) denote the R-algebra Γ(X, CX).
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Then, the functor Γ(X, •) : Lfb(X) → Fgp(C(X)) is an equivalence of cate-

gories.

It follows from Corollary 2.3.9 that ifX is a differentiable manifold of bounded

dimension, and C∞(R) (respectively C∞(C)) is the sheaf of differentiable real-

valued (respectively, complex-valued) functions on X , then the category of real

(respectively, complex) differentiable vector bundles on a manifold X is equiv-

alent to the category of finitely generated projective Γ(X, C∞(R))-modules (re-

spectively Γ(X, C∞(C))-modules).

2.3.3 C∞-Differentiable Spaces

An ideal m ⊂ A is said to be real if the natural map R → A/m (R → A→ A/m)

is an isomorphism (in particular m is a maximal ideal of A). The kernel of any

morphism of R-algebras A → R is a real ideal, so we get a natural bijection

between the set of all real ideals of A and the set of all morphisms of R-algebras

A→ R.

Definition 2.3.11 The real spectrum of a R-algebra A is the set

Specr(A) = HomR-alg(A,R) = {real ideals of A}.

If M is a differentiable manifold, then

C∞(M) = {f :M → R | f is C∞ function}

is a Fréchet algebra [GS2003, p. 28]. An ideal a is called a closed ideal if it is

closed with respect to the Fréchet topology of uniform convergence on compact

sets of functions and their derivatives.

Definition 2.3.12 We say that a R-algebra is a differentiable algebra if it is

(algebraically) isomorphic to a quotient

A ∼= C∞(Rn)/a

for some natural number n, and some closed ideal a of C∞(Rn). A map A → B

between differentiable algebras is said to be a morphism of differentiable algebras

when it is a morphism of R-algebras.
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For any quotient algebra A = C∞(R)/a, Specr(A) is homeomorphic to

(a)0 := {x ∈ Rn | f(x) = 0, for all f ∈ a}.

Hence Specr(A) is a closed set in Rn, in particular it is paracompact [GS2003,

Proposition 2.13, p. 30]. Let A be a differentiable algebra. Let U ⊂ Specr(A)

open, define

SU = {s ∈ A | s(x) 6= 0, for all x ∈ U}

(note that x ∈ U ⊂ Specr(A) = HomR-alg(A,R), then s(x) is define as s(x) =

x(s) ∈ R. Then SU is a multiplicative subset of A. Define a presheaf F by

F(U) = SU
−1A. The sheaf associated to presheaf F is called the structural sheaf

on Specr(A). This define (Specr(A), Ã) a locally ringed space over R. Let M be

an A-module. If U ⊂ Specr(A) is open, then

G(U) = SU
−1M =M ⊗A SU

−1A

is a presheaf. We will denote by M̃ the sheaf associated to the presheaf G, we

will call M̃ the sheaf associated to M . This gives us a functor

•̃ : A-mod −→ Ã-mod.

It is easy to see that the functor S (2.2) is isomorphic to the functor •̃.

Definition 2.3.13 The real spectrum of a differentiable algebra is defined to be

the locally ringed space over R, (Specr(A), Ã).

Definition 2.3.14 A locally ringed space over R, (X,OX) is said to be an affine

differentiable space (of finite type) if it is isomorphic to the real spectrum of some

differentiable algebra. A locally ringed space over R is said to be a differentiable

space (locally of finite type) if any point x ∈ X has an open neighborhood U in

X such that (U,OX |U) is an affine differentiable space.

Corollary 2.3.15 (To Theorem 2.2.13) [GS2003, Theorem 3.11, 4.16] Let A

be a differentiable algebra, and let (X,OX) denote its real spectrum (Specr(A), Ã).

Then, the functor, Γ(X, •) : OX-mod → A-modOX -mod is an equivalence of

categories. Moreover, the Serre-Swan Theorem holds for X.
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Proof. The topological space X is homeomorphic to a closed subset of Rn

for some finite n, therefore X is a paracompact topological space of bounded

topological dimension. Since the sheaf OX admits partition of unity [GS2003,

Theorem of partition of unity, p. 52] it a fine sheaf. Now the corollary follows

from Remark 2.2.3 and Corollary 2.3.9.

2.3.4 Some Other Examples

In the paper [Mul76], Mulvey proved that for a locally ringed space (X,OX) (not

necessarily commutative) whose center is compact, the Serre-Swan theorem holds.

A ringed space (X,OX) is said to be compact provided that, the topological space

X is compact, and that for every x, x′ ∈ X , there exists an element a ∈ Γ(X,OX)

satisfying a(x) = 1 and a(x′) = 0, [Mul76, Section 3, definition, p. 63]. If (X,OX)

is commutative (i.e., Γ(X,OX) is a commutative ring) then the above result

follows from Theorem 2.2.13.

Corollary 2.3.16 [Mul76, Theorem 4.1] If a locally ringed space (X,OX) is com-

pact, then the category of locally free OX-modules of bounded rank is equivalent

to the category of finitely generated projective Γ(X,OX)-modules.

Proof. The structure sheaf OX is a fine sheaf (this is follows from [Mul78, Corol-

lary 1.3]), and X is a compact topological space. Therefore, by Proposition 2.2.2

every sheaf in OX -mod is generated by global sections. Also, since X is com-

pact, locally free sheaves of bounded rank over X are finitely generated by global

sections (by Corollary 2.1.21). On a paracompact space fine sheaves are acyclic,

hence all OX -modules are acyclic. Therefore, the category OX -mod is admissi-

ble. Now, the corollary follows from Theorem 2.2.13 by taking category C to be

the category OX-mod. �

Recall that [Pie67, p. 8, Definition 10.2], a ringed space (X,OX) is called

regular ringed space if X is a profinite space, i.e., a compact totally disconnected

space, and OX,x is a field for every x ∈ X .

Corollary 2.3.17 [Pie67, Theorem 15.3] Let (X,OX) be a regular ringed space,

and let A denote Γ(X,OX). Then Serre-Swan Theorem holds for (X,OX). More-

over, coherent sheaves over X are locally free OX-modules of bounded rank.

Hence, Coh(X) and Fgp(A) are equivalent.
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Proof. Note that regular ringed spaces are commutative and compact ringed

spaces [Mul76, pp. 65-66]. Therefore, the Serre-Swan Theorem holds for (X,OX)

by Corollary 2.3.16. Let F be a coherent OX -module. Since X is a regular ringed

space, OX,x is a field for every x ∈ X . Thus, Fx is a free OX,x-module for every

x ∈ X . Since by Proposition 2.1.27 coherent sheaves are of finitely presentation,

Lemma 2.2.10 implies that F is locally free. Also X is compact, therefore F is

of bounded rank. Hence, F is a locally free OX -module of bounded rank. �

2.3.5 Stein Spaces

Let D ⊂ Cm be open connected, and let OD be the sheaf of holomorphic function

on D. Let I be a coherent ideal in OD. Then the cokernel of an inclusion

morphism i : I → OD, OD/I is coherent (by Corollary 2.1.32). In particular,

it is of finite type. Let A = Supp(OD/I). By Corollary 2.1.17, A is a closed

subset of D. Let OA = OD/I. Then (A,OA) is locally ringed space over C. The

ringed space (A,OA) is called a closed complex subspace of D. A complex space

(X,OX) is a locally ringed space over C in which every point has a neighborhood

U so that (U,OX |U) is isomorphic to a closed complex subspace (A,OA) of an

open connected subset in some Cn. Since coherence is a local condition OX is

coherent.

Definition 2.3.18 (Stein Sets) [GR79, Chapter IV, §1, p. 100, Definition 1] A

closed subset P of a complex space (X,OX) is called a Stein set in X if Theorem

B is valid on P (that is, for every coherent OX -module F , Hq(P,F) = 0 for all

q ≥ 1). A complex space which is itself is a Stein set is called a Stein space.

Theorem 2.3.19 (Theorem A for Stein Sets) [GR79, Chapter IV, §1, p. 101,

Theorem 2] Let P be a Stein set in X and F a coherent OX-module on P . Then

Γ(P,F) generates every stalk Fx for all x ∈ P .

For equivalent criteria for Stein spaces see [GR79, Chapter IV, Section 1,

Theorem 2, p. 101 and Chapter V, Section 4, Theorem 3, p. 152].

Let (X,OX) be a Stein space, and let A = Γ(X,OX). Recall that a topo-

logical module M over the algebra A is called a Stein module if there exists a

coherent OX-module M, such that Γ(X,M) is isomorphic to M [For67, Section

2, p. 383]. Let S-mod denote the category of Stein modules over A. Since OX

is coherent, Corollary 2.1.31 implies that every sheaf in Lfb(X) is also coherent.
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Thus, Coh(X) satisfy C1 and C3 of Definition 2.2.6 (see Remark 2.1.33). Since

Theorem A and Theorem B are valid for Stein spaces, the category Coh(X)

satisfies C2. Thus, Coh(X) is an admissible subcategory of OX -mod. Note that

the full subcategory A-modCoh(X) of category A-mod is precisely S-mod.

Corollary 2.3.20 [For67, Satz 6.7 and Satz 6.8] Let (X,OX) be a finite-dimen-

sional connected Stein space. Then Γ(X, •) : Coh(X) → S-mod is an equiva-

lence of category with quasi-inverse S : S-mod → Coh(X). Moreover, the cat-

egory of locally free sheaves of finite rank is equivalent to the category of finitely

generated projective A-modules.

Proof. Let A = Γ(X,OX). Since Coh(X) is an admissible subcategory, by

Theorem 2.2.13 and Remark 2.2.3 to prove the corollary it is enough to prove that,

every locally free sheaf of bounded rank is finitely generated by global sections.

Let M be locally free sheaf on X of bounded rank, and M = Γ(X,M) be the

corresponding Stein module over A. For a Stein module M let dx(M) denote the

rank of M at a point x. Let d = sup{dx(M) | ∀x ∈ X}. Since M is of finite

rank d < ∞. Since X is connected and finite dimensional, A is indecomposable

and finite dimensional [For67, Section 1, Subsection 3, p. 382]. Therefore, M is

a finitely generated A-module [For67, Corollary 4.7]. Now since M is generated

by global sections, and Γ(X,M) is a finitely generated, M is finitely generated

by global sections.

Note that the spectrum of A, denoted by S(A) is homeomorphic to X [For67,

Section 1, Satz 1, Beweis c, p. 380]. Therefore, the definition of d in [For67,

Corollary 4.7] is same as that in the Corollary 2.3.20.

Remark 2.3.21 Every non-compact connected Riemann surface is a Stein space

[GR79, Chapter V, §5, p. 134], hence by the above corollary Serre-Swan Theorem

holds for non-compact Riemann surfaces. Note that every vector bundle over

a non-compact connected Riemann surface (X,OX) is trivial [For91, Chapter 3,

§30, Theorem 30.4, p. 229]. Let A = Γ(X,OX). Therefore, if F is in Lfb(X), then

Γ(X,F) ∼= An for some n ∈ N ∪ {0}. Conversely, let P be a finitely generated

projective A-module. Then, S(P ) is in Lfb(X), and hence, Γ(X,S(P )) ∼= P ∼= An

for some n. This implies that every projective A-module is free.

On the other hand, for compact Riemann surfaces the Serre-Swan theorem

does not hold. Let (X,OX) be a compact Riemann surface, and let L be a
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line bundle over X of negative degree. Then the zero OX -module 0 and L are

non-isomorphic vector bundles over X . But, Γ(X, 0) and Γ(X,L) are 0, that is

isomorphic Γ(X,OX) = C-modules. Hence, the functor Γ(X, •) : Lfb(X) →

A-mod is not faithful.





Chapter 3

Real Vector Bundles over a Real

Abelian Variety

In this chapter, we study various equivalent conditions for the presence of real

holomorphic connections in a real holomorphic vector bundle over a real abelian

variety. Holomorphic connections in holomorphic bundles over a complex abelian

variety were studied by Balaji and Biswas [BB2009], Biswas [Bis2004] Biswas

and Iyer [BI2007], Biswas and Gómez [BG2008],and Biswas and Subramanian

[BS2004]. In this chapter we prove analogues, for real abelian varieties, of some

of the results in the above papers.

This chapter is divided into four sections. In the first section, we develop

some preliminaries regarding real structures on a ringed space over C. We show

in Section 3.2 that real structures on a complex manifolds are completely deter-

mined by antiholomorphic involutions. We also recall the notions of real abelian

varieties, and of real homogenous vector bundles over real abelian variety. Section

3.3 discusses the concept of real holomorphic and real C∞ connections. We show

that if a real vector bundle over a real abelian variety admit a real connection,

then it is real homogenous. In the last section we gives various equivalent condi-

tions for a real algebraic vector bundle over a real abelian variety to admit a real

flat holomorphic connection.

We refer to the books [BCR98] and [Sil89] for real algebraic geometry.

51
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3.1 Real Structures on a Ringed Space over C

Let (X,OX) be a ringed space over C. A real structure on (X,OX) is a pair

(σ, σ̃) consisting of a continuous map σ : X → X such that σ2 = 1X , and for

every U ⊂ X open, a C-antilinear ring homomorphism

σ̃U : OX(U) → OX(σ(U))

which is compatible with restrictions, that is, for every V ⊂ U open in X ,

OX(U)
σ̃U //

ρV,U

��

OX(σ(U))

ρ
σ(V ),σ(U)

��
OX(V ) σ̃V

// OX(σ(V ))

commutes, and such that, σ̃σ(U) ◦ σ̃U = 1OX(U), for every U ⊂ X open.

A real ringed space is a pair
(

(X,OX), (σ, σ̃)
)

, where (X,OX) is a ringed

space, and (σ, σ̃) is a real structure on (X,OX).

Definition 3.1.1 Let
(

(X,OX), (σX , σ̃X)
)

,
(

(Y,OY ), (σY , σ̃Y )
)

be two real ringed

spaces. A morphism of real ringed spaces is a morphism of ringed spaces

(ϕ, ϕ̃) : (X,OX) → (Y,OY )

such that

1. σY ◦ ϕ = ϕ ◦ σX .

