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Abstract

The major part of this thesis is devoted to determining cohomology of

orbit spaces and fixed point sets of certain compact transformation groups

on finitistic spaces. Equivariant maps are also studied and some parametrized

Borsuk-Ulam theorems are proved.

Chapter 1 contains some basic definitions and results in the theory of

topological transformation groups and spectral sequences required for our

work.

In Chapter 2, free involutions on finitistic mod 2 cohomology lens spaces

are studied. The possible mod 2 cohomology algebra of orbit space of any

free involution on a finitistic mod 2 cohomology lens space is completely

determined. As an application, it is shown that if X is a finitistic mod 2

cohomology lens space of dimension 2m− 1 with m ≥ 3, then there does not

exist any Z2-equivariant map from Sn → X for n ≥ 2m, where Sn is equipped

with the antipodal involution.

In Chapter 3, some parametrized Borsuk-Ulam theorems are proved for

bundles whose fibers are finitistic mod 2 cohomology real or complex projective

spaces with free involutions.

In Chapter 4, involutions on finitistic spaces having mod 2 cohomology

algebra of the wedge sum Sn ∨ S2n ∨ S3n or P 2(n) ∨ S3n are studied and

the possible fixed point sets are determined up to mod 2 cohomology. Also

examples realizing the possible cases are given.

In Chapter 5, a similar problem is considered for S1 actions on finitistic

spaces having rational cohomology algebra of the wedge sum Sn ∨ S2n ∨ S3n

or P 2(n) ∨ S3n. The possible fixed point sets are determined up to rational

cohomology and examples realizing the possible cases are given.

Chapter 6 contains some miscellaneous results obtained during our study.





Synopsis

1. Introduction

The theory of topological transformation groups deals with the symmetries

of topological spaces. More precisely, it is the study of group actions on

topological spaces. An action of a group on a space gives rise to two associated

spaces, namely, the fixed point set and the orbit space. One of the basic

problems of transformation groups is to determine these two associated spaces,

either precisely or up to (co)homology. The pioneering result of Smith [65] on

fixed point sets up to homology of prime periodic maps on homology spheres

was the first in this direction. More explicit relations between the space, the

fixed point set and the orbit space were obtained by Floyd [23, 24]. Bredon

[6] contains an excellent account of results in this direction for the large class

of finitistic spaces. This class of spaces was introduced by Swan [75] in his

study of fixed point theory. It is a large class of spaces including all compact

Hausdorff spaces and paracompact spaces of finite covering dimension. Due

to Deo-Singh-Tripathi [14, 16], it is known that if X is a topological space

and G is a compact Lie group acting continuously on X, then X is finitistic

if and only if the orbit space X/G is finitistic. The major part of our work

[61, 62, 64] is concerned with determining the cohomology of orbit spaces and

fixed point sets of certain compact transformation groups on finitistic spaces.

Another direction of work in the theory of topological transformation

groups is the study of equivariant maps. The well known Borsuk-Ulam

theorem states that, if n > k then there does not exist any Z2-equivariant map

Sn → Sk, where Sn and Sk are equipped with antipodal involutions. Over

the years there have been several generalizations of the theorem in many

directions (see for example [72, 42]). Jaworowski [30], Dold [19], Nakaoka



[51] and others extended this theorem to the setting of fiber bundles, by

considering fiber preserving maps f : SE → E
′
, where SE denotes the total

space of the sphere bundle SE → B associated to a vector bundle E → B,

and E
′ → B is other vector bundle. Thus they parametrized the Borsuk-

Ulam theorem. A part of our work [63] proves some parametrized Borsuk-

Ulam theorems for bundles whose fibers are finitistic mod 2 cohomology real

or complex projective spaces with free involutions.

The basic setting for our approach in the thesis is the equivariant cohomol-

ogy theory introduced by Borel [10]. Let G be a compact Lie group and X

be a G-space. This gives the Borel fibration X ↪→ XG −→ BG, where

XG = (X × EG)/G is the orbit space of the diagonal action on X × EG and

BG is the base space of the universal principal G-bundle G ↪→ EG −→ BG.

Then the equivariant cohomology of X is defined to be any fixed cohomology

(Čech cohomology in our case) of the total space XG of the Borel fibration

X ↪→ XG −→ BG. By the work of Leray [40], there is a first quadrant spectral

sequence of algebras {Er∗,∗, dr}, converging to H∗(XG) as an algebra, with

E2
k,l = Hk(BG;Hl(X)), the cohomology of the base BG with locally constant

coefficients Hl(X) twisted by a canonical action of π1(BG). This spectral

sequence can be used to compute the equivariant cohomology of X and we

exploit it heavily in our work. Throughout we use Čech cohomology, since

it is found to be most compatible with the cohomology theory of topological

transformation groups and the cohomological dimension theory.

Let X, Y be topological spaces and let p be a prime. By X 'p Y we mean

that there is an isomorphism of graded algebras H∗(X;Zp) ∼= H∗(Y ;Zp).

Similarly, by X 'Q Y we mean that there is an isomorphism of graded

algebras H∗(X;Q) ∼= H∗(Y ;Q). With these notations, the chapter-wise

details of the thesis are given as follows.



2. Cohomology algebra of orbit spaces of

free involutions on lens spaces

An involution on a topological space X is an action of the group G = Z2 on

X. In this chapter, we study cohomology of orbit spaces of free involutions

on cohomology lens spaces. Lens spaces are odd dimensional spherical space

forms described as follows. Let p ≥ 2 be an integer and q1, q2, ..., qm be

integers coprime to p, where m ≥ 1. Let S2m−1 ⊂ Cm be the unit sphere and

let ι2 = −1. Then

(z1, ..., zm) 7→ (e
2πιq1
p z1, ..., e

2πιqm
p zm)

defines a free action of the cyclic group Zp on S2m−1. The orbit space is called

Lens space and is denoted by L2m−1
p (q1, ..., qm). It is a compact Hausdorff

orientable manifold of dimension (2m− 1) and is finitistic.

Involutions on lens spaces have been studied in detail, particularly on 3-

dimensional lens spaces [26, 33, 35, 36, 37, 49]. Kim [35] showed that if p = 4k

for some k, then the orbit spaces of any sense-preserving free involution on

L3
p(1, q) is the lens space L3

2p(1, q
′
), where q

′
q ≡ ±1 or q

′ ≡ ±q mod p. Myers

in [49] showed that every free involution on a 3-dimensional lens space is

conjugate to an orthogonal free involution, in which case the orbit space is

again a lens space.

Let X '2 L
2m−1
p (q1, ..., qm) be a mod 2 cohomology lens space. Motivated

by the work of Kim and Myers, we consider free involutions on finitistic mod

2 cohomology lens spaces and determine the possible mod 2 cohomology

algebra of orbit space, using the Leray spectral sequence associated to the

Borel fibration X ↪→ XZ2 −→ BZ2 . More precisely, if X/G denotes the orbit

space, then we prove the following theorem.



Theorem. Let G = Z2 act freely on a finitistic space X '2 L
2m−1
p (q1, ..., qm).

Then H∗(X/G;Z2) is isomorphic to one of the following graded commutative

algebras:

1. Z2[x]/〈x2m〉,

where deg(x) = 1.

2. Z2[x, y]/〈x2, ym〉,

where deg(x) = 1 and deg(y) = 2.

3. Z2[x, y, z]/〈x3, y2, z
m
2 〉,

where deg(x) = 1, deg(y) = 1, deg(z) = 4 and m is even.

4. Z2[x, y, z]/〈x4, y2, z
m
2 , x2y〉,

where deg(x) = 1, deg(y) = 1, deg(z) = 4 and m is even.

5. Z2[x, y, w, z]/〈x5, y2, w2, z
m
4 , x2y, wy〉,

where deg(x) = 1, deg(y) = 1, deg(w) = 3, deg(z) = 8 and 4 | m.

Our theorem generalizes the results [35, 49] known for orbit spaces of free

involutions on 3-dimensional lens spaces, to that of the large class of finitistic

spaces X '2 L
2m−1
p (q1, ..., qm).

Application to Z2-equivariant maps

Let Sn be the unit n-sphere equipped with the antipodal involution and let

X be a paracompact Hausdorff space with a fixed free involution. The index

of the involution on X is defined as

ind(X) = max { n | there is a Z2-equivariant map Sn → X}.

There is a rich literature on index theory and a survey can be found in

Conner-Floyd [13]. Using the notion of index and our theorem, we prove the

following.



Theorem. Let m ≥ 3 and X '2 L
2m−1
p (q1, ..., qm) be a finitistic space with

a free involution. Then there does not exist any Z2-equivariant map from

Sn → X for n ≥ 2m.

3. Parametrized Borsuk-Ulam problem for

projective space bundles

The unit n-sphere Sn is equipped with the antipodal involution given by

x 7→ −x. One formulation of the classical Borsuk-Ulam theorem states

that, if n ≥ k then for every continuous map f : Sn → Rk there exist a

point x ∈ Sn such that f(x) = f(−x). Over the years there have been

several generalizations of this theorem in many directions (see for example

[72, 42]). Jaworowski [30, 31, 32], Dold [19], Nakaoka [51] and others extended

this theorem to the setting of fiber bundles, by considering fiber preserving

maps f : SE → E
′
, where SE denotes the total space of the sphere bundle

SE → B associated to a vector bundle E → B, and E
′ → B is other vector

bundle. Thus, they parametrized the Borsuk-Ulam theorem, whose general

formulation is as follows.

Let G be a compact Lie group. Consider a fiber bundle π : E → B and a

vector bundle π
′

: E
′ → B such that G acts fiber preserving and freely on E

and E
′−0, where 0 stands for the zero section of the bundle π

′
: E

′ → B. For

a fiber preserving G-equivariant map f : E → E
′
, the parametrized version

of the Borsuk-Ulam theorem deals in estimating the cohomological dimension

of the set Zf = {x ∈ E | f(x) = 0}.



We refer to cohomological dimension in the sense of Nagami [50]. Dold

[19] and Nakaoka [51] defined certain polynomials, which they called the

characteristic polynomials, for vector bundles with free G-actions (G = Zp

or S1) and used them for obtaining such results. In this chapter, we use this

technique to prove some parametrized Borsuk-Ulam theorems for bundles

whose fibers are finitistic mod 2 cohomology real or complex projective spaces

with any free involution. As an application, we also estimate the size of the

Z2-coincidence set of a fiber preserving map.

Characteristic polynomials for bundles

Let (X,E, π,B) be a fiber bundle with a fiber preserving free Z2 action such

that the quotient bundle (X/G,E, π,B) has a cohomology extension of the

fiber and let π
′

: E
′ → B be a k-dimensional vector bundle with a fiber

preserving Z2-action on E
′

which is free on E
′ − 0, where 0 stands for the

zero section. We first obtain the characteristic polynomials associated to the

bundles.

Characteristic polynomials for (X '2 RP n, E, π,B)

W1(x, y) = wn+1 + wnx+ wn−1y + · · ·+ w2y
n−1
2 + w1xy

n−1
2 + y

n+1
2

and W2(x, y) = ν2 + ν1x+ αy + x2,

where x and y are indeterminates of degrees 1 and 2 respectively. We obtain

a natural isomorphism of H∗(B)-algebras

H∗(B)[x, y]/〈W1(x, y),W2(x, y)〉 ∼= H∗(E).

Characteristic polynomials for (X '2 CP n, E, π,B)

W1(x, y) = w2n+2 + w2n+1x+ w2nx
2 + · · ·+ w2x

2y
n−1
2 + y

n+1
2



and W2(x) = ν3 + ν2x+ ν1x
2 + x3,

where x and y are indeterminates of degrees 1 and 4 respectively. In this case

also we obtain a natural isomorphism of H∗(B)-algebras

H∗(B)[x, y]/〈W1(x, y),W2(x)〉 ∼= H∗(E).

Characteristic polynomial for π
′
: E

′ → B

W
′
(x) = w

′

k + w
′

k−1x+ · · ·+ w
′

1x
k−1 + xk,

where x is an indeterminate of degree 1. Just as above, we obtain an

isomorphism of H∗(B)-algebras

H∗(B)[x]/〈W ′
(x)〉 ∼= H∗(SE ′).

Parametrized Borsuk-Ulam theorems

Let f : E → E
′
be a fiber preserving Z2-equivariant map. Define Zf = f−1(0)

and Zf = Zf/Z2, the quotient by the free Z2-action induced on Zf .

Each polynomial q(x, y) inH∗(B)[x, y] defines an element ofH∗(E), which

we denote by q(x, y)|E. We denote by q(x, y)|Zf the image of q(x, y)|E under

the H∗(B)- homomorphism i∗ : H∗(E) → H∗(Zf ), where i∗ is the map

induced by the inclusion i : Zf ↪→ E. For the real case we prove the following.

Theorem. Let X '2 RP n be a finitistic space. If q(x, y) in H∗(B)[x, y] is a

polynomial such that q(x, y)|Zf = 0, then there are polynomials r1(x, y) and

r2(x, y) in H∗(B)[x, y] such that q(x, y)W
′
(x) = r1(x, y)W1(x, y)+r2(x, y)W2(x, y)

in the ring H∗(B)[x, y], where W
′
(x), W1(x, y) and W2(x, y) are the character-

istic polynomials.



As a corollary we have the following parametrized version of the Borsuk-

Ulam theorem.

Corollary. Let X '2 RP n be a finitistic space. If the fiber dimension of

E
′ → B is k, then q(x, y)|Zf 6= 0 for all non-zero polynomials q(x, y) in

H∗(B)[x, y], whose degree in x and y is less than (n− k + 1). Equivalently,

the H∗(B)-homomorphism

n−k⊕
i+j=0

H∗(B)xiyj → H∗(Zf )

given by xi → xi|Zf and yj → yj|Zf is a monomorphism. As a result, if

n ≥ k, then

cohom.dim(Zf ) ≥ cohom.dim(B) + (n− k).

Similarly, for the complex case we prove the following.

Theorem. Let X '2 CP n be a finitistic space. If q(x, y) in H∗(B)[x, y] is a

polynomial such that q(x, y)|Zf = 0, then there are polynomials r1(x, y) and

r2(x, y) in H∗(B)[x, y] such that q(x, y)W
′
(x) = r1(x, y)W1(x, y)+r2(x, y)W2(x)

in the ring H∗(B)[x, y], where W
′
(x), W1(x, y) and W2(x) are the characteristic

polynomials.

Corollary. Let X '2 CP n be a finitistic space. If the fiber dimension of

E
′ → B is k, then q(x, y)|Zf 6= 0 for all non-zero polynomials q(x, y) in

H∗(B)[x, y], whose degree in x and y is less than (2n− k+ 2). Equivalently,

the H∗(B)-homomorphism

2n−k+1⊕
i+j=0

H∗(B)xiyj → H∗(Zf )



given by xi → xi|Zf and yj → yj|Zf is a monomorphism. As a result, if

2n ≥ k, then

cohom.dim(Zf ) ≥ cohom.dim(B) + (2n− k + 1).

Application to Z2-coincidence sets

Let (X,E, π,B) be a fiber bundle with the hypothesis as above. Let E
′′ → B

be a k-dimensional vector bundle and let f : E → E
′′

be a fiber preserving

map. Here we do not assume that E
′′

has an involution. Even if E
′′

has

an involution, f is not assumed to be Z2-equivariant. If T : E → E is a

generator of the Z2 action, then the Z2-coincidence set of f is defined as

A(f) = {x ∈ E | f(x) = f(T (x))}.

As an application of our results, we have the following theorems.

Theorem. If X '2 RP n is a finitistic space, then

cohom.dimA(f) ≥ cohom.dim(B) + (n− k).

Theorem. If X '2 CP n is a finitistic space, then

cohom.dimA(f) ≥ cohom.dim(B) + (2n− k + 1).



4. Fixed point sets of involutions on spaces of

type (a, 0)

In this chapter, we investigate the fixed point sets of involutions on certain

types of spaces first studied by Toda [77]. Toda studied the cohomology

algebra of a space X having only non-trivial cohomology groups H in(X;Z) =

Z for i = 0, 1, 2 and 3, where n is a fixed positive integer. Let ui ∈ H in(X;Z)

be a generator for i = 1, 2 and 3. Then the ring structure of H∗(X;Z) is

completely determined by the integers a and b such that

u2
1 = au2 and u1u2 = bu3.

Such a space is said to be of type (a, b). For a prime p, let X 'p P h(n) mean

that there is an isomorphism of graded algebras H∗(X;Zp) ∼= Zp[z]/zh+1,

where z is a homogeneous element of degree n.

For spaces X and Y , let X ∨ Y denote their wedge sum and let X t Y

denote their disjoint union. One can see that a space X of type (a, b) is

determined by the integers a and b in terms of the familiar spaces as follows.

If b 6≡ 0 mod p, then

X 'p Sn × S2n for a ≡ 0 mod p

or

X 'p P 3(n) for a 6≡ 0 mod p.

And, if b ≡ 0 mod p, then

X 'p Sn ∨ S2n ∨ S3n for a ≡ 0 mod p

or

X 'p P 2(n) ∨ S3n for a 6≡ 0 mod p.



Let X be a G-space and let X ↪→ XG −→ BG be the associated Borel

fibration as defined earlier. We say that X is totally non-homologous to zero

in XG with respect to Zp if the inclusion of a typical fiber X ↪→ XG induces

a surjection in the cohomology H∗(XG;Zp) −→ H∗(X;Zp).

The cohomological nature of the fixed point sets of Zp actions for the case

b 6≡ 0 mod p has been investigated in detail by Bredon [5, 6] and Su [73, 74]

for all primes p. And the cohomological nature of the fixed point sets of Zp

actions for the case b ≡ 0 mod p has been completely determined by Dotzel

and Singh [20, 21] for odd primes p. In [64] we settle the remaining case of

b ≡ 0 mod 2 and investigate the fixed point sets of involutions on finitistic

spaces of type (a, 0) mod 2. More precisely, we prove the following results.

Theorem. Let G = Z2 act on a finitistic space X of type (a, 0) mod 2

with trivial action on H∗(X;Q) and with fixed point set F . Suppose X is

totally non-homologous to zero in XG, then F has at most four components

satisfying the following:

1. If F has four components, then each is acyclic, n is even and a ≡ 0 mod

2.

2. If F has three components, then n is even and

F '2 S
r t {point1} t {point2} for some even integer 2 ≤ r ≤ 3n.

3. If F has two components, then either

F '2 S
r t Ss or (Sr ∨ Ss) t {point} for some integers 1 ≤ r, s ≤ 3n

or

F '2 P
2(r) t {point} for some even integer 2 ≤ r ≤ n.

4. If F has one component, then either

F '2 S
r ∨ Ss ∨ St for some integers 1 ≤ r, s, t ≤ 3n



or

F '2 S
s ∨ P 2(r) for some integers 1 ≤ r ≤ n and 1 ≤ s ≤ 3n.

Moreover, if n is even, then X is always totally non-homologous to zero in

XG. Further, all the cases are realizable.

Theorem. Let G = Z2 act on a finitistic space X of type (a, 0) mod 2 with

trivial action on H∗(X;Q) and with fixed point set F . Suppose X is not

totally non-homologous to zero in XG, then either F = φ or F '2 S
r, where

1 ≤ r ≤ 3n is an odd integer. Moreover, the second possibility is realizable.

5. Fixed point sets of circle actions on spaces

of type (a, 0)

In this chapter, we study fixed point sets of circle actions on rational cohomology

finitistic spaces of type (a, 0). By X 'Q P h(n) we mean that H∗(X;Q) ∼=

Q[z]/zh+1, where z is a homogeneous element of degree n.

It is clear that if b 6= 0, then

X 'Q S
n × S2n for a = 0

or

X 'Q P
3(n) for a 6= 0.

And, if b = 0, then

X 'Q S
n ∨ S2n ∨ S3n for a = 0

or

X 'Q P
2(n) ∨ S3n for a 6= 0.



Let X be a G-space and let X ↪→ XG −→ BG be the associated Borel

fibration as defined earlier. We say that X is totally non-homologous to zero

in XG with respect to Q if the inclusion of a typical fiber X ↪→ XG induces

a surjection in the cohomology H∗(XG;Q) −→ H∗(X;Q).

The cohomological nature of the fixed point sets of actions of the cyclic

group Zp of prime order p on spaces of type (a, b) has been studied in detail

[5, 6, 20, 21, 64, 73, 74].

For b 6= 0, the cohomological nature of the fixed point sets of S1 actions has

been studied in detail by Bredon [5, 6]. In [62] we study S1 actions on rational

cohomology finitistic spaces of type (a, 0) and determine the possible fixed

point sets up to rational cohomology. More presisely, we prove the following

results.

Theorem. Let G = S1 act on a rational cohomology finitistic space X of

type (a, 0) with fixed point set F . Suppose X is totally non-homologous to

zero in XG, then F has at most four components satisfying the following:

1. If F has four components, then each is acyclic and n is even.

2. If F has three components, then n is even and

F 'Q S
r t {point1} t {point2} for some even integer 2 ≤ r ≤ 3n.

3. If F has two components, then either

F 'Q S
r t Ss or (Sr ∨ Ss) t {point} for some integers 1 ≤ r, s ≤ 3n

or

F 'Q P
2(r) t {point} for some even integer 2 ≤ r ≤ n.

4. If F has one component, then either

F 'Q S
r ∨ Ss ∨ St for some integers 1 ≤ r, s, t ≤ 3n



or

F 'Q S
s ∨ P 2(r) for some integers 1 ≤ r ≤ n and 1 ≤ s ≤ 3n.

Moreover, if n is even, then X is always totally non-homologous to zero in

XG. Further, all the cases are realizable.

Theorem. Let G = S1 act on a rational cohomology finitistic space X of

type (a, 0) with fixed point set F . Suppose X is not totally non-homologous

to zero in XG, then either F = φ or F 'Q Sr, where 1 ≤ r ≤ 3n is an odd

integer. Moreover, the second possibility is realizable.

6. Some miscellaneous results

In this chapter, we prove some miscellaneous results that we obtained during

the course of our study.

Nice Zp actions

Let G be a group acting on a space X. Then there is an induced action of G

on the cohomology of X. This induced action is important in the cohomology

theory of transformation groups. One can see that for any action of S1 on

a space X whose rational cohomology is of finite type, the induced action

on the rational cohomology is always trivial. This is, however, not true for

actions of the cyclic group Zp of prime order p, when the cohomology is taken

with coefficients in the finite field Fp. Sikora in [58] defined certain actions

of Zp which behave well on passing to mod p cohomology.

An action of Zp on a Fp-vector space N is said to be nice if N = T ⊕F as

Fp[Zp]-module, where T is a trivial and F is a free Fp[Zp]-module. In other

words, T =
⊕

Fp and F =
⊕

Fp[Zp]. We say that a Zp action on a space X



is nice if the induced Zp action on Hn(X;Fp) is nice for each n ≥ 0. Note

that, trivial actions are nice.

There is a Z3 action on Sn × Sn, for n = 1, 3 or 7, which is not nice.

