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Synopsis

The standard model has been extremely successful in explaining the phenomena occurring
at very small length scales or equivalently at high energies. In this model SU(2) ×
U(1) is broken spontaneously by introducing a fundamental scalar field. The remnant
of symmetry breaking is a scalar Higgs boson which remains elusive to this date. The
nature of symmetry breaking is not yet clear; it is not known whether symmetry breaking
occurs through a fundamental field or through some other mechanism. The upcoming
Large Hadron Collider (LHC) has, as its one of main aims, the discovery of mechanism
of spontaneous symmetry breaking. Even if the symmetry breaking occurs the way the
SM predicts, there remain issues which need to be addressed. One of the problems arises
because of the large hierarchy between the electroweak scale (∼ TeV) and the Planck scale
MP l (∼ 1019) GeV. As Higgs boson is a scalar particle its mass gets quadratic radiative
corrections. If the SM is assumed to be valid upto the Planck scale, the Higgs mass gets
corrections of the order MP l. This amounts to a large amount of fine-tuning in the bare
Higgs mass so that the physical mass is at the electroweak scale. This is the fine-tuning
or naturalness problem.

There were many proposals to cure this problem, one of the most popular being
the Supersymmetric scenario. Another interesting idea was proposed by Arkani-Hamed,
Dimopolous and Dvali in 1998 which created lot of activity in this field. The proposal
is to introduce extra spatial dimensions, and assume that the Plank scale Ms in extradi-
mensional world is of the order of electroweak scale, that is there is only one fundamental
scale in the theory, thereby removing the hierarchy between the two scales. The effec-
tive Planck scale in 4-dimensions still remains MP l. This is how hierarchy problem can
be solved. In this model the SM fields are localized on a 3-brane and gravity naturally
propagates in all dimensions. Gravity appears as Kaluza-Klein excitations and couples to
the SM fields and produces deviations to the predictions of SM. This exciting possibility
of extra dimensions can be tested through the effects of gravity on the SM fields.

There are other interesting possibilities as well which do not address the problems
of the SM but are interesting in their own right. One such possibility is of the scale
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invariant degrees of freedom coupling to the SM fields at low energies. In this model,
proposed recently by Georgi, it is assumed that at very high energies the SM field couple
weakly to a hidden sector through exchange of heavy particles. This sector is proposed to
have an infrared fixed point. Near the fixed point the fields in the hidden sector become
scale invariant and hence are called unparticles. These unparticles can couple to the SM
fields to give observable deviations from the SM predictions.

The upcoming LHC will achieve high energies never achieved before in any collider.
Signals of new physics could be observed through the deviations they produce in the SM
predictions. There are many important channels which can be used as a probe, such as,
di-lepton, di-jet productions, or production of photon pairs. Photon pairs serve as an
important probe in new physics searches as this is a clean channel with no difficulties
associated with reconstruction. We have used this channel as a tool in search studies of
new physics at the LHC.

As LHC is a hadron collider, QCD plays an extremely important role in any physics
study. Not only QCD gives large backgrounds to signals it also gives important contri-
butions through radiative corrections as the strong coupling constant is not very small.
The other feature of theoretical predictions at the LHC is their sensitivity to factoriza-
tion scale µF which is largely arbitrary. At leading order µF enters through the parton
distribution functions. As the LHC detectors ATLAS and CMS will measure the photon
production rates very precisely it is important to have an accurate prediction from theory
side. Inclusion of next-to-leading order QCD corrections brings down the sensitivity to
µF , these corrections are important. With these aims we have studied production of
photon pairs at the LHC in large extra dimension model by Arkani-Hamed, Dimopoulos
and Dvali and in unparticle model.

The final state photons are subject to various kinematical cuts used by ATLAS and
CMS detectors. Also many kinematical distributions need to be evaluated to compare
against the experimental data. For these requirements Monte Carlo methods prove to
be very powerful. To this effect, we used the semi-numerical method of two cutoff phase
space slicing for our next-to-leading order computation.

A next-to-leading order computation involves, in addition to born contributions,
virtual corrections and contributions from real emission processes. A soft gluon in a loop
or in final state gives rise to soft divergences. Similarly two collinear massless partons give
collinear singularities. We used dimensional regularization with n = 4+ε to separate these
singularities as poles in ε. The complicated tensor integrals appearing in virtual diagrams
were simplified using Passarino-Veltman reduction. Although the soft singularities cancel
between virtual and real emission contributions, the collinear singularities do not cancel
completely and are absorbed into bare parton distribution functions. We arrange for the
cancellation/ absorption of these singularities analytically in MS scheme using the two
cutoff phase space slicing method.

This method introduces two small dimensionless parameters δs and δc to divide the
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phase-space into soft and hard regions. The part of phase-space where the energy of the
gluon is soft is defined as soft and the region complementary to it is hard . For small values
of δs the matrix elements can be simplified and integrated over the soft region to give a δs
dependent, order αs, 2-body contribution dσS(δs, ε). This contains the poles in ε arising
from the soft singularities. The hard region can be further divided into collinear and
non-collinear regions using another small dimensionless slicing parameter δc. The part of
phase-space in which the final state parton is collinear to the incoming parton is defined
as collinear region and gives an order αs contribution dσHC(δs, δc, ε). The hard non-
collinear 3-body contribution denoted by dσHC (δs, δs) is free of any QCD singularities and
can be evaluated numerically using Monte Carlo integration. The collinear singularities
appearing in dσHC(δs, δc, ε) are removed by mass factorization in MS scheme by adding
appropriate counter terms to give dσHC+CT (δs, δc, ε). The sum of 2-body and 3-body
contributions is independent of the slicing parameters δs and δc.

In addition to the above divergences, QED singularities appear in final state in real
emission contributions when a fermion becomes collinear to one of the final state pho-
tons. These singularities can be removed by absorbing them into fragmentation functions.
Fragmentation functions arise because of the processes where the final state photons are
produced through the fragmentation of partons into photons. However the fragmentation
functions are not known to a good accuracy. An alternative to avoid the final state QED
singularity and simultaneously suppress the fragmentation photons in an infrared safe
manner is to use the smooth cone isolation prescription advocated by Frixione. We used
this isolation criterion to completely remove the fragmentation contributions.

We developed a Monte Carlo based code on the two cutoff slicing method to im-
plement the experimental cuts and the smooth cone isolation criterion. The code uses
Monte Carlo integrator VEGAS to do the phase space integrals numerically. This code
was subject to various crucial test to check its reliability. To this end, it was found that
the sum of 2-body and 3-body contributions were fairly stable under variations of slicing
parameters δs and δc. Also the SM results were reproduced to check the correctness of
the code and our matrix elements. Using our code various important kinematical dis-
tributions such as invariant mass, rapidity, pT , etc., distributions were obtained. These
distributions are important as these will be measured at the LHC. We found that the
QCD corrections give significant enhancement over the leading order predictions in all
the kinematical distributions. By our computations we were able to show a significant
reduction in the sensitivity to the factorization scale µF , which makes the new theoretical
predictions quite precise.
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Chapter 1

Introduction

The standard model (SM) is one of the biggest achievements of 20th century theoretical
physics. It is a quantum field theory which encompasses three of the four forces of nature.
Gravity is left out of this model. It is based on the direct product group SU(3)×SU(2)×
U(1). The SU(2)×U(1) component, also refered to as Glashow-Salam-Weinberg (GSW)
model, describes the electromagnetic and weak forces of nature. The strong forces are
described by SU(3) gauge theory. The standard model has passed stringent quantitative
experimental tests over the years and describes a plethora of phenomena in elementary
physics that it has got the stature of standard model. The Higgs mechanism in SM through
which the electroweak symmetry is spontaneously broken predicts a fundamental scalar
particle, the Higgs boson [1],[2],[3], which remains elusive to this date, and a considerable
effort would be devoted to discover this particle at the Large Hadron Collider (LHC).
Despite its success, the SM leaves out many questions unanswered. Also it is plagued
with fine-tuning and hierarchy problem which is related to Higgs boson as mass of a
scalar particle is not protected by any symmetry against large radiative corrections. This
will be briefly discussed in the next chapter. There we will see that this points towards
some new physics beyond the standard model.