2. For every U ⊂ Y open, the diagram

OY (U)
ϕ̃U //

(σ̃Y )U
��

OX(ϕ
−1(U))

(σ̃X)(ϕ−1(U))

��
OY (σY (U)) ϕ̃σY (U)

// OX(ϕ
−1(σY (U)))

commutes. Note that by (1) ϕ−1(σY (U)) = σX(ϕ
−1(U)), so

OX(ϕ
−1(σY (U))) = OX(σX(ϕ

−1(U))).
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We denote by Rsp/C the category of ringed spaces over C, and (Rsp/C)real

the category of real ringed spaces, with real morphisms.

Remark 3.1.2 Let (ϕ, ϕ̃) : (X,OX) → (Y,OY ) be a real morphism of real ringed

spaces
(

(X,OX), (σX , σ̃X)
)

and
(

(Y,OY ), (σY , σ̃Y )
)

. Then,

(

(X,ϕ−1(OY )), (σX , ϕ
−1(σ̃Y ))

)

is a real ringed space. Moreover, OX is a real ϕ−1(OY )-module.

Remark 3.1.3 Let X be a complex manifold. Suppose that, σ : X → X is

an antiholomorphic involution, that is, σ2 = 1X . Let OX denote the sheaf of

holomorphic functions on X . Define σ̃ : OX → OX as follows. For every U ⊂ X

open,

σ̃U : OX(U) −→ OX(σ(U)),

f 7−→ f ◦ σ.

Since σ is antiholomorphic, f ◦ σ is holomorphic, and hence belongs to OX(σ(U)).

For a ∈ C,

σ̃U(af) = (af) ◦ σ = ā(f ◦ σ) = āσ̃U(f),

that is, σ̃U is C-antilinear. For every open subset U of X ,

σ̃(σ(U)) ◦ σ̃U(f) = σ̃(σ(U))(f ◦ σ) = f ◦ σ ◦ σ = f = 1OX(U)(f).

Clearly, the family (σ̃U)U∈op(X) commutes with restrictions. Therefore, (σ, σ̃) is

a real structure on (X,OX). We will denote by iσ the above real structure (σ, σ̃)

on (X,OX) induced by σ.

Let (X,OX) and (Y,OY ) be complex manifolds with antiholomorphic involu-

tions σX and σY , respectively. Let ϕ : X → Y be a holomorphic map from X to

Y such that

σY ◦ ϕ = ϕ ◦ σX .

Then, (ϕ, ϕ̃) is real, where ϕ̃ is given by

ϕ̃U : OY (U) → OX(ϕ
−1(U)), ϕ̃U(f) = f ◦ ϕ

for every open subset U of Y . Let iϕ denote the above real morphism (ϕ, ϕ̃) from

(X,OX) to (Y,OY ) induced by ϕ.
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We will later show that all real structures and real morphisms of complex

manifolds are of this form (Proposition 3.2.7).

3.1.1 Real OX-modules

Definition 3.1.4 Let
(

(X,OX), (σ, σ̃)
)

be a real ringed space. Let F be an OX-

module. A real structure on F is a family αF = (αF
U )U∈op(X) of morphisms of

abelian groups αF
U : F(U) → F(σ(U)) such that:

1. The abelian group homomorphisms are compatible with restriction mor-

phisms, that is, for every V ⊂ U open in X , the diagram

F(U)
αF
U //

ρV,U

��

F(σ(U))

ρ
σ(V ),σ(U)

��
F(V )

αF
V

// F(σ(V ))

commutes.

2. For every open subset U of X , αF
σ(U) ◦ α

F
U = 1F(U).

3. αF
U (fs) = σ̃U (f)α

F
U (s) for all f ∈ OX(U) and s ∈ F(U).

A real OX-module is a pair (F , αF), where F is an OX -module, and αF is a real

structure on F . We sometimes denote by a real sheaf (F , αF) by just F when

no confusion is likely to occur. A real vector bundle over X is a real OX -module

(F , αF) such that the OX -module F is locally free.

A global section s of a real OX -module (F , αF) is called real if for all x ∈ X ,

(αF(s))x = (s)σ(x).

3.1.2 The Functor •
σ

Let
(

(X,OX), (σ, σ̃)
)

be a real ringed space, and let F be an OX -module. We

define an OX -module Fσ as follows. For any open subset U of X , Fσ(U) =

F(σ(U)), and for every f ∈ OX(U) and s ∈ Fσ(U), f · s = σ̃U (f)s. Note that,

σ̃U(f) ∈ OX(σ(U)), and s ∈ F(σ(U)), therefore,

f · s = σ̃U(f)s ∈ F(σ(U)) = Fσ(U).
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If V , U are open subset of X with V ⊂ U , and s ∈ Fσ(U), then define the

restriction of s to V by

ρF
σ

V,U(s) = ρFσ(V ),σ(U)(s) ∈ F(σ(V )) = Fσ(V ).

It is easy to check that Fσ is an OX-module.

Let ϕ : F → G be a homomorphism of OX-modules. Define ϕσ : Fσ → Gσ by

ϕσU : Fσ(U) → Gσ(U), ϕσU = ϕσ(U)

for every open subset U of X . If f ∈ OX(U), and s ∈ Fσ(U) then

ϕσU(f · s) = ϕσ(U)

(

σ̃U(f)(s)
)

= σ̃U (f)ϕσ(U)(s),

since ϕσ(U) is an OX(σ(U))-linear. Therefore, ϕσ(f · s) = f · ϕσU(s). It follows

that ϕσ is a homomorphism of OX -modules.

This gives a functor

•σ : OX-mod → OX-mod. (3.1)

Remark 3.1.5 Let
(

(X,OX), (σ, σ̃)
)

be a real ringed space, and F an OX-

module. Then, σ∗(F) = Fσ as an OX -module. Hence, for all x ∈ X , σ∗(F)x =

Fσ
x .

The following are some properties of the functor •σ.

1. For every OX -module F , (Fσ)σ = F .

2. We can rephrase the definition of a real structure on an OX-module using

the functor •σ . Let
(

(X,OX), (σ, σ̃)
)

be a real ringed space. A real structure

on an OX-module F is given by any of the following:

(a) For each open set U of X , an abelian group homomorphism αF
U :

F(U) → F(σ(U)), compatible with restrictions, such that αF
σ(U)◦α

F
U =

1F(U) for all U ⊂ X open, and αF
U (fs) = σ̃U (f)α

F
U (s) for all f ∈ OX(U)

and s ∈ F(U).

(b) An OX -module homomorphism αF : F → Fσ such that (αF)
σ
◦ αF =

1F .
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3. •σ is an exact functor.

This property can be verified directly. Alternatively, recall the following

fact. Let ψ : X → Y be a continuous map of topological spaces. Let F be

a sheaf of sets in X . We will denote by ψ∗(F) the sheaf of direct image of

F by ψ. For all x ∈ X we have a canonical function

ψx : ψ∗(F)ψ(x) → Fx

define as follows. Let θ ∈ ψ∗(F)ψ(x). Let U be an open neighborhood of

ψ(x) in Y , and s ∈ ψ∗(F)(U) such that sψ(x) = θ. Since s ∈ F(ψ−1(U)), s

is also a section of F on the open neighborhood ψ−1(U) of x. It follows from

this definition that ψx(θ) is independent of the choice of (U, s). In general

ψx is neither injective or surjective. But, if ψ : X → Y is a homeomorphism

fromX onto the subspace ψ(X) of Y , then for all x ∈ X the above canonical

map ψx is a bijection. Since σ2 = 1X , σ is a homeomorphism. Thus, for

every OX -module F ,

σx : σ∗(F)σ(x) = Fσ
σ(x) → Fx (3.2)

is a bijection.

Let α : 0 → F
f
→ G

g
→ H → 0 be an exact sequence of OX -modules.

Exactness of the functor •σ follows from the facts that, for every x ∈ X the

diagram

0 // Fσ(x)

fσ(x) // Gσ(x)
gσ(x) // Hσ(x)

// 0

0 // Fσ
x

σσ(x)

OO

f
σ
x

// Gσx
g
σ
x

//

σσ(x)

OO

Hσ
x

σσ(x)

OO

// 0,

commutes, (3.2), and 0 → Fσ(x)

fσ(x)
−→ Gσ(x)

gσ(x)
−→ Hσ(x) → 0 is exact.

Remark 3.1.6 Let
(

(X,OX), (σ, σ̃)
)

be a real ringed space, and let F , G be

OX-modules. Define

ϕ : HomOX
(F ,G)σ −→ HomOX

(Fσ,Gσ)

as follows. Let t ∈ HomOX
(F ,G)σ(U) = HomOX |σ(U)

(F|σ(U),G|σ(U)), U ⊂ X
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open. Then ϕU(t) : F
σ|U → Gσ |U is define by

(

ϕU(t)
)

V
: Fσ(V ) → Gσ(V ),

(

ϕU(t)
)

V
= tσ(V )

for V ⊂ U open. Note that σ(V ) ⊂ σ(U) is open, therefore

tσ(V ) : F(σ(V )) = Fσ(V ) → G(σ(V )) = Gσ(V ).

Then ϕ is an isomorphism of OX -modules. We will identify HomOX
(F ,G)σ with

HomOX
(Fσ,Gσ) by this isomorphism.

Remark 3.1.7 Let
(

(X,OX), (σX , σ̃X)
)

be a real ringed space, and let F , G be

OX-modules. By (3.2) for every x ∈ X , FσX
x (respectively GσXx ) is canonically

isomorphic to Fσ(x) (respectively Gσ(x)), and we can identify (F ⊗OX
G)σX with

FσX ⊗OX
GσX .

Suppose
(

(Y,OY ), (σY , σ̃Y )
)

be a real ringed space, and (ϕ, ϕ̃) : (X,OX) →

(Y,OY ) a real morphism. If F is an OY -module then ϕ−1(FσY ) is canonically

isomorphic to
(

ϕ−1(F)
)σY as an ϕ−1(OY )-module.

3.1.3 The Category OX-modreal

Let
(

(X,OX), (σ, σ̃)
)

be a real ringed space. Let OX -modreal be a category

defined as follows.

Ob(OX -modreal) = real OX -modules

=

{

(F , αF)

∣

∣

∣

∣

∣

F is an OX -module, and

αF is a real structure on F

}

.
(3.3)

If (F , αF), (G, αG) are real OX -modules, then, by definition,

Homreal((F , α
F), (G, αG)) = {ϕ ∈ HomOX

(F ,G) |ϕσ ◦ αF = αG ◦ ϕ}. (3.4)

3.1.4 Real Structures in Associated OX-modules

Let
(

(X,OX), (σ, σ̃)
)

be a real ringed space. If (F , αF) is a real OX -module, then

a subsheaf (G, αG) is called a real subsheaf of (F , αF) if G is a subsheaf of F , and
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i : G → F a real morphism of OX-modules. In this case, αG = αF |G, that is, for

every open subset U of X ,

αF
U

(

G(U)
)

= G
(

σ(U)
)

.

Let G be a subsheaf of a real subsheaf (F , αF). Then (G, αF |G) is a real subsheaf

of (F , αF) if αF
U

(

G(U)
)

= G
(

σ(U)
)

for all open subset U ⊂ X . We denote the

real subseaf (G, αG) of (F , αF) by G, since αG is determined by αF .

Let (F , αF), (G, αG) be real OX-modules. Then αF and αG induce a real

structure on HomOX
(F ,G). Explicitly, define

α : HomOX
(F ,G) −→ HomOX

(F ,G)σ = HomOX
(Fσ,Gσ) (3.5)

as follows. For U ⊂ X open,

αU : HomOX |U (F|U ,G|U) −→ HomOX |U (F
σ|U ,G

σ |U)

is given by

αU(t)V = αG
V ◦ tV ◦ (αF)

σ

V

for V ⊂ U open, t ∈ HomOX |U (F|U ,G|U). Then, it is easy to see that the family

(αU)U∈op(X) is a real structure on HomOX
(F ,G). Hence, (HomOX

(F ,G), α) is a

real OX -module.

Note that, σ̃ : OX → OX is a real structure on OX as an OX -module. If

(F , αF) is a real OX-module, then F∗ = HomOX
(F ,OX) has a canonical real

structure given by (3.5). We will denote it by
(

αF
)∗
. Hence,

(

F∗,
(

αF
)∗)

is a

real OX -module.

Let (F , αF), (G, αG) be real OX -modules, then (F ⊗ G, αF⊗G) is a real OX-

module, where αF⊗G = αF ⊗ αG , that is, for every U ⊂ X open

αF⊗G
U : (F ⊗ G)(U) −→ (F ⊗ G)σ(U)

is such that, for every s ∈ F(U) and t ∈ G(U),

αF⊗G
U (s⊗ t) = αF

U (s)⊗ αG
U(t).

Remark 3.1.8 Let
(

(X,OX), (σX , σ̃X)
)

and
(

(Y,OY ), (σY , σ̃Y )
)

be real ringed
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spaces, and (ϕ, ϕ̃) : (X,OX) → (Y,OY ) a real morphism. If (F , αF) is a real

OY -module, then the pull back

ϕ∗(F) = ϕ−1(F)⊗ϕ−1(OY ) OX

has a real structure induced from αF and (ϕ, ϕ̃). This follows from Remark 3.1.2

and Remark 3.1.7. Indeed, the real structure αϕ
∗(F) is

ϕ−1(αF)⊗ϕ−1(σY ) σ̃X .

Hence, (ϕ∗(F), αϕ
∗(F)) is a real OX -module.

3.2 Real Holomorphic Spaces

In this section we study real ringed spaces whose underlying ringed spaces are

complex spaces. In particular we will study real holomorphic manifolds, real

abelian varieties, and real holomorphic vector bundles over them. At the end

of this section we discuss the relation between real abelian varieties and abelian

varieties over R. More details about this can be found in [Hui92].