However, every action of Z3 on Sn is nice. Thus, an arbitrary action of Zp

on X × Y need not be nice even if every action of Zp on both X and Y is

nice. If X and Y are G-spaces, then there is a G action on X × Y given by(
g, (x, y)

)
7→ (g.x, g.y), called the diagonal action. In this note, we show that

the diagonal action is nice. More precisely, we prove the following.

Theorem. If Zp acts nicely on spaces X and Y of finite type, then the

diagonal action on X × Y is also nice.

Commutativity of inverse limit and orbit map

This note is motivated by the following example of Bredon [6, p.145]. Let

S2 be the 2-sphere identified with the unreduced suspension of the circle

S1 = {z ∈ C ; |z| = 1}, and f : S2 → S2 be the suspension of the map

S1 → S1, z 7→ z3. Then f commutes with the antipodal involution on S2. If

Σ is the inverse limit of the inverse system

· · · f→ S2 f→ S2 f→ S2

then Σ/Z2 is homeomorphic to lim←−RP 2.

In [60] we show that this can be generalized, that is, the inverse limit and

the orbit map commute for actions of compact groups on compact Hausdorff

spaces. The proof of the result is simple, but does not seem to be available

in the literature. The result is as follows.

Theorem. Let {Xα, π
β
α,Λ} be an inverse system of non-empty compact

Hausdorff topological spaces and let {Gα, ν
β
α,Λ} be an inverse system of compact



topological groups, where each Xα is a Gα-space and each bonding map πβα is

νβα-equivariant. Further, assume that Λ has the least element λ, Gλ action

on Xλ is free and the bonding map ναλ is injective for each α ∈ Λ. Then,

there is a natural homeomorphism

ψ : (lim←−Xα)/(lim←−Gα)→ lim←−(Xα/Gα).
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0 Introduction

0.1 History and overview

The theory of topological transformation groups deals with the symmetries of topological

spaces. This theory was formalized in the year 1955 by D. Montgomery in his classic

text Topological Transformation Groups [47] written jointly with L. Zippin. It is now

a very active area of research expanding in many directions and interacting with many

areas of mathematics including algebraic and differential topology, algebraic geometry

and differential geometry. Historically, algebraic topology was first used in the study of

topological transformation groups with the work of P. A. Smith [67, 68, 69] in the 1930s

and 1940s and is often called as Smith Theory. Since the publication of [47], a number of

new ideas and tools have been applied in dealing the problems of transformation groups.

The Borel seminar [11] gives an account of the work done in this field before 1960 by

leading mathematicians such as G. E. Bredon, E. E. Floyd, D. Montgomery and Borel

himself. Later the subject received substantial clarification by the work of Atiyah and

Segal [2, 56] in the equivariant K-theory and by the ideas implicit in the work of Borel,

which were reformulated in the Localization Theorem proven independently by W. -Y.

Hsiang [27] and D. G. Quillen [53] for actions of compact Lie groups on spaces of fi-

nite cohomological dimension. The theorem was later proved for actions of compact Lie

groups on finitistic spaces by Deo-Singh-Shukla [15] and Allday-Puppe [1]. Important

contributions, which can now be treated as the classical part of the subject initiated by

P. A. Smith, have been made by A. Borel, G. E. Bredon, P. E. Conner, E. E. Floyd,
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W. -Y. Hsiang, R. B. Oliver, D. G. Quillen, J. C. Su, T. Chang, T. Skjelbred and many

others. The recent developments in this subject are due to A. Adem, C. Allday, W.

Browder, G. Carlsson, D. H. Gottlieb, S. Halperin, V. Puppe and others. The text [6] by

G. E. Bredon contains a comprehensive treatment of almost all aspects of the theory of

compact transformation groups before 1972. Thereafter in 1975, the important text [27]

by W. -Y. Hsiang appeared, in which the transformation groups were studied in terms

of the geometric weight systems. Later, texts by T. tom Dieck [17], K. Kawakubo [34]

and finally by C. Allday and V. Puppe [1] appeared. All these texts present the latest

developments in the field.

0.2 Work done in thesis

Recall that, to an action of a group G on a space X, there are two associated spaces,

namely, the fixed point set and the orbit space. It has always been one of the basic

problems of transformation groups to determine these two associated spaces, either pre-

cisely or up to (co)homology. The pioneering result of Smith [67] on fixed point sets up

to homology of prime periodic maps on homology spheres was the first in this direction.

More explicit relations between the space, the fixed point set and the orbit space were

obtained by Floyd [23, 24]. Bredon [6] contains an excellent account of results in this

direction for the large class of finitistic spaces. This class of spaces was introduced by

Swan [75] in his study of fixed point theory. It is a large class of spaces including all

compact Hausdorff spaces and paracompact spaces of finite covering dimension. Due

to Deo-Singh-Tripathi [14, 16], it is known that if X is a topological space and G is

a compact Lie group acting continuously on X, then X is finitistic if and only if the

orbit space X/G is finitistic. The major part of our work is concerned with determining

the cohomology of orbit spaces and fixed point sets of certain compact transformation

groups on finitistic spaces.
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Our first problem is regarding the cohomology of orbit spaces of free involutions on

cohomology lens spaces. Kim [35] showed that if p = 4k for some k, then the orbit space

of any sense-preserving free involution on L3
p(1, q) is the lens space L3

2p(1, q
′
), where

q
′
q ≡ ±1 or q

′ ≡ ±q (mod p) and an involution is sense-preserving if the induced map

on H1(L3
p(1, q);Z) is the identity map. Myers in [49] showed that every free involution

on a 3-dimensional lens space L3
p(1, q) is conjugate to an orthogonal free involution, in

which case the orbit space is again a lens space. Motivated by these results, we consider

free involutions on more general spaces, namely, finitistic mod 2 cohomology lens spaces.

If G = Z2 acts freely on a finitistic mod 2 cohomology lens space X of dimension 2m−1,

then we determine completely the possible mod 2 cohomology algebra of the orbit space

X/G.

Our second problem deals with the cohomology of fixed point sets of involutions on

certain types of spaces first studied by Toda [77]. Toda studied the cohomology algebra

of a space X having only non trivial cohomology groups H in(X;Z) = Z for i = 0, 1, 2

and 3, where n is a fixed positive integer. If ui ∈ H in(X;Z) is a generator for i = 1, 2

and 3, then the ring structure of H∗(X;Z) is completely determined by the integers a

and b such that

u2
1 = au2 and u1u2 = bu3.

Such a space is said to be of type (a, b). Let p be a prime and Zp be the cyclic group of

order p. The cohomological nature of the fixed point sets of Zp actions for the case b 6≡ 0

mod p has been investigated in detail by Bredon [5, 6] and Su [73, 74] for all primes p.

And the cohomological nature of the fixed point sets of Zp actions for the case b ≡ 0

mod p has been completely determined by Dotzel and Singh [20, 21] for odd primes p.

We study involutions on finitistic spaces of type (a, 0) mod 2 and determine the possible

fixed point sets up to mod 2 cohomology. We also give examples realizing the possible

cases.

Our third problem deals with the cohomology of fixed point sets of S1 actions on

spaces of type (a, 0). For b 6= 0, the cohomological nature of the fixed point sets of S1
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actions has been studied in detail by Bredon [5, 6]. In our work we study S1 actions on

finitistic spaces of type (a, 0) and determine the possible fixed point sets up to rational

cohomology. Examples realizing the possible cases are also given.

Another direction of work in the theory of topological transformation groups is the

study of equivariant maps. The well known Borsuk-Ulam theorem states that, if n > k

then there does not exist any Z2-equivariant map Sn → Sk, where Sn and Sk are

equipped with the antipodal involutions. Over the years there have been several gener-

alizations of the theorem in many directions. Jaworowski [30], Dold [19], Nakaoka [51]

and others extended this theorem to the setting of fiber bundles, by considering fiber

preserving maps f : SE → E
′
, where SE denotes the total space of the sphere bundle

SE → B associated to a vector bundle E → B and E
′ → B is other vector bundle.

Thus they parametrized the Borsuk-Ulam theorem.

Our fourth problem deals with the parametrized Borsuk-Ulam theorem. We prove

parametrized Borsuk-Ulam theorems for bundles whose fibers are finitistic mod 2 coho-

mology real or complex projective spaces with free involutions.

The basic setting for our approach in this thesis is the equivariant cohomology theory

introduced by Borel [9]. Let G be a compact Lie group and X be a G-space. Then the

equivariant cohomology of the G-space X is defined to be any fixed cohomology (say

Čech cohomology) of the total space XG of the Borel fibration X ↪→ XG −→ BG. By

the work of Leray [40] (also see [44] for more details), there is a first quadrant spectral

sequence of algebras {Er∗,∗, dr}, converging to H∗(XG) as an algebra, with

E2
k,l = Hk(BG;Hl(X)),

the cohomology of the base BG with locally constant coefficients Hl(X) twisted by a

canonical action of π1(BG). This spectral sequence can be used to compute the equiv-

ariant cohomology of X and we exploit it heavily in our work. Throughout we use Čech

cohomology, since it is found to be most compatible with the cohomology theory of
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topological transformation groups and the cohomological dimension theory.

0.3 Organization of thesis

The thesis is organized as follows.

In Chapter 1, we recall the necessary material for our work in subsequent chapters.

Basic definitions and results in the theory of topological transformation groups includ-

ing Smith theory and group actions on projective spaces are recorded. The main tool

employed in our work is the Leray spectral sequence associated to a Borel fibration. We

also develop the necessary background in the theory of spectral sequences.

In Chapter 2, we discuss our first research problem. We study free involutions on

mod 2 cohomology lens spaces. We determine the possible mod 2 cohomology algebra

of orbit space of any free involution on a finitistic mod 2 cohomology lens space X of

dimension 2m − 1, using the Leray spectral sequence associated to the Borel fibration

X ↪→ XZ2 −→ BZ2 . As an application, we show that if X is a finitistic mod 2 cohomology

lens space of dimension 2m−1 with m ≥ 3, then there does not exist any Z2-equivariant

map from Sn → X for n ≥ 2m, where Sn is equipped with the antipodal involution. This

work was presented by the author in the HRI International Conference in Mathematics,

Allahabad, March 16-20, 2009.

In Chapter 3, we prove some parametrized Borsuk-Ulam theorems for bundles whose

fibers are finitistic mod 2 cohomology real or complex projective spaces with free invo-

lutions. The size of the Z2-coincidence sets is also estimated. This work has appeared

in [63] and was presented by the author in the Second East Asia Conference on Alge-

braic Topology held at the Institute for Mathematical Sciences, National University of

Singapore, Singapore, December 15-19, 2008.

In Chapter 4, we study involutions on finitistic spaces X having mod 2 cohomology

algebra of the wedge sum P 2(n) ∨ S3n or Sn ∨ S2n ∨ S3n and determine the possible

fixed point sets up to mod 2 cohomology depending on whether or not X is totally
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non-homologous to zero in XZ2 in the Borel fibration X ↪→ XZ2 −→ BZ2 . We also give

examples realizing the possible cases. This work has appeared in [64].

Chapter 5 deals with S1 actions on finitistic spaces X with rational cohomology

algebra of the wedge sum P 2(n) ∨ S3n or Sn ∨ S2n ∨ S3n. We determine the possible

fixed point sets up to rational cohomology depending on whether or not X is totally

non-homologous to zero in XS1 in the Borel fibration X ↪→ XS1 −→ BS1 . Examples

realizing the possible cases are also given. This work has appeared in [62].

Chapter 6 contains some miscellaneous results obtained during the course of our

study. We study the notion of nice actions introduced by Sikora [58] and show that if

the cyclic group Zp (p prime) acts nicely on spaces X and Y of finite type, then the

diagonal action on X×Y is also nice. In the end, we prove the commutativity of inverse

limit and orbit map for free actions of compact groups. This work has appeared in [60].

The precise chapter-wise details are given in the following pages.



Chapter 1

Brief Review of Transformation

Groups and Spectral Sequences

In this chapter we give some basic definitions and results that will be used in the thesis.

Most of the material is taken from Allday-Puppe [1], Bredon [6] and McCleary [44].

1.1 Group actions and their properties

Let G be a topological group and X be a Hausdorff topological space.

Definition 1.1.1. An action of G on X is a continuous map θ : G×X → X such that

1. θ(e, x) = x for all x ∈ X, where e is the identity of G.

2. θ
(
g, θ(h, x)

)
= θ(gh, x) for all g, h ∈ G and x ∈ X.

The triple (G,X, θ) is called a topological transformation group and X is called

a G-space. We will write g.x to denote θ(g, x) when the action is clear from the context.

We note that an action of the group Z2 is also called an involution.

The subject of transformation groups is motivated by examples. Let G be a topolog-

ical group. Then G acts on itself by conjugation, G×G→ G given by (g, h) 7→ ghg−1.

By a representation of a topological group G, we mean a continuous homomorphism



Chapter 1. Brief Review of Transformation Groups and Spectral Sequences 8

from G to an orthogonal group O(n). Since O(n) acts on a wide variety of spaces,

such as Rn, Dn, Sn−1, RP n−1 and Gk(Rn), one obtains a multitude of G-actions from a

representation. Likewise a complex representation G → U(n) gives actions on CP n−1,

Gk(Cn), etc. A group action arising from a continuous homomorphism G → GL(n,R)

is called a linear action.

Let X be a G-space. For g ∈ G, let θg : X → X be the map defined by θg(x) = θ(g, x).

Then, θgθh = θgh and θe = 1X . Thus each θg is a homeomorphism of X. If Homeo(X)

denote the group of all homeomorphisms of X, then g 7→ θg defines a homomorphism

θ : G→ Homeo(X). Conversely, any such homomorphism gives an action of G on X.

For each x ∈ X, x = {g.x| g ∈ G} is called the orbit of x. Let X/G denote the set

of all orbits and let π : X → X/G be the canonical map given by π(x) = x, called the

orbit map. Then X/G equipped with the quotient topology induced by π is called the

orbit space. The following is a quite useful result.

Theorem 1.1.1. [6, Chapter I, Theorem 3.1] If X is a G-space with G compact, then

1. X/G is Hausdorff.

2. π : X → X/G is closed.

3. X is compact if and only if X/G is compact.

4. X is locally compact if and only if X/G is locally compact.

For each x ∈ X, one can associate a subgroup Gx = {g ∈ G | g.x = x} of G called

the isotropy subgroup at x. These subgroups play an important role in the theory of

topological transformation groups.

Proposition 1.1.2. [6, Chapter I] Let X be a G-space and assume that X is T1. Then

Gx is a closed subgroup of G.

We say that G acts freely on X if Gx = {e} for all x ∈ X. The subspace XG =

{x ∈ X | g.x = x for all g ∈ G} of X is called the fixed point set of the action. For
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convenience we write F to denote the fixed point set XG. The orbit space and the fixed

point set are two important spaces associated to a group action.

Definition 1.1.2. Let X be a G-space with action θ and Y be a H-space with action

θ
′
. If ν : G→ H is a topological group homomorphism, then a map f : X → Y is called

ν-equivariant if f
(
θ(g, x)

)
= θ

′(
ν(g), f(x)

)
for all g ∈ G and x ∈ X, in other words,

the following diagram commute

G×X
ν×f
��

θ // X

f
��

H × Y θ
′
// Y.

Equivariant maps are the right ones to be considered in studying group actions. If

both X and Y are G-spaces, then f is called G-equivariant (here ν = identity map of G).

Note that the ν-equivariant map f induces a map f : X/G→ Y/H given by f(x) = f(x)

and hence gives the following commutative diagram

X

π
��

f
// Y

π
′

��

X/G
f
// Y/H.

1.2 Direct and inverse systems

In this section, we give the necessary background required for defining Čech cohomology.

Our main reference is the classic text [22] by Eilenberg and Steenrod. Let us first recall

the following definition.

Definition 1.2.1. A directed set Λ is a set with a relation < such that:

1. α < α for all α ∈ Λ.

2. α < β and β < γ implies α < γ.

3. Given α and β, there exists γ such that α < γ and β < γ.
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Definition 1.2.2. A direct system of sets, denoted by {Xα, π
β
α,Λ}, consists of a di-

rected set Λ and a family of sets {Xα}α∈Λ such that for each α , β ∈ Λ with α < β,

there is a map πβα : Xα → Xβ satisfying:

1. παα : Xα → Xα is the identity map for all α ∈ Λ.

2. πγβ ◦ πβα = πγα for all α < β < γ.

The maps {πβα} are called projections of the direct system (also called bonding

maps). A direct system is usually represented by the following diagram

· · · → Xα
πβα→ Xβ

πγβ→ Xγ → · · · , where α < β < γ.

If each Xα is a topological space, or a R-module, or a topological group, and each

projection is continuous, or a R-module homomorphism, or a continuous homomorphism

respectively, then the system is called a direct system of topological spaces, R-modules,

or topological groups respectively.

Let {Gα, π
β
α,Λ} be a direct system of R-modules and R-module homomorphisms. Let

Σ denote the disjoint union of the R-modules. Introduce an equivalence relation on Σ

by declaring gα ∼ gβ if there exists a γ such that α, β < γ and πγα(gα) = πγβ(gβ). The

direct limit of the direct system, denoted by lim−→Gα, is the set Σ/ ∼ of equivalence

classes. If [gα] denote an element of lim−→Gα, then it can be made into an abelian group

by defining

[gα] + [gβ] = [πγα(gα) + πγβ(gβ)],

where γ is such that α, β < γ. The scalar multiplication is defined as r[gα] = [rgα].

Thus the direct limit lim−→Gα is a R-module.

Definition 1.2.3. An inverse system of sets, denoted by {Xα, π
β
α,Λ}, consists of a

directed set Λ and a family of sets {Xα}α∈Λ such that for each α , β ∈ Λ with α < β

there is a map πβα : Xβ → Xα satisfying:

1. παα : Xα → Xα is the identity map for all α ∈ Λ.
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2. πβα ◦ π
γ
β = πγα for all α < β < γ.

The maps {πβα} are called projections of the inverse system (also called bonding

maps). An inverse system is usually represented by the following diagram

· · · → Xγ

πγβ→ Xβ
πβα→ Xα → · · · , where α < β < γ.

If each Xα is a topological space, or a R-module, or a topological group, and each

projection is continuous, or a R-module homomorphism, or a continuous homomorphism

respectively, then the system is called an inverse system of topological spaces, R-modules,

or topological groups respectively.

Given an inverse system {Xα, π
β
α,Λ} of sets, let lim←−Xα (possibly empty) be the

subset of Πα∈ΛXα consisting of elements (xα) such that xα = πβα(xβ) for each α < β

in Λ. The set lim←−Xα is called the inverse limit of the inverse system. We denote by

πβ : lim←−Xα → Xβ, the restriction of the canonical projection Πα∈ΛXα → Xβ.

If {Xα, π
β
α,Λ} is an inverse system of spaces, then lim←−Xα is assigned the topology

is has as a subspace of Πα∈ΛXα. If {Xα, π
β
α,Λ} is an inverse system of R-modules, it is

easily seen that lim←−Xα is a subgroup of Πα∈ΛXα and hence is a R-module. Similarly, an

inverse limit of topological groups is a topological group. The following basic results are

well known.

Proposition 1.2.1. [22, p.215] If {Xα, π
β
α,Λ} is an inverse system of topological spaces,

then each πα is continuous.

Theorem 1.2.2. [22, p.217] The inverse limit of an inverse system of non-empty com-

pact Hausdorff topological spaces is a non-empty compact Hausdorff topological space.

Theorem 1.2.3. [22, p.219] Let X be a topological space and {Xα, π
β
α,Λ} be an inverse

system of topological spaces. If for each α ∈ Λ there is a map ψα : X → Xα such that

πβα ◦ ψβ = ψα for each α < β in Λ, then there is a unique map ψ : X → lim←−Xα.
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1.3 Čech cohomology

The cohomology used in this thesis throughout is the Čech cohomology, unless otherwise

stated. It is a well known fact that this is the most suitable cohomology for studying

the cohomology theory of topological transformation groups. In this section, we give the

necessary background concerning Čech cohomology theory. For details on other aspects

of algebraic topology, we refer to [25, 48, 70].

Let X be a space and let A be an open covering of X. We define an abstract

simplicial complex called the Nerve of A, denoted by N(A), as follows. Its vertices are

the elements of A and its simplices are the finite sub-collections {A1, ..., An} of A such

that A1∩A2∩ ...∩An 6= φ. Now if B is a refinement of A, we define a map g : B → A by

choosing g(B) to be an element of A that contains B. This map g induces a simplicial

map g : N(B) → N(A). Any other choice g
′

for g is contiguous to g. Thus, if B is a

refinement of A, for any coefficient group G, we have a uniquely defined homomorphism

in simplicial cohomology

g∗ : H∗(N(A);G)→ H∗(N(B);G)

induced by the simplicial map g. We call it the homomorphism induced by the refine-

ment. Let Λ be the directed set of all open coverings of X, directed by letting A < B if

B is a refinement of A. Construct a direct system by assigning to the element A of Λ,

the group Hk(N(A);G) and by assigning to the pair A < B in Λ, the homomorphism

fBA : Hk(N(A);G)→ Hk(N(B);G),

induced by the refinement. We define the Čech cohomology group of X in dimension k,

with coefficients in G, by the equation

Hk(X;G) = lim−→
A∈Λ

Hk(N(A);G).

Most of the fundamental properties of Čech cohomology can be stated in the following

theorem.
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Theorem 1.3.1. [22, Chapter IX] The Čech cohomology theory satisfies the Eilenberg-

Steenrod axioms.

Using inverse system of groups, one can define the Čech homology of a space X, just

as we defined the Čech cohomology. We will exploit the continuity property of the Čech

cohomology theory which we explain as follows. Let T denote a category of spaces and

maps. Let InvT denote the category of inverse systems having values in T and let GR be

the category of R-modules, where R is a ring. Suppose that a cohomology theory H is

defined on T with values in GR. Then H can be applied to {Xα, π
β
α,Λ} ∈ InvT to yield

a direct system

{Hq(Xα), πβα
∗
,Λ}.

Let {Xα, π
β
α,Λ} be an inverse system having values in T . Let πβ : lim←−Xα → Xβ

be the projection, then πβαπβ = πα for α < β and π∗βπ
β
α
∗

= π∗α. Thus the maps {π∗β}

constitute a homomorphism

Hq(Xβ)→ Hq(lim←−Xα),

thereby defining a limit homomorphism

l(q) : lim−→Hq(Xβ)→ Hq(lim←−Xα).

Definition 1.3.1. A cohomology theory H with values in the category GR is said to be

continuous on the category T if the transformation l is a natural equivalence, that is,

for each inverse system {Xα, π
β
α,Λ} ∈ InvT ,

l(q) : lim−→Hq(Xβ)
∼=→ Hq(lim←−Xα).

Theorem 1.3.2. [22, Chapter X, Theorem 3.1] The Čech cohomology theory based on

a coefficient group which is in GR is continuous on the category of compact pairs.

See Chapter X of [22] for more on continuity property. From now onwards the

cohomology used in all our results will be the Čech cohomology.
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1.4 Group actions on finitistic spaces

We now define a class of spaces that plays an important role in the cohomology theory

of transformation groups.