There are various new physics scenarios which address the fine-tuning and hierarchy
problem. Supersymmetry and extra dimension models are among the popular new physics
scenarios. Possibility of extra spatial dimensions in addition to the 3-spatial dimensions
which we see offers a possible solution to hierarchy problem. In this thesis we will consider
the proposal by Arkani-Hamed, Dimopolous and Dvali (ADD) [4, 5] that nature may have
large extra dimensions which are compactified and have remained hidden. In addition to
the models which propose to solve problems associated with the SM, there are also other
interesting possibilities which have been explored. One such idea came from Georgi [6, 7, 9]
recently where he introduced the idea of unparticles. This was motivated by early works
of Banks and Zaks [10]. This model is based on the possibility of scale invariant degrees
of freedom coupling weakly to SM fields at low energies. The scale invariance affords a
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4 CHAPTER 1. INTRODUCTION

great deal of simplification theoretically and can have phenomenological implications that
can be tested in experiments.

The LHC is proton proton collider which will operate at a centre of mass energy
of 14 TeV. Experiments at the LHC should shed light on the mechanism of electroweak
symmetry breaking. It will search the Higgs boson, and measure its mass, production
cross-sections, and branching ratios. Apart from its Higgs searches, experiments at the
LHC will also be aimed to find signals of any new physics beyond the SM. There are
many channels available at the LHC which can explore the signatures of new physics.
These include, among other important channels, production of jet pairs, dileptons, dipho-
ton. Diphoton production is a clean channel with no ambiguities associated with jet
reconstruction etc. The ATLAS and CMS detectors at the LHC can carry out precise
measurements of the energy and momentum of photons. This process has been exten-
sively studied because of its importance in light mass Higgs boson searches. The standard
model Higgs boson mass is bounded from above by precision electroweak measurements,
mH . 192 − 230GeV at 95% C.L [11, 12, 13]. The LHC will completely cover the low
mass region preferred by precision electroweak fits as well as much higher masses. For
mH < 140GeV , the most important mode involves production via gluon fusion, gg → H,
followed by decay into two photons, H → γγ [14], [15]. However this mode has a very
large continuum γγ background [16]. This background process PP → γγX proceeds at
lowest order via the quark annihilation subprocess qq → γγ. The next-to-leading order
corrections to this subprocess have been incorporated into a number of Monte Carlo pro-
grams [17, 18, 19, 20, 21, 22, 23, 24, 25]. Beside this important motivation, this process
deserves interest by its own. The production of such pairs of photons has been exper-
imentally studied in a large domain of energies, from fixed targets [26, 27] to colliders
[28, 29, 30]. A wide variety of observables has been measured, such as distributions of
invariant mass, azimuthal angle and transverse momentum of the pairs of photons, inclu-
sive transverse momentum distributions of each photon, which offer the opportunity to
test our understanding of this process. We will use this relatively clean and extensively
studied process in this thesis. Many studies have been carried out in the extra dimension
models using these channels [31, 32, 33, 34, 35, 36, 37, 38, 39, 40] Next-to-leading order
studies in dilepton channel were carried out in gravity models in [35, 36]. In [37] effects
on diphoton production were studied for large extra dimension model ADD at the hadron
colliders. This study was carried out at leading order in the strong coupling constant. As
we discuss below, a leading order result at hadron colliders can at best serve as a first
approximation due to the theoretical scale uncertainties it has. Also it is not appropriate
to take a constant K factor (K factor is defined as the ratio of NLO cross section to
LO cross section) as it depends on the value of kinematical invariants and also on the
kinematical cuts. A calculation involving higher order radiative QCD effects improves the
leading order results not only because it gives higher order terms but more importantly
because it reduces the sensitivity to the factorization and renormalization scales. The
reason why factorization scale enters in leading order calculation can be understood as
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follows. At the hadron colliders the incoming states which undergo scattering in a col-
lision are partons ie., quarks and gluons. These partons emit other partons before they
undergo a hard scattering. In an inclusive study we observe only the two photons in
the final state and carry out a summation over all other final states. However, typically,
there is no integration over the incoming quarks and gluons when we compute parton
level cross sections. As the initial states which emit quarks and gluons are not integrated
over, the collinear divergences which appear in the calculation do not get canceled with
those appearing at virtual level. The configurations where two massless partons become
parallel to each other give collinear divergences. These will be discussed in detail in later
chapters. These divergences are removed by the procedure of mass factorization where
these are absorbed into bare parton distribution functions (pdf) at a scale µF called the
factorization scale. This introduces an arbitrary scale µF called factorization scale into
the parton distribution functions. A leading order prediction is highly sensitive to the
choice of µF and can at best be treated as a crude approximation of the quantity. As
higher order QCD contributions are included in the calculation, the dependence on µF
gets milder thereby improving theoretical predictions. This has been our main motivation
to carry out a full next-to-leading order study. These corrections also give increments to
leading order predictions as order αs pieces are included. We also note here that the fac-
torization scale µF does not appear in next-to-leading order calculations for e+e− initial
states and this is an issue when one or both of the colliding particles are hadrons such as
at electron proton collider or hadron colliders.

In this thesis we will consider production of isolated direct photon pairs as probes
to new physics. By direct photons it is meant that these do not result from the decay
of π0, η, ω at large transverse momentum. As discussed above leading order predictions
are very sensitive to the choice of factorization and renormalization scales, and a next-
to-leading order study considerably reduces these uncertainties. The aim of this thesis
is to obtain precise predictions for diphoton production in ADD and unparticle models
by carrying out a full next to leading order calculation. To facilitate comparison with
experiments we will obtain many kinematical distributions using the experimental cuts.
Many of the early and fully inclusive next-to-leading order studies were carried out an-
alytically. However this is an inefficient method if many kinematic distributions are to
be evaluated as it requires repetition of entire calculation. Moreover it is difficult to im-
plement experimental and calorimetric constraints in a fully analytical study. For some
observables it is difficult to calculate the appropriate Jacobian for the transformation from
partonic to hadronic variables. In the above circumstances it is more appropriate to use
semi-analytical methods based on Monte Carlo techniques. Two very useful techniques
which are based on these methods are two cutoff phase space slicing method and dipole
subtraction method. We have developed a Monte Carlo code based on two cutoff phase
space slicing method. This code generates random partonic momentum configurations
consistent with energy momentum and carries out phase space integrations numerically.
Using this code , we can evaluate many kinematical distributions simultaneously and also
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easily implement various experimental kinematical constraints at the parton level.

This thesis proceeds as follows. In chapter 2 the ADD model and Unparticle model
are briefly discussed and the Feynman rules are presented. In chapter 3 we summarize
some basic facts of QCD which will be helpful for the following chapters. In chapter
4 we give in detail full next-to-leading order computation of isolated direct diphoton
production and present the matrix elements. Here we employ the two cutoff phase space
slicing method to separate the singular regions from the finite regions and carry out mass
factorization. In chapter 5 we present various kinematical distributions obtained using
our Monte Carlo code. We show significant reduction in scale uncertainty when higher
order QCD corrections are included in the calculation.



Chapter 2

Models

2.1 ADD model

The standard model provides description of phenomena in particle physics to a very good
accuracy. However it does not give answer to many questions, such as why there are
three generations of quarks and leptons, what is the mechanism of symmetry breaking
etc. There are reasons to belive that this may not be the complete story. One of the useful
ideas to extend the standard model originates from the following observation. The three
independent gauge couplings of SU(3)× SU(2)× U(1) get very close to each other when
they are extrapolated to very high energies using renormalization group evolution. The
coupling constants of non-abelian part decrease with increase in energy because of the
phenomenon of asymptotic freedom. The abelian coupling constant increases at higher
energy scales. The running of the coupling constants is very slow as the RG flow is only
logarithmic in nature. Thus the couplings come close to each other at very high energies.
Making some modification in the β function (using supersymmetry), unification of the
couplings can be achieved at the energies of the order of 1016 GeV. A physical meaning
to the unification of the three couplings can be given if the SU(3) × SU(2) × U(1) is
embedded into a larger symmetry group such as SU(5) [41] , and spontaneously breaking
the larger symmetry at 1016 GeV. Close to this scale is the Planck scale which is of the
order of 1019 GeV. One can imagine that the Planck scale is somehow related to the scale
of Grand Unification as the gravitational attraction between particles gets comparable to
the gauge force around this scale.