Definition 3.2.1 A real holomorphic space is a real ringed space
(

(X,OX), (σ, σ̃)
)

,

where a ringed space (X,OX) is a complex space. A morphism of real holomor-

phic spaces is a morphism of complex spaces which is real (that is, a morphism

of real ringed space, Definition 3.1.1).

Recall that a complex space is a locally ringed space (Section 2.3.5). Since

morphisms of complex spaces are automatically local [GR84, §4, pp. 6-7], the cat-

egory of complex spaces is a full subcategory of Rsp/C. Therefore, the category

of real holomorphic spaces is a full subcategory of (Rsp/C)real.

Let (X,OX) be a complex space. We will denote by mx the unique maximal

ideal of OX,x. Recall that OX,x = C⊕mx, and that for every section s ∈ OX(U),

U ⊂ X open, there exists a unique continuous C-valued function [s] : U → C,

given by [s](x) = cx, where sx = cx + tx, cx ∈ C and tx ∈ mx. Let CX denotes

the sheaf of C-valued continuous functions of X . Then, we get a morphism of

sheaves OX → CX , given for every open U ⊂ X , by setting, OX(U) → CX(U),

s 7→ [s].
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If (X,OX) is reduced complex space, then by Rückert’s Nullstellensatz this

morphism of sheaves is injective, hence one can consider OX as a subsheaf of CX

[Rem94, p. 27, (3.2)]. Therefore, using this canonical morphism, we will identify

sections of OX with C-valued continuous maps.

Remark 3.2.2 If (X,OX) is a reduced complex space, then, for any complex

space (Y,OY ), every morphism

(ϕ, ϕ̃) : (X,OX) −→ (Y,OY )

is determined by the map ϕ : X → Y . In fact, for any open subset V of Y , the

C-algebra homomorphism is given by

ϕ̃V : OY (V ) −→ OX(ϕ
−1(V ))

g 7−→ g ◦ ϕ

[Rem94, §3, 3, p. 28].

3.2.1 Real Holomorphic Manifolds

Remark 3.2.3 Let (X,OX) and (Y,OY ) be complex manifolds. Let

(ϕ, ϕ̃) : (X,OX) → (Y,OY )

be a morphism of complex spaces. Then by Remark 3.2.2, the following are true:

1. The continuous map ϕ is holomorphic, that is, for every holomorphic chart

(V, β) on Y , and for every holomorphic chart (U, α) on X such that ϕ(U) ⊂

V , the map β ◦ ϕ ◦ α−1 : α(U) ⊂ Cm → β(V ) ⊂ Cn is holomorphic.

2. For every open set V ⊂ Y , the C-algebra homomorphism ϕ̃V : OY (V ) →

OX(ϕ
−1(V )) is given by g 7→ g ◦ ϕ.

Remark 3.2.4 Let (X,OX) and (Y,OY ) be complex manifolds, and let ϕ :

X → Y be a continuous map. Then, ϕ is antiholomorphic (that is, for every

holomorphic chart (V, β) on Y , and for every holomorphic chart (U, α) on X

such that ϕ(U) ⊂ V , the map β ◦ ϕ ◦ α−1 : α(U) ⊂ Cm → β(V ) ⊂ Cn is anti-

holomorphic) if and only if for every open set V in Y , and every holomorphic



§3.2. Real Holomorphic Spaces 61

function g : V → C, the function g ◦ ϕ : ϕ−1(V ) → C is holomorphic, that is,

g ◦ ϕ ∈ OX(ϕ
−1(V )).

Proposition 3.2.5 If (X,OX) is a complex manifold, and (σ, σ̃) is a real struc-

ture on (X,OX), then the following are true:

1. The involution σ is antiholomorphic.

2. For any open U ⊂ X, the C-antilinear ring homomorphism σ̃U : OX(U) →

OX(σ(U)) is given by s 7→ s ◦ σ.

In particular the sheaf morphism σ̃ is uniquely determined by the map σ.

Proof. Define σ̃′ : OX → OX by, σ̃′
U (s) = σ̃(s) for U ⊂ X open and s ∈ OX(U).

Then, σ̃′ is a morphism of C-algebras. Indeed, σ̃′
U(as) = σ̃U (as) = āσ̃U (s) =

aσ̃′
U(s), for all a ∈ C and s ∈ OX(U). Hence, (σ, σ̃′) is a morphism of reduced

complex spaces. Therefore, by Remark 3.2.2, σ̃′
U (s) = s◦σ, that is, σ̃U(s) = s ◦ σ.

This proves 2. Moreover, since σ̃U (s) ∈ OX(σ(U)) = OX(σ
−1(U)), by Remark

3.2.4, σ is antiholomorphic. Hence, 1 is true. �

Definition 3.2.6 A real holomorphic space
(

(X,OX), (σ, σ̃)
)

is called a real

holomorphic manifold if the underlying complex space (X,OX) is a complex

manifold. Let C-Mfldreal be the category of real holomorphic manifolds with

real morphisms.

Let C be a category defined by setting,

Ob(C) =

{

(X, σX)

∣

∣

∣

∣

∣

X is a complex manifold with

an antiholomorphic involution σX

}

,

and for (X, σX), (Y, σY ) ∈ Ob(C),

HomC((X, σX), (Y, σY )) = {ϕ : X → Y |ϕ is holomorphic, and σY ◦ ϕ = ϕ ◦ σX}.

Proposition 3.2.7 The Category C defined as above and the category C-Mfldreal

are equivalent.

Proof. By the example in Remark 3.1.3, there is a functor i : C → C-Mfldreal

through the following assignments
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1. Ob(C) → Ob(C-Mfldreal), (X, σX) 7→ ((X,OX), iσX ) and

2. HomC((X, σX), (Y, σY )) → Hom
C-Mfldreal(((X,OX), iσX ), ((Y,OY ), iσY )),

ϕ 7→ iϕ.

Define a functor G : C-Mfldreal → C by defining

Ob(C-Mfldreal) → Ob(C), ((X,OX), (σX , σ̃X)) 7→ (X, σX)

and

Hom
C-Mfldreal(((X,OX), (σX , σ̃X)), ((Y,OY ), (σY , σ̃Y ))) → HomC((X, σX), (Y, σY )),

(ϕ, ϕ̃) : (X,OX) → (Y,OY ) 7→ ϕ : X → Y.

Note that by (1) of Proposition 3.2.5, σX is antiholomorphic involution, hence,

(X, σX) is in C. And by (1) of Definition 3.1.1, σY ◦ ϕ = ϕ ◦ σX , hence ϕ ∈

HomC((X, σX), (Y, σY )). This shows that the functor G is welldefined. It is clear

from definitions of i and G that G ◦ i = 1C. Now by Proposition 3.2.5, the real

structure (σ, σ̃) on
(

(X,OX), (σ, σ̃)
)

, is iσ . And by Remark 3.2.2, the real mor-

phism (ϕ, ϕ̃) : (X,OX) → (Y,OY ) is iϕ. This implies that i ◦ G = 1
C-Mfldreal . It

follows that C and C-Mfldreal are equivalent categories. �

By the above proposition, we can identify a real holomorphic manifold to

a complex manifold together with an antiholomorphic involution. Hence now

onwards we will denote real holomorphic manifold by (X, σX), where X is a

complex manifold and σX is an antiholomorphic involution on X .

A real vector bundle over a real complex manifold (X, σ) is called a real

holomorphic vector bundle.

Remark 3.2.8 Let (F , αF) be a real holomorphic vector bundle over a real

holomorphic manifold (X, σ). Then, αF induces an antiholomorphic involu-

tion αE on the total space E of F . Moreover, αE(E(x)) ⊂ E(σ(x)), and

αE : E(x) → E(σ(x)) is C-antilinear (where E(y) denotes the fibre of the vector

bundle E over y for any y ∈ X). The map αE is defined as follows. Let e ∈ E,

and let x = π(e), where π : E → X denotes the bundle projection. Then, there

exist an open neighborhood U of x in X , and a section s ∈ Γ(U,F) such that

s(x) = e. Define αE(e) =
(

αF
U (s)

)

(σ(x)). Then, αE(e) is independent of the
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choice of s. As e varies over E, the αE(e) defines the above map αE : E → E.

Using local holomorphic frames of E, one can check that αE is antiholomorphic,

and has the required properties.

3.2.2 Real Abelian Varieties

A real abelian variety is a real holomorphic manifold (X, σ), where the underlying

complex manifold is an abelian variety, and the antiholomorphic involution σ is

compatible with the group operation, that is,

σ(x+ y) = σ(x) + σ(y) for all x, y ∈ X.

A real morphisms of real abelian varieties are just real morphisms of underlying

real holomorphic manifolds. We will denote by Abreal the full subcategory of

C-Mfldreal consisting of real abelian varieties.

The set of fixed points of σ, that is the set

{x ∈ X | σ(x) = x},

is denoted by R(X), and is called the set of real points of X . For any point

x ∈ X , let τx : X → X , y 7→ y + x be the translation of X by x. If x ∈ R(X),

then τx is a real morphism, since

σ ◦ τx(y) = σ(y + x) = σ(x) + σ(y) = x+ σ(y) = τx ◦ σ(y).

Recall that a vector bundle over an abelian variety is called homogeneous if it

is invariant under all translations.

Definition 3.2.9 Let (E, αE) be a real vector bundle over a real abelian variety

(X, σ). If for all x ∈ R(X), (τ ∗x(E), α
τ∗x (E)) is isomorphic to (E, αE) in the

category of OX-modreal, then (E, αE) is said to be real homogeneous.

Note that, since τx and E are real, (τ ∗x(E), α
τ∗x (E)) is real (Remark 3.1.8).

3.2.3 Abelian Varieties over R

Recall that an algebraic variety over a field K is a geometrically reduced, sepa-

rated scheme over K, which is of finite type over K. Let L/K be a finite Galois
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extension with the Galois group G. Suppose Y is an algebraic variety over L,

and G acts on Y , that is, for very g ∈ G, we are given a morphism of schemes,

ψg : Y → Y , such that ψ1 = 1Y and ψg ◦ ψh = ψgh for g, h ∈ G. Such an action

is called a descent datum for Y with respect to the field extension L/K if the

diagram

Y
ψg //

��

Y

��
Spec(L)

Spec(g−1) // Spec(L)

commutes for every g ∈ G.

If X is an algebraic variety over K, then X(L) = X ×Spec(K) Spec(L) is an

algebraic variety over L. Moreover {1×Spec(K) Spec(g
−1)}g∈G is a descent datum

for X(L).

Remark 3.2.10 Let L = C and K = R in the previous paragraph. Note that

the Galois group of C/R is {1, c}, where c : C → C denotes the conjugation.

Let (Y, (σ, σ̃)) be a real ringed space, with Y an algebraic variety over C. Let

ψσ = (σ, σ̃). Since (σ, σ̃) is a real structure, {ψ1 = 1Y , ψσ} is a descent datum

for Y .

Moreover, if Y is quasi-projective then there exists a unique (up to R-iso-

morphism) algebraic variety X over R such that X(C) and Y are real isomorphic

[Hui92, Theorem 22, p. 25].

Remark 3.2.11 For an algebraic variety Y over C, we will denote by Y (C)

the set of C-rational points of Y (since C is algebraically closed field, these are

precisely the closed points). Recall that, if Y is an abelian variety over C, then

Y (C) is a compact connected complex Lie group. If (σ, σ̃) is a real structure on

Y , then it gives an antiholomorphic involution on Y (C).

Recall that an abelian variety over K is a complete algebraic group over K,

for any field K.

Let Ab/R denotes the category of abelian varieties over R. Let X be an

abelian variety over R. Then, (X(C), 1 ×Spec(R) Spec(σ)) will be a real ringed

space with X(C) an abelian variety over C. By Remark 3.2.11, X(C)(C) = X(C)

[Liu2002, 3.2.3, Proposition 2.18 (a), p. 92] is a complex abelian variety, with

involution σX induced from (σ, σ̃). Hence, (X(C), σX) is a real abelian variety.

Thus, we get a functor from the categoryAb/R to the categoryAbreal. On other
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hand, if (X, σX) is a real abelian variety, then there exist Y an abelian variety

over C, and a real structure (σ, σ̃) on Y induced from σX . By Remark 3.2.10,

there exist an abelian variety X ′ over R, such that X ′
(C) real isomorphic to Y .

Define a functor Abreal → Ab/R by X 7→ X ′. This will give an equivalence of

categories between Abreal and Ab/R.

For more detail see [Hui92, Chapter 2, §2.3 and §2.4].

3.3 Real Connections

In this section we discuss the concept of real connections over real holomorphic

manifolds. Subsection 3.3.2 and 3.3.3 discusses the relation between real C∞

and real holomorphic connections. Subsection 3.3.4 is about real holomorphic

connections in a real vector bundle over a real abelian variety. We will show

that, if a real holomorphic vector bundle over a real abelian variety admits a real

holomorphic connection, then it is real homogeneous.

3.3.1 Preliminaries

Let (X, σ) be a real holomorphic manifold. We will denote by OX the sheaf of

holomorphic functions on X . The sheaf of C∞ complex valued functions on the

underlying C∞-manifold X is denoted by C∞
X .

For any holomorphic (respectively C∞
X ) vector bundle E over X , we will denote

the sheaf of holomorphic (respectively C∞) sections of E over X by the same

symbol E. In particular, for any open subset U of X , E(U) will stand for the

OX(U)-module (respectively C∞
X (U)-module) of holomorphic (respectively C∞)

sections of E on U . If x ∈ X , then Ex will denote the stalk of a sheaf E at x, and

E(x) will denote the fibre of E at x, that is, E(x) = Ex/mxEx, where mx denotes

the maximal ideal in the local ring OX,x (respectively C∞
X,x) (so mx consists of

germs of functions vanishing at x). For any open neighborhood U of x, and for

any section s ∈ E(U), sx ∈ Ex denotes the germ of s at x, while s(x) ∈ E(x)

denotes the value of s at x, that is, the image of sx in E(x) under the canonical

projection Ex → E(x).