Definition 1.4.1. A paracompact Hausdorff space X is said to be finitistic if its every

open covering has a finite dimensional open refinement, where the dimension of a covering

is one less than the maximum number of members of the covering which intersect non-

trivially.

The notion of a finitistic space was given by R. G. Swan [75] for studying fixed

point theory. It is a large class of spaces including all compact Hausdorff spaces and all

paracompact spaces of finite covering dimension [50, Chapter II]. The Čech cohomology

is found to be most suitable for the cohomology theory of transformation groups on

finitistic spaces. If G is a compact Lie group acting continuously on a space X, then due

to Deo-Singh-Tripathi [14, 16], the space X is finitistic if and only if the orbit space X/G

is finitistic. We now state some important results regarding group actions on finitistic

spaces.

Theorem 1.4.1. [6, Chapter III, Theorem 7.9] Let G = Zp be the cyclic group of prime

order p acting on the finitistic space X with fixed point set F . Then for each fixed n ≥ 0,∑
i≥n

rkH i(F ;Zp) ≤
∑
i≥n

rkH i(X;Zp).

We now have the following result which is originally due to Floyd.

Theorem 1.4.2. [6, Chapter III, Theorem 7.10] Let G = Zp be the cyclic group of prime

order p acting on the finitistic space X with fixed point set F . If rkH∗(X;Zp) <∞ and

the Euler characteristics are defined in terms of mod p Čech cohomology, then

χ(X) + (p− 1)χ(F ) = pχ(X/G).

An action of a group G on a space X induces an action on the cohomology given by

g−1 : X → X.
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Theorem 1.4.3. [6, Chapter III, Theorem 7.2] Let X be a paracompact G-space with

G finite and let π : X → X/G be the orbit map. If Λ is a field of characteristic zero or

prime to |G|, then

π∗ : H∗(X/G; Λ)→ H∗(X; Λ)G

is an isomorphism.

It is a well known fact that when n is even, Z2 is the only non-trivial group acting

freely on the sphere Sn. When n is odd, the problem is quite difficult and in fact a

complete solution is not known. We now state a well known result which is originally

due to Smith [66].

Theorem 1.4.4. [6, Chapter III, Theorem 8.1] If p is a prime, then the group Zp ⊕ Zp

cannot act freely on a finitistic mod p cohomology n-sphere.

We now present some results regarding actions of compact Lie groups. In studying

group actions it is necessary to count the number of conjugacy classes of isotropy sub-

groups of the group. If G is a compact Lie group and H is a closed subgroup of G, then

let [H] denote the conjugacy class of H in G. The group G is said to act on a space X

with finitely many orbit types (FMOT) if the set {[Gx] | x ∈ X} is finite, where

Gx is the isotropy subgroup at x. For a subgroup H of G, let H0 denote the component

of identity in H. Then G is said to act on X with finitely many connective orbit

types (FMCOT) if the set {[G0
x] | x ∈ X} is finite. The group actions of such type

are the correct ones to consider in generalizing results about the actions of finite groups

to those of compact groups. See for example [1] and [6] for a detailed account of results

concerning such actions. Clearly FMOT implies FMCOT. When working with a field

of characteristic zero only FMCOT is needed [1, p.131]. For torus actions we have the

following useful result.

Lemma 1.4.5. [1, Lemma 4.2.1(1)] Let G = (S1)r acts on the finitistic space X with

FMCOT, then there is a sub-circle S1 ⊂ G such that their fixed point sets are same, that

is, XS1 = XG.



Chapter 1. Brief Review of Transformation Groups and Spectral Sequences 16

It is clear that the group G = S1 act on any space with FMCOT and hence we drop

this hypothesis from the results about S1 actions that we present in this section.

Theorem 1.4.6. [1, Corollary 3.1.13, Remark 3.10.5(2)] Let G = S1 act on the finitistic

space X with fixed point set F . Suppose that
∑

i≥0 rkH
i(X;Q) <∞, then

χ(X) = χ(F ).

Theorem 1.4.7. [1, Lemma 3.10.16, Corollary 3.10.12] Let G = Zp be the cyclic group

of prime order p acting on the finitistic space X. Suppose that H i(X;Zp) = 0 for i > n,

then

1. H i(F ;Zp) = 0 for i > n.

2. H i(X/G;Zp) = 0 for i > n.

This also holds for G = S1 and rational coefficients.

We now recall an important construction due to Borel [11, Chapter IV]. For a compact

Lie group G, let G ↪→ EG −→ BG be the universal principal G-bundle. Let X be a

G-space. Consider the diagonal action of G on X × EG. Then the projection pr2 :

X ×EG → EG is G-equivariant and gives a fibration X ↪→ XG −→ BG called the Borel

fibration, where XG = (X×EG)/G is the orbit space of the diagonal action on X×EG.

The fibration X ↪→ XG −→ BG is in fact a fiber bundle. Similarly, the projection

pr1 : X × EG → X is G-equivariant and we have the following commutative diagram.

X

q1
��

X × EG
pr2

//
pr1

oo

q

��

EG

q2

��

X/G XG
pr1
oo

pr2
// BG.

Any fixed cohomology (say Čech cohomology) of XG is called the equivariant co-

homology of X. Note that if X is a paracompact G-space, then XG is also paracompact

(see [1, p.141]). If pr1 : (XG, FG)→ (X/G,F ) is the map induced by the G-equivariant

projection (X × EG, F × EG)→ (X,F ), then we have the following results.
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Theorem 1.4.8. [6, Chapter VII, Proposition 1.1] Let G = Zp be the cyclic group of

prime order p acting on the finitistic space X with fixed point set F . Then

pr1
∗ : H i(X/G,F )→ H i(XG, FG)

is an isomorphism for all i ≥ 0 and for arbitrary coefficients. This also holds for G = S1

and rational coefficients.

In fact for free actions X/G and XG have the same homotopy type.

Theorem 1.4.9. [6, Chapter VII, Theorem 1.5] Let G = Z2 act freely on the finitistic

space X. Suppose that H i(X;Z2) = 0 for i > n, then H i(XG;Z2) = 0 for i > n.

We now digress to discuss the Leray-Hirsch theorem, which will be used crucially in

Chapter 3. Before that we have the following definition [6, p.372].

Definition 1.4.2. Let (X,E, π,B) be a fiber bundle and let Λ be a principal ideal do-

main. By a cohomology extension of the fiber we mean a Λ-module homomorphism

of degree zero

θ : H∗(X; Λ)→ H∗(E; Λ)

such that for any b ∈ B, the composition

H∗(X; Λ)
θ→ H∗(E; Λ)

i∗b→ H∗(Xb; Λ)

is an isomorphism, where ib : Xb ↪→ E is the inclusion of the fiber Xb over b.

Here θ is not required to preserve products. With this we prove the following [6, p.372].

Theorem 1.4.10. (Leray-Hirsch) Let (X,E, π,B) be a fiber bundle and let Λ be a prin-

cipal ideal domain. Assume that X is paracompact and that B is a CW-complex. Let θ

be a cohomology extension of the fiber, with respect to the base ring Λ, and assume that

H∗(X; Λ) is a torsion free Λ-module. Then the map

H∗(B; Λ)⊗Λ H
∗(X; Λ)→ H∗(E; Λ),

taking β ⊗ α 7→ π∗(β) ∪ θ(α), is an isomorphism of H∗(B; Λ)-modules.
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In other words, H∗(E; Λ) is a free H∗(B; Λ)-module, where we view H∗(E; Λ) as a

module over the ring H∗(B; Λ) by defining scalar multiplication as β.c = π∗(β) ∪ c for

β ∈ H∗(B; Λ) and c ∈ H∗(E; Λ). We now give another important definition [6, p.373].

Definition 1.4.3. Let (X,E, π,B) be a fiber bundle and let Λ be a principal ideal

domain. If i : X → E is the inclusion of a typical fiber, then we say that X is totally

non-homologous to zero in E with respect to ring Λ if the homomorphism

i∗ : H∗(E; Λ)→ H∗(X; Λ)

is surjective.

We write TNHZ to mean totally non-homologous to zero. In case of coefficients in

a field Λ, the cohomology extension of the fiber clearly exists if and only if X is totally

non-homologous to zero in E. With this definition, we have the following result.

Theorem 1.4.11. [1, Theorem 3.10.4] Let G = Zp be the cyclic group of prime order p

acting on the finitistic space X with fixed point set F . Suppose that
∑

i≥0 rkH
i(X;Zp) <

∞, then ∑
i≥0

rkH i(F ;Zp) ≤
∑
i≥0

rkH i(X;Zp).

Furthermore, the following statements are equivalent:

1.
∑

i≥0 rkH
i(F ;Zp) =

∑
i≥0 rkH

i(X;Zp).

2. X is totally non-homologous to zero in XG.

3. G acts trivially on H∗(X;Zp) and the Leray spectral sequence Ek,l
2 = Hk(BG, H

l(X;Zp))

=⇒ Hk+l(XG;Zp) of the Borel fibration X ↪→ XG −→ BG degenerates.

This also holds for G = S1 and rational coefficients.

For the details on spectral sequences we refer to Section 1.7. We now present a useful

result regarding involutions.



Chapter 1. Brief Review of Transformation Groups and Spectral Sequences 19

Proposition 1.4.12. [6, Corollary 7.3] Suppose that G = Z2 acts on the finitistic space

X with fixed point set F and that X is totally non-homologous to zero in XG. Then any

class a ∈ Hn(X;Z2) with a2 6= 0 restricts non-trivially to F .

1.5 Group actions on projective spaces

In this section, we record some fundamental results regarding transformation groups

on cohomology projective spaces. For a prime p, we write X 'p Y if X and Y have

isomorphic mod p cohomology algebras. Similarly, we write X 'p P h(n) to mean that

H∗(X;Zp) ∼= Zp[a]/ah+1,

where a is a homogeneous element of degree n. For n = 1, 2 or 4, X has the mod p

cohomology algebra of the real projective space RP h, the complex projective space CP h

or the quaternionic projective space HP h, respectively. For n = 8 and h = 2, X has the

mod p cohomology algebra of the Cayley projective plane OP h. The following result is

well known.

Proposition 1.5.1. [71, Chapter I, 4.5] Let X be a space such that X 'p P h(n), then

for p = 2

1. n = 1, 2, 4 for h ≥ 2.

2. n = 8 for h = 2.

and for p odd, n must be even for h ≥ 2.

For Z2 actions on RP h the following theorem was proved by Smith [65]. Smith’s

arguments were extended to the case of cohomology RP h by Su [74]. The following

general case was proved by Bredon [5, 8].

Theorem 1.5.2. [6, Chapter VII, Theorem 3.1] Let G = Zp be the cyclic group of prime

order p acting on the finitistic space X 'p P h(n). Then either the fixed point set F is
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empty or F is the disjoint union of components Fi 'p P hi(ni) with h + 1 =
∑

(hi + 1)

and ni ≤ n. The number of components is at most p. For p odd and h ≥ 2, n and ni are

all even. Moreover, if ni = n for some i, then the restriction Hn(X;Zp) → Hn(Fi;Zp)

is an isomorphism.

An analogue of above theorem holds for S1 actions on rational cohomology projective

spaces. For Z2 actions the following result is well known.

Theorem 1.5.3. [6, Chapter VII, Theorem 3.2] Suppose that G = Z2 acts on the fini-

tistic space X '2 P
h(n), h ≥ 2. Then one of the following possibilities must hold:

1. F is empty and h is odd.

2. F is connected and F '2 P
h(m), where n = m or n = 2m.

3. F has two components F1 and F2, where Fi '2 P
hi(n) and h = h1 + h2 + 1.

Moreover, in case (2) the restriction Hn(X;Z2)→ Hn(F ;Z2) is an isomorphism.

1.6 Cohomological dimension

In this section, we recall some definitions and results in dimension theory which will be

required in our work. For more details, we refer to Nagami [50]. The cohomology used

is the Čech cohomology.

Definition 1.6.1. The large cohomological dimension Dim(X,Λ) of a space X with

respect to an abelian group Λ is the largest positive integer n such that Hn(X,A; Λ) 6= 0

for some closed subspace A of X.

Definition 1.6.2. The small cohomological dimension dim(X,Λ) of a space X with

respect to an abelian group Λ is the smallest positive integer n such that for each m ≥ n

the map i∗ : Hm(X; Λ) → Hm(A; Λ) induced by the inclusion i : A ↪→ X is surjective

for each closed subspace A of X.
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The following is an important result.

Theorem 1.6.1. [50, Theorem 37-7] If X is paracompact, then Dim(X,Λ) = dim(X,Λ)

for any abelian group Λ.

Since we will be dealing with paracompact spaces, we denote the cohomological di-

mension of a space X with respect to an abelian group Λ by cohom.dim(X,Λ). For

actions of compact Lie groups on paracompact spaces, we have the following.

Proposition 1.6.2. [52, Proposition A.11] Let G be a compact Lie group acting on a

paracompact space X with orbit space X/G, then for any abelian group Λ, we have

cohom.dim(X/G,Λ) ≤ cohom.dim(X,Λ).

1.7 Leray spectral sequence

It has been a challenging problem to relate the cohomology algebra of the total space,

the base space and the fiber space of a fiber bundle. Leray [39] solved this problem

and gave the first explicit example of a spectral sequence in the cadre of sheaves and a

general cohomology theory which specializes to the Alexander-Spanier cohomology, Čech

cohomology, de Rham cohomology and singular cohomology. Before giving the definition

of a spectral sequence, we recall the following definition.

Definition 1.7.1. A differential bigraded module over a ring R, is a collection of R-

modules Ek,l, where k and l are integers, together with R-linear mapping d : E∗,∗ → E∗,∗,

the differential of bidegree (s, 1 − s) or (−s, s − 1) for some integer s and satisfying

d2 = 0.

With the differential, we can take the homology of the differential bigraded module:

Hk,l(E∗,∗, d) = ker{d : Ek,l → Ek+s,l−s+1}/im{d : Ek−s,l+s−1 → Ek,l}.

Now we can give the definition of a spectral sequence.
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Definition 1.7.2. A spectral sequence is a collection of differential bigraded R-

modules {E∗,∗r , dr}, where r =1, 2,...; the differentials are either all of bidegree (−r, r−1)

(for a spectral sequence of homology type)or all of bidegree (r, 1 − r) (for a spectral

sequence of cohomology type) and for all r, k, l, Ek,l
r+1
∼= Hk,l(E∗,∗r , dr).

We will be using only the cohomology type spectral sequences.

Definition 1.7.3. A filtration F ∗ of a R-module A is a family of submodules {F kA}

for k ∈ Z such that

· · · ⊂ F k+1A ⊂ F kA ⊂ F k−1A ⊂ · · · ⊂ A (decreasing filtration)

or · · · ⊂ F k−1A ⊂ F kA ⊂ F k+1A ⊂ · · · ⊂ A (increasing filtration).

If H∗ is a graded R-module and H∗ is filtered, then we can examine the filtration

on each degree by letting F kHn = F kH∗ ∩ Hn. Thus the associated graded module is

bigraded when we consider

F kHk+l/F k+1Hk+l, if F ∗ is decreasing

or F kHk+l/F k−1Hk+l, if F ∗ is increasing.

We want to find where the spectral sequence converge to. To do so, we present a

spectral sequence as a tower of submodules of a given module. From this tower, it is

clear where the algebraic information is converging. For the sake of clarity we suppress

the bigrading. Denote

Z2 = ker d2 and B2 = im d2.

The condition, d2
2 = 0, implies B2 ⊂ Z2 ⊂ E2, and by definition, E3

∼= Z2/B2. Write Z3

for ker d3 : E3 → E3. Since, Z3 is a submodule of E3, it can be written as Z3/B2, where

Z3 is a submodule of Z2. Similarly, B3 = im d3 is isomorphic to B3/B2 and so

E4
∼= Z3/B3

∼= (Z3/B2)/(B3/B2) ∼= Z3/B3.



Chapter 1. Brief Review of Transformation Groups and Spectral Sequences 23

This data can be presented as a tower of inclusions:

B2 ⊂ B3 ⊂ Z3 ⊂ Z2.

Iterating this process, we present the spectral sequence as an infinite tower of submodules

of E2:

B2 ⊂ B3 ⊂ · · ·Bn ⊂ · · · · · · ⊂ Zn ⊂ · · ·Z3 ⊂ Z2 ⊂ E2

with the property that En+1
∼= Zn/Bn, and the differential dn+1 can be taken as a

mapping Zn/Bn → Zn/Bn, which has kernel Zn+1/Bn and image Bn+1/Bn. The short

exact sequence induced by dn+1,

0→ Zn+1/Bn → Zn/Bn → Bn+1/Bn → 0,

gives rise to isomorphisms Bn+1/Bn
∼= Zn/Zn+1 for all n. Conversely, a tower of sub-

modules of E2, together with such a set of isomorphisms, determines a spectral sequence.

We say that an element in E2 that lies in Zr survives to the rth stage, having being

in the kernel of the previous r − 2 differentials. The submodule Br of E2 is the set of

elements that are boundaries by the rth stage. Let Z∞ =
⋂
n Zn be the submodule

of E2 of elements that survive forever, that is, elements that are cycles at every stage.

The submodule B∞ =
⋃
nBn consists of those elements that eventually bound. From

the tower of inclusions it is clear that B∞ ⊂ Z∞. We define

E∞ = Z∞/B∞,

which is a bigraded module that remains after the computation of the infinite sequence

of successive homologies. It is the E∞ term of a spectral sequence that is the general goal

of a computation. We next combine the associated graded module with the definition of

a spectral sequence.

Definition 1.7.4. A spectral sequence {E∗,∗r , dr} is said to converge to H∗, a graded

R-module, if there is a filtration F ∗ of H∗ such that

Ek,l
∞
∼= F kHk+l/F k+1Hk+l,
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where E∗,∗∞ is the limit term of the spectral sequence.

Determination of a graded module H∗ is generally the goal of a computation. Al-

though, one can associate a spectral sequence to a filtered differential graded module

[44, Theorem 2.6] and to a bigraded exact couple [44, Theorem 2.8], we will be maily

concerned with the spectral sequence associated to a fibration. Let R be a commutative

ring with unit.

Theorem 1.7.1. [44, Theorem 5.2] Suppose that X
i
↪→ E

ρ−→ B is a fibration, where B

is path connected and X is connected. Then there is a first quadrant spectral sequence of

algebras {Er∗,∗, dr}, converging to H∗(E;R) as an algebra, with

Ek,l
2 = Hk(B;Hl(X;R)),

the cohomology of the base B with locally constant coefficients Hl(X;R) twisted by a

canonical action of π1(B). This spectral sequence is natural with respect to fiber preserv-

ing maps of fibrations.

For the Čech or the Alexander-Spanier cohomology theories the multiplicative struc-

ture in the spectral sequence is carried along transparently in the construction of the

spectral sequence and we get a spectral sequence of algebras converging to H∗(E;R) as

an algebra [40, 10]. The result for singular theory, however, is more difficult and is one

of the celebrated works in Serre’s thesis [57].

Theorem 1.7.2. [44, Theorem 5.9] Suppose that X
i
↪→ E

ρ−→ B is a fibration, where

B is path connected and X is connected, and that the system of local coefficients on B

is simple, then the edge homomorphisms

Hk(B;R) = Ek,0
2 −→ Ek,0

3 −→ · · ·

−→ Ek,0
k −→ Ek,0

k+1 = Ek,0
∞ ⊂ Hk(E;R)

and

H l(E;R) −→ E0,l
∞ = E0,l

l+1 ⊂ E0,l
l ⊂ · · · ⊂ E0,l

2 = H l(X;R)
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are the homomorphisms

ρ∗ : Hk(B;R)→ Hk(E;R) and i∗ : H l(E;R)→ H l(X;R).

By introducing some simplifying hypothesis, the spectral sequence takes the following

form.

Proposition 1.7.3. [44, Proposition 5.5] Suppose that the system of local coefficients

on B determined by the fiber is simple, that F is connected, and that F and B are of

finite type, then for a field R, we have

Ek,l
2
∼= Hk(B;R)⊗R H l(X;R).

Remark 1.7.1. The graded commutative algebra H∗(E;R) is isomorphic to TotE∗,∗∞ , the

total complex of E∗,∗∞ . As mentioned earlier, H∗(E) is a H∗(B)-module with the scalar

multiplication given by β.c = ρ∗(β) ∪ c for β ∈ H∗(B) and c ∈ H∗(E).

Remark 1.7.2. Our main concern will be the Leray spectral sequence associated to the

Borel fibration X
i
↪→ XG

ρ−→ BG.
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Chapter 2

Cohomology Algebra of Orbit

Spaces of Free Involutions on Lens

Spaces

2.1 Introduction

This chapter is concerned with the orbit spaces of free involutions on cohomology lens

spaces. The study of 3-dimensional lens spaces dates back to the work of Tietze in 1908

[76]. They are the first known examples of 3-manifolds which are not determined by their

homology and fundamental group alone. The term lens space was not introduced until

1930 by Seifert and Threlfall. Since then the spaces have appeared frequently in works

concerning 3-manifolds, surgery and knot theory and have important distinction of being

the first non-trivial class of 3-manifolds to be entirely classified up to homeomorphism

[54]. They played an important role in the Milnor’s counterexample to the Hauptvermu-

tung [46]. Because of the diverse nature of their applicability, there are at least five more

or less distinct definitions of the 3-dimensional lens space, depending on the context in

which they appear. For our purpose, we define lens spaces as odd dimensional spherical

space forms.
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Let p ≥ 2 be an integer and q1, q2, ..., qm be integers coprime to p, where m ≥ 1. Let

S2m−1 ⊂ Cm be the unit sphere and let ι2 = −1. Then

(z1, ..., zm) 7→ (e
2πιq1
p z1, ..., e

2πιqm
p zm)

defines a free action of the cyclic group Zp on S2m−1. The orbit space is called Lens

space and is denoted by L2m−1
p (q1, ..., qm). It is a compact Hausdorff orientable manifold

of dimension (2m− 1). Being compact Hausdorff it is finitistic.

We now describe a geometric model of the 3-dimensional lens space, whose equiva-

lence with the above definition is simple and can be found in [25]. For convenience take

q1 = 1. Consider a lens shaped closed 3-cell, whose surface consists of two identical,

radially symmetric caps which meet at a circular rim. Label the north and the south

poles N and S respectively and partition the circular rim into p equal arcs separated by

points x0, x1, · · · , xp−1. Joint each xi with N and S with curvilinear segments to divide

each cap into p identical triangular sectors. The 2πq2
p

-radian positive rotation and an

orthogonal projection results in each sector Nxixi+1 being identified with Sxq+ixq+i+1,

where the all subscripts are taken mod p. The resulting space is L3
p(1, q2).