The large difference between the weak scale and the Planck scale gives rise to prob-
lems associated with the Higgs boson mass. In SM the SU(2)×U(1) symmetry is broken
spontaneously by introduction of a fundamental scalar Higgs field. The Higgs boson mass
term should be of the size

−µ2
H ∼ −(100GeV )2 (2.1)

The problem is that the bare Higgs boson mass at the cutoff scale Λ should naturally

7
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be of the order −Λ2, and it gets additive radiative corrections under RG evolution. In
order that we get −(100GeV )2 at the electroweak scale the bare mass should be very
finely tuned to arrange for huge cancellations so that the mass2 is 34 orders of magnitude
smaller than its natural value. This fine tuning is required due to the large hierarchy
between the electroweak scale and the Planck scale.

The Higgs boson mass can be made much smaller than the underlying mass scale
of the fundamental interactions by introducing additional symmetries. The symmetry
would then protect it from getting large radiative corrections. One such attractive idea is
introduction of supersymmetry. There are other proposals also to address the hierarchy
problem by introducing extra dimensions. These derive their motivation from string
theory which can be consistently defined only if extra dimensions are introduced. In 1998
Arkani-Hamed, Dimopolous and Dvali (ADD) [4, 5] introduced very interesting idea of
allowing only gravity to propagate in all dimensions and confining the SM fields to a
3-brane. A yet another proposal came from Randall and Sundrum [42, 43] who suggested
a single extra dimension in an Anti-de-Sitter (ADS5) metric. In the following the ADD
model is described briefly.

If spacetime is 4+ d dimensional, where d is the number of extra spatial dimensions
which are compactified over some scale R, then the fundamental scale, MS, is different
from the Planck scale MP l in 4-dimensions. The fundamental scale can be close to the
electroweak scale so that there is really only one scale in the theory. This removes the
hierarchy between the electroweak scale and the Planck scale. Then the 4-dimensional
Planck scale MPl is no longer the relevant scale but is related to the fundamental scale
MS as follows [44]:

M2
P l ∼ Md+2

S Rd. (2.2)

If there are extra spatial dimensions the field lines will leak into them and the inverse
square law of electromagnetic and gravitational force will get modified. But the inverse
square law of electromagnetic force has been tested to very high precision in experiments
and no deviations have been found. One can keep this intact by confining the SM fields
to a 3-brane. The gravity of course propagates in all the dimensions as it is dynamics
of spacetime itself. Tests of gravitational force are extremely difficult as this force is
very weak. The accuracy to which this law has been tested in experiments does not rule
out possibility of having large compactified extra dimensions. According to Eq. (2.2),
deviations from the usual Newtonian gravitational force law can be expected at distances
smaller than R ∼ 2 × 10−17+32/dcm [44]. For d ≥ 2, large extra dimensions are consistent
with the current experiments since gravitational forces currently are only well probed at
distances about 40 µm [45] (However for d = 2, there are constraints arising from, e.g.,
supernova cooling [46], which require MS & 14TeV if d = 2). Recently, there are also
some new constraints MS & 1TeV [47] from direct search at the Tevatron.

We will follow Han, Lykken and Zhang (HLZ) [48, 49] and compactify the extra
dimensions on a d-torii, with all the compactification scales set to be equal to R. The
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effect of extra dimensions on SM fields is felt through their coupling to massive Kaluza
Klein gravitons. The SM fields couple to Kaluza Klein (KK) gravitons through the energy
momentum tensor T µν .

L = −κ
2

∞
∑

~n=0

T µν(x)h~nµν(x) (2.3)

where κ =
√

16π/MP l and the massive KK gravitons are labeled by a d-dimensional vector
of positive integers, ~n = (n1, n2, . . . , nd). Convention for the signature is (+,−,−,−). The
zero mode corresponds to the usual 4-dimension massless graviton. For a given KK level
~n, there are, one spin-2 state, (n−1) spin-1 states, and n(n−1)/2 spin-0 states, and they
are all mass degenerate:

m2
~n =

4π~n2

R
. (2.4)

Following HLZ we define the relation among the gravitational coupling, the volume of the
extra dimensions, and the fundamental scale as

κ2Rd = 8π(4π)d/2Γ(d/2)M
−(d+2)
S . (2.5)

The propagator for the massive spin-2 KK states h~nµν is

i∆h
{µν,~n},{ρσ,~m} (k) =

iδ~n,−~m Bµν,ρσ(k)

k2 −m2
~n + iε

, (2.6)

where

Bµν,ρσ(k) =

(

ηµρ −
kµkρ
m2
~n

)(

ηνσ −
kνkσ
m2
~n

)

+

(

ηµσ −
kµkσ
m2
~n

)(

ηνρ −
kνkρ
m2
~n

)

−2

3

(

ηµν −
kµkν
m2
~n

)(

ηρσ −
kρkσ
m2
~n

)

. (2.7)

In this thesis we will consider effects of only spin-2 KK gravitons which enter through
the propagator. To this end we note that the mass separation between excitations is
of O(1/R) which is much smaller than other physical scales involved in the problem
for small number of extra dimensions. The mass splittings become comparable with
the experimental energy resolution for large number of extra dimensions. The effects are
difficult to observe if the number of extra dimensions are large as not many KK modes can
be produced. We are thus interested in the lower side say d ≤ 6 where enormous number
of accessible KK modes can compensate the 1/M 2

P l factor in the scattering amplitude [49].
It is convenient to go from discrete ~n to the continuum limit. The number of states in
the mass interval dm2

~n can be written as

δ~n2 ' ρ(m~n)dm
2
~n, (2.8)
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where the density of states is given by

ρ(m~n) =
Rd md−2

~n

(4π)d/2 Γ(d/2)
. (2.9)

With this we can sum over KK states to find the effective propagator:

Deff(s) =
∑

~n

i

s−m2
~n + iε

=

∫ ∞

0

dm2
~n ρ(m~n)

i

s−m2
~n + iε

, (2.10)

which may be singular near a real KK state production. Note that we have kept the iε
term as the timelike momentum in the propagator can become onshell that is equal to
m2
~n. We can isolate this using the principle part

1

s−m2 + iε
= P

(

1

s−m2

)

− iπδ(s−m2) , (2.11)

Substituting this and the expression for density of states we find the effective propagator,

Deff(s) =
sd/2−1

Γ(d/2)

Rd

(4π)d/2

[

π + 2iI(Λ/
√
s)
]

, (2.12)

where

I(Λ/
√
s) = P

∫ Λ/
√
s

0

dy
yd−1

1 − y2
. (2.13)

We have introduced an explicit ultraviolet cutoff Λ in the integral. It may be noted that
a point y = 1 has been removed from the integration path.

The resonant production of a single KK mode with m2
~n = s gives the real part

proportional to π. The imaginary part comes from the summation over many non resonant
states. The integral I above gives (with Λ = MS) [48]

I(MS/
√
s) = −

d/2−1
∑

k=1

1

2k

(

MS√
s

)2k

− 1

2
log

(

M2
S

s
− 1

)

d = even, (2.14)

= −
(d−1)/2
∑

k=1

1

2k − 1

(

MS√
s

)2k−1

+
1

2
log

(

MS +
√
s

MS −
√
s

)

d = odd.

Having given the propagator we give next the vertex Feynman rules to carry out the
computations. In Fig. 7.2 (Appendix) the vertices coupling SM fields to gravitons are
shown. The functions appearing in the rules are defined as follows.

Cµν,ρσ = ηµρηνσ + ηµσηνρ − ηµνηρσ , (2.15)
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Dµν,ρσ(k1, k2) = ηµνk1σk2ρ −
[

ηµσk1νk2ρ + ηµρk1σk2ν − ηρσk1µk2ν + (µ↔ ν)
]

,

(2.16)

Eµν,ρσ(k1, k2) = ηµν(k1ρk1σ + k2ρk2σ + k1ρk2σ)

−
[

ηνσk1µk1ρ + ηνρk2µk2σ + (µ↔ ν)
]

, (2.17)

Fµν,ρσλ(k1, k2, k3) = ηµρησλ(k2 − k3)ν + ηµσηρλ(k3 − k1)ν

+ηµληρσ(k1 − k2)ν + (µ↔ ν) , (2.18)

Gµν,ρσλδ = ηµν(ηρσηλδ − ηρδησλ) +
(

ηµρηνδηλσ + ηµληνσηρδ

−ηµρηνσηλδ − ηµληνδηρσ + (µ↔ ν)
)

. (2.19)

All of them are symmetric in µ ↔ ν. The parameter ξ appearing in the rules is a gauge
fixing parameter [48]. The fact that ξ does not appear in the final results would serve as
a check on the computation.