The sheaf of C∞ p-forms with values in E is denoted by Ap(E). We denote by

ΩpX the sheaf of holomorphic p-forms. We will denote the sheaf of holomorphic

p-forms with values in E by ΩpX(E).
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Let E be a holomorphic vector bundle over X . A real structure αE on E

we means a real structure on the sheaf of holomorphic sections of E. A real

holomorphic vector bundle (E, αE) we means E is a sheaf of holomorphic sections

of E, and αE is a real structure on E. We will denote by the same symbol αE the

induced antiholomorphic involution on the total space induced by αE (Remark

3.2.8). In fact for x ∈ X , αEx : E(x) → E(σ(x)) is given by

αEx (e) = αEx

(

r
∑

i=1

aisi(x)
)

=
r
∑

i=1

ai
(

αEU (si)
)(

σ(x)
)

, (3.6)

where {si}
r
i=1 is any local holomorphic frame in an open neighborhood U of x,

and e =
∑r

i=1 aisi(x), for some ai ∈ C, i = 1 . . . r .

Remark 3.3.1 Let (E, αE) be a real holomorphic manifold over a real manifold

(X, σ). If s = {s1, . . . , sr} is a holomorphic frame of E on U , then αE(s) =

{αEU (s1), . . . , α
E
U (sr)} is a holomorphic frame of E on σ(U). Also αE(s) is holo-

morphic frame of Eσ on U .

Remark 3.3.2 The involution σ induces a real structure on C∞
X . For U ⊂ X

open,

τ̃U : C∞
X (U) → C∞

X (σ(U))

is given by, τ̃U(f) = f ◦ σ. It is easy to see that
(

(X, C∞
X ), (σ, τ̃)

)

is a real ringed

space. By abuse of notation, we also write the real structure (σ, τ̃) on (X, C∞
X )

by (σ, σ̃).

Remark 3.3.3 Let (E, αE) be a real holomorphic vector bundle over (X, σ).

Then, αE induces a real structure on the underlying C∞ vector bundle of E. Let

U ⊂ X be open. Define αU : A0
U(E) → A0

σ(U)(E) as follows. Let s ∈ A0
U(E), and

x ∈ U . We must define αU(s)(σ(x)) ∈ E(σ(x)). Let (si)
r
i=1 be a holomorphic

frame of E on an open neighborhood V of x in U . Write s|V =
∑r

j=1 fjsj, where

fj : V → C (1 ≤ j ≤ r) are C∞ functions. Define

(

αU(s)
)

(σ(x)) =
r
∑

j=1

fj(x)α
E
V (sj)(σ(x)).

One checks that the above definition is independent of the choice of the frame

(si), and gives a welldefined map αU : A0
U(E) → A0

σ(U)(E). As U varies over all
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open subsets of E, the αU define a C∞ real structure α on E, so (E, α) is a real

C∞
X -module. We will denote α by αE.

Let TX be the tangent R-bundle of the underlying C∞-manifold X of rank 2n.

We will denote by TXC the C-vector bundle TX ⊗R C. We will denote by

T X (respectively T ∗X) the holomorphic tangent bundle (respectively cotangent

bundle) of X . The real structure (σ, σ̃) induces a canonical real structure of T X ,

as follows. Define, dσ(X)(f) = X(f ◦ σ)◦σ, forX ∈ T X(U), and f ∈ OX(σ(U)),

U open inX . It is easy to verify that dσ(X) is a holomorphic vector field on σ(U),

and dσ is a real structure on T X . Similarly TXC also admits a real structure

(we denote it also by dσ), hence (TXC, dσ) is a real C∞
X -module. By Subsection

3.1.4, T ∗X is real. Also, Ap, Ap(E) and ΩpX , Ω
p
X(E) admits real structures. We

will denote by dσ real structures on Ap, ΩpX , and α
E will denote real structures

on Ap(E), ΩpX(E). Hence, (A
p, dσ), (Ap(E), αE) are real C∞

X -modules. Similarly,

(ΩpX , dσ), (Ω
p
X(E), α

E) are real OX -modules.

Remark 3.3.4 Let (X, σ) be a real holomorphic manifold. Let (U, z1, . . . , zn)

be a holomorphic chart on X , where zi = xi + ιyi (i = 1, . . . , n). Then,

(σ(U), z1
σ , . . . , zn

σ), where zi
σ = xi ◦ σ − ιyi ◦ σ will be a holomorphic chart.

Recall that, { ∂
∂zi

}ni=1 (respectively, { ∂
∂ziσ

}ni=1) will be a frame field on U (respec-

tively σ(U)) for T X , where the operator ∂
∂zi

(respectively, ∂
∂ziσ

) is defined by
∂
∂zi

= 1
2

(

∂
∂xi

− ι ∂
∂yi

)

(respectively, ∂
∂ziσ

= 1
2

(

∂
∂xi◦σ

+ ι ∂
∂yi◦σ

)

), for i = 1, . . . , n. Sim-

ilarly, {dzi}
n
i=1 (respectively, {dzi

σ}ni=1) will be a frame field on U (respectively

σ(U)) for T ∗X , where dzi = dxi+ιdyi. Then it is easy to see that, dσ( ∂
∂zi

) = ∂
∂ziσ

,

and dσ(dzi) = dzi
σ . Moreover, if f(z1, . . . , zn) ∈ C∞

X (U) then d(σ̃(f)) = dσ(df).

Indeed, since df =
∑n

i=1
∂f

∂zi
dzi+

∑n
i=1

∂f

∂z̄i
dz̄i, and result follows from the relations

∂f◦σ
∂z

σ
i

= ∂f

∂zi
◦ σ and ∂f◦σ

∂z̄
σ
i

= ∂f

∂z̄i
◦ σ. This also shows that dσ(Ap,q) = Ap,q, and

αE(Ap,q(E)) = Ap,q(E).

Remark 3.3.5 If (E, αE) is a real holomorphic vector bundle, then

αE ◦ ∂̄E = (∂̄E)
σ
◦ αE = ∂̄Eσ ◦ αE. (3.7)

Indeed, let U ⊂ X be an open subset of X , and s ∈ A0(U). Since the problem

is local, assume that, there exists a holomorphic frame {s1, . . . , sr} of E over U .
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Let s =
∑r

i=1 aisi, where ai : U → C are C∞ functions, i = 1, . . . r. Then,

αEU ◦
(

∂̄E
)

U
(s) = αEU

(

r
∑

i=1

∂̄U (ai)si

)

=

r
∑

i=1

dσ(∂̄U (ai))α
E
U (si)

=
r
∑

i=1

∂̄σ(U)(σ̃(ai))α
E
U (si) =

(

∂̄E
)

σ(U)
(αEU (s)) = (∂̄E)

σ

U ◦ αEU (s).

And we have,

(

∂̄Eσ

)

U
◦ αEU (s) =

(

∂̄Eσ

)

U

(

r
∑

i=1

ai · α
E
U (si)

)

=

r
∑

i=1

∂̄U (ai) · α
E
U (si)

=
r
∑

i=1

dσ(∂̄U (ai))α
E
U (si) = αEU ◦

(

∂̄E
)

U
(s).

(Remark 3.3.1 and 3.3.4 give equalities in the above equations.)

Remark 3.3.6 For any C∞ vector bundle E over X , we can identify
(

Ap(E)
)σ

with Ap(Eσ), for all p ≥ 0, by the following isomorphism. For an open subset U

of X

ϕ :
(

Ap(E)
)σ
(U) −→

(

Ap(Eσ)
)

(U)

is such that, for w ∈ Ap
(

σ(U)
)

, and s ∈ E(σ(U)), ϕ(w ⊗ s) = (w ◦ σ) ⊗ s.

(Note that s ∈ E
(

σ(U)
)

= Eσ(U), therefore, (w ◦ σ) ⊗ s ∈ Ap(U) ⊗ Eσ(U) ⊂
(

Ap(Eσ)
)

(U).) Similarly, we identify (ΩpX(E))
σ
with ΩpX(E

σ).

3.3.2 C∞ and Holomorphic Connections

Let X be a complex manifold.

Let P be a C∞ complex vector bundle of rank r over X . Recall that, a C∞

connection ∇ in P is a C-linear sheaf morphism,

∇ : A0(P ) −→ A1(P )

which satisfies the Leibnitz identity, ∇(fs) = f∇(s)+df ·s, for f ∈ A0, s ∈ A0(P ).

We extend a C∞ connection ∇ to ∇ : Ap(E) → Ap+1(E) using the Leibnitz rule.

Let E be a holomorphic vector bundle over X . A holomorphic connection D
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in E is a C-linear sheaf morphism,

D : Ω0
X(E) −→ Ω1

X(E)

which satisfies the Leibnitz identity, D(fs) = fD(s) + df · s, for f ∈ Ω0
X , s ∈

Ω0
X(E). Similar to C∞ connections, we extend a holomorphic connection D :

Ω0
X(E) → Ω1

X(E) to D : ΩpX(E) → Ωp+1
X (E) using the Leibnitz rule. (Note that,

since f is holomorphic df = ∂f .)

Remark 3.3.7 Let E be a holomorphic vector bundle, and D a holomorphic

connection in E. We can extend D to D̃ : Ap,q(E) → Ap+1,q(E) by setting

D̃(s)(x) =
∑

(

∂ai · si)
(

x) + (−1)p+r
∑

(

ai ·D(si)
)

(x) (s ∈ Ar(E))

where s|U =
∑

ai · si in some open neighborhood U of x, {s1, . . . , sr} a local

holomorphic frame of E on U , and ai ∈ Ap,q(U). Note that, if s is holomorphic

then ai is holomorphic for all i = 1, . . . r, hence ∂ai = dai. Therefore, for s ∈

ΩpX(E), D̃(s) = D(s).

If D is a flat, then D̃2 = 0 : A0(E) → A2,0(E). Let s ∈ A0(E). Since problem

is local we can assume s =
∑

aisi, where {s1, . . . , sr} is a holomorphic frame

of E, and ai (i = 1, . . . , r) are C∞ functions. Then, D̃2(s) = D
(
∑

∂(ai)si +
∑

aiD(si)
)

=
∑

∂2(ai)si −
∑

∂(ai)D(si) +
∑

∂(ai)D(si) +
∑

aiD
2(si) = 0.

We denote D̃ also by D.

Remark 3.3.8 Let E be a holomorphic manifold over X , with a holomorphic

connection D in E. Let P be the underlying C∞ complex manifold of E. Define

∇ : A0(P ) −→ A1(P )

as follows. Let U be an open subset of X , and s ∈ A0
U(P ). For x ∈ U there

exist an open neighborhood V ⊂ U of x, and a holomorphic frame {s1, . . . , sr}

of E over V such that s|V =
∑r

i=1 fisi for C
∞ functions fi : V → C, i = 1, . . . , r.

Define

∇(s)(x) = (df ⊗ s)(x) +
(

fiD(si)
)

(x).

To check ∇ is independent of a holomorphic frame chosen, let {t1, . . . , tr} be

another holomorphic frame over V , and s|V =
∑r

i=1 giti, for some C∞ functions
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gi : V → C, i = 1, . . . , r. We must show that

(dg ⊗ t)(x) +
(

giD(ti)
)

(x) = (df ⊗ s)(x) +
(

fiD(si)
)

(x).

Since {s1, . . . , sr} and {t1, . . . , tr} are local holomorphic frames there exist a

holomorphic transition functions aij : V → GLr(C) such that sj =
∑r

i=1 aijti,

i, j = 1, . . . , r. Now the require equality follows from gi =
∑r

k=1 fkaki and

D

(

r
∑

k=1

akitk

)

=

r
∑

k=1

dakitk +

r
∑

k=1

akiD(tk)

(second equality is due to aki are holomorphic for all i, k and by Leibnitz identity).

Hence, ∇ is welldefined. It is clear that ∇ is a C∞ connection in P .

Let s =
∑

aisi ∈ A0(E), where {s1, . . . , sr} be a local holomorphic frame of

E, and ai be C
∞ functions for i = 1, . . . , r. Then, ∇(s) =

∑

daisi+
∑

aiD(si) =
(
∑

∂(ai)si +
∑

aiD(si)
)

+
∑

∂̄(ai)si = D(s) + ∂̄E(s), by Remark 3.3.7. Hence,

∇ = D + ∂̄E . Comparing bidegrees we get ∇1,0 = D.

Remark 3.3.9 Giving a pair (E,D) where E is a holomorphic vector bundle,

and D is a flat holomorphic connection is equivalent to giving a pair (P,∇),

where P is a C∞ complex vector bundle, and ∇ : A0(P ) → A1(P ) is a flat C∞

connection.

Let (E,D) be as given. Let (P,∇) be as given in Remark 3.3.8. We have to

just check that if D is flat so is ∇. Since ∇2 is C∞-linear to show it vanishes it is

enough to show that for any holomorphic section s, ∇2(s) = 0. Consider

∇2(s) = (D + ∂̄E)
2(s) = (D2 + ∂̄ED +D∂̄E + ∂̄2E)(s) = (∂̄ED +D∂̄E)(s)

(by Remark 3.3.7 D2 = 0). Since s is holomorphic ∂̄E(s) = 0, also D(s) ∈ Ω1
X(E),

hence ∂̄E(D(s)) = 0. Thus, ∇2 = 0.

Conversely, let (P,∇) as given. Since ∇ is flat,

0 = ∇2 = (∇1,0 +∇0,1)2 = (∇1,0)2 + (∇1,0∇0,1 +∇0,1∇1,0) + (∇0,1)2.