Involutions on lens spaces have been studied in detail, particularly on 3-dimensional

lens spaces [26, 33, 35, 36, 37, 49]. Hodgson and Rubinstein [26] obtained a classification
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of smooth involutions on 3-dimensional lens spaces having one dimensional fixed point

sets. Kim [36] obtained a classification of orientation preserving and sense preserving PL

involutions on 3-dimensional lens spaces. Also Kim [37] obtained a classification of free

involutions on 3-dimensional lens spaces whose orbit spaces contain Klein bottles. Kim

[35] showed that if p = 4k for some k, then the orbit space of any sense-preserving free

involution on L3
p(1, q) is the lens space L3

2p(1, q
′
), where q

′
q ≡ ±1 or q

′ ≡ ±q mod p and

an involution is sense-preserving if the induced map on H1(L3
p(1, q);Z) is the identity

map. Myers in [49] showed that every free involution on a 3-dimensional lens space is

conjugate to an orthogonal free involution, in which case the orbit space is again a lens

space.

From now onwards, for convenience we write L2m−1
p (q) to denote L2m−1

p (q1, ..., qm).

Let X '2 L
2m−1
p (q) mean that X is a space with an isomorphism of graded algebras

H∗(X;Z2) ∼= H∗(L2m−1
p (q);Z2).

We call such a space a mod 2 cohomology lens space and refer to dimension of L2m−1
p (q) as

its dimension. Motivated by the work of Kim and Myers, we investigate the cohomology

of orbit spaces of free involutions on cohomology lens spaces. We work on the general

class of finitistic spaces. More precisely, we consider free involutions on finitistic mod

2 cohomology lens spaces and determine completely the possible mod 2 cohomology

algebra of orbit space. If X/G denotes the orbit space, then we prove the following

theorem.

Theorem 2.1.1. Let G = Z2 act freely on a finitistic space X '2 L2m−1
p (q). Then

H∗(X/G;Z2) is isomorphic to one of the following graded commutative algebras:

1. Z2[x]/〈x2m〉,

where deg(x) = 1.

2. Z2[x, y]/〈x2, ym〉,

where deg(x) = 1 and deg(y) = 2.
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3. Z2[x, y, z]/〈x3, y2, z
m
2 〉,

where deg(x) = 1, deg(y) = 1, deg(z) = 4 and m is even.

4. Z2[x, y, z]/〈x4, y2, z
m
2 , x2y〉,

where deg(x) = 1, deg(y) = 1, deg(z) = 4 and m is even.

5. Z2[x, y, w, z]/〈x5, y2, w2, z
m
4 , x2y, wy〉,

where deg(x) = 1, deg(y) = 1, deg(w) = 3, deg(z) = 8 and 4 | m.

Our theorem generalizes the results known for orbit spaces of free involutions on 3-

dimensional lens spaces, to that of the large class of finitistic spaces X '2 L
2m−1
p (q) (see

remarks 2.5.1 and 2.5.2 ). We also give an application to non-existence of Z2-equivariant

maps Sn → X, where Sn is equipped with the antipodal involution.

2.2 Cohomology of lens spaces

The homology groups of a lens space can be easily computed using its cell decomposition

(see for example [25, p.144]) and are given by

Hi(L
2m−1
p (q);Z) =


Z if i = 0, 2m− 1

Zp if i is odd and 0 < i < 2m− 1

0 otherwise.

If p is odd, then the mod 2 cohomology groups are

H i(L2m−1
p (q);Z2) =

 Z2 if i = 0, 2m− 1

0 otherwise.

And if p is even, then

H i(L2m−1
p (q);Z2) =

 Z2 if 0 ≤ i ≤ 2m− 1

0 otherwise.
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2.3 Free involutions on lens spaces

We now construct a free involution on the lens space L2m−1
p (q). Let q1, ..., qm be odd

integers coprime to p. Consider the map Cm → Cm given by

(z1, ..., zm) 7→ (e
2πιq1
2p z1, ..., e

2πιqm
2p zm).

This map commutes with the Zp action on S2m−1 defining the lens space and hence

descends to a map α : L2m−1
p (q) → L2m−1

p (q) such that α2= identity. Thus α is an

involution. Denote elements of L2m−1
p (q) by [z] for z = (z1, ..., zm) ∈ S2m−1. If α([z]) =

[z], then

(e
2πιq1
2p z1, ..., e

2πιqm
2p zm) = (e

2πιkq1
p z1, ..., e

2πιkqm
p zm)

for some integer k. Let 1 ≤ i ≤ m be an integer such that zi 6= 0, then e
2πιqi
2p zi = e

2πιkqi
p zi

and hence e
2πιqi
2p = e

2πιkqi
p . This implies

qi
2p
− kqi

p
=
qi(1− 2k)

2p

is an integer, a contradiction. Hence the involution α is free. Observe that the orbit

space of the above involution is L2m−1
p (q)/〈α〉 = L2m−1

2p (q).

2.4 Orbit spaces of free involutions on lens spaces

Let G = Z2 act freely on a finitistic space X '2 L
2m−1
p (q) and let X/G denote the orbit

space. Theorem 2.1.1 determines the possible mod 2 cohomology algebra of the orbit

space X/G. Recall that for G = Z2, H∗(BG;Z2) ∼= Z2[t], where t is a homogeneous

element of degree 1. Čech cohomology with Z2 coefficients will be used and we will

suppress the coefficient group from the cohomology notation. We will exploit the Leray

spectral sequence associated to the Borel fibration X ↪→ XG −→ BG. This section is

divided into three parts according to the various possibilities for p and Theorem 2.1.1

follows from a sequence of propositions proved in this section.
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2.4.1 When p is odd.

Recall that, for p odd, we have L2m−1
p (q) '2 S2m−1. It is well known that the orbit

space of any free involution on a mod 2 cohomology sphere is a mod 2 cohomology real

projective space of same dimension (see for example Bredon [7, p.144]). For the sake of

completeness, we give a quick proof using the Leray spectral sequence.

Proposition 2.4.1. Let G = Z2 act freely on a finitistic space X '2 Sn, where n ≥ 1.

Then

H∗(X/G;Z2) ∼= Z2[x]/〈xn+1〉,

where deg(x) = 1.

Proof. Note that Ek,l
2 is non-zero only for l = 0, n. Therefore the differentials dr = 0

for 2 ≤ r ≤ n and for r ≥ n + 2. As there are no fixed points, by Theorem 1.4.11, the

spectral sequence do not degenerate and hence

dn+1 : Ek,n
n+1 → Ek+n+1,0

n+1

is non-zero and it is the only non-zero differential. Thus E∗,∗∞ = E∗,∗n+2 and

Hk(XG) = Ek,0
∞ =

 Z2 if 0 ≤ k ≤ n

0 otherwise.

Let x = ρ∗(t) ∈ E1,0
∞ ⊂ H1(XG) be determined by t⊗ 1 ∈ E1,0

2 . Since the cup product

x ∪ (−) : Hk(XG)→ Hk+1(XG)

is an isomorphism for 0 ≤ k ≤ n − 1, we have xk 6= 0 for 1 ≤ k ≤ n and there-

fore H∗(XG) ∼= Z2[x]/〈xn+1〉. As the action of G is free, by Theorem 1.4.8, we have

H∗(X/G) ∼= H∗(XG). This gives the case (1) of Theorem 2.1.1.

2.4.2 When p is even and 4 - p.

Let p be even, say p = 2p
′

for some integer p
′ ≥ 1. Since q1, ..., qm are coprime to p, all

of them are odd. Also all of them are coprime to p
′
. Note that L2m−1

p (q) = L2m−1

2p′
(q) =
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L2m−1

p′
(q)/〈α〉, where α is the involution on L2m−1

p′
(q) as defined in Section 2.3. When

4 - p, that is p
′

is odd, we have L2m−1

p′
(q) '2 S2m−1 and hence L2m−1

p (q) '2 RP 2m−1.

Therefore it amounts to determining the cohomology algebra of orbit spaces of free

involutions on odd dimensional mod 2 cohomology real projective spaces.

Proposition 2.4.2. If G = Z2 acts freely on a finitistic space X '2 RP 2m−1, where

m ≥ 1, then

H∗(X/G;Z2) ∼= Z2[x, y]/〈x2, ym〉,

where deg(x)=1 and deg(y)=2.

Proof. Note that for m = 1, the proposition is obvious. Assume m ≥ 2. Let a ∈ H1(X)

be the generator of the cohomology algebra H∗(X). As there are no fixed points and

π1(BG) = Z2 acts trivially on H∗(X), by Theorem 1.4.11, the spectral sequence do not

degenerate at the E2 term. Therefore d2(1⊗ a) = t2 ⊗ 1. One can see that

d2 : Ek,l
2 → Ek+2,l−1

2

is the trivial homomorphism for l even and an isomorphism for l odd. Note that dr = 0

for all r ≥ 3 and for all k, l. Hence E∗,∗∞ = E∗,∗3 . This gives

Ek,l
∞ =

 Z2 if k = 0, 1 and l = 0, 2,..., 2m− 2

0 otherwise.

But

Hj(XG) =

 E0,j
∞ if j even

E1,j−1
∞ if j odd.

Therefore

Hj(XG) =

 Z2 if 0 ≤ j ≤ 2m− 1

0 otherwise.

Let x = ρ∗(t) ∈ E1,0
∞ be determined by t⊗ 1 ∈ E1,0

2 and x2 ∈ E2,0
∞ = 0. The element

1 ⊗ a2 ∈ E0,2
2 is a permanent cocycle and determines an element y ∈ E0,2

∞ = H2(XG).

Also i∗(y) = a2 and ym = 0. Since the multiplication

x ∪ (−) : Hk(XG)→ Hk+1(XG)
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is an isomorphism for 0 ≤ k ≤ 2m − 2, we have xyr 6= 0 for 0 ≤ r ≤ m − 1. Therefore

we get

H∗(XG) ∼= Z2[x, y]/〈x2, ym〉,

where deg(x) = 1 and deg(y) = 2. As the action of G is free, by Theorem 1.4.8,

H∗(X/G) ∼= H∗(XG). This gives the case (2) of Theorem 2.1.1.

Remark 2.4.1. It is well known that there is no free involution on a finitistic space

X '2 RP 2m. For, the Floyd’s Euler characteristic formula (Theorem 1.4.2)

χ(X) + χ(XG) = 2χ(X/G)

gives a contradiction as χ(X) = 1 and χ(XG) = 0.

Remark 2.4.2. The above result follows easily for free involutions on RP 3. Let there be

a free involution on RP 3. This lifts to a free action on S3 by a group H of order 4 and

RP 3/Z2 = S3/H. There are only two groups of order 4, namely, the cyclic group Z4 and

Z2⊕Z2. By Theorem 1.4.4, Z2⊕Z2 cannot act freely on S3. Hence H must be the cyclic

group Z4. Now by Rice [55], this action is equivalent to an orthogonal free action and

hence RP 3/Z2 = L3
4(q).

2.4.3 When 4 | p.

As above L2m−1
p (q) = L2m−1

2p′
(q) = L2m−1

p′
(q)/〈α〉. Since 4 | p, that is p

′
is even, the

cohomology groups H i(L2m−1

p′
(q)) = Z2 for 0 ≤ i ≤ 2m− 1 and 0 otherwise. The Smith-

Gysin sequence of the orbit map η : L2m−1

p
′ (q) → L2m−1

2p′
(q), which is a 0-sphere bundle,

is given by

0→ H0(L2m−1

2p′
(q))

η∗→ H0(L2m−1

p′
(q))

τ→ H0(L2m−1

2p′
(q))

∪v→ H1(L2m−1

2p′
(q))

η∗→

· · · ∪v→ H2m−1(L2m−1

2p′
(q))

η∗→ H2m−1(L2m−1

p′
(q))

τ→ H2m−1(L2m−1

2p′
(q))→ 0,

where τ is the transfer map. By exactness the cup-square v2 of the characteristic class

v ∈ H1(L2m−1

2p′
(q)) is zero. This gives the cohomology algebra

H∗(X) ∼= H∗(L2m−1

2p′
(q)) ∼= ∧[v]⊗ Z2[w]/〈wm〉 ∼= Z2[v, w]/〈v2, wm〉,
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where v ∈ H1(L2m−1

2p′
(q)) and w ∈ H2(L2m−1

2p′
(q)).

Two non-trivial examples of this case are S1×CPm−1 and the Dold manifold P (1,m−

1). We will elaborate these examples in forthcoming sections.

Let u, v be generators of H∗(X) = H∗(L2m−1
2p′ (q)) as above. As the group G = Z2

acts freely on X with trivial action on H∗(X), the spectral sequence does not degenerate

at the E2 term. If d2 = 0, then d3 6= 0, otherwise, the spectral sequence degenerate at

the E2 term. Thus we have the following proposition.

Proposition 2.4.3. Let G = Z2 act freely on a finitistic space X '2 L
2m−1
p (q), where

4 | p. Let {E∗,∗r , dr} be the Leray spectral sequence associated to the fibration X
i
↪→

XG
ρ−→ BG. If u, v are generators of H∗(X) such that d2 = 0, then

H∗(X/G;Z2) ∼= Z2[x, y, z]/〈x3, y2, z
m
2 〉,

where deg(x) = 1, deg(y) = 1, deg(z) = 4 and m is even.

Proof. As d2 = 0, we have that d3 6= 0, otherwise, the spectral sequence degenerate at

the E2 term. Since d3(1⊗u) = 0, we must have d3(1⊗v) = t3⊗1. By the multiplicative

property of d3, we have

d3(1⊗ vq) =

 t3 ⊗ vq−1 if 0 < q < m odd

0 if 0 < q < m even

Similarly

d3(1⊗ uvq) =

 t3 ⊗ uvq−1 if 0 < q < m odd

0 if 0 < q < m even

This shows that

d3 : Ek,l
3 → Ek+3,l−2

3

is an isomorphism for l = 4q+2, 4q+3 and zero for l = 4q, 4q+1. Also note that vm = 0.

If m is odd, then

0 = d3(1⊗ vm) = d3

(
(1⊗ vm−1)(1⊗ v)

)
= t3 ⊗ vm−1,
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a contradiction. Hence m must be even, say m = 2n for some n ≥ 1. Therefore

Ek,l
4 =

 Ek,l
3 if k = 0, 1, 2 and l = 4q, 4q + 1, where 0 ≤ q ≤ n− 1

0 otherwise.

Note that dr = 0 for all r ≥ 4 and for all k, l as Ek+r,l−r+1
r = 0. Therefore E∗,∗∞ = E∗,∗4

and the additive structure of H∗(XG) is given by

Hj(XG) =


Z2 if j = 4q, 4q + 3, where 0 ≤ q ≤ n− 1

Z2 ⊕ Z2 if j = 4q + 1, 4q + 2, where 0 ≤ q ≤ n− 1

0 otherwise.

Let x = ρ∗(t) ∈ E1,0
∞ be determined by t ⊗ 1 ∈ E1,0

2 . As E3,0
∞ = 0, we have x3 = 0.

Note that 1 ⊗ u ∈ E0,1
2 is a permanent cocycle and hence determines an element say

y ∈ E0,1
∞ . Also i∗(y) = u and E0,2

∞ = 0 implies y2 = 0. Similarly 1 ⊗ v2 is a permanent

cocycle and therefore it determines an element say z ∈ E0,4
∞ = H4(XG). Also i∗(z) = v2

and E0,4n
∞ = 0 implies z

m
2 = 0. Since the cup product by x

x ^ (−) : Hj(XG)→ Hj+1(XG)

is an isomorphism for 0 ≤ j ≤ 2m− 2, we have xzr 6= 0 for 0 ≤ r ≤ m−1
2

. Therefore

H∗(XG) ∼= Z2[x, y, z]/〈x3, y2, z
m
2 〉,

where deg(x) = 1, deg(y) = 1 and deg(z) = 4. As the action of G is free, we have

H∗(X/G) ∼= H∗(XG). This is the case (3) of the main theorem.

Next, we consider d2 6= 0, for which we have the following possibilities:

(A) d2(1⊗ u) = t2 ⊗ 1 and d2(1⊗ v) = t2 ⊗ u,

(B) d2(1⊗ u) = t2 ⊗ 1 and d2(1⊗ v) = 0 and

(C) d2(1⊗ u) = 0 and d2(1⊗ v) = t2 ⊗ u.
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We consider the above possibilities one by one. We first observe that the possibility

(A) does not arise. Suppose that d2(1 ⊗ u) = t2 ⊗ 1 and d2(1 ⊗ v) = t2 ⊗ u. By the

multiplicative property of d2, we have

d2(1⊗ vq) =

 t2 ⊗ uvq−1 if 0 < q < m odd

0 if 0 < q < m even

and d2(1⊗ uvq) = t2 ⊗ vq for 0 < q < m. This shows that

d2 : Ek,l
2 → Ek+2,l−1

2

is an isomorphism if l even and 4 - l or l odd. And d2 is zero if 4 | l. Just as in the

previous proposition, m must be even, say m = 2n for some n ≥ 1. This gives

Ek,l
3 =

 Ek,l
2 if k = 0, 1 and l = 4q, where 0 ≤ q ≤ n− 1

0 otherwise.

Note that dr = 0 for all r ≥ 3 and for all k, l as Ek+r,l−r+1
r = 0. Therefore E∗,∗∞ = E∗,∗3

and

Hj(XG) =

 Z2 if l = 4q, 4q + 1, where 0 ≤ q ≤ n− 1

0 otherwise.

In particular, this shows that H2m−1(X/G) ∼= H2m−1(XG) = 0. But the Smith-Gysin

sequence

· · · → H2m−1(X/G)
η∗→ H2m−1(X)

τ→ H2m−1(X/G)→ 0

implies that H2m−1(X) = 0, which is a contradiction. Hence this possibility does not

arise.

For the possibility (B), we have the following proposition.

Proposition 2.4.4. Let G = Z2 act freely on a finitistic space X '2 L
2m−1
p (q), where

4 | p. Let {E∗,∗r , dr} be the Leray spectral sequence associated to the fibration X
i
↪→

XG
ρ−→ BG. If u, v are generators of H∗(X) such that d2(1⊗ u) 6= 0 and d2(1⊗ v) = 0,

then

H∗(X/G;Z2) ∼= Z2[x, y]/〈x2, ym〉,

where deg(x) = 1 and deg(y) = 2.
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Proof. Let d2(1⊗ u) = t2 ⊗ 1 and d2(1⊗ v) = 0. Consider

d2 : Ek,l
2 → Ek+2,l−1

2 .

If l = 2q, then d2(tk ⊗ vq) = 0 and if l = 2q + 1, then d2(tk ⊗ uvq) = tk+2 ⊗ vq for

0 ≤ q ≤ m− 1. This gives

Ek,l
3 =

 Ek,l
2 if k = 0, 1 and l = 0, 2, . . . , 2m− 2

0 otherwise.

Note that

dr : Ek,l
r → Ek+r,l−r+1

r

is zero for all r ≥ 3 and for all k, l as Ek+r,l−r+1
r = 0. This gives E∗,∗∞ = E∗,∗3 . But

Hj(XG) =

 E0,j
∞ if j even

E1,j−1
∞ if j odd.

Therefore

Hj(XG) =

 Z2 if 0 ≤ j ≤ 2m− 1

0 otherwise.

Let x = ρ∗(t) ∈ E1,0
∞ be determined by t ⊗ 1 ∈ E1,0

2 . As E2,0
∞ = 0, we have x2 = 0.

Note that 1 ⊗ v is a permanent cocycle and therefore it determines an element say

y ∈ E0,2
∞ = H2(XG). Also i∗(y) = v and E0,2m

∞ = 0 implies ym = 0. Since the cup

product by x

x ^ (−) : Hj(XG)→ Hj+1(XG)

is an isomorphism for 0 ≤ j ≤ 2m− 2, we have xyr 6= 0 for 0 ≤ r ≤ m− 1. Therefore

H∗(XG) ∼= Z2[x, y]/〈x2, ym〉,

where deg(x) = 1 and deg(y) = 2. As the action of G is free, H∗(X/G) ∼= H∗(XG).

Again we get the case (2) of the main theorem.

Finally, for the possibility (C), we have the following proposition.
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Proposition 2.4.5. Let G = Z2 act freely on a finitistic space X '2 L
2m−1
p (q), where

4 | p. Let {E∗,∗r , dr} be the Leray spectral sequence associated to the fibration X
i
↪→

XG
ρ−→ BG. If u, v are generators of H∗(X) such that d2(1⊗ u) = 0 and d2(1⊗ v) 6= 0,

then H∗(X/G;Z2) is isomorphic to one of the following graded commutative algbras:

(i) Z2[x, y, z]/〈x4, y2, z
m
2 , x2y〉,

where deg(x) = 1, deg(y) = 1, deg(z) = 4 and m is even.

(ii) Z2[x, y, w, z]/〈x5, y2, w2, z
m
4 , x2y, wy〉,

where deg(x) = 1, deg(y) = 1, deg(w) = 3, deg(z) = 8 and 4 | m.

Proof. Let d2(1⊗u) = 0 and d2(1⊗v) = t2⊗u. The derivation property of the differential

gives

d2(1⊗ vq) =

 t2 ⊗ uvq−1 if 0 < q < m odd

0 if 0 < q < m even.

Also d2(1⊗ uvq) = 0 for 0 < q < m. Note that vm = 0. If m is odd, then

0 = d2(1⊗ vm) = d2

(
(1⊗ vm−1)(1⊗ v)

)
= t2 ⊗ uvm−1,

a contradiction. Hence m must be even, say m = 2n for some n ≥ 1. From this we get

d2 : Ek,l
2 → Ek+2,l−1

2

is an isomorphism if l even and 4 - l, and is zero if l odd or 4 | l. This gives

(?) Ek,l
3 =


Ek,l

2 if k ≥ 0 arbitrary and l = 4q, 4q + 3, where 0 ≤ q ≤ n− 1

Ek,l
2 if k = 0, 1 and l = 4q + 1, where 0 ≤ q ≤ n− 1

0 otherwise.

We now consider the differentials one by one. First, we consider

d3 : Ek,l
3 → Ek+3,l−2

3 .

Clearly d3 = 0 for all k and for l = 4q, 4q + 3 as Ek+3,l−2
3 = 0 in this case. For k = 0, 1

and for l = 4(q + 1) + 1 = 4q + 5,

d3 : Ek,4q+5
3 → Ek+3,4q+3

3
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is also zero, because if a ∈ Ek,4q+5
3 and d3(a) = [tk+3⊗uv2q+1], then for b = [t2⊗1] ∈ E2,0

3 ,

we have ab ∈ Ek+2,4q+5
3 = 0 and hence

0 = d3(ab) = d3(a)b+ ad3(b) = d3(a)b+ 0 = [tk+5 ⊗ uv2q+1],

which is a contradiction. Hence d3 = 0 for all k, l.

Next we break the remaining proof in the following two cases:

(a) d4 : E0,3
4 → E4,0

4 is non-zero.

(b) d4 : E0,3
4 → E4,0

4 is zero.

(a) When d4 : E0,3
4 → E4,0

4 is non-zero

Let d4([1⊗ uv]) = [t4 ⊗ 1]. This gives

d4 : Ek,l
4 → Ek+4,l−3

4

is an isomorphism for all k and for l = 4q + 3, where 0 ≤ q ≤ n− 1 and zero otherwise.