2.2 Unparticle Physics

Georgi recently proposed an interesting possibility of scale invariant degrees of freedom
coupling to SM fields at low energies [6, 7]. (For a correspondence between HEIDI and
unparticle see [9].) Let us describe the scheme proposed by him briefly. The theory
at very high energy has two sectors, one is the SM and the other we will call Banks-
Zaks (BZ) sector following Georgi. It is proposed that the two sectors couple to each
other very weakly via exchange of very heavy particles. A crucial assumption is made
regarding the BZ sector in infrared. It is assumed that the BZ sector has a non trivial
fixed point in infrared. A consequence of which is that at low energies the BZ sector
becomes scale invariant. The property of scale invariance affords huge simplifications
and does not require detailed understanding of the BZ sector at very high energies. The
phenomenology can be carried out if we take an effective field theory approach. If the two
sectors interact weakly via exchange of particles with a large mass M , then below this
mass scale there are nonrenormalizable couplings involving both standard model fields
and Banks-Zaks fields suppressed by powers of M . The couplings have the generic form

1

Mk
OSMOBZ , (2.20)

where OSM is an operator constructed out of SM fields and has a mass dimension dSM .
The operator OBZ is similarly constructed out of the BZ fields and has a mass dimension
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dBZ . As we go further down in energy using RG flow, scale invariance emerges below
some energy scale Λu. Here the fields are termed as unparticles and the interactions
(2.20) match onto interactions of the form

CU
ΛdBZ−du
u

Mk
OSMOU , (2.21)

where du is the scaling dimension of the unparticle operator OU and CU is a coefficient
function. Using these effective interactions phenomenology can be carried out.

Let us now derive the propagator [7, 8] for scalar unparticle. If operator OU is scale
invariant and has a scaling dimension du, then

〈0|OU(λx)O†
U(λx′)|0〉 = λ2du〈0|OU(x)O†

U (x′)|0〉. (2.22)

Inserting a complete set of states |P 〉 with 4-momentum P µ we can write

〈0|OU(x)O†
U (x′)|0〉 =

∑

P

〈0|OU(x)|P 〉〈P |O†
U(x′)|0〉. (2.23)

Using translational invariance we can express the above equation as

〈0|OU(x)O†
U (x′)|0〉 =

∑

P

〈0|OU(0)|P 〉〈P |O†
U(0)|0〉e−iP ·(x−x′)

=
∑

P

|〈0|OU(0)|P 〉|2 e−iP ·(x−x′)

=

∫

d4q

(2π)4
ρ(q) |〈0|OU(0)|q〉|2 e−iq·(x−x′), (2.24)

where the spectral density is defined as

ρ(q) |〈0|OU(0)|q〉|2 =

∫

d4xeiq.x〈0|OU(x)O†
U (0)|0〉. (2.25)

In this we have put x′ = 0 without any loss of generality. On general grounds we can
argue that the rhs. is Lorentz invariant. Also q0 > 0 as it is energy of state |q〉 so that it
is proportional to θ(q0). Thus we can write

ρ(q) |〈0|OU(0)|q〉|2 = θ(q0)θ(q2)f(q2), (2.26)

where f(q2) is some Lorentz invariant function. We can fix the spectral density using
scale invariance apart from an overall factor,

ρ(λq) |〈0|OU(0)|λq〉|2 = ρ(q) |〈0|OU(0)|q〉|2 (λ2)du−2. (2.27)
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P 2 + iε

C

Figure 2.1: Integration contour used in the integral in eq. 2.2 .

Using this we can readily write

ρ(q2) |〈0|OU(0)|q〉|2 = Adu(OU )θ(q0)θ(q2)(q2)du−2. (2.28)

Following Georgi [6] we will take

Adu
(OU) =

16π5/2

(2π)2du

Γ(du + 1/2)

Γ(du − 1)Γ(2du)
. (2.29)

Using Kallen-Lehmann spectral decomposition we can write the Fourier transform of two
point function of unparticle operators as

∫

d4xeiP.x〈0|T (OU(x)OU (0)|0〉 = i
Adu

(OU)

2π

∫ ∞

0

dM2 (M2)du−2

P 2 −M2 + iε
. (2.30)

To see peculiarity arising from having scale invariance with fractional du we need to
evaluate the integral

I =

∫ ∞

0

dM2 (M2)du−2

M2 − (P 2 + iε)

Let us evaluate the following integral in the complex plane

I ′ =

∫

C

dz
zd−2

z − (P 2 + iε)
.
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iε prescription shifts pole off the real axis to P 2 + iε. We close the contour as shown in
Fig. 2.2. Also note that zd−2 is multivalued so we need to introduce a branch cut. We
note that there is a simple pole inside at P 2 + iε, so I ′ = 2πi(P 2 + iε)d−2. With this we
have

I ′ =

∫ ∞

0

dx
xd−2 − xd−2e2πi(d−2)

x− (P 2 + iε)

= −2i

∫ ∞

0

dx
xd−2

x− (P 2 + iε)
sin(dπ) eiπ(d−2),

so we have
∫ ∞

0

dx
xd−2

x− (P 2 + iε)
= −π [e−iπ(P 2 + iε)]d−2

sin(dπ)
. (2.31)

Note that the factor of sin(dπ) arises because of discontinuity across the branch cut which
is due to fractional scaling dimension. Changing x to M 2 we obtain

∫ ∞

0

dM2 (M2)d−2

P 2 −M2 + iε
= π

[e−iπ(P 2 + iε)]d−2

sin(dπ)
. (2.32)

With this we can finally write the propagator for unparticles as
∫

d4xeiP.x〈0|T (OU(x)OU (0)|0〉 =
iAdu

(OU)

2

[e−iπ(P 2 + iε)]d−2

sin(duπ)
. (2.33)

The unparticle operators could be of scalar, vector, tensor or fermionic type [50].
Here we will restrict ourselves to scalar and tensor unparticles coupled to SM fields given
by

λs
Λdu−1
u

ψψOU ,
−λs
4Λdu

u

FµνF
µνOU ,

λt
Λdu
u

Tµν Oµν
U , (2.34)

where λs,t are the dimensionless coupling constants. The unparticle tensor operator Oµν
U

is traceless and symmetric and has a scaling dimension du. Tµν is the energy momentum
tensor of the SM. Scale invariance restricts the scaling dimension of tensor unparticle
operator to du ≥ 3 [51]. Conformal invariance on the other hand leads to a constraint
du ≥ 4 on the second rank tensor operators. Scale and conformal symmetries can only
guide us on fixing the tensor structures of the propagator leaving the overall normalization
undetermined. Unlike the conformal invariance, the scale invariance does not fix the
relative coefficients of the tensors appearing in the tensor propagator [51]. We use the
following tensor propagator for our phenomenological study:

∫

d4x eik·x〈0|TOµν
U (x)Oαβ

U (0)|0〉 = −iCT
Γ(2 − du)

4du−1Γ(du + 2)
(−k2)du−2

× [du(du − 1)(ηµαηνβ + µ↔ ν) + . . .] (2.35)
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We will choose CT =1. The terms given by ellipses do not contribute to the diphoton
production. The terms in the ellipses depend on tensors, proportional to ηµν, kµ and kν.
The exact tensorial form of course depends on the symmetry (scale or conformal). These
terms do not contribute to physical processes thanks to the conservation and traceless
nature of the SM energy momentum tensor. Hence the symmetry restriction enters only
through the scaling dimension du (the overall undetermined constant could be different
for the scale and conformal invariant propagators). Hence we can safely use the above
propagator Eq. (2.35) with du ≥ 3 (≥ 4) for scale (conformal) invariant analysis. As larger
du values give smaller unparticle contributions, we would demand only scale invariance
which allows smaller values of du. In addition, as the SM energy momentum tensor is a
conserved quantity, it does not require any operator mixing under SM renormalization.
As the unparticles couple to the SM energy momentum tensor we can use the vertex
Feynman rules given in Fig. 7.2 after appropriate modification of the factor κ2D(s), see
Eq. (5.8).
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Chapter 3

QCD

3.1 QCD Lagrangian

The standard model has been very successful in describing the processes occurring at high
energies. Its SU(3) component called the Quantum Chromodynamics (QCD) has by now
matured as the correct description of the strong force. In the present chapter we will
introduce QCD very briefly to set some of the notations and ideas. The later chapters
would rely on some of the preparations made here. QCD is a SU(3) gauge theory that
describes interactions of quarks and gluons which are elementary particles carrying SU(3)
quantum numbers. The quarks (fermions) transform under the 3-dimensional fundamental
representation. The SU(3) charges are called color and thus quarks come in three different
colors. The gluons (bosons) which are carriers of strong forces transform under the 8-
dimensional adjoint representation.