By comparing bidegrees we get, (∇1,0)2 = 0, ∇1,0∇0,1 + ∇0,1∇1,0 = 0, and

(∇0,1)2 = 0. By integrability, there exists a unique structure of a holomorphic

vector bundle E on P such that ∂̄E = ∇0,1 [Kob87, Chapter I, Proposition 3.7,
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p. 9]. Define, D : Ω0
X(E) → Ω1

x(E) by D(s) = ∇1,0(s), for holomorphic section s

of E. Since s is holomorphic we get

∂̄E
(

D(s)
)

= ∇0,1∇1,0(s) = −∇1,0∇0,1(s) = −∇1,0∂̄E(s) = 0.

Therefore, D(s) is holomorphic, that is, D(s) ∈ Ω1
X(E). Moreover, D is clearly

C-linear, and satisfies Leibnitz identity. Hence D is a holomorphic connection,

and D is flat since D2 = (∇1,0)2 = 0.

The following proposition is immediate consequence of the above remark.

Proposition 3.3.10 Let E be a holomorphic vector bundle over a complex man-

ifold X. Giving a flat holomorphic connection D is equivalent to giving a flat C∞

connection ∇ in the underlying C∞ vector bundle of E such that ∇0,1 = ∂̄E.

3.3.3 Real Connections

Let (X, σ) be a real holomorphic manifold.

Let P be a real C∞ vector bundle over X , and let ∇ be a C∞ connection in

P . Define

∇σ : P σ −→ A1(P σ) =
(

A1(P )
)σ

(Remark 3.3.6) by ∇σ
U(s) = ∇σ(U)(s) for an open subset U of X , and s ∈ P σ(U).

Let a ∈ C and s ∈ P σ(U) then ∇σ
U(a · s) = ∇σ(U)(ās) = ā∇σ(U)(s) = a ·∇σ(U)(s).

Therefore, ∇σ is C-linear. For f ∈ A0
U and s ∈ P σ(U),

∇σ
U(f · s) = ∇σ(U)

(

σ̃U(f)s
)

= d
(

σ̃U(f)
)

⊗ s + σ̃U(f)∇σ(U)(s).

By Remark 3.3.4, d
(

σ̃U (f)
)

= d(f ◦ σ) = dσ(df), that is, d
(

σ̃U(f)
)

⊗ s = df · s

(under the identification made in Remark 3.3.6). Thus, we get ∇σ
U(f · s) =

df · s+ f · ∇σs. Hence, ∇σ is a C∞ connection in P σ.

Definition 3.3.11 Let ∇ be a C∞ connection in a real C∞ vector bundle (P, αP ).

Then, ∇ is called real if the diagram

A0(P )
∇ //

αP

��

A1(P )

αP

��
A0(P σ)

∇σ
// A1(P σ).
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commutes.

Similarly, let E be a real holomorphic vector bundle over X , and let D be a

holomorphic connection in E. Define, Dσ : Eσ → Ω1
X(E)

σ
by Dσ(s) = Dσ(U)(s)

for U open subset of X , and s ∈ Eσ(U). Similar to ∇σ , Dσ is also a holomorphic

connection in Eσ . A holomorphic connection D is called a real holomorphic

connection in (E, αE) if αE ◦D = Dσ ◦ αE .

Remark 3.3.12 Let s = {s1, . . . , sr} be a local frame for E over U . Let αEU (s) =

{αEU (s1), . . . , α
E
U (sr)}. Then, recall that α

E
U (s) is a local frame for Eσ over U , and

it is a local frame for E over σ(U). Let ω = (wij) be the connection matrix of D

with respect to s, and let θ = (θij) be the connection matrix of D with respect

to αEU (s). Then, θ
σ = (σ̃U(θij)) is the connection matrix of Dσ with respect to s.

Now if D is real it is easy to see that dσU(θij) = θij ◦ σ = wij for all i, j = 1, . . . , r,

and conversely.

Proposition 3.3.13 Let (E, αE) be a real holomorphic vector bundle over a

real holomorphic manifold (X, σ). Giving a real flat holomorphic connection in

(E, αE) is equivalent to giving a real flat C∞ connection ∇ in the real C∞
X -module

(E, αE) such that ∇0,1 = ∂̄E.

Proof. By Proposition 3.3.10 it remains to prove that if D is a real holomorphic

connection then ∇ = D + ∂̄E is also real and conversely. Consider,

αE ◦ ∇ = αE(D + ∂̄E) = αE(D) + αE(∂̄E).

Since, D is real Dσ ◦ αE = αE ◦D, and by Remark 3.3.5,
(

∂̄E
)σ

◦ αE = αE ◦ ∂̄E .

Hence, ∇σ ◦ αE = αE ◦ ∇. On the other hand if ∇ is real then

(Dσ + (∂̄E)
σ
) ◦ αE = αE ◦ (D + ∂̄E) = αE ◦D + αE ◦ ∂̄E

By Remark 3.3.4, dσ(Ap,q) = Ap,q, hence comparing bidegrees, we get Dσ ◦αE =

αE ◦D. �

3.3.4 Real Connections and Real Homogeneous Bundles

By abuse of notation we will denote by π the corresponding projections for all

vector bundles.
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Remark 3.3.14 Let X be a complex manifold. Let E be a holomorphic vector

bundle over X , and D a holomorphic connection in E. Let (x, e) ∈ X × E be

such that e ∈ E(x). Let w : C → X be a holomorphic map such that w(0) = x.

Then, we get the commutative diagram

w∗(E)
w∗

//

π

��

E

π

��
C w

// X,

where the holomorphic vector bundle w∗(E) is the pull back of E by w over C.

Since D is a holomorphic connection, w∗D is also a holomorphic connection in

w∗(E). Moreover, since the complex manifold C is 1-dimensional, w∗D is a flat

connection. Therefore, there exists a unique holomorphic section

s : C −→ w∗(E) (3.8)

such that (w∗D)(s) = 0 and s(0) = (0, e). Let w̃e = w∗ ◦ s : C → E. Then, w̃e is

called the horizontal lift of w with respect to D such that w̃(0) = e.

Remark 3.3.15 Let (X, σ) be a real holomorphic manifold, and let (E, αE) be

a real holomorphic vector bundle over X . Furthermore assume that E admits a

holomorphic connection D. For every pair, (x, e) ∈ X ×E we will denote by CXx
the set

{w : C → X |w is a holomorphic map, and w(0) = x}

and CEe the set

{w : C → E |w is a holomorphic map, and w(0) = e}.

By Remark 3.3.14, for every pair (x, e) such that π(e) = x, we get a function

•̃ : CXx → CEe , w 7→ w̃e. Since X has a real structure, we get a canonical map

•σ : CXx → CXσ(x) given by w 7→ σ ◦w ◦c, where c : C → C denotes the conjugation

morphism, c(z) = z̄. Similarly there exist a map •σ : CEe → CE
αE(e), w 7→ αE ◦w◦c,

where αE denotes the antiholomorphic involution on the total space of E, induced
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by the real structure αE (3.6). Thus, we get the diagram

CXx
•σ //

•̃

��

CXσ(x)

•̃
��

CEe •σ
// CE
αE(e).

If moreover D is a real connection, then the above diagram commutes, that is,

for every w ∈ CXx ,

(̃wσ)αE(e) = αE ◦ w̃e ◦ c. (3.9)

Let sw (respectively swσ ) be the unique section of a vector bundle w∗(E) (re-

spectively (wσ)∗(E) such that w∗D(sw) = 0 (respectively (wσ)∗D(swσ) = 0, and

sw(0) = (0, e) (respectively swσ (0) = (0, αE(e))), see (3.8). Note that, (w∗(E))σ =

(wσ)∗(E). Define, (sw)
σ = αw

∗(E) ◦ sw ◦ c : C → (w∗(E))σ = (wσ)∗(E), the sec-

tion of the vector bundle (wσ)∗(E). If D is real, then (sw)
σ is swσ . Now (3.9)

follows from the facts that αE ◦w∗ = (wσ)∗ ◦αw
∗(E), and the horizontal lift of wσ

is unique.

Lemma 3.3.16 Let (X, σ) be a real abelian variety. Let V denotes the Lie alge-

bra of X. Then for all x ∈ R(X), there exists A ∈ V such that dσ(A) = A, and

expA = x.

Proof. Since V is the Lie algebra of X , exp : V → X is a surjective holomorphic

homomorphism of groups [Mum2008, Chapter I, p. 2, (2)]. Now X is divisible

[Mum2008, Chapter I, p. 2, (3)], therefore there exists x′ ∈ X such that 2x′ =

x. Then, x′ ∈ R(X) since x ∈ R(X). By the surjectivity of exp map, there

exists v ∈ V such that exp(v) = x′. Let A = v + dσ(v). Then exp(A) =

exp(v + dσ(v)) = exp(v) + exp ◦dσ(v). Note that σ is a homomorphism of X ,

hence exp ◦dσ = σ ◦ exp [Bou75, Chapter III, p. 312, Proposition 10]. Therefore,

exp(A) = x′ + σ(x′) = 2x′ = x. Also, by definition of A, dσ(A) = A. �

Definition 3.3.17 Let (X, σ) be a real abelian variety. Let x ∈ R(X). Then,

by Lemma 3.3.16, there exists A ∈ V such that expA = x, and dσ(A) = A. For

every y ∈ X , define

wy : C → X, t 7→ y + exp tA. (3.10)

Then wy is a holomorphic map such that wy(0) = y (since exp is a Z-homomorphism,

exp(0) = 0), and wy(1) = y + x = τx(y).
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Remark 3.3.18 (Notations as in the above definition.) By the definition of wy,

(wy)
σ = σ ◦ wy ◦ c = wσ(y). Indeed, (wy)

σ(t) = σ(wy(t̄)) = σ(y + exp(t̄A)).

Since, σ ◦ exp = exp ◦dσ, and dσ is conjugate linear, we get (wy)
σ(t) = σ(y) +

exp(tdσ(A)). But dσ(A) = A, hence

wy
σ = wσ(y). (3.11)

Also, for t ∈ C, and y ∈ X , wy(t+1) = y+exp((t+1)A) = y+exp(tA)+exp(A) =

x+ y + exp(tA) = wx+y(t), hence

wx+y(t) = wy(t + 1). (3.12)

Definition 3.3.19 Let (X, σ) be a real abelian variety. Let E be a vector bundle

over X , and let D be a holomorphic connection in E. Let (y, e) ∈ X×E be such

that e ∈ E(y). We denote by w̃(y,e) the horizontal lift of wy by D such that

w̃(y,e)(0) = e (wy as defined in (3.10)).

Proposition 3.3.20 Let (X, σ) be a real abelian variety, and (E, αE) a real vec-

tor bundle over X. If (E, αE) admits a real holomorphic connection, then (E, αE)

is a real homogeneous vector bundle.

Proof. Let x ∈ R(X), real point of X . Then we have to show that τ ∗x(E)
∼= E

in the category OX -modreal.

Define, ϕ̃ : E → τ ∗(E), ϕ̃(e) = (y, w̃(y,e)(1)), where π(e) = y, and wy, w̃(y,e)

are as defined in Definition 3.3.17 and 3.3.19. Then ϕ̃ is holomorphic, since the

holomorphic lift of w̃(y,e) is given by the solution of a system of a holomorphic

ordinary differential equations with initial conditions given by y and e. Define,

ψ̃ : τ ∗x(E) → E by ψ̃(y, e) = w̃(x+y,e)(−1) (note that, since (y, e) ∈ τ ∗(E),

π(e) = x+ y). Then, ψ̃ is also holomorphic by the same reasoning as above.

We claim that ϕ̃ and ψ̃ are inverses of each other. Let e ∈ E(y), then

ψ̃ ◦ ϕ̃(e) = ψ̃(y, w̃(y,e)(1)) = w̃(x+y,e′)(−1),

where e′ = w̃(y,e)(1). Note that w̃(y,e) ◦ f is the horizontal lift of wx+y by D such

that at 0 it is equal to e′, where f : C → C is f(z) = z + 1. This follows from

e′ = w̃(y,e)(1), and by (3.12). Hence, by the uniqueness of the horizontal lift we

get, w̃(x+y,e′)(−1) = w̃(y,e)(−1 + 1) = w̃(y,e)(0) = e. Hence, ψ̃ ◦ ϕ̃ = 1E . Similarly,
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ϕ̃ ◦ ψ̃ = 1τ∗x (E). Hence, τ
∗
x(E) is isomorphic to E as an OX-module. So it remains

to prove that ϕ̃ and ψ̃ are real morphisms.

Since D is real, by Remark (3.9) we have (̃wy)
σ

αE(e) =
(

w̃(y,e)

)σ
. But (wy)

σ =

wσ(y). Therefore, we get

w̃(σ(y),αE(e)) = αE ◦ w̃(y,e) ◦ c. (3.13)

In particular, for z = 1 we get,

w̃(σ(y),αE (e))(1) = αE ◦ w̃(y,e)(1). (3.14)

To prove that ϕ̃ is real we have to check that, ατ
∗
x (E) ◦ ϕ̃ = ϕ̃σ ◦ αE. It is

enough to check the equality on each fibre, that is, for y ∈ X , and e ∈ E we have

to check ατ
∗
x (E) ◦ ϕ̃(e) = ϕ̃◦αE(e). Consider, ατ

∗
x (E) ◦ ϕ̃(e) = ατ

∗
x (E)

(

y, w̃(y,e)(1)
)

=

(σ(y), αE ◦ w̃(y,e)(1)). By (3.14), we get ατ
∗
x (E) ◦ ϕ̃(e) =

(

σ(y), w̃(σ(y),αE(e))(1)
)

=

ϕ̃(αE(e)) = ϕ̃ ◦ αE(e). (Since ϕ̃ is defined on the total space of E, ϕ̃σ means ϕ̃

at the fiber σ(y).) Hence, ϕ̃ is real. Similarly by substituting z = −1 in (3.13)

we can show that ψ̃ is real.

Therefore, τ ∗x(E)
∼= E in the category OX-modreal for all x ∈ R(X). �

3.4 Real Homogeneous Vector Bundles over a

Real Abelian Variety

In this section we will prove the main theorem of this chapter. In subsections

3.4.1, 3.4.2 we develops real analogues of Hermitian structures, Kähler metrics

etc. Subsection 3.4.3 is about real stability. In the last subsection we prove the

main theorem.