This gives

Ek,l
5 =


Ek,l

4 if k = 0, 1, 2, 3 and l = 4q, where 0 ≤ q ≤ n− 1

Ek,l
4 if k = 0, 1 and l = 4q + 1, where 0 ≤ q ≤ n− 1

0 otherwise.

It is clear that dr = 0 for all r ≥ 5 and for all k, l as Ek+r,l−r+1
r = 0. Hence, E∗,∗∞ = E∗,∗5

and the additive structure of H∗(XG) is given by

Hj(XG) =


Z2 if j = 4q, 4q + 3, where 0 ≤ q ≤ n− 1

Z2 ⊕ Z2 if j = 4q + 1, 4q + 2, where 0 ≤ q ≤ n− 1

0 otherwise.

We see that 1 ⊗ v2 ∈ E0,4
2 and 1 ⊗ u ∈ E0,1

2 are permanent cocycles. Hence, they

determine elements z ∈ E0,4
∞ ⊆ H4(XG) and y ∈ E0,1

∞ ⊆ H1(XG), respectively. As
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H4(XG) = E0,4
∞ = E0,4

2 , we have i∗(z) = v2. Since E0,4n
∞ = 0, we get zn = 0. Similarly,

i∗(y) = u and E0,2
∞ = 0 implies y2 = 0.

Let x = ρ∗(t) ∈ E1,0
∞ ⊆ H1(XG) be determined by t⊗ 1 ∈ E1,0

2 . As E4,0
∞ = 0, we have

x4 = 0. Also, the cup product x2y ∈ E2,1
∞ = 0. Hence,

H∗(XG) ∼= Z2[x, y, z]/〈x4, y2, z
m
2 , x2y〉,

where deg(x) = 1, deg(y) = 1 and deg(z) = 4. As the action of G is free, H∗(X/G) ∼=

H∗(XG). This gives the case (4) of the main theorem.

(b) When d4 : E0,3
4 → E4,0

4 is zero

We show that

d4 : Ek,l
4 → Ek+4,l−3

4

is zero for all k, l. Note that Ek+4,l−3
4 = 0 for all k and for l = 4q. Similarly Ek+4,l−3

4 = 0

for k = 0, 1 and for l = 4q + 1. Now for any k and l = 4q + 3, we have that

d4 : Ek,4q+3
4 → Ek+4,4q

4

is given by

d4([tk ⊗ uv2q+1]) = (d4[tk ⊗ uv])[1⊗ v2q] + [tk ⊗ uv](d4[1⊗ v2q]) = 0.

This shows that d4 = 0 for all k, l.

Now we have the following two subcases:

(b1) d5 : E0,4
5 → E5,0

5 is non-zero.

(b2) d5 : E0,4
5 → E5,0

5 is zero.

(b1) When d5 : E0,4
5 → E5,0

5 is non-zero

Let d5([1⊗ v2]) = [t5 ⊗ 1]. Then

d5([1⊗ v2q]) = q[t5 ⊗ v2(q−1)] =

 [t5 ⊗ v2(q−1)] if 0 < q < m odd

0 if 0 < q < m even
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and

d5([1⊗ uv2q+1]) = q[t5 ⊗ uv2q−1] =

 [t5 ⊗ uv2q−1] if 0 < q < m odd

0 if 0 < q < m even.

Note that 1⊗ uvm+1 = 0 and hence 0 = d5([1⊗ uvm+1]) = n[t5 ⊗ uvm−1]. But this is

possible only when 2 | n and hence 4 | m.

From above we obtain

Ek,l
6 =


Ek,l

5 if k = 0, 1, 2, 3, 4 and l = 8q, 8q + 3, where 0 ≤ q ≤ n−2
2

Ek,l
5 if k = 0, 1 and l = 8q + 1, 8q + 5, where 0 ≤ q ≤ n−2

2

0 otherwise.

One can see that dr = 0 for all r ≥ 6 and for all k, l as Ek+r,l−r+1
r = 0. Hence,

E∗,∗∞ = E∗,∗6 and the additive structure of H∗(XG) is given by

Hj(XG) =


Z2 if j = 8q, 8q + 7, where 0 ≤ q ≤ n−2

2

Z2 ⊕ Z2 if 8q < j < 84q + 7, where 0 ≤ q ≤ n−2
2

0 otherwise.

We see that 1 ⊗ v4 ∈ E0,8
2 , 1 ⊗ uv ∈ E0,3

2 and 1 ⊗ u ∈ E0,1
2 are permanent cocycles.

Hence, they determine elements z ∈ E0,8
∞ ⊆ H8(XG), w ∈ E0,3

∞ ⊆ H3(XG) and y ∈

E0,1
∞ ⊆ H1(XG), respectively. As H8(XG) = E0,8

∞ = E0,8
2 , we have i∗(z) = v4. Also

E0,2m
∞ = 0 implies z

m
4 = 0. Similarly, i∗(w) = uv and E0,6

∞ = 0 implies w2 = 0. Finally,

i∗(y) = u and E0,2
∞ = 0 implies y2 = 0.

Let x = ρ∗(t) ∈ E1,0
∞ ⊆ H1(XG) be determined by t ⊗ 1 ∈ E1,0

2 . As E5,0
∞ = 0, we

have x5 = 0. Also, the only trivial cup products are x2y ∈ E2,1
∞ = 0 and wy ∈ E0,4

∞ = 0.

Hence,

H∗(XG) ∼= Z2[x, y, w, z]/〈x5, y2, w2, z
m
4 , x2y, wy〉,

where deg(x) = 1, deg(y) = 1, deg(w) = 3 and deg(z) = 8. As the action of G is free,

H∗(X/G) ∼= H∗(XG). This gives the case (5) of the main theorem.
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(b2) When d5 : E0,4
5 → E5,0

5 is zero

We show that

d5 : Ek,l
5 → Ek+5,l−4

5

is zero for all k, l. Note that Ek+5,l−4
5 = 0 for k = 0, 1 and for l = 4q + 1. For any k and

for l = 4q, 4q + 3, d5 is zero by the derivation property of d5 and the above condition

(b2). Hence d5 = 0 for all k, l.

We have that d2, d3, d4 and d5 are all zero for the values of k and l given by equation

(?). Note that only 1⊗u, 1⊗v2 and 1⊗uv survives to the E6 term. For r ≥ 6, a typical

non-zero element in Ek,l
r is of the form [tk ⊗ v2q], [tk ⊗ uv2q+1] or [tk ⊗ uv2q] according

as l = 4q, 4q + 3, 4q + 1 for 0 ≤ q ≤ n − 1, respectively. But all these elements can

be written as a product of previous three elements for which dr = 0 for r ≥ 6. Hence

E∗,∗∞ = E∗,∗3 . This gives Hj(XG) 6= 0 for j > 2m− 1 (in particular H2m(XG) 6= 0), which

is a contradiction. Hence (b2) does not arise.

With this we have completed the proof of the main theorem.

2.5 Examples realizing the cohomology algebras

In this section we provide some examples realizing the possible cohomology algebras of

the main theorem.

• The case (1) of the main theorem can be realized by taking any free involution on

a sphere.

• The Smith-Gysin sequence shows that the example discussed in section 2.3 realizes

the case (2). For another example, let X = S1 × CPm−1, where m ≥ 2. The mod

2 cohomology algebra of X is given by

H∗(X) ∼= Z2[u, v]/〈u2, vm〉,
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where deg(u) = 1 and deg(v) = 2. Note that X always admits a free involution as

S1 does so. Taking any free involution on S1 and the trivial action on CPm−1 gives

X/G = S1 × CPm−1. Hence

H∗(X/G) ∼= Z2[x, y]/〈x2, ym〉,

where deg(x) = 1 and deg(y) = 1. This also realizes the case (2) of the main

theorem.

• We now construct an example for the case (3). Let X be as above. If m is even,

then CPm−1 always admits a free involution. In fact, if we denote an element of

CPm−1 by [z1, z2, . . . , zm−1, zm], then the map

[z1, z2, . . . , zm−1, zm] 7→ [−z2, z1, . . . ,−zm, zm−1]

defines an involution on CPm−1. Now if

[z1, z2, . . . , zm−1, zm] = [−z2, z1, . . . ,−zm, zm−1],

then there exits a λ ∈ S1 such that

(λz1, λz2, . . . , λzm−1, λzm) = (−z2, z1, . . . ,−zm, zm−1).

This gives z1 = z2 = · · · = zm−1 = zm = 0, a contradiction. Hence the involution

is free. The mod 2 cohomology algebra of orbit spaces of free involutions on odd

dimensional complex projective spaces was determined in [59]. More precisely, it

was proved that: For any free involution on CPm−1, where m ≥ 2 is even, the mod

2 cohomology algebra of the orbit space is given by

H∗(CPm−1/G) ∼= Z2[x, z]/〈x3, z
m
2 〉,

where deg(x) = 1 and deg(z) = 4. Taking the trivial involution on S1 and a free

involution on CPm−1, we have that X/G = S1 ×
(
CPm−1/G

)
. Using the above

result, we have

H∗(X/G) ∼= Z2[x, y, z]/〈x3, y2, z
m
2 〉,
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where deg(x) = 1, deg(y) = 1 and deg(z) = 4. This realizes the case (3) of the

main theorem.

• We do not have examples realizing the cases (4) and (5) of the main theorem.

However, we feel that Dold manifolds may give some examples realizing these

cases. For integers r, s ≥ 0, a Dold manifold P (r, s) is defined as

P (r, s) = Sr × CP s/ ∼,

where
(
(x1, . . . , xr+1), [z1, . . . , zs+1]

)
∼
(
(−x1, . . . ,−xr+1), [z1, . . . , zs+1]

)
. Consider

the equivariant projection Sr × CP s → Sr. On passing to orbit spaces, the Dold

manifold can also be seen as the total space of the fiber bundle

CP s ↪→ P (r, s)→ RP r.

The mod 2 cohomology algebra of a Dold manifold is well known [18] and is given

by

H∗(P (r, s);Z2) ∼= Z2[x, y]/〈xr+1, ys+1〉,

where deg(x) = 1 and deg(y) = 2. Note that the Dold manifold P (1,m − 1) '2

L2m−1
p (q) for 4 | p and can be considered as the twisted analogue of X = S1 ×

CPm−1. For m even, the free involution on CPm−1 induces a free involution on

P (1,m−1). We feel that some exotic free involutions on P (1,m−1) would possibly

realize the cases (4) and (5) of the main theorem.

We conclude with the following remarks.

Remark 2.5.1. For the three dimensional lens space L3
p(q), where p = 4k for some k, Kim

[35, Theorem 3.6] has shown that the orbit space of any sense-preserving free involution

on L3
p(q) is the lens space L3

2p(q
′), where q′q ≡ ±1 or q′ ≡ ±q mod p. Here an involution

is sense-preserving if the induced map on H1(L3
p(q);Z) is the identity map. This is the

case (2) of the main theorem.
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Remark 2.5.2. If T is a free involution on L3
p(q) where p is an odd prime, then Zp and the

lift of T to S3 generate a group H of order 2p acting freely on S3. The involution T is said

to be orthogonal if the action of H on S3 is orthogonal. Myers [49] showed that every

free involution on L3
p(q) is conjugate to an orthogonal free involution. It is well known

that there are only two groups of order 2p, namely the cyclic group Z2p and the dihedral

group D2p. But by Milnor [45], the dihedral group cannot act freely and orthogonally

on S3. Hence H must be the cyclic group Z2p acting freely and orthogonally on S3.

Therefore the orbit space L3
p(q)/〈T 〉 = S3/H = L3

2p(q). Since p is odd, L3
p(q) '2 S3 and

L3
p(q)/〈T 〉 '2 RP 3, which is the case (1) of the main theorem.

2.6 Application to Z2-equivariant maps

Let X be a paracompact Hausdorff space with a fixed free involution and let Sn be the

unit n-sphere equipped with the antipodal involution. Conner and Floyd [13] asked the

following question.

Question: For which integer n, is there a Z2-equivariant map from Sn to X, but no such

map from Sn+1 to X?

In view of the Borsuk-Ulam theorem, the answer to the question for X = Sn is n.

Motivated by the classical results of Lyusternik- Shnirel’man [41], Borsuk-Ulam [3], Yang

[79, 80, 81] and Bourgin [4], Conner and Floyd defined the index of the involution on X

as

ind(X) = max{n | there exist a Z2-equivariant map Sn → X}.

It is natural to consider the purely cohomological criteria to study the above question.

The best known and most easily managed cohomology class are the characteristic classes

with coefficients in Z2. Let w ∈ H1(X/G;Z2) be the Stiefel-Whitney class of the principal

G-bundle X → X/G. Generalizing the Yang’s index [80], Conner and Floyd defined

co-indZ2(X) = largest integer n such that wn 6= 0.
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Since co-indZ2(Sn) = n, by [13, (4.5)], we have

ind(X) ≤ co-indZ2(X).

Also, since X is paracompact Hausdorff, we can take a classifying map

c : X/G→ BG

for the principal G-bundle X → X/G. If k : X/G → XG is a homotopy equivalence,

then ρk : X/G → BG also classifies the principal G-bundle X → X/G and hence it is

homotopic to c. Therefore it suffices to consider the map

ρ∗ : H1(BG;Z2)→ H1(XG;Z2).

The image of the Stiefel-Whitney class of the universal principal G-bundle G ↪→ EG −→

BG is the Stiefel-Whitney class of the principal G-bundle X → X/G.

Let X '2 L
2m−1
p (q) be a finitistic space with a free involution. The Smith-Gysin

sequence associated to the principal G-bundle X → X/G shows that the Stiefel-Whitney

class is non-zero.

In case (1), x ∈ H1(X/G;Z2) is the Stiefel-Whitney class with x2m = 0. This gives

co-indZ2(X) = 2m− 1 and hence ind(X) ≤ 2m− 1. Therefore, in this case, there is no

Z2-equivariant map from Sn → X for n ≥ 2m.

Taking X = Sk with the antipodal involution, by proposition 2.4.1, we obtain the

classical Borsuk-Ulam theorem, which states that: There is no map from Sn → Sk

equivariant with respect to the antipodal involutions when n ≥ k + 1.

In case (2), x ∈ H1(X/G;Z2) is the Stiefel-Whitney class with x2 = 0. This gives

co-indZ2(X) = 1 and ind(X) ≤ 1. Hence, there is no Z2-equivariant map from Sn → X

for n ≥ 2.

In case (3), x ∈ H1(X/G;Z2) is the Stiefel-Whitney class with x3 = 0. This gives

co-indZ2(X) = 2 and ind(X) ≤ 2. Hence, there is no Z2-equivariant map from Sn → X

for n ≥ 3.
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In case (4), x ∈ H1(X/G;Z2) is the Stiefel-Whitney class with x4 = 0. This gives

co-indZ2(X) = 3 and hence ind(X) ≤ 3. Hence, there is no Z2-equivariant map from

Sn → X for n ≥ 4.

Finally, in case (5) of the main theorem, x ∈ H1(X/G;Z2) is the Stiefel-Whitney

class with x5 = 0. This gives co-indZ2(X) = 4 and hence ind(X) ≤ 4. In this case also,

there is no Z2-equivariant map from Sn → X for n ≥ 5.

Combining the above discussion, we have proved the following Borsuk-Ulam type

result.

Theorem 2.6.1. Let m ≥ 3 and X '2 L
2m−1
p (q) be a finitistic space with a free involu-

tion. Then there does not exist any Z2-equivariant map from Sn → X for n ≥ 2m.



Chapter 3

Parametrized Borsuk-Ulam Problem

for Projective Space Bundles

3.1 Introduction

The unit n-sphere Sn is equipped with the antipodal involution given by x 7→ −x. One

formulation of the classical Borsuk-Ulam theorem (proved by Borsuk in 1933 [3]) states

that, if n ≥ k then for every continuous map f : Sn → Rk there exist a point x ∈ Sn

such that f(x) = f(−x). Over the years there have been several generalizations of

this theorem in many directions. We refer the reader to the article [72] by Steinlein

which lists 457 publications concerned with various generalizations of the Borsuk-Ulam

theorem. Also, the recent book by Matoušek [42] contains a detailed account of various

applications of the Borsuk-Ulam theorem.

Jaworowski [30], Dold [19], Nakaoka [51] and others extended this theorem to the

setting of fiber bundles, by considering fiber preserving maps f : SE → E
′
, where SE

denotes the total space of the sphere bundle SE → B associated to a vector bundle

E → B, and E
′ → B is other vector bundle. Thus, they parametrized the Borsuk-Ulam

theorem, whose general formulation is as follows:

Let G be a compact Lie group. Consider a fiber bundle π : E → B and a vector bundle
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π
′
: E

′ → B such that G acts fiber preserving and freely on E and E
′−0, where 0 stands

for the zero section of the bundle π
′

: E
′ → B. For a fiber preserving G-equivariant map

f : E → E
′
, the parametrized version of the Borsuk-Ulam theorem deals in estimating

the cohomological dimension of the set

Zf = {x ∈ E | f(x) = 0}.

Such results appeared first in the papers of Jaworowski [30], Dold [19] and Nakaoka

[51]. Dold [19] and Nakaoka [51] defined certain polynomials, which they called the

characteristic polynomials, for vector bundles with free G-actions (G = Zp or S1)

and used them for obtaining such results. The characteristic polynomials were used by

Koikara and Mukerjee [38] to prove a parametrized version of the Borsuk-Ulam theorem

for bundles whose fibers are a product of two spheres, with the free involution given by

the product of the antipodal involutions. Recently, Mattos and Santos [43] also used

the same technique to obtain parametrized Borsuk-Ulam theorems for bundles whose

fiber has the mod p cohomology algebra (with p > 2) of a product of two spheres with

any free Zp-action and for bundles whose fiber has the rational cohomology algebra of

a product of two spheres with any free S1-action. Jaworowski obtained parametrized

Borsuk-Ulam theorems for lens space bundles in [33] and parametrized Borsuk-Ulam

theorems for sphere bundles in [30, 31, 32].

Our work proves some parametrized Borsuk-Ulam theorems for bundles whose fibers

are finitistic mod 2 cohomology real or complex projective spaces with any free involution.

The theorems are proved in Section 3.5. As an application, in Section 3.6, the size of

the Z2-coincidence set of a fiber preserving map is also estimated.

The cohomology used will be the Čech cohomology with Z2 coefficients. For a space

X, cohom.dim(X) will mean the cohomological dimension of X with respect to Z2. We

write X '2 RP n to mean that X is a space having the mod 2 cohomology algebra of RP n.

Similarly, we write X '2 CP n to mean that X is a space having the mod 2 cohomology

algebra of CP n. If G is a compact Lie group acting freely on a paracompact Hausdorff
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space X, then X → X/G is a principal G-bundle and one can take a classifying map

X/G→ BG for the principal G-bundle X → X/G, where BG is the classifying space of

the group G. Recall that for G = Z2, H∗(BG;Z2) ∼= Z2[s], where s is a homogeneous

element of degree 1. We will also use some elementary notions about vector bundles for

the details of which we refer to Husemoller [29]. Note that using a partition of unity,

any vector bundle over a paracompact base space can be given an Euclidean metric.

Throughout we will assume that the action on a vector bundle is metric preserving.

3.2 Free involutions on projective spaces

We construct free involutions on odd dimensional real projective spaces. Recall that

RP 2m+1, where m ≥ 0, is the orbit space of the antipodal involution on S2m+1 given by

(x1, x2, ..., x2m+1, x2m+2) 7→ (−x1,−x2, ...,−x2m+1,−x2m+2).

If we denote an element of RP 2m+1 by [x1, x2, ..., x2m+1, x2m+2], then the map RP 2m+1 →

RP 2m+1 given by

[x1, x2, ..., x2m+1, x2m+2] 7→ [−x2, x1, ...,−x2m+2, x2m+1]

defines an involution. If

[x1, x2, ..., x2m+1, x2m+2] = [−x2, x1, ...,−x2m+2, x2m+1],

then

(−x1,−x2, ...,−x2m+1,−x2m+2) = (−x2, x1, ...,−x2m+2, x2m+1),

which gives x1 = x2 = ... = x2m+1 = x2m+2 = 0, a contradiction. Hence the involution is

free.

Similarly, the complex projective space CPm admit free involutions when m ≥ 1 is odd.

Recall that CPm is the orbit space of free S1 action on S2m+1 given by

(z1, z2, ..., zm, zm+1) 7→ (ζz1, ζz2, ..., ζzm, ζzm+1) for ζ ∈ S1.
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If we denote an element of CPm by [z1, z2, ..., zm, zm+1], then the map

[z1, z2, ..., zm, zm+1] 7→ [−z2, z1, ...,−zm+1, zm]

defines an involution. If

[z1, z2, ..., zm, zm+1] = [−z2, z1, ...,−zm+1, zm],

then

(λz1, λz2, ..., λzm, λzm+1) = (−z2, z1, ...,−zm+1, zm)

for some λ ∈ S1, which gives z1 = z2 = ... = zm = zm+1 = 0, a contradiction. Hence the

involution is free.

3.3 Orbit spaces of free involutions on projective

spaces

For the purpose of our work, we need to know the cohomology algebra of orbit spaces of

free involutions on cohomology projective spaces. For that, we exploit the Leray spectral

sequence associated to the Borel fibration X ↪→ XZ2 −→ BZ2 . For the real case we prove

the following.

Proposition 3.3.1. If G = Z2 acts freely on a finitistic space X '2 RP n, where n ≥ 1

is odd, then

H∗(X/G;Z2) ∼= Z2[u, v]/〈u2, v
n+1
2 〉,

where deg(u)=1 and deg(v)=2.

Proof. This was proved in Chapter 2 as Proposition 2.4.2.

For the complex case we have the following.
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Proposition 3.3.2. If G = Z2 acts freely on a finitistic space X '2 CP n, where n ≥ 1

is odd, then

H∗(X/G;Z2) ∼= Z2[u, v]/〈u3, v
n+1
2 〉,

where deg(u)=1 and deg(v)=4.

Proof. If n = 1, then X '2 S
2 and hence X/G is a mod 2 cohomology RP 2. Therefore

the result holds for n = 1. Now assume that n ≥ 2. As π1(BG) = Z2 acts trivially on

H∗(X), by Theorem 1.4.11, the spectral sequence associated to the Borel fibration do

not degenerate at the E2 term. Since the system of local coefficients is simple, we have

Ek,l
2
∼= Hk(BG)⊗H l(X).

Note that Ek,l
2 = 0 for l odd. This gives d2 = 0 and hence E∗,∗2 = E∗,∗3 . Let a ∈ H2(X)

be the generator of the cohomology algebra H∗(X). Since, the spectral sequence do not

degenerate, we have d3(1⊗ a) = t3 ⊗ 1. Therefore,

d3 : Ek,2l
3 → Ek+3,2l−2

3

is zero for l even and an isomorphism for l odd. Note that dr = 0 for all r ≥ 4 and for

all k, l. Hence E∗,∗∞ = E∗,∗4 . This gives

Ek,l
∞ =

 Z2 if k = 0, 1 , 2 and l = 0, 4,..., 2(n− 1)

0 otherwise.