In quantum field theory n-point Green functions are one of the most important
quantities as S-Matrix can be expressed using these. A n-point Green function constructed
out of operators containing quark fields Ψ = {ψi},i = 1, 2, 3 and gluon fields Aa

µ, a =
1, . . . , 8 has the following generic form in path integral language.

< 0|TO1(x1) . . .On(xn)|0 > =

∫

D[Φ]eiSQCD [Φ]O1(x1) . . .On(xn)
∫

D[Φ]eiSQCD [Φ]
, (3.1)

[Φ] =
{

Aaµ,Ψ,Ψ, c, c
}

(3.2)

where SQCD =
∫

d4xLQCD. The field c(x) denotes the ghost fields which appear due to
gauge fixing procedure. The Lagrangian LQCD in covariant gauge is given by (quarks are
treated as massless)

LQCD = −1

4
F a
µνF

aµν − 1

2ζ
(∂µAaµ)(∂

νAaν) + ΨiD6 Ψ + ca(−∂µDac
µ )cc (3.3)

17
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The field strength F a
µν is defined by

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAbµA
c
ν, (3.4)

fabc are the structure constants of SU(3) group. The covariant derivative appearing in
LQCD is given by

Dab
µ = ∂µδ

ab − igsA
c
µ(t

c)ab, (3.5)

c and c are ghost fields, ζ is the gauge fixing parameter and gs is the dimensionless strong
coupling constant.

One could go ahead and derive the Feynman rules for computations. But any cal-
culation beyond tree level would involve loop integrals and these are generally ultraviolet
divergent. A systematic way to deal with these singularities is to analytically continue
the theory to n = 4 + ε space-time dimensions so that the divergences appear as poles
in ε. Further, the fields and couplings are redefined such that the Green’s functions are
finite in the limit ε → 0. This procedure is called renormalization. Let us call the un-
renormalized fields appearing in LQCD as bare fields and denote them with a hat, and
denote the renormalized fields without a hat. The bare quantities are defined in terms of
renormalized fields as follows

Ψ̂ = Z
1

2

Ψ(µR) Ψ(µR),

Âaµ = Z
1

2

A(µR) Aaµ(µR),

ĉa = Z
1

2

c (µR) ca(µR),

ĝs = Zg(µR) (µR)−ε/2 gs(µR),

ζ̂ = Zζ(µR) ζ(µR). (3.6)

In the renormalization constants, Z ′s, the ultraviolet poles are absorbed to make the
Green functions finite. The scale µR is the scale at which the divergences are subtracted
in the renormalized theory. The coupling constant ĝs has a mass dimension −ε/2 in 4 + ε
dimensions, hence a factor of (µR)−ε/2 has been factored out so that the renormalized
coupling gs(µR) is dimensionless. The gauge parameter ζ remains dimensionless. The
freedom in absorbing a finite piece in addition to the poles in Z ′s is fixed by defining the
scheme of renormalization. In this thesis MS scheme will be used where in addition to
the poles a finite piece ln 4π − γE is also absorbed into Z ′s. Here γE is Euler’s constant
and has a numerical value γE = 0.5772.

With the redefinition of fields the LQCD can be written as

LQCD = −1

4
F a
µνF

aµν − 1

2ζ
(∂µAaµ)(∂

νAaν) + ΨiD6 Ψ + ca(−∂µDac
µ )cc
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−1

4
(ZA − 1)

(

∂µAaν − ∂νAaµ
)2

−1

4

(

Z2
AZ

2
g − 1

)

g2
s(µR) µ−ε

R

(

fabcAbµA
c
ν

) (

fadeAdµA
e
ν

)

−
(

ZgZ
3/2
A − 1

)

gs(µR)µ
−ε/2
R fabc∂µA

a
ν A

b
µA

c
ν

− 1

2ζ

(

Z−1
ζ ZA − 1

)

∂µAaµ∂
νAaν

+ (Zψ − 1)
(

Ψi∂6 Ψ
)

+
(

ZψZ
1/2
A Zg − 1

)

gs(µR) µ
−ε/2
R ΨγµAaµt

aΨ

+ (Zc − 1) c̄a
(

−∂2
)

δaccc

−
(

ZcZgZ
1/2
A − 1

)

gs(µR) µ
−ε/2
R c̄afabc∂µAbµc

c. (3.7)

Gauge symmetry relates various counterterms and not all of them are independent.

3.2 Renormalization Group

The unrenormalized coupling constant ĝs does not depend on the renormalization scale
µR. Using this fact the evolution of the renormalized coupling gs(µR) can be evaluated.
Defining as = g2

s/16π2 we can write

âs = Z2
gas(µR)

(

µ2
R

)−ε/2
. (3.8)

Differentiating both sides w.r.t µ2
R we get

β(as) = µ2
R

das
dµ2

R

=
ε

2
as − asµ

2
R

d lnZ2
g

dµ2
R

. (3.9)

In MS scheme β function does not depend explicitly on µR and is a function of gs(µR).
In this scheme Zg has the following simple form

Zg = 1 + as
z1
ε

+ a2
s

(z2
ε2

+
z3
ε3

)

+ . . . . (3.10)

The coefficients zi do not depend on µR. Using the above two equations the β function
can be written as

β(as) =
ε

2
as − a2

sβ0 − a3
sβ1 − a4

sβ2 − . . . (3.11)
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with

β0 =
11

3
CA − 4

3
nfTf ,

β1 =
34

3
C2
A − 4

3
nfTf(3CF + 5CA), (3.12)

where

CA = 3, CF =
4

3
, (3.13)

are Casimir invariants in adjoint and fundamental representations respectively of SU(3).
nf denotes the number of active flavors. We note that β0 is positive ( if nf < 16.5 ) in real
world with six quark flavors. This gives rise to the celebrated phenomenon of asymptotic
freedom [52, 53], that is, the strong coupling constant decreases at higher energies. It is
customary to define a dimensionful parameter Λ by the definition

ln
Q2

Λ2
= −

∫ ∞

as(Q2)

das
β(as)

. (3.14)

Retaining only the lowest order term with coefficient β0 and solving we obtain in n = 4

as
(

Q2
)

=
1

β0 ln
Q2

Λ2

. (3.15)

A next-to-leading order definition of Λ is obtained by retaining upto β1 term. Solving the
above equation and expanding in inverse powers of ln(Q2/Λ2) we obtain

as(Q
2) =

1

β0 ln
Q2

Λ2






1 −

(β1/β0) ln ln
Q2

Λ2

β0 ln
Q2

Λ2






. (3.16)

Here, following the standard practice, a term of order 1/ ln2(Q2/Λ2) has been absorbed
into the definition of Λ. Once as is measured experimentally at some energy scale Q the
above equations can be solved to determine Λ which can then be used to determine as
at any other energy scale. We note that the sign of β function is crucial in determining
the behavior of the strong coupling with change in scale. In Fig. 3.2 we have plotted
αs = 4πas as a function of scale.