3.4.1 Real Hermitian Structures

Let (X, σ) be a real holomorphic manifold. Recall that σ induces a real structure

on the underlying C∞ manifold of E, which we denote by the same symbol σ̃.

Let (E, αE) be a real C∞
X vector bundle over X . By Subsection 3.1.4, (E∗ ⊗

Ē∗, α) is a real C∞
X real vector bundle, where α is a real structure induced by αE

on E∗ ⊗ Ē∗, α = αE
∗

⊗ αĒ
∗

.
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Definition 3.4.1 A real Hermitian structure or a real Hermitian metric h in a

real C∞
X vector bundle E is a C∞ Hermitian metric h in E which is a real section

of E∗ ⊗ Ē∗.

Note that for a real C∞
X or real holomorphic vector bundle (E, αE) over (X, σ),

a section s ∈ Γ(X,E) is real if αE(s) = s ◦ σ.

Let h be a real Hermitian metric in (E, αE). Let s = {s1, . . . , sr} be a local

frame field of E on U . Then

hU(si, sj) = hσ(U)

(

αE(si), αE(sj)
)

.

If αE is the antiholomorphic involution on the total space of E corresponding to

αE, then for every x ∈ X and ξ, η ∈ E(x), hx(ξ, η) = hσ(x)
(

αE(ξ), αE(η)
)

.

Remark 3.4.2 Let h be a Hermitian metric in a real C∞
X vector bundle (E, αE).

Define hreal by hreal(ξ, ζ) = hU (ξ, ζ)+hσ(U)(αE(ξ), αE(ζ)) for U ⊂ X open, ξ, ζ ∈

E(U). Then hreal is a real Hermitian metric in (E, αE). Hence every real C∞
X

vector bundle admits a real Hermitian metric.

Remark 3.4.3 Recall that if E is a C∞ complex vector bundle over a complex

manifold X , and h a Hermitian matric in E, then a connection ∇ is called a

h-connection if it preserves h or makes h parallel in the following sense,

dh(ξ, η) = h(∇ξ, η) + h(ξ,∇η)

[Kob87, p. 11]. If E is a holomorphic vector bundle over X , then a Hermitian

structure h determine a natural h-connection∇ = ∇1,0+∇0,1 such that∇0,1 = ∂̄E .

Proposition 3.4.4 If h is a real Hermitian metric in a real holomorphic vector

bundle (E, αE) over (X, σ), then there exists a unique real h-connection ∇ such

that ∇0,1 = ∂̄E.

Proof. By [Kob87, Chapter I, Proposition 4.9, p. 11] there exists a unique h-

connection ∇ such that ∇0,1 = ∂̄E . To prove the proposition it is enough to

prove that ∇ is real. Let s = {s1, . . . , sr} be a local holomorphic frame of E

over U . Let ωU = (wij) be a connection form of ∇ with respect to s over U .

Let hij = h(si, sj). Then by [Kob87, 4.10, P. 11] we have d′hij =
∑r

k=1wkihkj.

Since s is a holomorphic frame of E on U , αE(s) = {αEU (s1), . . . , α
E
U (sr)} is a
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holomorphic frame of E on σ(U). Let h
(

αEU (si), α
E
U (sj)

)

= gij , and let (θij) be

a connection form of ∇ on σ(U). Since h is real Hermitian metric hij = σ̃(gij).

Therefore,

∂hij = ∂(σ̃(gij)) = dσ(∂gij) = dσ
(

r
∑

k=1

θkigki

)

(as ∇ is a h-connection ∂gij =
∑r

k=1 θkigki). Thus, ∂hij =
∑r

k=1 dσ(θki)σ̃gij =
∑r

k=1 dσ(θki)hik. Hence, dσ(θki) = wki for all k, i = 1, . . . , r, which implies that

∇ is real. �

Remark 3.4.5 Let (X, σ) be a real holomorphic manifold. Recall that (T X, dσ)

is a real holomorphic vector bundle over X . Let g be a real Hermitian structure

in the holomorphic tangent bundle (T X, dσ) of X . We call it a real Hermitian

metric on (X, σ). Let (U, z1, . . . , zn) be a local co-ordinate system for X . Then

g =
∑

i,j gijdzi ⊗ dz̄j , where gij = g( ∂
∂zi
, ∂
∂z̄j

). The fundamental 2-form or the

Kähler 2-form Φ associate with g is given by

ΦU = ι
∑

i,j

gijdzi ∧ dz̄j.

Note that (σ(U), zσ1 = x1◦σ−ιy1◦σ, . . . , z
σ
n = xn◦σ−ιyn◦σ) is a holomorphic co-

ordinate chart on X , , where zi = xi + ιyi for i = 1, . . . , r. Let hij = h( ∂
∂z

σ
i
, ∂
∂z̄

σ
j
).

Since g is real h̄ij = gij ◦ σ, that is, hji = gij ◦ σ. Thus,

σ∗ΦU = σ∗
(

ι
∑

i,j

gijdzi ∧ dz̄j

)

= ι
∑

i,j

(gij ◦ σ)dzi ◦ σ ∧ dz̄j ◦ σ

= −ι
∑

i,j

(gij ◦ σ)dz̄j ◦ σ ∧ dzi ◦ σ = −ι
∑

i,j

hijdz
σ
i ∧ dz̄σj = −Φσ(U).

Hence,

σ∗Φ = −Φ. (3.15)

3.4.2 Real Kähler Manifolds

A real Kähler manifold is a triple (X, σ, g) such that (X, σ) is a real manifold,

and g is a real Hermitian metric on X which is Kähler.

Let (X, g) be a Kähler manifold, and X admits a real structure σ. Then

g+σ∗g is a real Hermitian metric on (X, σ). Moreover, since d commutes with σ∗
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its fundamental 2-form is closed. Hence (X, σ, g + σ∗g) is a real Käher manifold.

If no confusion is likely to occur, we denote a real Kähler manifold (X, σ, g)

by just X .

Remark 3.4.6 Recall that the degree of a torsion-free coherent sheaf F on a

compact Kähler manifold (X, g) is

degree(F) =

∫

X

c1(F) ∧ Φn−1,

where n is the dimension of X , c1(F) is the first Chern class of F [Kob87, p. 167,

(6.15)], and Φ is the Kähler form of (X, g).

Proposition 3.4.7 Let (X, σ, g) be a real compact Kähler manifold. Let E be a

vector bundle over X. Then, degree(E) = degree(Eσ). In particular, if F is a

torsion free coherent sheaf on X, then

degree(F) = degree(Fσ).

Proof. Recall that Eσ = σ∗(Ē). By (3.15) we have σ∗Φ = −Φ. Also, c1(Ē) =

−c1(E). Consider,

degree(Eσ) =

∫

X

c1(σ
∗(Ē)) ∧ Φn−1 =

∫

X

σ∗(c1(Ē)) ∧ (−σ∗(Φn−1)

= (−1)n
∫

X

σ∗(c1(E) ∧ Φn−1)

(since σ∗ : A0(X) → A1(X) is a R-algebra homomorphism). Antiholomorphic

involutions are orientation reversing, hence

degree(Eσ) = (−1)n(−1)n
∫

X

c1(E) ∧ Φn−1 = degree(E).

The second statement follows from the definition of the first Chern class of a

torsion free coherent sheaf. �
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3.4.3 Real Stable Vector Bundles

Recall that the slope of a torsion free coherent sheaf over a compact Kähler

manifold (X, g) is defined as

µ(F) =
degree(F)

rank(F)
.

Definition 3.4.8 A real holomorphic vector bundle (E, αE) over a compact real

Kähler manifold is said to be real stable (respectively real semistable) if for every

proper real holomorphic coherent subsheaf F with 0 < rank(F) < rank(E), we

have

µ(F) < µ(E) (respectively µ(F) ≤ µ(E)).

Proposition 3.4.9 Let (E, αE) be a real holomorphic vector bundle over a com-

pact real Kähler manifold (X, σ, g). Then, (E, αE) is real semistable if and only

if E is semistable.

Proof. If E is semistable, it is clear that (E, αE) is real semistable. Conversely,

suppose that (E, αE) is real semistable. Let F be the maximal semistable sub-

sheaf of E. Thus, F is semistable, and for every subsheaf F ′ of E, µ(F ′) ≤ µ(F).

We will prove that αE |F : F → Fσ is a real structure on F . For that, it is

enough to prove that Im(αE)(F) = Fσ. Since αE is an isomorphism of sheaves,

Im(αE)(F) is a maximal semistable subsheaf of Eσ . Also, Fσ is a maximal

semistable subsheaf of Eσ. Hence, by uniqueness of maximal semistable sheaf,

Im(αE)(F) = Fσ. Therefore, (F , αE|F) is real. But then since (E, αE) is real

semistable, µ(F) ≤ µ(E). Since F is maximal semistable, this implies that

µ(E) = µ(F). Therefore, E is semistable. �

Remark 3.4.10 Let (E, αE) be a real holomorphic vector bundle over a compact

real Kähler manifold (X, σ, g). Then, (E, αE) is real stable if and only if it is stable

or it is of the form E = E1 ⊕
(

αE
)σ
(E1

σ), where E1 is a stable vector bundle of

the slope µ(E). (This follows by imitating the proof of [Gar93, Theorem 6].)

Remark 3.4.11 If E is a semistable vector bundle over a compact Kähler man-

ifold, E contains a unique non-trivial maximal polystable subsheaf S such that

µ(S) = µ(E). This sheaf is called the socle of E [HL97, Lemma 1.5.5]. In fact, S

is the sum of all stable subsheaves F such that µ(F ) = µ(E) [AB2001, Definition

2.4, Lemma 2.5].
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Let (E, αE) be a real holomorphic vector bundle over a compact real Kähler

manifold (X, σ, g). Then (E, αE) is said to be real polystable if E = ⊕k
i=1Ei,

where (Ei, α
E|Ei

) is a real stable sub-bundles of E satisfying µ(Ei) = µ(E) for

i = 1, . . . , k.

Proposition 3.4.12 Let (X, σ, g) be a real compact Kähler manifold, and let E

be a semistable vector bundle over X. If S is the socle of E, then Sσ is the socle

of Eσ. Moreover, if (E, αE) is a real semistable vector bundle, then the socle of

E is a real subsheaf of E.

Proof. For any torsion free coherent sheaf F we have deg (F σ) = deg (σ∗F ) =

degF (Proposition 3.4.9). Therefore, if F is a stable vector bundle then F σ is also

stable. Since •σ is exact (recall property 3 of the functor •σ), Sσ is polystable

and µ(Sσ) = µ(S) = µ(E) = µ(Eσ). That the polystable sub-bundle Sσ is

maximal follows from the uniqueness of S. Since the socle is unique, (S, αE|S) is

a real subsheaf of (E, αE). Let S = ⊕k
i=1Ei. Suppose E1 is not real stable, then

there exists some j 6= 1 such that Ej = (αE)
σ(

E1
σ
)

. This follows from the fact

that µ((αE)
σ(

E1
σ
)

) = µ(E1
σ) = µ(E), and [AB2001, Definition 2.4, Lemma 2.5].

Now E1 ⊕ (αE)
σ(

E1
σ
)

is real stable (Remark 3.4.10). Similarly for every k such

that Ek is not real stable there exists l 6= k such that El = (αE)
σ(

Ek
σ
)

. Hence

S is real polystable. �

3.4.4 Extension Classes

Proposition 3.4.13 Let X be a complex manifold, and let

α : 0 → S
i
→ E

p
→ Q→ 0, (3.16)

be an exact sequence of holomorphic vector bundles. Then, for every C∞ splitting

l : Q→ E, there exist a unique βl ∈ A0,1(H) such that

i(βl) = ∂̄El − l∂̄Q, (3.17)

where H = Hom(Q, S). Moreover βl ∈ Z0,1(H), the sheaf of ∂̄H-closed (0, 1)-

forms, and the cohomology class of βl in H0,1(X,H) is the Dolbeault extension

class. Conversely, if β ∈ Z0,1(H) is a cocycle representing the Dolbeault extension

class in H0,1(X,H), then there exist a C∞ splitting l : Q→ E such that β = βl.
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Proof. First statement is in [DK90, pp. 389-390]. For converse, let l′ : Q → E

be a C∞ splitting, and let βl′ be the corresponding representative of the extension

class α. Then there exist ϕ ∈ A0(H), such that β − βl′ = ∂̄Hϕ. Consider,

l = i ◦ ϕ+ l′ : Q −→ E,

then l is a C∞ splitting of α. To prove that β = βl, it is enough to prove

that i(β) = i(βl). We have, i(βl) = ∂̄El − l∂̄Q = ∂̄E(i ◦ ϕ) − (i ◦ ϕ)∂̄Q + i(βl′).

Since i is holomorphic ∂̄Ei = i∂̄S . Also we have ∂̄Hϕ = ∂̄Sϕ − ϕ∂̄Q, hence,

i(βl) = i(∂̄Hϕ+ βl′) = i(β). �

Remark 3.4.14 Let the notations be as in Proposition 3.4.13. If l : Q→ E is a

C∞-splitting of the given extension, then

∂̄E(i(s) + l(q)) = i∂̄S(s) + iβl(q) + l∂̄Q(q)

for all s ∈ A0(S) and q ∈ A0(Q). This follows from the definition of βl, and since

i is holomorphic ∂̄Ei = i∂̄S .

Remark 3.4.15 Let notations as in Proposition 3.4.13. Let

Split(α) = {l ∈ A0(Hom(Q,E)) | p ◦ l = 1Q}.

If l, l′ ∈ Split(α), then p(l − l′) = 0. So, there exists u ∈ A0(H), such that

l − l′ = iu. Conversely, if u ∈ A0(H) and l ∈ Split(α), then l + iu ∈ Split(α).