Since TotE∗,∗∞
∼= H∗(XG), we have H i(XG) ∼= Ek,i−k

∞ where k = 0, 1, 2 and 4 | (i − k).

Hence

H i(XG) =

 0 if i = 3, 7, 11, ... or j > 2n

Z2 otherwise.

Let u = ρ∗(t) ∈ H1(XG) = E1,0
∞ . Thus, u3 = 0 and u is determined by t⊗ 1 ∈ E1,0

2 . The

multiplication

u ∪ (−) : Ek,l
∞ → Ek+1,l

∞
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is an isomorphism for k = 0, 1. The element 1 ⊗ a2 ∈ E0,4
2 is a permanent cocycle

and hence determines an element say v ∈ E0,4
∞ . We have i∗(v) = a2 and v

n+1
2 = 0 as

H2n+2(XG) = 0. Hence

TotE∗,∗∞
∼= Z2[u, v]/〈u3, v

n+1
2 〉

and therefore

H∗(XG) ∼= Z2[u, v]/〈u3, v
n+1
2 〉.

As the action of G is free, by Theorem 1.4.8, H∗(X/G) ∼= H∗(XG). This proves the

proposition.

We note that H. K. Singh and T. B. Singh also obtained the above results in [59].

Remark 3.3.1. Just as in Remark 2.4.1, the Floyd’s Euler characteristic formula shows

that, Z2 cannot act freely on a finitistic space X '2 RP n or CP n for n even.

Remark 3.3.2. Let X '2 HP n, where HP n is the quaternionic projective space. For

n = 1, X '2 S
4, which is dealt in [19]. For n ≥ 2, there is no free involution on X,

which follows from the stronger fact that such spaces have the fixed point property.

Remark 3.3.3. Let X '2 OP 2, where OP 2 is the Cayley projective plane. Note that

H∗(OP 2;Z2) ∼= Z2[u]/〈u3〉, where u is a homogeneous element of degree 8. Just as in

Remark 3.3.1, it follows from the Floyd’s formula that there is no free involution on X.

3.4 Characteristic polynomials for bundles

Let (X,E, π,B) be a fiber bundle with a fiber preserving free Z2 action such that the quo-

tient bundle (X/G,E, π,B) has a cohomology extension of the fiber (Definition 1.4.2).

This condition on the bundle is assumed so that the Leray-Hirsch theorem (Theorem

1.4.10) can be applied. With this hypothesis, we now proceed to define the characteristic

polynomials for the bundles. We deal the real and the complex case separately.
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3.4.1 Characteristic polynomials for (X '2 RP n, E, π,B)

The bundle (X '2 RP n, E, π,B) has a fiber preserving free Z2 action. This gives a free

G action on a typical fiber, which is a finitistic space X '2 RP n. Thus, n is odd and by

Proposition 3.3.1, H∗(X/G;Z2) is a free graded algebra generated by the elements

1, u, v, uv, ..., v
n−1
2 , uv

n−1
2 ,

subject to the relations u2 = 0 and v
n+1
2 = 0, where u ∈ H1(X/G;Z2) and v ∈

H2(X/G;Z2). By the Leray-Hirsch theorem (Theorem 1.4.10), there exist elements

a ∈ H1(E) and b ∈ H2(E) such that the restriction to a typical fiber j∗ : H∗(E) →

H∗(X/G) maps a 7→ u and b 7→ v. Note that H∗(E) is a H∗(B)-module, via the induced

homomorphism π∗ and is generated by the basis

1, a, b, ab, ..., b
n−1
2 , ab

n−1
2 .

We can express the element b
n+1
2 ∈ Hn+1(E) in terms of the above basis. Therefore,

there exist unique elements wi ∈ H i(B) such that

b
n+1
2 = wn+1 + wna+ wn−1b+ · · ·+ w2b

n−1
2 + w1ab

n−1
2 .

Similarly, we express the element a2 ∈ H2(E) as

a2 = ν2 + ν1a+ αb,

where νi ∈ H i(B) and α ∈ Z2 are unique elements. The characteristic polynomials in the

indeterminates x and y, of degrees 1 and 2 respectively, associated to the fiber bundle

(X '2 RP n, E, π,B) are defined by

W1(x, y) = wn+1 + wnx+ wn−1y + · · ·+ w2y
n−1
2 + w1xy

n−1
2 + y

n+1
2

and W2(x, y) = ν2 + ν1x+ αy + x2.

On substituting the values for the indeterminates x and y, we obtain the following

homomorphism of H∗(B)-algebras

σ : H∗(B)[x, y]→ H∗(E)
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given by (x, y) 7→ (a, b). The kernel of σ is the ideal generated by the polynomials

W1(x, y) and W2(x, y) and hence

H∗(B)[x, y]/〈W1(x, y),W2(x, y)〉 ∼= H∗(E). (3.4.1)

3.4.2 Characteristic polynomials for (X '2 CP n, E, π,B)

There is a free G action on a typical fiber, which is a finitistic space X '2 CP n. Thus,

n is odd and by Proposition 3.3.2, H∗(X/G;Z2) is a free graded algebra generated by

the elements

1, u, u2, v, uv, ..., v
n−1
2 , uv

n−1
2 , u2v

n−1
2 ,

subject to the relations u3 = 0 and v
n+1
2 = 0, where u ∈ H1(X/G;Z2) and v ∈

H4(X/G;Z2).

By the Leray-Hirsch theorem (Theorem 1.4.10), there exist elements a ∈ H1(E) and

b ∈ H4(E) such that the restriction to a typical fiber j∗ : H∗(E) → H∗(X/G) maps

a 7→ u and b 7→ v. Note that H∗(E) is a H∗(B)-module and is generated by the basis

1, a, a2, b, ab, ..., b
n−1
2 , ab

n−1
2 , a2b

n−1
2 .

We write b
n+1
2 ∈ H2n+2(E) in terms of the above basis. Thus, there exist unique elements

wi ∈ H i(B) such that

b
n+1
2 = w2n+2 + w2n+1a+ w2na

2 + · · ·+ w2a
2b

n−1
2 .

Similarly, we write the element a3 ∈ H3(E) as

a3 = ν3 + ν2a+ ν1a
2,

where νi ∈ H i(B) are unique elements. The characteristic polynomials in the inde-

terminates x and y, of degrees 1 and 4 respectively, associated to the fiber bundle

(X '2 CP n, E, π,B) are defined by

W1(x, y) = w2n+2 + w2n+1x+ w2nx
2 + · · ·+ w2x

2y
n−1
2 + y

n+1
2
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and W2(x) = ν3 + ν2x+ ν1x
2 + x3.

This gives a homomorphism of H∗(B)-algebras

σ : H∗(B)[x, y]→ H∗(E)

given by (x, y) 7→ (a, b) and having kernel σ as the ideal generated by the polynomials

W1(x, y) and W2(x). Hence

H∗(B)[x, y]/〈W1(x, y),W2(x)〉 ∼= H∗(E). (3.4.2)

3.4.3 Characteristic polynomial for π
′
: E

′ → B

We now define the characteristic polynomial associated to the k-dimensional vector bun-

dle π′ : E
′ → B with fiber preserving Z2-action on E

′
which is free on E

′ − 0. Let

SE
′

denote the total space of the sphere bundle of π′ : E
′ → B . Since the action is

free on SE
′
, we obtain the projective space bundle (RP k−1, SE ′ , π′ , B) and the principal

Z2-bundle SE
′ → SE ′ . We know that H∗(RP k−1;Z2) ∼= Z2[u

′
]/〈u′k〉, where u

′
= g∗(s)

with s ∈ H1(BG) and g : RP k−1 → BG is a classifying map for the principal Z2-

bundle Sk−1 → RP k−1. Let h : SE ′ → BG be a classifying map for the principal

Z2-bundle SE
′ → SE ′ and let a

′
= h∗(s) ∈ H1(SE ′). Now the Z2-module homomor-

phism θ
′

: H∗(RP k−1) → H∗(SE ′) given by u
′ 7→ a

′
is a cohomology extension of the

fiber. Again, by the Leray-Hirsch theorem, H∗(SE ′) is a H∗(B)-module via the induced

homomorphism π′
∗

and is generated by the basis

1, a
′
, a
′2
, ..., a

′k−1
.

We write a
′k ∈ Hk(SE ′) as

a
′k

= w
′

k + w
′

k−1a
′
+ · · ·+ w

′

1a
′k−1

,

where w
′
i ∈ H i(B) are unique elements.
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Now the characteristic polynomial in the indeterminate x of degree 1, associated to

the vector bundle π′ : E
′ → B is defined as

W
′
(x) = w

′

k + w
′

k−1x+ · · ·+ w
′

1x
k−1 + xk.

By similar arguments as used earlier, we have the following isomorphism of H∗(B)-

algebras

H∗(B)[x]/〈W ′
(x)〉 ∼= H∗(SE ′)

given by x 7→ a
′
.

3.5 Parametrized Borsuk-Ulam theorems

Let (X,E, π,B) be a fiber bundle with a fiber preserving free Z2-action such that the quo-

tient bundle (X/G,E, π,B) has a cohomology extension of the fiber and let π′ : E
′ → B

be a k-dimensional vector bundle with fiber preserving Z2-action on E
′

which is free on

E
′ − 0. Let f : E → E

′
be a fiber preserving Z2-equivariant map. Define Zf = f−1(0)

and Zf = Zf/Z2, the quotient by the free Z2-action induced on Zf .

3.5.1 Borsuk-Ulam theorems for X '2 RP n

Let H∗(B)[x, y] be the polynomial ring over H∗(B) in the indeterminates x and y.

Note that each polynomial q(x, y) in H∗(B)[x, y] defines an element of H∗(E), which

we denote by q(x, y)|E. We denote by q(x, y)|Zf , the image of q(x, y)|E by the H∗(B)-

homomorphism i∗ : H∗(E) → H∗(Zf ), where i∗ is the map induced by the inclusion

i : Zf ↪→ E. With the above hypothesis and notations, we prove the following results.

Theorem 3.5.1. Let X '2 RP n be a finitistic space. If q(x, y) in H∗(B)[x, y] is a

polynomial such that q(x, y)|Zf = 0, then there are polynomials r1(x, y) and r2(x, y)

in H∗(B)[x, y] such that q(x, y)W
′
(x) = r1(x, y)W1(x, y) + r2(x, y)W2(x, y) in the ring

H∗(B)[x, y], where W
′
(x), W1(x, y) and W2(x, y) are the characteristic polynomials.
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Proof. Let q(x, y) in H∗(B)[x, y] be a polynomial such that q(x, y)|Zf = 0. It follows

from the continuity property of the Čech cohomology theory (Theorem 1.3.2), that there

is an open subset V ⊂ E such that Zf ⊂ V and q(x, y)|V = 0. Consider the long exact

cohomology sequence for the pair (E, V ), namely,

· · · → H∗(E, V )
j∗1→ H∗(E)→ H∗(V )→ H∗(E, V )→ · · · .

By exactness, there exist µ ∈ H∗(E, V ) such that j∗1(µ) = q(x, y)|E, where j1 : E →

(E, V ) is the natural inclusion. The Z2-equivariant map f : E → E
′

gives the map

f : E − Zf → E ′ − 0. The induced map f
∗

: H∗(E ′ − 0) → H∗(E − Zf ) is a H∗(B)-

homomorphism. We also have W
′
(a
′
) = 0. Therefore,

W
′
(x)|E−Zf = W

′
(a) = W

′(
f
∗
(a
′
)
)

= f
∗(
W
′
(a
′
)
)

= 0.

Now consider the long exact cohomology sequence for the pair (E,E − Zf ), that is,

· · · → H∗(E,E − Zf )
j∗2→ H∗(E)→ H∗(E − Zf )→ H∗(E,E − Zf )→ · · · .

By exactness, there exist λ ∈ H∗(E,E−Zf ) such that j∗2(λ) = W
′
(x)|E, where j2 : E →

(E,E − Zf ) is the natural inclusion. Thus,

q(x, y)W
′
(x)|E = j∗1(µ)j∗2(λ) = j∗(µ ∪ λ)

by the naturality of the cup product. But, µ∪λ ∈ H∗(E, V
⋃

(E−Zf )) = H∗(E,E) = 0

and hence q(x, y)W
′
(x)|E = 0. Therefore, by equation (3.4.1), there exist polyno-

mials r1(x, y) and r2(x, y) in H∗(B)[x, y] such that q(x, y)W
′
(x) = r1(x, y)W1(x, y) +

r2(x, y)W2(x, y) in the ring H∗(B)[x, y]. This proves the theorem.

As a corollary, we have the following parametrized version of the Borsuk-Ulam the-

orem.

Corollary 3.5.2. Let X '2 RP n be a finitistic space. If the fiber dimension of E
′ → B

is k, then q(x, y)|Zf 6= 0 for all non-zero polynomials q(x, y) in H∗(B)[x, y], whose degree
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in x and y is less than (n− k + 1). Equivalently, the H∗(B)-homomorphism

n−k⊕
i+j=0

H∗(B)xiyj → H∗(Zf )

given by xi → xi|Zf and yj → yj|Zf is a monomorphism. As a result, if n ≥ k, then

cohom.dim(Zf ) ≥ cohom.dim(B) + (n− k).

Proof. Let q(x, y) in H∗(B)[x, y] be a non-zero polynomial such that deg(q(x, y)) <

(n− k + 1). If q(x, y)|Zf = 0, then by Theorem 3.5.1, we have

q(x, y)W
′
(x) = r1(x, y)W1(x, y) + r2(x, y)W2(x, y)

in the ring H∗(B)[x, y] for some polynomials r1(x, y) and r2(x, y) in H∗(B)[x, y]. Note

that deg(W
′
(x)) = k, deg(W1(x, y)) = n+ 1 and deg(W2(x, y)) = 2. Since

deg(q(x, y)) + k = max{deg(r1(x, y)) + n+ 1, deg(r2(x, y)) + 2},

we have

deg(q(x, y)) + k ≥ deg(r1(x, y)) + n+ 1.

Taking deg(r1(x, y)) = 0, this gives deg(q(x, y)) + k ≥ n + 1 and hence deg(q(x, y)) ≥

(n − k + 1), which is a contradiction. Hence q(x, y)|Zf 6= 0. Equivalently, the H∗(B)-

homomorphism
n−k⊕
i+j=0

H∗(B)xiyj → H∗(Zf )

given by xi → xi|Zf and yj → yj|Zf is a monomorphism. As a result, if n ≥ k, then

cohom.dim(Zf ) ≥ cohom.dim(B) + (n− k),

since cohom.dim(Zf ) ≥ cohom.dim(Zf ) by Proposition 1.6.2.

Remark 3.5.1. If B is a point in the above corollary, then for any Z2-equivariant map

f : X '2 RP n → Rk, where n ≥ k, we have cohom.dim(Zf ) ≥ (n− k).
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3.5.2 Borsuk-Ulam theorems for X '2 CP n

With similar notations as in the real case, we prove the following results.

Theorem 3.5.3. Let X '2 CP n be a finitistic space. If q(x, y) in H∗(B)[x, y] is a

polynomial such that q(x, y)|Zf = 0, then there are polynomials r1(x, y) and r2(x, y)

in H∗(B)[x, y] such that q(x, y)W
′
(x) = r1(x, y)W1(x, y) + r2(x, y)W2(x) in the ring

H∗(B)[x, y], where W
′
(x), W1(x, y) and W2(x) are the characteristic polynomials.

Proof. Let q(x, y) in H∗(B)[x, y] be a polynomial such that q(x, y)|Zf = 0. By similar

arguments as used in the proof of Theorem 3.5.1, we conclude that q(x, y)W
′
(x)|E = 0.

Therefore, by equation (3.4.2), there exist polynomials r1(x, y) and r2(x, y) in H∗(B)[x, y]

such that q(x, y)W
′
(x) = r1(x, y)W1(x, y) + r2(x, y)W2(x) in the ring H∗(B)[x, y]. This

proves the theorem.

Corollary 3.5.4. Let X '2 CP n be a finitistic space. If the fiber dimension of E
′ → B

is k, then q(x, y)|Zf 6= 0 for all non-zero polynomials q(x, y) in H∗(B)[x, y], whose degree

in x and y is less than (2n− k + 2). Equivalently, the H∗(B)-homomorphism

2n−k+1⊕
i+j=0

H∗(B)xiyj → H∗(Zf )

given by xi → xi|Zf and yj → yj|Zf is a monomorphism. As a result, if 2n ≥ k, then

cohom.dim(Zf ) ≥ cohom.dim(B) + (2n− k + 1).

Proof. Let q(x, y) in H∗(B)[x, y] be a non-zero polynomial such that deg(q(x, y)) <

(2n− k + 2). If q(x, y)|Zf = 0, then by Theorem 3.5.3, we have

q(x, y)W
′
(x) = r1(x, y)W1(x, y) + r2(x, y)W2(x)

in the ring H∗(B)[x, y] for some polynomials r1(x, y) and r2(x, y) in H∗(B)[x, y]. Note

that deg(W
′
(x)) = k, deg(W1(x, y)) = 2n+ 2 and deg(W2(x)) = 3. Since

deg(q(x, y)) + k = max{deg(r1(x, y)) + 2n+ 2, deg(r2(x, y)) + 3},
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we have

deg(q(x, y)) + k ≥ deg(r1(x, y)) + 2n+ 2.

Taking deg(r1(x, y)) = 0, this gives deg(q(x, y)) + k ≥ 2n + 2 and hence deg(q(x, y)) ≥

(2n − k + 2), which is a contradiction. Hence q(x, y)|Zf 6= 0. Equivalently, the H∗(B)-

homomorphism
2n−k+1⊕
i+j=0

H∗(B)xiyj → H∗(Zf )

given by xi → xi|Zf and yj → yj|Zf is a monomorphism. As a result, if 2n ≥ k, then

cohom.dim(Zf ) ≥ cohom.dim(B) + (2n− k + 1).

Remark 3.5.2. If B is a point in the above corollary, then for any Z2-equivariant map

f : X '2 CP n → Rk, where 2n ≥ k, we have cohom.dim(Zf ) ≥ (2n− k + 1).

3.6 Application to Z2-coincidence sets

Let (X,E, π,B) be a fiber bundle with the hypothesis of Section 3.4. Let E
′′ → B be

a k-dimensional vector bundle and let f : E → E
′′

be a fiber preserving map. Here

we do not assume that E
′′

has an involution. Even if E
′′

has an involution, f is not

assumed to be Z2-equivariant. If T : E → E is the generator of the Z2 action, then the

Z2-coincidence set of f is defined as

A(f) = {x ∈ E | f(x) = f(T (x))}.

Let V = E
′′ ⊕E ′′ be the Whitney sum of two copies of E

′′ → B. Then Z2 acts on V by

permuting the coordinates. This action has the diagonal D in V as the fixed point set.

Note that D is a k-dimensional sub-bundle of V and the orthogonal complement D⊥ of

D is also a k-dimensional sub-bundle of V . Also note that D⊥ is Z2 invariant and has a

Z2 action which is free outside the zero section. Consider the map f
′
: E → V given by

f
′
(x) =

(
f(x), f(T (x))

)
.
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It is clearly Z2-equivariant. The linear projection along the diagonal defines a Z2-

equivariant fiber preserving map g : V → D⊥ such that g(V − D) ⊂ D⊥ − 0, where

0 is the zero section of D⊥. Let h = g ◦ f ′ be the composition

(E,E − A(f))
f
′

→ (V, V −D)
g→ (D⊥, D⊥ − 0).

Note that Zh = h−1(0) = f
′−1

(D) = A(f) and h : E → D⊥ is fiber preserving Z2-

equivariant map.

Applying Corollary 3.5.2 to h, we have

Theorem 3.6.1. If X '2 RP n is a finitistic space, then

cohom.dimA(f) ≥ cohom.dim(B) + (n− k).

Similarly, applying Corollary 3.5.4 to h, we have

Theorem 3.6.2. If X '2 CP n is a finitistic space, then

cohom.dimA(f) ≥ cohom.dim(B) + (2n− k + 1).
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Chapter 4

Fixed Point Sets of Involutions on

Spaces of Type (a, 0)

4.1 Introduction

In this chapter, we investigate the fixed point sets of involutions on certain types of

spaces first studied by Toda [77]. Toda studied the cohomology algebra of a space X

having only non-trivial cohomology groups H in(X;Z) = Z for i = 0, 1, 2 and 3, where

n is a fixed positive integer. Let ui ∈ H in(X;Z) be a generator for i = 1, 2 and 3. Then

the ring structure of H∗(X;Z) is completely determined by the integers a and b such

that

u2
1 = au2 and u1u2 = bu3.

Such a space is said to be of type (a, b). Let p be a prime. We write X 'p Y if there

is an isomorphism of graded algebras H∗(X;Zp) ∼= H∗(Y ;Zp). If Y is a space of type

(a, b), we say that X is a space of type (a, b) mod p. Similarly, we use the notation

X 'p P h(n) to mean that H∗(X;Zp) ∼= Zp[z]/zh+1, where z is a homogeneous element

of degree n.

Given spaces Xi with chosen base points xi ∈ Xi for i = 1, 2, ..., k, their wedge sum

∨ki=1Xi is the quotient of the disjoint union tki=1Xi obtained by identifying the points



Chapter 4. Fixed Point Sets of Involutions on Spaces of Type (a, 0) 66

x1, x2, ..., xk to a single point called the wedge point.

One can see that a space X of type (a, b) is determined by the integers a and b in

terms of some familiar spaces as follows.

If b 6≡ 0 mod p, then

X 'p Sn × S2n for a ≡ 0 mod p

or

X 'p P 3(n) for a 6≡ 0 mod p.

And, if b ≡ 0 mod p, then

X 'p Sn ∨ S2n ∨ S3n for a ≡ 0 mod p

or

X 'p P 2(n) ∨ S3n for a 6≡ 0 mod p.

Let the cyclic group G = Zp act on a space X of type (a, b). This gives the Borel

fibration X ↪→ XG −→ BG (Chapter 1, p.16). Recall that, X is said to be totally non-

homologous to zero (TNHZ) in XG with respect to Zp if the inclusion of a typical fiber

X ↪→ XG induces a surjection in the cohomology H∗(XG;Zp) −→ H∗(X;Zp) (Definition

1.4.3).

The cohomological nature of the fixed point sets of Zp actions for the case b 6≡ 0 mod

p has been investigated in detail by Bredon [5, 6] and Su [73, 74] for all primes p. And

the cohomological nature of the fixed point sets of Zp actions for the case b ≡ 0 mod p

has been completely determined by Dotzel and Singh [20, 21] for odd primes p. We settle

the remaining case of b ≡ 0 mod 2 and investigate the fixed point sets of involutions on

finitistic spaces of type (a, 0) mod 2. More precisely, we prove the following results.

Theorem 4.1.1. Let G = Z2 act on a finitistic space X of type (a, 0) mod 2 with trivial

action on H∗(X;Q) and with fixed point set F . Suppose X is totally non-homologous to

zero in XG, then F has at most four components satisfying the following:

1. If F has four components, then each is acyclic, n is even and a ≡ 0 mod 2.
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2. If F has three components, then n is even and

F '2 S
r t {point1} t {point2} for some even integer 2 ≤ r ≤ 3n.