Returning back to Λ we note that it depends on the number of active quark flavours.
Henceforth we will use Λ(4) and Λ(5) for 4 and 5 flavors respectively. The coupling con-
stant should be a continuous function of scale, this provides with the matching conditions
as the fermion mass thresholds are crossed. Experimentally determined αs(MZ) = 0.118
at the Z-Boson mass of 91.19 GeV in (3.16) gives Λ(5) = 226MeV . Using this we can
determine the value of αs at the bottom mass, 4.20 GeV which gives αs(Mb) = 0.225.
Now we can solve (3.16) with n = 4 and αs(Mb) = 0.225 and obtain Λ(4) = 326MeV.
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Figure 3.1: evolution of strong coupling constant with scale

3.3 Parton Model and Factorization

A hadron is a low energy state made of quarks and gluons. In parton model the scattering
of hadrons is due entirely to the scattering of individual constituents. The probability
distribution functions fa/H(x) give probability of finding a parton a within the hadron H
carrying a fraction x of hadron momentum. Using this, crosssection can be written as

σLO =

∫ 1

0

dx1

∫ 1

0

dx2

∑

ab

fLOa/H1
(x1, µF ) fLOb/H2

(x2, µF ) σ̂LOab (x1, x2, Q), (3.17)

where σ̂LOab is a leading order partonic crosssection for the hard scattering event at leading
order. In the above expression we see that low momentum scale physics encoded in the
factor fLOa/H1

(x1, µF ) fLOb/H2
(x2, µF ) is separated from the short distance physics expressed

in σLOab (x1, x2, Q). This is the content of naive parton model [54]. Beyond leading order,
high energy interactions of hadrons are described by QCD improved parton model and
is based on the important property of factorization. This states that in certain processes
the long distance physics can be separated from the short distance physics:

σ =

∫ 1

0

dx1

∫ 1

0

dx2 fa/H1
(x1, µF ) fb/H2

(x2, µF ) σ̂ab(x1, x2, Q/µ
2
R, µ

2
F/µ

2
R) (3.18)
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Here σ̂ab denotes the short distance part of the partonic crosssection which involves large
momentum transfers. This is calculable in perturbation theory because the strong cou-
pling constant is small at large momenta due to asymptotic freedom. This factorization
property of the cross section can be proved to all orders in perturbation theory [55]. Let
us explain more clearly what is meant by σ̂ab. At higher orders in perturbation theory a
parton can emit another parton at low transverse momentum before it enters into a hard
scattering event. This is a long distance part which should be included in the parton
distribution functions. This procedure is called factorization and is carried out at an
arbitrary scale µF called factorization scale. The parton level crosssection obtained after
factorization is what appears in (3.18). In the next chapter we will explicitly carry out
this procedure.

The factorization scale µF is an arbitrary parameter. It can be thought of as a scale
which separates the long and short distance physics. Thus a parton emitted with a small
transverse momentum, less than the scale µF is considered part of the hadron structure
and is absorbed in parton distribution. A parton emitted at large transverse momentum is
part of the short distance crosssection. Although apriori µF is arbitrary we should choose
this to be close to the hard scale Q which characterizes parton parton interaction. This
is important because powers of logarithms of Q/µF and Q/µR appear at every order in
perturbation theory. If µF and µR are widely separated fromQ then these large logarithms
appearing at every order in perturbation will invalidate a fixed order computation. That
is why generally µF and µR are chosen in the range Q/2 < µF , µR < 2Q. Although we are
completely free to choose µF and µR to be different from each other they are generally
identified. We will also make this identification in the following chapters.

Although the pdfs cannot be calculated, their evolution with µF is completely
determined by QCD and can be calculated perturbatively. This evolution is given by
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation [56, 57, 58, 59].

µ2
F

∂fa/H(x, µ2
F )

∂µ2
F

= as(µ
2
F )

∫ 1

x

dz

z
Pab

(x

z
, as(µ

2
F )
)

fb/H(z, µ2
F ) (3.19)

Both the leading order [58] and O(αs) [60, 61, 62, 63, 64] contributions to DGLAP splitting
functions have been calculated. The leading order splitting functions Pab(x, ε) for x ≤ 1
are given by

Pqq(x, ε) = 4CF

[

1 + x2

(1 − x)+
+

3

2
δ(1 − x)

]

+ ε 2CF (1 − x),

Pqg(x, ε) = 4TF
[

x2 +
(

1 − x2
)]

+ ε 2x(1 − x), ,

Pgq(x, ε) = 4CF

[

1 + (1 − x2)

x

]

+ ε 2CFx,
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Pgg(x, ε) = 8CA

[

x

(1 − x)+
+

1 − x

x
+ x(1 − x)

]

+4δ(1 − x)
11CA − 4nfTF

6
(3.20)

The plus -distributions are defined by the following equation

∫ 1

a

dx
f(x)

(1 − x)+

=

∫ 1

a

dx
f(x) − f(1)

1 − x
+ f(1) ln(1 − a), (3.21)

where f(x) is well behaved arbitrary function. In Figs. 3.2 and 3.3 leading order and
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Figure 3.2: Leading order parton distribution functions

next-to-leading order distribution functions of various quarks and gluons in proton are
shown at different energy scales [65]; these plots are taken from the site
http://projects.hepforge.org/mstwpdf/plots/plots.html . We note from these figures that
gluon distribution functions increase rapidly at lower values of x. Thus if a process probes
very small values of x, gluon initiated processes may dominate over quark-antiquark
initiated processes.
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Figure 3.3: Next-to-leading order parton distribution functions

3.4 Scale uncertainties

A calculation beyond leading order in strong coupling involves Feynman diagrams which
have infrared divergences. When the gluon momenta in loops or in real emission processes
become soft that is vanishingly small soft divergences appear as poles in ε. These soft
divergences in virtual and real emission contributions cancel between each other giving
a result free of soft divergences. Soft fermions do not give any divergences. There are
additional QCD singularities called collinear singularities which appear at this order.
When two massless partons become parallel to each other collinear divergences appear in
loops as well as in real emission contributions. Again in dimensional regularization these
appear as poles in ε. These singularities, however do not cancel between each other if they
appear in the initial state as there is typically no integration over the initial state partons
[66, 67]. In order to get finite predictions mass factorization is carried out to remove these
singularities. In this procedure, which is very similar to renormalization, the poles in ε
are absorbed into bare parton distribution functions at some scale µF thereby defining
scale dependent distribution functions. This scale is arbitrary and enters at leading order
through parton distribution functions. Also the parton distribution functions depend on
the scheme of factorization which fixes the amount of finite piece which is subtracted in
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addition to the poles. We will use parton distribution functions defined in MS scheme
in this thesis. Thus we see that leading order predictions are very sensitive to the choice
of factorization scales. As we include higher and higher order terms, the dependence on
this scale gets progressively smaller. In addition to improvement in scale sensitivity NLO
corrections may enhance or decrease the signals.
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Chapter 4

Isolated direct photon pair
production at NLO

As has been discussed in the previous chapter, a computation at next-to-leading order in
strong coupling constant is important not only because it contains higher order terms of
the perturbation series but also because it reduces the sensitivity to the factorization scale.
In the present chapter a next-to-leading order computation for the production of direct
photon pairs in a hard scattering event at hadron colliders will be presented for the ADD
model and the unparticle model . We will begin with a leading order computation and go
on to discuss virtual corrections which appear at next-to-leading order. The singularities
which appear in the loop corrections will be discussed. Next would follow presentation
of contributions coming from real emission Feynman diagrams. Throughout dimensional
regularization using n = 4+ε would be employed and MS scheme will be used to subtract
the divergences. We will discuss in detail the semi-numerical two cutoff phase space slicing
method on which our calculation is based.

4.1 Isolated direct photons

Photons arise from many sources in hadronic collisions. They are produced through
decays of large transverse momentum π0, η, ω etc., to photons and they may also be
produced as direct photons. Direct photons are produced by two different mechanisms:
either they take part directly in the hard subprocess, or they result from fragmentation
of partons themselves produced at high transverse momentum in the subprocess. The
process of fragmentation of partons (quarks and gluons) is a collinear phenomenon as
the fragmentation photons are embedded in hadronic jets. The two mechanisms of direct
photon production are closely related to each other. To understand this we note that the
qg initiated process (Fig. 7.5) has a final state QED singularity which can be removed by
factoring it in the fragmentation function describing fragmentation photons.

29



30 CHAPTER 4. ISOLATED DIRECT PHOTON PAIR PRODUCTION AT NLO

The collider experiments do not measure inclusive photons. There are huge back-
grounds from decays of high pT π

0, η, ω etc. Experimental isolation cuts are imposed to
reject large background of secondary photons produced in the decays of these mesons. A
widely used isolation criterion is the following. Only those events are selected which satisfy
the following criterion. Inside a circle of radius r centred at the photon in the rapidity and
azimuthal angle plane, the total amount of transverse hadronic energy should be smaller
than some fixed value Emax

T . The topic of the isolation of photons based on the above
criterion is extensively discussed in theoretical literature [68, 69, 70, 71]. This isolation
criterion in addition to rejecting secondary photons also rejects some of the fragmentation
photons.