Therefore, Split(α) has a canonical structure of an affine space model after A0(H).

Let l and l′ be two C∞-splittings of the given extension α, (3.16). Then βl = βl′

if and only if there exists a unique u ∈ Ω0
X(H) such that l′ = l + iu. Indeed, if

βl = βl′ then ∂̄E(l − l′) = (l − l′)∂̄Q. Hence, l − l′ ∈ Ω0
X(Hom(Q,E)). On other

the hand since p(l − l′) = 0, there exists u ∈ A0(H) such that l − l′ = iu. Since

i is holomorphic, and l − l′ ∈ Ω0
X(Hom(Q,E)) we get u ∈ Ω0

X(H). Conversely

suppose that, l − l′ = iu, for u ∈ Ω0
X(H). Then,

i(βl) = ∂̄El − l∂̄Q = ∂̄Eiu− iu∂̄Q + i(βl′).

Since u ∈ Ω0
X(H), and i is holomorphic, ∂̄Ei = i∂̄S and ∂̄Su = u∂̄Q. Thus

i(βl) = i(βl′), hence βl = βl′.
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Proposition 3.4.13, and the above statement gives us a canonical map

Split(α) −→ Z0,1(H)

l 7−→ βl

such that the cohomology class of βl in H
0,1(H) is the Dolbeault extension class.

This induces a bijection

Split(α)/Ω0(H) −→ Dolbeault extension class.

Remark 3.4.16 Let (X, σ) be a real holomorphic manifold, and let

α : 0 −→ S
i

−→ E
p

−→ Q −→ 0

be an exact sequence of real holomorphic vector bundles, that is, (S, αS), (E, αE)

and (Q,αQ) are real holomorphic vector bundles, and i, p are real morphism. Let

αH be the canonical real structure on H = Hom(Q, S) induced by real structures

αQ and αS. Let ασ : 0 → Sσ
iσ

→ Eσ pσ

→ Qσ → 0. (Recall that •σ is an exact

functor, hence ασ is exact). Also if l is a splitting of α, then lσ is a splitting of

ασ. If l is any C∞ splitting of α, then

βlσ =
(

βl
)σ
.

This follows from (3.7) and (3.17). Moreover, if l is real then βl is real, that is,

αH(βl) =
(

βl
)σ

= βlσ . (3.18)

To see this consider, iσ
(

αH(βl)
)

= iσ
(

αS ◦ βl ◦ (αQ)
σ)

. Since i is real we get

iσ ◦ αS = αE ◦ i, and since l is real we get lσ ◦ αE = αQ ◦ l. Thus, we get

iσ
(

αH(βl)
)

= (iβl)
σ . This will give us the required equality.

Remark 3.4.17 Let (E, αE) be a real holomorphic vector bundle over a real

Kähler manifold (X, σ,Φ). Let D be a real flat C∞ connection in E, such that

D0,1 = ∂̄E . If β is a D-harmonic form in A•(E), then αE(β) is a Dσ-harmonic

form in A•(Eσ). This follows from the facts that, D is real, and dσ commutes

with operators ∗ ([Kob87, p. 60, (2.4)]) and ∂̄.
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3.4.5 Real Flat Connections

In this subsection we give various equivalent criteria for real holomorphic vector

bundles to admits real flat connection over a real abelian variety.

Proposition 3.4.18 Let X be a compact real Kähler manifold. If (E, αE) is a

real polystable vector bundle over X such that c1(E) = c2(E) = 0, then (E, αE)

admits a real flat holomorphic connection.

Proof. Let G = Z/2Z = {e, σ}, where e denotes the identity element and σ be

such that σ2 = e. Then, to give a real structure on X is the same as giving an

antiholomorphic action of G on the complex manifold X , and G-invariant vector

bundles are real vector bundles. Now by imitating the proof of [Gar93, Theorem

5] we see that if E is a real polystable vector bundle, then E admits a real

Einstein-Hermitian metric h. Moreover, if c1(E) = c2(E) = 0, then by Lübke’s

inequality [Kob87, Chapter IV, Theorem 4.11, p. 115], every Einstein-Hermitian

metric in E is flat. Let ∇ be the h-connection. Then by Proposition 3.4.4, ∇

is real, and ∇0,1 = ∂̄E . By Proposition 3.3.13, ∇1,0 is a real flat holomorphic

connection in (E, αE). �

Proposition 3.4.19 Let X be a compact real Kähler manifold and let

0 → S
i
→ E

p
→ Q→ 0,

be an exact sequence of real holomorphic vector bundles over X. Suppose that

S and Q admit real flat holomorphic connections. Then, E also has a real flat

holomorphic connection.

Proof. Let α̃ ∈ H1(X,H) be the extension class of the given extension. Let

α ∈ H0,1(X,H) be the Dolbeault cohomology class corresponding to α̃ under the

Dolbeault isomorphism H1(X,H) ∼= H0,1(X,H). Let β ∈ Z0,1(H) be the unique

∂̄H-harmonic representative of α. Let l ∈ A0(Hom(Q,E)) be a C∞ splitting of

the given extension such that β = βl (Proposition 3.4.13).

Let ∇S and ∇Q be flat real holomorphic connections in S and Q, respectively.

Then, DS = ∇S + ∂̄S and DQ = ∇Q + ∂̄Q are real flat C∞ connections in S and

Q, respectively. Define a C∞ connection DE in E by

DE(i(s) + l(q)) = iDS(s) + iβ(q) + lDQ(q)
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for all s ∈ A0(E) and q ∈ A0(Q). Then, the (0, 1)-part of DE is given by

D0,1
E (i(s) + l(q)) = iD0,1

S (s) + iβ(q) + lD0,1
Q (q)

= i∂̄S(s) + iβ(q) + l∂̄Q(s) = ∂̄E(i(s) + l(q))

using Remark 3.4.14. Thus, D0,1
E = ∂̄E : A0(E) → A0,1(E). We claim that the

C∞ connection DE is flat. The connections DS and DQ induce a C∞ connection

DH in H = Hom(Q, S), which is also real and flat. By the Hodge Decomposition

Theorem for flat vector bundles (see [Kob87, Chapter III, § 2, pp. 64-66] or

[Sim92, p. 22]) every ∂̄H -harmonic form in A•(H) isDH-harmonic also. Therefore,

DH(β) = 0, that is,

DS ◦ β + β ◦DQ = 0. (3.19)

Now, the curvature of DE is given by

D2
E(i(s) + l(q)) = DE

(

iDS(s) + iβ(q) + lDQ(q)
)

= DE

(

i
(

DS(s) + β(q)
)

+ lDQ(q)
)

= iDS

(

DS(s) + β(q)
)

+ iβ
(

DQ(q)
)

+ lDQ

(

DQ(q)
)

= iD2
S(s) + i

(

DSβ(q) + βDQ(q)
)

+ lD2
Q(q) = 0

using (3.19) and the fact that DS and DQ are flat. This, proves the claim that

DE is flat.

Now it remains to prove that DE is real. We will show that β is real, which

implies that DE is real. Let l′ be a real splitting of the exact sequence 0 → S
i
→

E
p
→ Q → 0. Hence, βl′ is real (3.18). Since [β] = [βl′ ], there exists ϕ ∈ A0(H)

such that β − βl′ = ∂̄H(ϕ). Since the canonical real structure αH on H induced

by the real structures on Q and S commutes with ∂̄H , we get [α
H(β)] = [αH(βl′)].

Thus, [αH(β)] = [(βl′)
σ ] = [βl′σ ] = [βlσ ] = [βσ]. Since β is DH-harmonic so is

βσ. Also by Remark 3.4.17 αH(β) is DH-harmonic. Hence, by uniqueness of

DH-harmonic form, αH(β) = βσ, that is, β is real.

Thus, DE is a flat real C∞ connection in E such that D0,1
E = ∂̄E . Therefore,

by Proposition 3.3.13, D1,0
E induces a flat real holomorphic connection in E. �

Remark 3.4.20 If (X, σ) is a real abelian variety, then there exists a real trans-

lation invariant Kähler metric on X . Indeed, since X is an abelian variety there

exists a translation invariant Kähler metric g [GH94, pp. 301-302]. Consider a
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real Kähler metric g+σ∗g. It remains to show that g+σ∗g is translation invariant.

Consider,

τ ∗x(g + σ∗g) = τ ∗xg + (σ ◦ τx)
∗g = τ ∗xg + (τσ(x) ◦ σ)

∗g,

as τx ◦ σ = σ ◦ τσ(x). Since g is translation invariant τ ∗xg = g and τ ∗σ(x)g = g.

Thus, τ ∗x(g + σ∗g) = g + σ∗g, and the Kähler form Φ of g is also translation

invariant. Thus, (X, σ, g) is a real Kähler manifold such that the Kähler form Φ

of g is translation invariant. In particular, for any coherent torsion free sheaf over

(X, σ, g), degree(τ ∗x(F)) = degree(F). As degree(τ ∗x(F)) =
∫

X
c1(τ

∗
x(F)∧Φn−1 =

∫

X
τ ∗x(c1(F) ∧ Φn−1 = degree(F), since Φ is translation invariant.

Theorem 3.4.21 Let (X, σ) be a real abelian variety, and let (E, αE) be a real

holomorphic vector bundle over X. Then the following are equivalent:

1. The real holomorphic vector bundle (E, αE) admits a real holomorphic con-

nection.

2. The real holomorphic vector bundle (E, αE) is real homogeneous.

3. The real holomorphic vector bundle (E, αE) is real semistable with c1(E) =

c2(E) = 0.

4. The real holomorphic vector bundle (E, αE) admits a filtration

E• : 0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E,

such that Ei is a real sub-bundle of (E, αE), cj(Ei) = 0, for j = 1, 2 and

i = 1, . . . , n, and Ei/Ei−1 is real polystable.

5. The real holomorphic vector bundle (E, αE) admits a real flat holomorphic

connection.

Proof. Th proof of (1) implies (2) follows from Proposition 3.3.20.

By Proposition 3.4.9, condition (3) is equivalent to the statement that E

is semistable with c1(E) = c2(E) = 0. For any vector bundle V on X , let

K(det V ) = {x ∈ X | τ ∗x det V
∼= det V }. By [Mum2008, Proposition, p. 57],

K(det V ) is a Zariski-closed subgroup of X for any holomorphic vector bundle V .

By the Artin-Lang homomorphism Theorem [Bec82, Lemma 1.5, p. 8] R(X) is

Zariski-dense in X . (Take U to be X in [Bec82, Lemma 1.5], and recall that 0 is
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a simple point in U .) Now, R(X) ⊂ K(detE). Hence, K(detE) is equal to X .

Therefore, τ ∗x(detE)
∼= detE for all x ∈ X . By definition [Mum2008, (i), p. 70],

detE ∈ Pic0(X). Hence, degree(detE) = degree(E) is 0 [Mum2008, p. 82, The-

orem of Appel-Humbert, p. 19]. To prove E is semistable, let F be the maximal

semistable subsheaf of E. Let ϕx : E → τ ∗x(E) be an isomorphism for x ∈ R(X).

Then ϕx(F) is the maximal semistable subsheaf of τ ∗x(E). But rk(τ ∗x(F)) =

rk(F) = rk(ϕx(F)), and degree(τ ∗x(F)) = degree(F) = degree(ϕx(F)). Hence,

τ ∗x(F) is also a maximal semistable subsheaf of τ ∗x(E). Thus, by the uniqueness of

maximal semistable subsheaf τ ∗x(F) = ϕx(F) ∼= F for all x ∈ R(X). Again, since

K(detF) is Zariski-closed and R(X) is Zariski-dense, we get detF ∈ Pic0(X).

Hence degree(F) = 0. But degE = 0. Since F is maximal semistable, E is

semistable. Since τ ∗x(E)
∼= E for all R(X), which is Zariski-dense subset of X ,

by the proof of [Bis2004, Corollary 3.2, p. 383] c2(E) = 0. Thus, (2) implies (3).

We will prove (3) implies (4) now. By Proposition 3.4.9 E is semistable. Since

E is semistable, by [HL97, Lemma 1.5.5, p. 23] there exists a unique filtration of

coherent analytic subsheaves

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En = E (3.20)

such that Ei/Ei−1 is the socle of E/Ei−1. Applying •σ to the above filtration we

get,

0 = E0 ⊂ E1
σ ⊂ E2

σ ⊂ · · · ⊂ En
σ = Eσ .

By Proposition 3.4.12, and since •σ is exact, Ei
σ/Ei−1

σ = (Ei/Ei−1)
σ is the socle

of Eσ/Ei−1
σ . Since αE is an isomorphism of E to Eσ, we get another filtration

in Eσ, from the filtration (3.20)

0 = αE(E0) ⊂ αE(E1) ⊂ αE(E2) ⊂ · · · ⊂ αE(En) = αE(E) = Eσ .

Since αE is an isomorphism of OX -modules, αE(Ei/Ei−1) = αE(Ei)/α
E(Ei−1)

is the socle of Eσ/αE(Ei−1). By uniqueness of filtration, we get αE(Ei) = Ei
σ .

Hence, Ei is real subsheaf of (E, αE), for all i = 1, . . . , n. By [BG2008, last

paragraph p. 42, fist paragraph p.43], τ ∗x(Ei)
∼= Ei for all x ∈ X in particularly

for x ∈ R(X), and Ei is vector bundle for all i = 0, . . . , n. Hence by (2) implies

(3), Ei is semistable, with c1(Ei) = c2(Ei) = 0 for all i = 1, . . . , n. Thus, we get
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a filtration of E,

E• : 0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E,

such that each Ei is a real holomorphic sub-bundle of E, each Ei is semistable

with c1(Ei) = c2(Ei) = 0, and Ei/Ei−1 is polystable, since being the socle of a

vector bundle.