3. If F has two components, then either

F '2 S
r t Ss or (Sr ∨ Ss) t {point} for some integers 1 ≤ r, s ≤ 3n

or

F '2 P
2(r) t {point} for some even integer 2 ≤ r ≤ n.

4. If F has one component, then either

F '2 S
r ∨ Ss ∨ St for some integers 1 ≤ r, s, t ≤ 3n

or

F '2 S
s ∨ P 2(r) for some integers 1 ≤ r ≤ n and 1 ≤ s ≤ 3n.

Moreover, if n is even, then X is always totally non-homologous to zero in XG. Further,

all the cases are realizable.

Theorem 4.1.2. Let G = Z2 act on a finitistic space X of type (a, 0) mod 2 with

trivial action on H∗(X;Q) and with fixed point set F . Suppose X is not totally non-

homologous to zero in XG, then either F = φ or F '2 S
r, where 1 ≤ r ≤ 3n is an odd

integer. Moreover, the second possibility is realizable.

Before proceeding to prove our theorems, we consider a Z2 action on the unit sphere

Sn = {(x1, x2, ..., xn+1) ∈ Rn+1|
∑n+1

i=1 x
2
i = 1} that we will use in constructing examples

in the following sections. For 0 ≤ r ≤ n, Sr ⊆ Sn, where Sr = {(x1, x2, ..., xn+1) ∈

Sn|xr+2 = xr+3 = ... = xn+1 = 0}. The Z2 action on Sn given by

(x1, x2, ..., xn+1) 7→ (x1, x2, ..., xr+1,−xr+2,−xr+3, ...,−xn+1)

has Sr as its fixed point set. Given any point x ∈ Sn, we consider {x,−x} as S0 ⊂ Sn.

Then the above action on Sn, for r = 0, has {x,−x} as its fixed point set.
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We will also use the join X?Y of two spaces X and Y , which is defined as the quotient

of X × Y × I under the identifications (x, y1, 0) ∼ (x, y2, 0) and (x1, y, 1) ∼ (x2, y, 1),

where I is the unit interval. In other words, we are collapsing the subspace X ×Y ×{0}

to X and X × Y × {1} to Y . Note that, if a group G acts on both X and Y with fixed

point sets F1 and F2 respectively, then the induced action of G on X ? Y has F1 ? F2

as its fixed point set. Throughout we will use the Čech cohomology with Z2 coefficients

unless otherwise stated. We first prove the following lemma.

Lemma 4.1.3. Let G = Z2 act on a finitistic space X with trivial action on the rational

cohomology H∗(X;Q), then

χ(X) = χ(F ).

Proof. By Theorem 1.4.3, we have

π∗ : H i(X/G;Q)
∼=→ H i(X;Q)

G
for all i ≥ 0,

where π : X → X/G is the orbit map. Since G acts trivially on the cohomology, the

fixed point set H i(X;Q)
G

= H i(X;Q) for all i ≥ 0. This gives H i(X/G;Q) ∼= H i(X;Q)

for all i ≥ 0 and hence χ(X) = χ(X/G). By Theorem 1.4.2, we have

χ(X) + χ(F ) = 2χ(X/G)

and hence χ(X) = χ(F ).

Theorem 4.1.1 is proved in Section 4.2 and Theorem 4.1.2 is proved in Section 4.3.

4.2 Fixed point sets when X is TNHZ in XZ2

Let X be totally non-homologous to zero in XG. Then by Theorem 1.4.11

∑
i≥0

rkH i(F ) =
∑
i≥0

rkH i(X) = 4.

It follows that F has at most four components.
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Case (1) Suppose F has four components, then it is clear that each is acyclic.

Let ui denote the reductions of ui mod 2. If a 6≡ 0 mod 2, then u1
2 = u2 6= 0. Hence by

Proposition 1.4.12, Hn(F ) 6= 0, showing that F has a non-acyclic component. Therefore,

in this case a ≡ 0 mod 2. By Lemma 4.1.3, we have χ(X) = χ(F ) = 4 and hence n must

be even.

For a ≡ 0 mod 2, we can take X = Sn ∨ S2n ∨ S3n. Consider the Z2 actions on the

spheres Sn, S2n and S3n with two fixed points each and take their wedge sum at some

fixed points. This gives a Z2 action on X with the disjoint union of four points as its

fixed point set.

Case (2) Suppose that F has three components, then

F '2 S
r t {point1} t {point2} for some integer 1 ≤ r ≤ 3n.

Note that χ(F ) = 2 or 4 according as r is odd or even. As χ(X) = χ(F ), both n and r

are even.

For a ≡ 0 mod 2 and even integers r, n such that 2 ≤ r ≤ 3n, we take X =

Sn ∨ S2n ∨ S3n. Consider the Z2 actions on the spheres Sn and S2n with exactly two

fixed points each and the action on S3n with Sr as its fixed point set. Taking their wedge

sum at some fixed points gives a Z2 action on X with F = Sr t {point1} t {point2}.

For a 6≡ 0 mod 2, we know that X '2 P 2(n) ∨ S3n. If Y is a space such that

H∗(Y ;Z2) = Z2[z]/zh+1, where z is of degree n, then by Proposition 1.5.1, we have n =

2, 4 or 8 for h = 2. Therefore, we can take Y to be the complex projective plane CP 2,

the quaternionic projective plane HP 2 or the Cayley projective plane OP 2, according as

n = 2, 4 or 8 respectively.

For n = 2, let S5={(z1, z2, z3) ∈ C3|
∑3

i=1 |zi|
2 = 1}. Consider the Z2 action on S5

given by (z1, z2, z3) 7→ (z1, z2,−z3). This action commutes with the usual S1 action on

S5 and hence descends to an action on CP 2. As S3 ⊂ S5 is fixed under the Z2 action on

S5, it is easy to see that S2 t {point} is the fixed point set of the Z2 action on CP 2.
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Similarly, for n = 4, let H be the normed division algebra of quaternions and

S11 = {(w1, w2, w3) ∈ H3|
∑3

i=1 |wi|
2 = 1} and consider the Z2 action on S11 given

by (w1, w2, w3) 7→ (w1, w2,−w3). This action commutes with the usual S3 action on S11.

As above, one can see that S4 t {point} is the fixed point set of the induced action of

Z2 on HP 2.

For n = 8, we now construct a Z2 action on OP 2 with S8 t{point} as its fixed point

set. It is originally due to Bredon [6, p.389]. Let ω be a Cayley number of order 2 and

let ω act on S7 by c 7→ ωcω. Also let ω act on S7×S7 by (c1, c2) 7→ (ωc1, c2ω). Then the

multiplication S7 × S7 → S7 is equivariant by the Moufang identity. Thus there is an

induced action of Z2 on OP 2. We now identify the fixed point set F . Note that if c ∈ S7

is perpendicular to 1 and ω, then c = −c and 2 = |c+ω|2 = (c+ω)(c+ω) = 2 + cω+ωc

so that cω = ωc. That is, ωcω = c for c in this 5-sphere. If c ∈ S7 is in the plane spanned

by 1 and ω, then ωcω = ω2c which equals c. Since there are no fixed points on S7 × S7,

we see that F is the vertex of the mapping cone of S7 ? S7 → S(S7) together with the

suspension of the fixed set of c 7→ ωcω on S7. Thus F = S8 t {point}.

Now, consider the Z2 action on S3n with exactly two fixed points. Taking X =

Y ∨S3n, where the wedge sum is taken at the isolated fixed point of Y and a fixed point

of S3n, we get a Z2 action on X with the fixed point set F = Sr t {point1} t {point2}

for some even integer 2 ≤ r ≤ 3n.

Case(3) Suppose F has two components, then

F '2 S
r t Ss, (Sr ∨ Ss) t {point} or P 2(r) t {point} for some r and s.

By Lemma 4, χ(X) = χ(F ). If n is odd, χ(F ) = 0 and hence

F '2 S
r t Ss or (Sr ∨ Ss) t {point} for odd integers 1 ≤ r, s ≤ 3n.

And if n is even, χ(F ) = 4 and hence

F '2 S
r t Ss or (Sr ∨ Ss) t {point} for even integers 2 ≤ r, s ≤ 3n
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or

F '2 P
2(r) t {point} for some even integer 2 ≤ r ≤ n.

For a ≡ 0 mod 2, let Y = Sn−1 ? P 2(n). Consider a free Z2 action on Sn−1 and

that action on P 2(n) which has the fixed point set Sr t {point} for some r (which we

constructed in case (2)). Let Z2 act on Sn with its fixed point set Ss for some s. Take

X = Sn ∨ Y , where the wedge sum is taken at the isolated fixed point of Y and some

point of Ss. Then X '2 S
n ∨ S2n ∨ S3n and has a Z2 action with the fixed point set

F '2 S
r t Ss.

If we take the wedge sum at some point of Sr and some point of Ss, then X has a

Z2 action with the fixed point set F '2 (Sr ∨ Ss) t {point}.

Further, if we consider a free Z2 action on Sn−1, the trivial action on P 2(n) and the

action on Sn with exactly two fixed points, then X = Sn ∨ Y , where the wedge is taken

at some point of P 2(n) and some fixed point of Sn, has a Z2 action with the fixed point

set F '2 P
2(n) t {point}.

For a 6≡ 0 mod 2, take X = P 2(n) ∨ S3n. Consider the Z2 action on P 2(n) with

Sr t {point} as its fixed point set and the action on S3n with Ss as its fixed point set.

By taking the wedge sum at suitable points, we get a Z2 action on X with F '2 S
r tSs

or (Sr ∨ Ss) t {point}. Similarly, suitable actions on P 2(n) and S3n gives an action on

X with F '2 P
2(r) t {point}.

Case(4) Suppose F has one component, then either

F '2 S
r ∨ Ss ∨ St for some integers 1 ≤ r, s, t ≤ 3n

or

F '2 S
s ∨ P 2(r) for some integers 1 ≤ r ≤ n and 1 ≤ s ≤ 3n.

As χ(F ) = χ(X), for F '2 S
r ∨Ss∨St we must have either r, s and t all are even or

exactly one of them is even. Similarly, for F '2 S
s ∨ P 2(r) we must have either s and r
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both even or both odd.

For a ≡ 0 mod 2, take X = Sn ∨ S2n ∨ S3n. Consider the Z2 actions on Sn, S2n and

S3n with Sr, Ss and St respectively as their fixed point sets. This gives an action on X

with Sr ∨ Ss ∨ St as its fixed point set, where the wedge is taken at some fixed points

on the sub-spheres.

If we take X = Sn ∨ Y , where Y = Sn−1 ? P 2(n) and consider the Z2 action on Sn

with Ss as its fixed point set for some s and the action on Y with P 2(r) as its fixed point

set for some r, then we get a Z2 action on X with its fixed point set F '2 S
s ∨ P 2(r).

For a 6≡ 0 mod 2, taking a suitable Z2 action on X = P 2(n)∨S3n gives F '2 S
s∨P 2(r)

for some integers r and s. Note that in this case the fixed point set cannot be a wedge

of three spheres.

Finally, suppose that n is even and X is not totally non-homologous to zero in XG.

Then by Theorem 1.4.11,

∑
i≥0

rkH i(F ) 6=
∑
i≥0

rkH i(X) = 4.

and hence ∑
i≥0

rkH i(F ) ≤ 3.

This gives χ(F ) = -1, 0, 1, 2 or 3. But, χ(F ) = χ(X) = 4, a contradiction. This

completes the proof of the Theorem 4.1.1. 2

4.3 Fixed point sets when X is not TNHZ in XZ2

Let X be not totally non-homologous to zero in XG. Then n is odd and hence χ(X) = 0.

As above
∑

i≥0 rkH
i(F ) ≤ 3 and hence χ(F ) = -1, 0, 1, 2 or 3. But by Lemma 4.1.3, we

have χ(F ) = 0. Therefore either F = φ or F 'Q S
r for some odd integer 1 ≤ r ≤ 3n.

Note that, when n is odd, we have a ≡ 0 mod 2 [77]. We now construct a Z2 action

on a space X '2 S
n ∨ S2n ∨ S3n with fixed point set F '2 S

r using a construction of Su
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[73]. Let h : S3 −→ S2 be the Hopf map and Y be the union of mapping cylinders of

the sphere bundle maps

S2 × Sn h×1←− S3 × Sn projection−→ S3.

Then H∗(Y ;Z) = H∗(S2 × Sn+2;Z) and Y is a manifold . Let Z2 act freely on Sn and

trivially on both S2 and S3, then it act on Y with the fixed point set homeomorphic to

S3. Remove a fixed point from Y to obtain a space Z '2 S
2 ∨ Sn+2 with a Z2 action

and contractible fixed point set. With Z2 acting trivially on Sn−3, consider the induced

action on the join W = Sn−3 ? Z which is homotopically equivalent to Sn ∨ S2n. This

action on W has a contractible fixed point set. For a given odd integer 1 ≤ r ≤ 3n,

consider the Z2 action on S3n with Sr as the fixed point set. Then the wedge sum of W

and S3n at some fixed points is a space X '2 S
n ∨ S2n ∨ S3n and has a Z2 action with

its fixed point set F '2 S
r. It is clear that every Z2 action on X = Sn ∨ S2n ∨ S3n has

a non-empty fixed point set. This completes the proof of Theorem 4.1.2. 2

Remark 4.3.1. It is clear that there is no free Z2 action on Sn ∨ S2n ∨ S3n. The author

does not know of any free Z2 action on a space X '2 S
n ∨ S2n ∨ S3n.
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Chapter 5

Fixed Point Sets of Circle Actions

on Spaces of Type (a, 0)

5.1 Introduction

This chapter is concerned with the fixed point sets of S1 actions on spaces of type (a, b)

introduced in Chapter 4. Toda studied the cohomology algebra of a space X having

only non trivial cohomology groups H in(X;Z) = Z for i = 0, 1, 2 and 3, where n is a

fixed positive integer. If ui ∈ H in(X;Z) is a generator for i = 1, 2 and 3, then the ring

structure of H∗(X;Z) is completely determined by the integers a and b such that

u2
1 = au2 and u1u2 = bu3.

Such a space is said to be of type (a, b). Note that if n is odd, then u2
1 = 0 and hence

a = 0. We write X 'Q Y if there is an isomorphism of graded algebras H∗(X;Q) ∼=

H∗(Y ;Q). If Y is a space of type (a, b), we say that X is a rational cohomology space

of type (a, b). Similarly, by X 'Q P
h(n) we mean that H∗(X;Q) ∼= Q[z]/zh+1, where z

is a homogeneous element of degree n.

It is clear that if b 6= 0, then

X 'Q S
n × S2n for a = 0
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or

X 'Q P
3(n) for a 6= 0.

And, if b = 0, then

X 'Q S
n ∨ S2n ∨ S3n for a = 0

or

X 'Q P
2(n) ∨ S3n for a 6= 0.

Let the group G = S1 act on a space X of type (a, b). This gives the Borel fibration

X ↪→ XG −→ BG (Chapter 1, p.16). Recall that, X is said to be totally non-homologous

to zero (TNHZ) in XG with respect to Q if the inclusion of a typical fiber X ↪→ XG

induces a surjection in the cohomology H∗(XG;Q) −→ H∗(X;Q) (Definition 1.4.3 ).

The cohomological nature of the fixed point sets of actions of the cyclic group Zp of

prime order p on spaces of type (a, b) has been studied in detail [5, 6, 20, 21, 64, 73, 74].

For b 6= 0, the cohomological nature of the fixed point sets of S1 actions has been

studied in detail by Bredon [5, 6]. We study S1 actions on rational cohomology fini-

tistic spaces of type (a, 0) and determine the possible fixed point sets up to rational

cohomology. More precisely, we prove the following results.

Theorem 5.1.1. Let G = S1 act on a rational cohomology finitistic space X of type

(a, 0) with fixed point set F . Suppose X is totally non-homologous to zero in XG, then

F has at most four components satisfying the following:

1. If F has four components, then each is acyclic and n is even.

2. If F has three components, then n is even and

F 'Q S
r t {point1} t {point2} for some even integer 2 ≤ r ≤ 3n.

3. If F has two components, then either

F 'Q S
r t Ss or (Sr ∨ Ss) t {point} for some integers 1 ≤ r, s ≤ 3n
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or

F 'Q P
2(r) t {point} for some even integer 2 ≤ r ≤ n.

4. If F has one component, then either

F 'Q S
r ∨ Ss ∨ St for some integers 1 ≤ r, s, t ≤ 3n

or

F 'Q S
s ∨ P 2(r) for some integers 1 ≤ r ≤ n and 1 ≤ s ≤ 3n.

Moreover, if n is even, then X is always totally non-homologous to zero in XG. Further,

all the cases are realizable.

Theorem 5.1.2. Let G = S1 act on a rational cohomology finitistic space X of type

(a, 0) with fixed point set F . Suppose X is not totally non-homologous to zero in XG,

then either F = φ or F 'Q Sr, where 1 ≤ r ≤ 3n is an odd integer. Moreover, the

second possibility is realizable.

We will use the join X ?Y of two spaces X and Y , which is defined as the quotient of

X×Y × I under the identifications (x, y1, 0) ∼ (x, y2, 0) and (x1, y, 1) ∼ (x2, y, 1), where

I is the unit interval. If Y is a two point space, then X ? Y is called the suspension of

X and is denoted by S(X). Observe that,

• if a group G acts on both X and Y with fixed point sets F1 and F2 respectively,

then the induced action on X ? Y has the fixed point set F1 ? F2.

• a given map f : X × Y → Z induces a map f̃ : X ? Y → S(Z) given by

f̃
(

(x, y, t)
)

= (f(x, y), t).

We say that a map f : Sn−1 × Sn−1 → Sn−1 has bidegree (α, β), if the restriction

f |Sn−1×{p2} has degree α and the restriction f |{p1}×Sn−1 has degree β, where (p1, p2) ∈
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Sn−1 × Sn−1. The bidegree of f is independent of the choice of (p1, p2). We will need

the following well known result

Proposition 5.1.3. [71, p.14] For every even integer n ≥ 2 there is a map ϕ : Sn−1 ×

Sn−1 → Sn−1 of bidegree (2,−1).

Proof. Define ϕ : Sn−1 × Sn−1 → Sn−1 by

ϕ(x, y) = y − 2(
n∑
i=1

xiyi)x.

If we fix x = (1, 0, ..., 0), then ϕ(x, y) = (−y1, y2, ..., yn) which has degree -1. If we fix

y = (1, 0, ..., 0), then ϕ(x, y) = (1 − 2x1
2,−2x1x2, ...,−2x1xn) = g(x) say. Let Hn−1

± be

the closed subspace of Sn−1 consisting of x such that ±x1 ≥ 0. Then ϕ : Hn−1
+ −Sn−2 →

Sn−1 − {(1, 0, ..., 0)} is a homeomorphism and hence defines a map f1 : Hn−1
+ /Sn−2 →

Sn−1 of degree +1. In a similar way, ϕ defines an map f2 : Hn−1
− /Sn−2 → Sn−1. Note

that g(x) = g(−x) and hence the degree of f2 is equal to that of the map x 7→ −x,

which is (−1)n = +1. Since, the map g can be factored into Sn−1 → Sn−1/Sn−2 =

Sn−1 ∨Sn−1 f1∨f2−→ Sn−1, we see that g has degree 2 and hence ϕ has bidegree (2,−1).

Let f : Sn−1 × Sn−1 → Sn−1 be a map of bidegree (α, β) and

f̃ : S2n−1 = Sn−1 ? Sn−1 → S(Sn−1) = Sn

be the induced map. If Y is the complex obtained by attaching a 2n-cell e2n to Sn via

f̃ , then for generators x ∈ Hn(Y ;Z) and y ∈ H2n(Y ;Z), we have x2 = h(f̃)y for some

integer h(f̃) called the Hopf invariant of f̃ . A homotopy of f̃ leaves the homotopy

type of Y unchanged and hence the Hopf invariant is an invariant of the homotopy class

of f̃ . The following well known result relates the Hopf invariant and the bidegree.

Proposition 5.1.4. [71, p.13] h(f̃) = ±αβ

Proof. Let E1 and E2 denote the closed n-cells with boundary Sn−1. Let Sn be the

suspension of Sn−1. Then Sn = E+ ∪ E−, where E+ and E− are closed n-cells in Sn
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with E+ ∩ E− = Sn−1. Let f̃ : S2n−1 = Sn−1 ? Sn−1 → S(Sn−1) = Sn be the induced

map. Note that Sn−1 ? Sn−1 = E1 × Sn−1 ∪ Sn−1 × E2 and f̃(E1 × Sn−1) ⊂ E+ and

f̃(Sn−1 × E2) ⊂ E−. Since, the boundary of E1 × E2 is E1 × Sn−1 ∪ Sn−1 × E2, we can

construct the adjunction space X = (E1 × E2) ∪f̃ Sn. The attaching map f̃ gives rise

to a map g : (E1 × E2, E1 × Sn−1, Sn−1 × E2) → (X,E+, E−). Let x ∈ Hn(X;Z) be a

generator. We define x+ and x− to be in the inverse images of x under the isomorphisms

Hn(X,E−) → Hn(X) and Hn(X,E+) → Hn(X) respectively. Now we have a map

(X,φ, φ)→ (X,E+, E−). This gives rise to a commutative diagram

Hn(X,E+)⊗Hn(X,E−)

∼=
��

∪ // H2n(X,Sn)

∼=
��

Hn(X)⊗Hn(X) ∪ // H2n(X).

The vertical maps are isomorphisms. Therefore the cup product x+ ∪ x− has image x2

under the map H2n(X,Sn)→ H2n(X). We have the following commutative diagram

Hn(X)
∼=

xx

Hn(X,E−)

��

g∗
//

∼=oo Hn(E1 × E2, S
n−1 × E2)

∼=
��

Hn(Sn) Hn(Sn, E−)
∼=oo

∼= // Hn(E+, S
n−1)

g∗
// Hn(E1 × p2, S

n−1 × p2)

Hn−1(Sn−1)
g∗

//

δ ∼=

OO

Hn−1(Sn−1 × p2)

δ ∼=

OO

Z

∼=

OO

α // Z.

∼=

OO

By the diagram g∗x+ = αw+, where w+ generates Hn(E1×E2, S
n−1×E2). By a similar

argument, we see that g∗x− = βw−, where w− generates Hn(E1 × E2, E1 × Sn−1). Let

pi : E1 × E2 → Ei be the projections. We define the generators xi ∈ Hn(Ei, S
n−1) by

p∗1x1 = w+ and p∗2x2 = w−. Now w+ ∪w− = p∗1x1 ∪ p∗2x2 = (x1 × 1)∪ (1× x2) = x1 × x2.

Hence g∗x+ ∪ g∗x− = αβ(x1 × x2) and (x1 × x2) generates H2n(E1 × E2, E1 × Sn−1 ∪

Sn−1 × E2).