The fragmentation functions describing fragmentation photons are not known to a
very good accuracy and it is desirable to have a way to avoid fragmentation photons. The
most naive thing to do would be to veto the configurations in which a photon is very
close to hadronic activity. This can be implemented by constructing a cone of some small
fixed radius around photons and demanding that there be no hadronic activity within
it. Experimentally such an event selection can be carried out easily, however such an
observable is not infrared safe and cannot be calculated using QCD perturbation theory.
This happens because nothing is allowed within the cone, not even the soft gluons. The
soft gluon singularities cancel between real and virtual contributions; if we constrain the
phase space of soft gluons this cancellation gets disturbed. An alternative would be to
allow soft gluons in the cone but exclude the quarks. This would be fine as soft quarks
do not give any singularity. But it is extremely difficult to determine experimentally
the origin of jets. This makes this alternative unattractive. We can achieve our goal, of
keeping only direct photons isolated from hadrons and at the same time the observable
be infrared safe, following the smooth cone isolation prescription proposed by Frixione
[72]. The idea is simple, we have to device a prescription that removes the fragmentation
photons which are embedded in hadronic jets while allowing the soft gluons.

Smooth cone isolation: Let z–axis coincide with the hadron–hadron collision line,
and θ and φ denote the polar and azimuthal angles respectively. It is more convenient to
use pseudo-rapidity (η) in the context of hadron colliders instead of θ, as they are additive
under boosts. Draw concentric circles in the η − φ plane around each photon. Let the
radius of the largest circle be R0. We demand that the sum of hadronic transverse energy
in any circle of radius R < R0 be less than some specified amount H(R) which depends
on the radius R. The function H(R) is decreasing with decreasing R. We would make
the following choice for H(R):

H(R) = E isoT
(

1 − cosR

1 − cosR0

)n

, (4.1)

where E isoT is some fixed amount of energy and the exponent n can be taken to be any
number greater than 1/2 [72]. One could in principle choose a very small value for R0
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but this would generate large logarithms at every order in perturbation theory thereby
spoiling a fixed order computation. From the function it is clear that as we move closer
to the photon lesser hadronic activity is allowed. Note that H(R) → 0 as R → 0. Thus
the soft gluons are allowed in the cone and the prescription is infrared safe. This also
has the advantage of retaining the events which have larger hadronic activity slightly
off the photon and we do not unnecessarily loose events. This smooth cone isolation
prescription also suppresses QED collinear singularities which arise when the final state
photons become collinear to the quark line which emits it. We will subject the photons
to this isolation criterion when we obtain kinematical distributions.

A theoretical understanding of this process at NLO was initiated in [17]. A next-
to-leading order study in standard model including fragmentation photons was presented
in [23] in the context of light Higgs boson searches. In the following we will suppress the
fragmentation photons by smooth cone isolation.

In what follows in the remainder of this chapter we will present the computation for
the ADD model. Since the spin-2 unparticles couple to the SM energy momentum tensor
the results presented for the ADD model are applicable for spin-2 unparticles as well with
the modification of the factor κ2D(s) (see Eqs. 2.3, 2.12) This modification of the coupling
constant will be given in a later chapter when we discuss the numerical results.

4.2 Leading Order

The lowest order (in strong coupling) Feynman diagram for the process in the standard
model is shown in Fig. 7.1. This is of order αem and contributes at order α2

em. In addition,
qq and gg initiated s–channel diagrams with a KK graviton exchange also appear at this
order as shown in Fig. 7.6. Note that gg initiated process is present at this order. This
happens because the SM fields couple via energy momentum tensor to the KK gravitons
with equal strength. A parton level 2 → 2 process at the leading order is of the generic
form

a(p1) + b(p2) → γ(p3) + γ(p4). (4.2)

where a and b are either quark and anti-quark or gluons. p1, p2 are momenta of incoming
partons and p3, p4 are momenta of outgoing photons. The exact matrix elements in
n = 4 + ε dimensions for qq and gg initiated subprocesses are

|M (0)|2qq,sm =
e4q
N

[

u

t
+
t

u
+ ε

(

1 +
u

t
+
t

u

)

+
ε2

4

(

2 +
u

t
+
t

u

)]

, (4.3)

|M (0)|2qq,int = − κ2ReD(s)
e2q
8N

[

4
(

t2 + u2
)

+ ε
(

3t2 + 3u2 + 2ut
)

]

, (4.4)
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|M (0)|2qq,gr =
κ4|D(s)|2

16N

[

ut3 + tu3 +
ε

4

(

3tu3 + 3t3u+ 2u2t2
)

]

, (4.5)

|M (0)|2gg,gr =
κ4|D(s)|2
N2 − 1

[ 81

128(3 + ε)2
s4 +

27

64(3 + ε)
s2
(

u2 + 14tu+ t2
)

+
5

2(2 + ε)2
s2tu− 1

16(2 + ε)
s2
(

7u2 + 94tu+ 7t2
)

+
1

128

(

9t4 + 28t3u+ 54t2u2 + 28tu3 + 9u4
)

]

, (4.6)

where sm, gr, int represent contributions from SM, gravity, and interference of SM with
gravity induced process respectively. Real part of D(s) is denoted by ReD(s). The
bar over the symbol M (0) represents that the matrix elements have been averaged over
initial helicities and color, and summed over the final ones. Here D(s) is defined by
D(s) = Deff(s)/i (see Eqs. 2.5, 2.12) and

κ2D(s) = κ2
∑

~n

1

s−m2
~n + iε

,

=
8π

M4
S

(√
s

MS

)(d−2)
[

− iπ + 2I(MS/
√
s)
]

. (4.7)

s, t, u are the usual Mandelstam invariants

s = (p1 + p2)
2 , t = (p1 − p3)

2 , u = (p1 − p4)
2 , (4.8)

and eq is the charge of a quark or anti-quark and κ is the coupling of gravity to SM fields.
A factor of 1/2 has been included for identical final state photons. These expression
has been evaluated for quarks with N and gluons with N 2 − 1 color degrees of freedom.
We can use these matrix elements and integrate over the 2-body phase space to obtain
parton level cross-section. This partonic cross-section can be convoluted with the parton
distribution functions to obtain hadronic cross-sections.

dσ(0)(x1, x2, ε) = dx1dx2

∑

i

dσ
(0)
qiqi

(x1, x2, ε)
(

fqi(x1)fqi
(x2) + x1 ↔ x2

)

+dx1dx2dσ
(0)
gg (x1, x2, ε)fg(x1)fg(x2). (4.9)

Here dσ
(0)
ab denote leading order partonic cross-sections.



4.3. NEXT-TO-LEADING ORDER 33

4.3 Next-to-leading order

4.3.1 Virtual

At NLO ie., at order as, gluonic corrections to the leading order Feynman diagrams need
to be included. These are shown in Fig. 7.4. In general the integrals over loop momenta
have both ultraviolet and infrared singularities, however, the process under consideration
does not contain ultraviolet singularities as these cancel in the sum. This happens for the
following reasons. The electromagnetic coupling αem does not receive QCD corrections or
equivalently Ward identities ensure cancellation of UV divergences. Secondly the gravitons
couple to SM energy momentum tensor which is a conserved quantity and does not get
renormalized.

The virtual Feynman graphs fall under three categories (see Figs. 7.4 and 7.7).

• Diagrams that have external leg corrections –fermion self energy and gluon self
energy. The fermion self energy, and gluon self energy containing triple gluon vertex
give loop integrals with two propagators and are denoted as B0 or Bµ. The one with
4-gluon vertex gives a tadpole, A0. These symbols are explained below.

• Diagrams having vertex corrections. These give rise to integrals with three prop-
agators and depending on the tensor structure they are labeled as C0,Cµ etc. It
will be useful to remember that the vertex correction is proportional to the leading
order vertex for massless fermions and does not contain a σµν(= i[γµ, γν]/2) term
which is present when the fermions are massive.

• Diagrams with four propagators. The loop corresponding loop integrals are labeled
as D0, Dµ etc.

Let us now define the tensor integrals which appear in the calculation

A0(M1) =

∫

dnl

(4π)n
1

D1
, (4.10)

B{0,µ,µν}(p1,M1,M2) =

∫

dnl

(4π)n
{1, lµ, lµlν}
D1D2

, (4.11)

C{0,µ,µν,µνρ}(p1, p2,M1,M2,M3) =

∫

dnl

(4π)n
{1, lµ, lµlν , lµlνlρ}

D1D2D3

, (4.12)

D{0,µ,µν,µνρ}(p1, p2, p3,M1,M2,M3,M4) =

∫

dnl

(4π)n
{1, lµ, lµlν , lµlνlρ}
D1D2D3D4

, (4.13)
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where the denominators are given by

D1 = l2 −M1
2 + iε,

D2 = (l + p1)
2 −M2

2 + iε,

D3 = (l + p1 + p2)
2 −M3

2 + iε,

D4 = (l + p1 + p2 + p3)
2 −M4

2 + iε.