Now we will prove (4) implies (5). As c2(Ei) = c2(Ei−1 ⊕ Ei/Ei−1) =

c2(Ei−1)+ c1(Ei−1)c1(Ei/Ei−1)+ c2(Ei/Ei−1), we have c2(Ei/Ei−1) = 0. Since, c1

is additive c1(Ei/Ei−1) = 0. Therefore by Proposition 3.4.18, Ei/Ei−1 admits real

flat holomorphic connection. Now, finally Proposition 3.4.19 and induction on i,

we get that Ei admits a real flat holomorphic connection for all i ∈ {0, . . . , n},

In particular En = E admits a real flat connection.

Finally (5) implies (1) is clearly true. �

The following is the real analogue of a special case of a result of Simpson

[Sim92, Theorem, p. 39].

Corollary 3.4.22 Let X be a real abelian variety, and E a real semistable holo-

morphic vector bundle over X, such that c1(E) = c2(E) = 0. Then, E is obtained

by successive extensions of real stable holomorphic vector bundles with vanishing

Chern classes.

Proof. This follows from the implication (3) implies (4) of Theorem 3.4.21, since

every real polystable vector bundle is obtained by successive extensions of real

stable vector bundles. �



Appendix A

Category Theory

In this section we will recall some facts in category theory, which we are using in

the first chapter.

A:1 Let F,G : C → D be functors, and ϕ : F → G be a morphism of functors.

Then, ϕ is an isomorphism of functors if and only if for all X ∈ Ob(C)

the morphism ϕ(X) : F (X) → G(X) is an isomorphism of objects in D.

[Lan98, p. 16]

A:2 Let C and D be two categories, and let F : C → D be a functor. Then we

get a new functor HomD(•, F (•)) : D
op × C → Set defined by the following

assignments:

(a) For all (Y,X) ∈ Ob(Dop × C)

HomD(•, F (•))(X, Y ) = HomD(Y, F (X)).

(b) If (Y,X) and (Y ′, X ′) are objects in Dop × C, the function

HomDop×C((Y,X), (Y ′, X ′)) → HomSet(HomD(Y, F (X)),HomD(Y
′, F (X ′)))

(gop, f) 7→ Hom(g, F (f))

is given by

Hom(g, F (f))(u) = F (f) ◦ u ◦ g

for all morphisms g : Y ′ → Y in D, f : X → X ′ in C, and u : Y →

F (X) in D.

If G : D → C is a functor then, HomC(G(•), •) : Dop × C → Set can be

similarly defined.

A:3 Let C and D be two categories, and let F : C → D and G : D → C be two

functors. We say that G is a left adjoint of F , or that F is a right adjoint

89
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of G, if there exists an isomorphism

ϕ : HomD(•, F (•)) → HomC(G(•), •) (3.21)

of functors Dop × C → Set; in that case, ϕ is called an adjunction between

F and G.

A:4 By A:1 the adjunction ϕ attaches to each object (Y,X) in Dop × C, a

bijection of sets

ϕ(Y,X) : HomD(Y, F (X)) → HomC(G(Y ), X)

which is functorial in Y and X , i.e., if g : Y ′ → Y is a morphism in D, and

if f : X → X ′ is a morphism in C, then the diagram

HomD(Y, F (X))
ϕ(Y,X) //

Hom(g,F (f))
��

HomC(G(Y ), X)

Hom(G(g),f)
��

HomD(Y
′, F (X ′))

ϕ(Y ′,X′)
// HomC(G(Y

′), X ′)

commutes.

A:5 Let Y = F (X), substituting in Equation (3.21) we get,

ϕ(F (X), X) : HomD(F (X), F (X)) → HomC(G(F (X)), X).

Recall that ϕ(X,F (X))(1F (X)) is the counit morphism of X with respect

to the adjunction ϕ. We will denote it by σX .

A:6 A functor F : C → D is said to be faithful (respectively, full, fully faithful)

if for all X,X ′ ∈ Ob(C), the function

HomC(X,X
′) → HomD(F (X), F (X ′))

is injective (respectively, surjective, bijective). A functor F : C → D is

essentially surjective if for every object Y in D, there exists an object X in

C such that F (X) is isomorphic to Y . A functor F : C → D is said to be

an equivalence of categories if there exists a functor G : D → C such that

G ◦ F ∼= 1C and F ◦G ∼= 1D.
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A:7 A functor F : C → D is an equivalence of categories if and only if it is fully

faithful and essentially surjective.

A:8 Let the notation be as in (A:4). For every object Y in D, we define the

unit morphism of Y with respect to the adjunction ϕ, to be the morphism

ρY : Y → F (G(Y )) in D such that

ϕY,G(Y )(ρY ) = 1G(Y ).

A:9 Let C be a category. Then for every object X ∈ C, we get the functor Hom,

Hom(X, •) : C → Set,

which is defined by the following assignments:

(a) Ob(C) → Ob(Set), Y 7→ HomC(X, Y ).

(b) If Y, Y ′ ∈ Ob(C),

HomC(Y, Y
′) → HomSet(HomC(X, Y ),HomC(X, Y

′))

u 7→ Hom(X, u),

where, for u ∈ HomC(Y, Y
′) and w ∈ HomC(X, Y ), we have

Hom(X, u)(w) = u ◦ w.

It is easy to verify that Hom(X, •) : C → Set is indeed a functor.

A:10 Let C be a category. We say that a functor F : C → Set is representable

if there exists an object X ∈ Ob(C) such that F ∼= Hom(X, •). An object

X ∈ Ob(C) is called a representing object for F ; we also say that F is

representable by X . By Yoneda embedding, a representing object is unique

up to a canonical isomorphism.

A:11 Let C be a category, and let F : C → Set be a functor. Let X ∈ Ob(C).

An element ξ ∈ F (X) is called a universal element for F if it satisfies the

following condition: for every object Y ∈ Ob(C) and for every element

µ ∈ F (Y ), there exists a unique morphism w : X → Y in C such that

µ = F (w)(ξ).
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A:12 If a functor F : C → Set is representable by X , then there exist a universal

element ξ ∈ F (X) for F . Then, a representation of F is a pair (X, ξ), where

X ∈ Ob(C), and ξ ∈ F (X) is a universal element for F .



Appendix B

After reading the work presented in Chapter 2 of this thesis, Professor J. Oesterlé

kindly pointed out that hypothesis in Theorem 2.2.13, of the existence of an

admissible category can be replaced by the weaker hypothesis, that locally free

sheaves of bounded rank are acyclic. We given below a proof of this remark.

Theorem B.1 Let (X,OX) be a locally ringed space and A = Γ(X,OX) its ring

of global sections. Assume that each locally free OX-module of bounded rank is

acyclic, and generated by finitely many global sections. Then the functor S defines

an equivalence of categories from the category Fgp(A) to the category Lfb(X).

A quasi-inverse is the canonical functor Γ(X, •).

Remark B.2 If P is a finitely generated projective A-module, then S(P ) =

P(P ), that is, P(P ) is a sheaf. (Recall from Subsection 2.1.2 that, P(P )(U) is

defined by P ⊗A OX(U) for every open subset U of X .) This follows from the

fact that, the tensor product by P over A commutes with projective limits, since

P is finitely generated projective module. Hence, the canonical A-linear map

h 7→ h⊗ 1A from P to Γ(X,S(P )) is an isomorphism.

Proposition B.3 The functor S : Fgp(A) → Lfb(X) is fully faithful.

Proof. By Lemma 2.2.12, if P is in Fgp(A) then S(P ) is a locally freeOX -module

of bounded rank. Let P and Q be two finitely generated projective A-modules.

The map S : HomA(P,Q) → HomOX
(S(P ),S(Q)), u 7→ S(u) is obtained by

composing the two canonical isomorphisms

HomA(P,Q) → HomA(P,Γ(X,S(Q))) → HomOX
(S(P ),S(Q))

(second isomorphism is given by the adjunction (2.4)). �

Lemma B.4 Let F and G be two locally free OX-modules of bounded rank. If

u : F → G is a surjective homomorphism, ker(u) is a locally free OX-module of

bounded rank.

93



94 §B.

Proof. We have the exact sequence 0 → ker(u) → F
u
→ G → 0. By choosing

local frames for F and G, we can see that the above exact sequence locally splits.

Hence, ker(u) is of finite type. By Corollary 2.1.19, the rank of the sheaf ker(u)

is locally constant, hence is locally free of bounded rank (Proposition 2.1.39). �

Proof of Theorem B.1. We already know by Proposition B.3 and Remark B.2

that, the functor S is fully faithful, and that Γ(X,S(P )) is canonically isomorphic

to P when P is a finitely generated projective A-module. Hence, it is suffices to

show that the functor S is essentially surjective, that is, each locally free OX-

module F of bounded rank is isomorphic to S(P ) for some P in Fgp(A).

Since F is finitely generated by global sections, there exists a surjective mor-

phism u : On
X → F for some n ∈ N. Hence, by Lemma B.4, ker(u) is in Lfb(X),

so is acyclic. Thus, the map Γ(X, u) : An → Γ(X,F) is surjective.

For all x ∈ X , HomOX,x
(Fx,O

n
X,x) → HomOX,x

(Fx,Fx) → 0 is surjective,

this follows from the fact that Fx is free. Since F is of finite presentation

by Proposition 2.1.23 (HomOX
(F ,On

X))x → (HomOX
(F ,F))

x
→ 0 is exact,

that is, Hom(F , u) is a surjective homomorphism between HomOX
(F ,On

X) and

HomOX
(F ,F). Also we have HomOX

(F ,On
X) and HomOX

(F ,F) are locally free

sheaves of bounded rank. It follows as before that the homomorphism

Hom(F , u) : HomOX
(F ,On

X) → HomOX
(F ,F)

is surjective (deduced from the previous one by passing to the global section is

surjective). Hence there exists v : F → On
X such that u ◦ v = 1F . We then have

Γ(X, u) ◦Γ(X, v) = 1Γ(X,F). This prove that Γ(X, u) has a section, and therefore

P = Γ(X,F) is a projective A-module of finite rank.

Let w : S(P ) → F be such that λF ,Γ(X,F)(1Γ(X,F)) = w (that is, w is the counit

morphism of F with respect to the adjunction λ (2.4)). Then w is surjective, since

F is generated by global section. (See the proof of Proposition 2.2.4.) By Lemma

B.4, G = ker(w) is a locally free OX -module of bounded rank. Since Γ(X, •) is left

exact we get that ker(Γ(X,w)) = Γ(X,G). But Γ(X,w) : Γ(X,F)⊗A→ Γ(X,F)

is by definition 1Γ(X,F) ⊗ 1A, hence an isomorphism. Thus, ker(Γ(X,w)) = 0 =

Γ(X,G). But by hypothesis G is generated by global section, hence G = 0. This

proves that F is isomorphic to S(P ). �

Remark B.5 In Theorem B.1, we can replace the assumption that every object
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in Lfb(X) is acyclic, with the weaker hypothesis that for every surjective homo-

morphism u : F → G, where F and G belongs to Lfb(X), the homomorphism

Γ(X, u) : Γ(X,F) → Γ(X,G) is surjective. That this hypothesis is indeed weaker

follows from Lemma B.4
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over a field, 64

real, 63

admissible subcategory, 33

affine scheme, 10

algebraic variety over a field, 63

category of real modules, 57

closed complex space, 47

complex space, 47

connection

C∞, 68

flat, 72

holomorphic, 69

real holomorphic, 72

real C∞, 71

degree, 79

descent datum, 64

differentiable algebra, 44

differentiable space

affine, 45

C∞, 44

Dolbeault extension class, 82

h-connection, 77

horizontal lift, 73

Kähler

metric, 79

real, 78

k-algebra, 11

Leibnitz identity, 68

morphism of

locally ringed spaces, 9

ringed spaces, 8

Oka’s Coherence Theorem, 23

opposite category, 1

prime spectrum, 10

real

connection, see connection

hermitian structure, 77

holomorphic manifold, 61

holomorphic space, 59

holomorphic vector bundle, 62, 66

homogeneous, 63

ideal, 44

module, 54

points, 63

spectrum, 44, 45

subsheaf, 57

vector bundle, 54

real ringed space, 52

morphism, 52

real structure

associated modules, 57

cotangent bundle, 67

on a ringed space, 52
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on sheaf of module, 54

tangent bundle, 67

residue field, 9

Riemann surface

compact, 28, 48

non-compact, 48

ringed space, 8

locally, 9

Serre’s Theorem, 37

sheaf

coherent, 23–26

ideal, 23

three lemma, 24

cohomology group, 1

fibre, 26

locally free, 26–28

of bounded rank, 27

of finite presentation, 21–22

of finite rank, 27

of finite type, 18–21

rank, 26

support, 19

slope, 80

socle, 80

spectrum, 10

splitting, 82

Stein

set, 47

space, 47–49

support of a sheaf of morphism, 30

Swan’s Theorem, 43

Theorem A, 47

Theorem B, 47

unit morphism, 33

vector bundle

real polystable, 81

real stable, 80

real stable(semi), 80



List of Errata in the Thesis

The following is a list of corrections to the thesis: most of them are typographical.

The symbol p/-l indicates the l-th line from the bottom of the page p of the thesis.

Page/line Read Instead of

22/-8 U V

28/3,8 F G

38/13 uf u

41/-5 OX |D(fi) = (Ãfi) X|D(fi) = (Ãfi)

53/6 (refer Subsection 3.1.1

for the definition of real OX -module)

58/1 the inclusion morphism i : G → F is i : G → F

61/9 σ̃′
U(s) = σ̃U (s) σ̃′

U(s) = σ̃(s)

69/9 (−1)p+q (−1)p+r

69/1 Ap+q(E) Ar(E)

75/-12,-8 τ ∗x(E) τ ∗(E)

79/-7
∫

X
σ∗(c1(Ē)) ∧ (−σ∗(Φ))n−1

∫

X
σ∗(c1(Ē)) ∧ (−σ∗(Φn−1)

85/3 i∂̄S(s) + iβ(q) + l∂̄Q(q) i∂̄S(s) + iβ(q) + l∂̄Q(s)
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