Now g : (E1×E2, E1×Sn−1∪Sn−1×E2)→ (X,Sn) is a relative homeomorphism and
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therefore induces an isomorphism of cohomology groups. So we have the isomorphisms

H2n(X)
∼=←− H2n(X,Sn)

g∗−→ H2n(E1 × E2, E1 × Sn−1 ∪ Sn−1 × E2).

Under these isomorphisms x2 ∈ H2n(X) corresponds to x+ ∪ x− ∈ H2n(X,Sn) and to

αβ(x1 × x2). Let y ∈ H2n(X) be a generator which corresponds to x1 × x2. Then

x2 = αβy. This proves the proposition.

We now consider a S1 action on the unit sphere Sn that will be used in the following

sections. For an odd integer n and r = (n+ 1)/2, the unit sphere Sn = {(z1, z2, ..., zr) ∈

Cr|
∑r

i=1 |zi|2 = 1} has a free S1 action given by
(
z, (z1, z2, ..., zr)

)
7→ (zz1, zz2, ..., zzr).

Taking suspension gives a S1 action on the even dimensional sphere Sn+1 with exactly

two fixed points.

An action of a group on a vector bundle will be by bundle maps. Throughout we will

use the Čech cohomology with rational coefficients. Theorem 5.1.1 is proved in Section

5.2 and Theorem 5.1.2 is proved in Section 5.3.

5.2 Fixed point sets when X is TNHZ in XS1

Let X be totally non-homologous to zero in XG. Then by Theorem 1.4.11,

∑
i≥0

rkH i(F ) =
∑
i≥0

rkH i(X) = 4.

It is clear that F has at most four components.

Case (1) Suppose F has four components, then it is clear that each is acyclic.

By Theorem 1.4.6, χ(X) = χ(F ) = 4 and hence n is even.

For a = 0 and even integer n, we can take X = Sn ∨ S2n ∨ S3n. As discussed in

the previous section, an even dimensional sphere has a S1 action with exactly two fixed

points. Taking the wedge sum at some fixed points of Sn, S2n and S3n gives a four fixed

point S1 action on X.
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For a 6= 0, we know that X 'Q P 2(n) ∨ S3n. Let n be an even integer, then by

Proposition 5.1.3, there is a map ϕ : Sn−1× Sn−1 → Sn−1 of bidegree (2,−1). It is clear

that ϕ is equivariant with respect to the usual O(n) action on Sn−1 and the diagonal

action on Sn−1 × Sn−1 and hence the induced map ϕ̃ : S2n−1 → Sn is also equivariant

with respect to the induced action. Let Xn denote the mapping cone of ϕ̃ which inherits

an O(n) action. By Proposition 5.1.4, the Hopf invariant of ϕ̃ is -2. Then Xn 'Q P
2(n)

and X0 consists of three points. It is clear that if G ⊂ O(n) acts on Rn with fixed point

set Rk, then the induced action on Xn has fixed point set Xk. Let S1 ⊂ O(n) acts on

Rn with exactly one fixed point R0, then it act on Xn with the fixed point set X0. Let

S1 act on S3n with exactly two fixed points, then the wedge sum X = Xn ∨ S3n at fixed

points has a S1 action with exactly four fixed points.

Case (2) Suppose that F has three components, then

F 'Q S
r t {point1} t {point2} for some 1 ≤ r ≤ 3n.

Note that χ(F ) = 2 or 4 according as r is odd or even. But χ(X) = χ(F ) implies that

both n and r are even.

For a = 0 and even integer 2 ≤ r ≤ 3n−2, take X = Sn∨S2n∨S3n. As 1 ≤ (3n−r−1)

is an odd integer, S1 has a free action on S3n−r−1 and the (r+ 1)-fold suspension gives a

S1 action on S3n with Sr as its fixed point set. Taking a two fixed point action on both

Sn and S2n, the wedge sum at fixed points gives a S1 action on X with the fixed point

set F 'Q S
r t {point1} t {point2}.

For a 6= 0, take X = Xn ∨ S3n. Taking the above three fixed point action of S1 on

Xn 'Q P
2(n) and the action on S3n with Sr as its fixed point set, the wedge sum gives

a S1 action on X with the desired fixed point set.

Case(3) Suppose F has two components. Then

F 'Q S
r t Ss, (Sr ∨ Ss) t {point} or P 2(r) t {point}.
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If n is odd, χ(F ) = χ(X) = 0 and hence

F 'Q S
r t Ss or (Sr ∨ Ss) t {point} for odd integers 1 ≤ r, s ≤ 3n.

And if n is even, χ(F ) = χ(X) = 4 and hence

F 'Q S
r t Ss or (Sr ∨ Ss) t {point} for even integers 2 ≤ r, s ≤ 3n

or

F 'Q P
2(r) t {point} for some even integer 2 ≤ r ≤ n.

Let a = 0 and n = 2, 4 or 8. Let Sn−1 denote the set of complex numbers, quaternions,

or octanions of norm 1 and f : Sn−1 × Sn−1 → Sn−1 be the multiplication of complex

numbers, quaternions, or octanions for n = 2, 4 or 8, respectively. For n = 2 and 4, let

S1 act on Sn−1 by

(z, w) 7→ zw

and act on Sn−1 × Sn−1 by

(
z, (w1, w2)

)
7→ (zw1, w2).

Then S1 acts freely on both Sn−1 and Sn−1× Sn−1 and f is a S1-equivariant map. Thus

the induced map f̃ : S2n−1 → Sn is also S1-equivariant and S1 act on the mapping cone

M of f̃ with Sn t {point} as its fixed point set.

For n = 8, denote an element of Sn−1 by (w1, w2) where w1 and w2 are quaternions.

Let S1 act on Sn−1 by (
z, (w1, w2)

)
7→ (zw1z, w2)

and act on Sn−1 × Sn−1 by(
z,
(
(w1, w2), (w3, w4)

))
7→
(
(zw1, w2z), (w3z, w4z)

)
.

Then S1 acts freely on each factor of Sn−1 × Sn−1 and acts on Sn−1 with fixed point set

S5. Note that, f is S1-equivariant and hence the induced map f̃ is also S1-equivariant.



Chapter 5. Fixed Point Sets of Circle Actions on Spaces of Type (a, 0) 83

Thus S1 acts on the mapping cone M of f̃ and has the fixed point set S6 t {point}.

Note that f has bidegree (1, 1) and hence f̃ has Hopf invariant 1. This shows

M 'Q P
2(n). Let S1 act freely on Sn−1 and act on Sn with Sr as the fixed set for some

even integer r. Then S1 acts on Y = Sn−1 ? M with the fixed point set Ss t {point},

where s is an even integer and hence act on X = Sn ∨ Y 'Q Sn ∨ S2n ∨ S3n with the

fixed point set Sr t Ss or (Sr ∨ Ss) t {point} depending on the wedge sum.

For the remaining case, we consider the S1 action on Xn 'Q P 2(n) with Xr 'Q P 2(r)

as its fixed point set, where both n and r are even. Let S1 act freely on Sn−1 and act

on Sn with exactly two fixed points. Then it acts on Y = Sn−1 ? Xn with Xr as the

fixed point set and hence acts on X = Sn ∨ Y 'Q Sn ∨ S2n ∨ S3n with the fixed point

set F 'Q P 2(r) t {point}. Alternatively, one can use Tomter [78], where a S1 action

has been constructed on the actual quaternionic projective plane HP 2 with the complex

projective plane CP 2 as its fixed point set and then do the above construction.

For a 6= 0, take X = P 2(n) ∨ S3n. As above, we can construct S1 actions on X with

the desired fixed point sets.

Case(4) Suppose F has one component. Then either

F 'Q S
r ∨ Ss ∨ St for some integers 1 ≤ r, s, t ≤ 3n

or

F 'Q S
s ∨ P 2(r) for some integers 1 ≤ r ≤ n and 1 ≤ s ≤ 3n.

As χ(F ) = χ(X), for F 'Q S
r ∨ Ss ∨ St we must have either r, s and t all are even

or exactly one of them is even. Similarly, for F 'Q Ss ∨ P 2(r) we must have either s

and r both even or both odd.

For a = 0, take X = Sn ∨ S2n ∨ S3n. If n is even, we take S1 actions on Sn, S2n and

S3n having Sr, Ss and St respectively as fixed point sets, where r, s and t are all even.

And if n is odd, we take actions where exactly one of them is even namely s. This gives

an action on X with Sr ∨ Ss ∨ St as the fixed point set, where the wedge is taken at
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some fixed points on the sub-spheres.

For the other case take X = Sn ∨ Y , where Y = Sn−1 ? P 2(n) and n is even. Consider

the S1 action on Sn with Ss as its fixed point set for some even s and the action on

Y fixing P 2(r) for some even r. This can be obtained by taking a free action on Sn−1

and an action on P 2(n) with P 2(r) as the fixed point set. For example the S1 action

on Rn with Rr as its fixed point set (r is even) induces an action on Xn 'Q P
2(n) with

Xr 'Q P
2(r) as its fixed point set or one can use Tomter [78] for n = 4 and r = 2. This

gives a S1 action on X with F 'Q S
s ∨ P 2(r).

For a 6= 0, as above, we can construct an action on X = P 2(n) ∨ S3n with F 'Q

Ss ∨ P 2(r) for even integers r and s. In this case the fixed point set cannot be a wedge

of three spheres.

Now suppose that n is even and X is not totally non-homologous to zero in XG.

Then by Theorem 1.4.11,

∑
i≥0

rkH i(F ) 6=
∑
i≥0

rkH i(X) = 4

and hence ∑
i≥0

rkH i(F ) ≤ 3.

This gives χ(F ) = -1, 0, 1, 2 or 3. But Theorem 1.4.6 gives χ(F ) = χ(X) = 4, a

contradiction. This completes the proof of Theorem 5.1.1. 2

5.3 Fixed point sets when X is not TNHZ in XS1

Let X be not totally non-homologous to zero in XG. Then n is odd and χ(F ) = χ(X) =

0. As above
∑

i≥0 rkH
i(F ) ≤ 3 and hence χ(F ) = -1, 0, 1, 2 or 3.

But χ(F ) = 0 and therefore either F = φ or F 'Q Sr, where 1 ≤ r ≤ 3n is an odd

integer.

Recall that when n is odd, we have a = 0. Using a construction of Bredon [5, p.268],



Chapter 5. Fixed Point Sets of Circle Actions on Spaces of Type (a, 0) 85

we first construct a S1 action on S2 × Sn+2 with S3 as its fixed point set, where n ≥ 1

is odd. Let η be the Hopf 2-plane bundle over S2 and −η be its inverse, that is −η ⊕ η

= trivial 4-plane bundle. Let ε be the trivial (n− 1)-plane bundle over S2. Then −η⊕ ε

is a (n + 1)-plane bundle (where n + 1 is even) admitting a fiber preserving orthogonal

action of S1 ⊂ O(n+ 1) by bundle maps leaving the zero section fixed (which is the base

space S2). Together with the trivial action of S1 on η, this gives an action on the trivial

(n+ 3)-plane bundle

η ⊕ (−η ⊕ ε) : Rn+3 ↪→ S2 × Rn+3 −→ S2

whose fixed set is η. Taking the unit sphere bundles we get an action of S1 on S2×Sn+2

with fixed point set S3 (which is the total space of the unit sphere bundle of η). Now,

remove a fixed point from S2× Sn+2 to obtain a space Z 'Q S
2 ∨ Sn+2 with a S1 action

and contractible fixed point set. Let S1 act trivially on Sn−3 and consider the induced

action on the join W = Sn−3 ? Z which is homotopically equivalent to Sn ∨ S2n. This

action on W has a contractible fixed point set. For a given odd integer 1 ≤ r ≤ 3n,

consider the S1 action on S3n with Sr as its fixed point set. Then the wedge of W and

S3n at a fixed point is a space X 'Q S
n ∨S2n ∨S3n and has a S1 action with fixed point

set F 'Q S
r. This proves Theorem 5.1.2. 2

Remark 5.3.1. It is clear that there is no free S1 action on Sn ∨ S2n ∨ S3n. The author

does not know of any free S1 action on a space X 'Q S
n ∨ S2n ∨ S3n.

5.4 Conclusions for torus actions

While studying circle actions it is natural to ask what happens for torus actions. We

note that:

• If the r-torus G = (S1)
r

acts on a finitistic space X of type (a, 0) with FMCOT,

then by Lemma 1.4.5, there is a sub-circle S1 ⊂ G such that their fixed point sets

are same, that is, XS1 = XG.
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• If S1 acts on a space X, then we can define G = (S1)
r

= S1 × (S1)
r−1

action on X

by (
(g, g1, ..., gr−1), x

)
7→ g.x

such that XS1 = XG.

Thus, with an additional assumption of FMCOT, our results and examples hold for torus

actions also.



Chapter 6

Some Miscellaneous Results

6.1 Nice Zp actions

This note is concerned with certain actions of the cyclic group Zp of prime order p,

which behaves well on passing to cohomology. An action of a group G on a space X

induces an action of G on the cohomology of X. This induced action is important in

the cohomology theory of transformation groups. One can see that for any action of

S1 on a space X whose rational cohomology is of finite type, the induced action on the

rational cohomology is always trivial. This is, however, not true for actions of the cyclic

group Zp, when the cohomology is taken with coefficients in the finite field Fp. Sikora

in [58] defined certain actions of Zp which behave well on passing to mod p cohomology.

For such actions on Poincaré duality spaces, he proved a mod 4 congruence between the

total Betti numbers of the space and that of the fixed point set.

An action of Zp on a Fp-vector space N is said to be nice if N = T ⊕ F as Fp[Zp]-

module, where T is a trivial and F is a free Fp[Zp]-module. In other words, T =
⊕

Fp

and F =
⊕

Fp[Zp]. We say that a Zp action on a space X is nice if the induced Zp

action on Hn(X;Fp) is nice for each n ≥ 0. Note that, trivial actions are nice.

There is a Z3 action on Sn×Sn, for n = 1, 3 or 7, which is not nice. Sn can be regarded

as the set of elements of norm 1 in the ring of complex numbers, quaternions or Cayley
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numbers for n = 1, 3 or 7 respectively. Let M = {(x, y, z) ∈ Sn×Sn×Sn | (xy)z = 1}.

Then M is homeomorphic to Sn×Sn. Since (xy)z = 1⇔ (yz)x = 1⇔ (zx)y = 1, there

is an action of Z3 on M by cyclic permutations. Note that Z3 action on H0(M ;F3) =

F3 = H2n(M ;F3) is trivial. Clearly, Hn(M ;F3) 6= T ⊕ F . Hence, Z3 action on M is not

nice. However, note that every action of Z3 on Sn is nice. Thus, an arbitrary action of

Zp on X × Y need not be nice even if every action of Zp on both X and Y is nice. In

this note, we show that the diagonal action is nice.

If a group G acts on spaces X and Y , then there is a G action on X × Y given by

(
g, (x, y)

)
7→ (g.x, g.y)

called the diagonal action. We say that a space X is of finite type if dimFpH
n(X;Fp) <∞

for all n ≥ 0. We prove the following:

Theorem 6.1.1. If Zp acts nicely on spaces X and Y of finite type, then the diagonal

action on X × Y is also nice.

Before proceeding to prove the theorem, we recall the following consequence of

Künneth formula for singular cohomology.

Theorem 6.1.2. If X and Y are spaces of finite type, then there is a natural isomorphism

µ :
⊕
i+j=n

H i(X;Fp)⊗Fp H
j(Y ;Fp)

∼=−→ Hn(X × Y ;Fp)

for each n ≥ 0.

Proof. The proof follows from the Künneth formula [70, p.247], since

Tor
(
H∗(X;Fp), H∗(Y ;Fp)

)
= 0.

Recall that by the naturality of the isomorphism µ, if f : X → X
′

and g : Y → Y
′

are continuous maps, then the diagram

H i(X
′
;Fp)⊗Fp H

j(Y
′
;Fp)

µ−−−→ H i+j(X
′ × Y ′ ;Fp)yf∗⊗g∗ y(f×g)∗

H i(X;Fp)⊗Fp H
j(Y ;Fp)

µ−−−→ H i+j(X × Y ;Fp)
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commutes. In other words, if u
′ ∈ H i(X

′
;Fp) and v

′ ∈ Hj(Y
′
;Fp), then

(f × g)∗µ(u
′ ⊗ v′) = µ

(
f ∗(u

′
)⊗ g∗(v′)

)
This shows that if a group G acts on spaces X and Y , then the action induced in the

cohomology from the diagonal action on X × Y is component-wise. We will also use the

following proposition.

Proposition 6.1.3. Let S be a commutative ring with identity 1S and R be a subring

of S containing 1S. If F is a free R-module with basis X, then S ⊗R F is also a free

S-module with basis {1S ⊗ x | x ∈ X} of cardinality |X|.

Proof. See [28, p.216].

We now prove Theorem 6.1.1.

Proof. Let n ≥ 0 be fixed. By Theorem 6.1.2, we have

Hn(X × Y ;Fp) ∼=
⊕
i+j=n

H i(X;Fp)⊗Fp H
j(Y ;Fp)

as Fp-vector spaces. By the naturality, this isomorphism is Zp-equivariant. Therefore,

they are isomorphic as Fp[Zp]- modules. Let i and j be fixed such that i+ j = n. As Zp

acts nicely on both X and Y , we have H i(X;Fp) = T1 ⊕ F1 and Hj(Y ;Fp) = T2 ⊕ F2,

where T1, T2 are trivial and F1, F2 are free Fp[Zp]-modules. Since, the tensor product

distributes over the direct sum and vice versa, it suffices to take T1 = Fp = T2 and

F1 = Fp[Zp] = F2. Now,

H i(X;Fp)⊗Fp H
j(Y ;Fp) = (Fp ⊕ Fp[Zp])⊗Fp (Fp ⊕ Fp[Zp])

= Fp ⊗Fp Fp ⊕ Fp ⊗Fp Fp[Zp]⊕ Fp[Zp]⊗Fp Fp⊕

Fp[Zp]⊗Fp Fp[Zp]

= Fp ⊕ Fp[Zp]⊕ Fp[Zp]⊕ E

where E is a free Fp[Zp]-module by Proposition 6.1.3. Hence,

H i(X;Fp)⊗Fp H
j(Y ;Fp) = T ⊕ F,
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where T is a trivial and F is a free Fp[Zp]-module. This shows that the Zp action on

Hn(X × Y ;Fp) is nice and hence the diagonal action on X × Y is nice.

6.2 Commutativity of inverse limit and orbit map

This note is motivated by the following example of Bredon [6, p.145]. Let S2 be the

2-sphere identified with the unreduced suspension of the circle S1 = {z ∈ C ; |z| = 1},

and f : S2 → S2 be the suspension of the map S1 → S1, z 7→ z3. Then f commutes

with the antipodal involution on S2. If Σ is the inverse limit of the inverse system

· · · f→ S2 f→ S2 f→ S2

then Σ/Z2 is homeomorphic to lim←−RP 2.

We show that this can be generalized, that is, the inverse limit and the orbit map

commute for actions of compact groups on compact Hausdorff spaces. The proof of the

result is simple, but does not seem to be available in the literature.

If {Xα, π
β
α,Λ} is an inverse system of topological spaces and {Gα, ν

β
α,Λ} is an inverse

system of topological groups, where each Xα is a Gα-space and each bonding map πβα is

νβα-equivariant, then we get another inverse system {Xα/Gα, π
β
α,Λ} by passing to orbit

spaces. Also, under above conditions lim←−Xα is a lim←−Gα-space with the action given by

(gα).(xα) = (gα.xα) for (gα) ∈ lim←−Gα and (xα) ∈ lim←−Xα.

In view of the above discussion, it is natural to ask, when is (lim←−Xα)/(lim←−Gα) home-

omorphic to lim←−(Xα/Gα). We present the following theorem in this direction.

Theorem 6.2.1. Let {Xα, π
β
α,Λ} be an inverse system of non-empty compact Hausdorff

topological spaces and let {Gα, ν
β
α,Λ} be an inverse system of compact topological groups,

where each Xα is a Gα-space and each bonding map πβα is νβα-equivariant. Further,

assume that Λ has the least element λ, Gλ action on Xλ is free and the bonding map ναλ

is injective for each α ∈ Λ. Then there is a natural homeomorphism

ψ : (lim←−Xα)/(lim←−Gα)→ lim←−(Xα/Gα).
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We first prove the following simple lemma.

Lemma 6.2.2. Let {Xα, π
β
α,Λ} be an inverse system of non-empty compact Hausdorff

topological spaces and let {Gα, ν
β
α,Λ} be an inverse system of compact topological groups,

where each Xα is a Gα-space and each bonding map πβα is νβα-equivariant. Then there is

a natural closed continuous surjection

ψ : (lim←−Xα)/(lim←−Gα)→ lim←−(Xα/Gα).

Proof. Let X = lim←−Xα and G = lim←−Gα. Let πβ : X → Xβ and νβ : G → Gβ be the

canonical projections for each β ∈ Λ. Each πβ is continuous by Proposition 1.2.1 and is

also νβ-equivariant and therefore induces a map ψβ : X/G→ Xβ/Gβ given by (xα) 7→ xβ

(note that ψβ = πβ). Also observe that for γ < β the diagram

X/G

ψγ
��

ψβ
// Xβ/Gβ

πβγyy

Xγ/Gγ

commutes. Therefore by Theorem 1.2.3, we have a natural map

ψ : X/G→ lim←−(Xα/Gα)

given by (xα) 7→ (xα). Clearly ψ is surjective. By Theorem 1.1.1 and Theorem 1.2.2, we

see that X/G is compact and lim←−(Xα/Gα) is Hausdorff. Therefore ψ is a closed map.

This completes the proof of the lemma.

We now complete the proof of Theorem 6.2.1.

Proof. It just remains to show that the map ψ is injective. Suppose (xα) = (yα), that

is, xα = yα for each α ∈ Λ. This means that for each α ∈ Λ, we have xα = gα.yα

for some gα ∈ Gα. In particular, xλ = gλ.yλ for some gλ ∈ Gλ. Since λ ∈ Λ is the

least element, we have λ < α and hence παλ (xα) = xλ and παλ (yα) = yλ. This gives

xλ = παλ (xα) = παλ (gα.yα) = ναλ (gα).παλ (yα) = ναλ (gα).yλ and hence gλ.yλ = ναλ (gα).yλ.
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The freeness of Gλ action on Xλ implies gλ = ναλ (gα). Now, for λ < α < β, we have

ναλ ν
β
α(gβ) = νβλ (gβ) = gλ. By injectivity of ναλ we get νβα(gβ) = gα. Thus, (xα) = (gα.yα) =

(gα).(yα) where (gα) ∈ G. This shows that ψ is injective and hence a homeomorphism

by Lemma 6.2.2.

As a consequence we have the following corollary.

Corollary 6.2.3. Let G be a compact topological group acting freely on a compact Haus-

dorff topological space X and let f : X → X be a G-equivariant map. Then for the

inverse system

· · · f→ X
f→ X

f→ X

(lim←−X)/G is homeomorphic to lim←−(X/G).
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