(4.14)

For generality we have retained Mi’s but these are not present in our calculation. The
tadpole A0 vanishes in dimensional regularization for massless particles as there is no mass
scale in the integral. Similarly B0 vanishes as can be seen by shifting the loop momentum.
Using the Lorentz symmetry we can write the above integrals as [73] :

Bµ = p1µB1,

Bµν = p1µp1ν + gµνB22,

Cµ = p1µC11 + p2µC12,

Cµ,ν = p1µp1ν + p2µp2νC22 + {p1p2}µνC23 + gµνC24,

Cµ,ν,ρ = p1µp1νp1ρC31 + p2µp2νp2ρC32 + {p1p1p2}µνρC33,

+{p1p2p2}µνρC34 + {p1g}µνρC35 + {p2g}µνρC36,

Dµ = p1µD11 + p2µD12 + p3µD13,

Dµν = p1µp1νD21 + p2µp2νD22 + p3µp3νD23 + {p1p2}µνD24

+{p1p3}µνD25 + {p2p3}µνD26 + gµνD27,

Dµνρ = p1µp1νp1ρD31 + p2µp2νp2ρD32 + p3µp3νp3ρD33 + {p1p1p2}µνρD34

+{p1p1p3}µνρD35 + {p1p2p2}µνρD36 + {p1p3p3}µνρD37 + {p2p2p3}µνρD38

+{p2p3p3}µνρD39 + {p1p2p3}µνρD310 + {p1g}µνρD311

+{p2g}µνρD312 + {p3g}µνρD313, (4.15)

where the scalar coefficients Bi, Bij, Ci, Cij, Di, Dij, Dijk are functions of invariants and



4.3. NEXT-TO-LEADING ORDER 35

the masses Mi and we have used the notation

{pipjpk}µνρ ≡
∑

σ(i,j,k)

pσ(i)µpσ(j)νpσ(k)ρ , (4.16)

with σ(i, j, k) denoting all different permutations of (i, j, k), and

{pig}µνρ ≡ piµgνρ + piνgµρ + piρgµν . (4.17)

To keep the arguments general we will not specialize to p2
i = 0 while we discuss the inte-

gral reduction. Introduce Qi as follows

Q1 = 0 and Qi =

i−1
∑

j=1

pj for i > 1. (4.18)

With this we can introduce

B{0,µ,µν}(k, l) ≡
∫

dnl

(4π)n
{1, lµ, lµlν}
DkDl

∣

∣

∣

Qk=0
,

C{0,µ,µν,µνρ}(k, l,m) ≡
∫

dnl

(4π)n
{1, lµ, lµlν, lµlνlρ}

DkDlDm

∣

∣

∣

Qk=0
. (4.19)

In the process of reducing to scalar integrals, the integrals Bµ,Bµν etc., will be contracted
with the external momenta. This gives in the numerator of integrands factors of l · pi
which can be written as

2l · p1 = D2 −D1 + f1 ,

2l · p2 = D3 −D2 + f2 ,

2l · p3 = D4 −D3 + f3 , (4.20)

where

fi = (Mi+1)
2 − (Mi)

2 − [(Qi+1)
2 − (Qi)

2]. (4.21)

To determine B1 we contract both the sides in Eq. (4.11) with pµ1 . Substituting p1 · l in
pµ1Bµ we obtain

B1 =

∫

dnl

(4π)n
1

2

1

p1
2

[

1

D1
− 1

D2
+

f1

D1D2

]

. (4.22)

In the second integral making a change of variable l → l − p1 gives

B1 =
1

2p2
1

[f1B0 + A0(M1) − A0(M2)] . (4.23)
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With this Bµ is completely determined in terms of scalar integrals. We note that scalar
integrals of lower rank A0 appear after reduction. Next we determine Bµν . Contracting
Bµν with gµν gives

p1
2B21 + nB22 = A0M2 +M1

2B0. (4.24)

Contracting Bµν with p1,

p1
µBµν =

∫

dnl

(4π)n
1

2

(D2 −D1 + f1) lµ
D1D2

=
p1µ

2
A0(M2) +

f1

2
Bµ.

Contracting with p1 we can determine B21

B21 =
1

p2
1

{

f1B1 + A0(M2)

2
.− B22

}

(4.25)

Substituting B21 in (4.24) determines B22

B22 =
1

n− 1

(

M2
1B0 −

1

2
[f1B1 − A0(M2)]

)

. (4.26)

Next we consider three point integral Cµ and determine the coefficients C11 and C12.

Cµ = p1µC11 + p2µC12. (4.27)

Dotting this equation with p1 and p2 we get two equation which can be written in a matrix
form as

(

pµ1
pµ2

)

Cµ =

(

p2
1C11 + p1 · p2C12

p1 · p2C11 + p2
2C12

)

=

(

p2
1 p1 · p2

p1 · p2 p2
2

)(

C11

C12

)

=

(

R1

R2

)

. (4.28)

We can determine R1 and R2 and use them to determine C11 and C12

R1 =

∫

dnl

(4π)n
1

2

D2 −D1 + f1

D1D2D3

. (4.29)

Canceling the common factors in numerators and denominators in the various terms and
shifting momenta we get

R1 =
1

2
[B0(1, 3) −B0(2, 3) + f1C0] , (4.30)
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and similarly

R2 =
1

2
[B0(1, 2) −B0(1, 3) + f2C0] . (4.31)

Following a similar procedure all other tensor integrals can be reduced. A compilation
of the results can be found in [74]. Using the above integrals we can calculate the order
as squared matrix elements coming from virtual processes. The SM virtual diagrams are
shown in Fig. 7.4. We see all 2-,3- and 4-point integrals appear. The virtual correction
diagrams with a graviton propagator are shown in Fig. 7.7. Since the 3-gluon and 4-gluon
vertices appear in Fig. 7.7h and Fig. 7.7(g) to correctly include the physical degrees of
freedom the ghosts need to be included as shown in Fig. 7.7(e) and Fig. 7.7(f) .

The SM contribution at virtual level comes purely from qq initiated processes shown
in Fig. 7.4 (a-d) and is given by

|MV |2qq,sm = as(µ
2
R)f(ε, µ2

R, s)CF

[

Υ (ε) |M (0)|2qq,sm + 2
e4q
N

{

(4ζ(2) − 7)
u

t

+
(

2 + 3
u

t

)

ln
−t
s

+

(

2 +
u

t
+ 2

t

u

)

ln2 −t
s

+ t↔ u
}

]

, (4.32)

where

Υ (ε) = − 16

ε2
+

12

ε
, f(ε, µ2

R, s) =
Γ
(

1 +
ε

2

)

Γ(1 + ε)

(

s

4πµ2
R

)
ε
2

(4.33)

There are two kinds of contributions that come from the interference of SM and gravity
mediated processes; the qq initiated processes and gg initiated processes. The gg initiated
box diagrams of Fig. 7.4(e) in SM interferes with the LO graviton mediated diagrams.
The subscript (int) indicates interference.

|MV |2qq,int = as(µ
2
R)f(ε, µ2

R, s)CF

[

Υ (ε) |M (0)|2qq,int + κ2ReD(s)
e2q
2N

{

(17 − 8ζ(2))t2

−(2tu+ 3u2) ln
−t
s

−
(

2tu+ 2t2 + u2
)

ln2 −t
s

+ t↔ u
}

−κ2πImD(s)
e2q
2N

{

3t2 + 2tu+ 2(t2 + 2tu+ 2u2) ln
−u
s

+ t↔ u
}

]

(4.34)

|MV |2gg,int = as(µ
2
R) e2qκ

2 1

N2 − 1

[

s ReD(s)
{

u2 + (2tu+ t2) ln
−u
s

+

(

u2 +
1

2
t2 + tu

)

ln2 −u
s

}

+ s πImD(s)
{

u2 + 2tu

+(2u2 + 2tu+ t2) ln
−u
s

}

+ t↔ u

]

. (4.35)
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The contributions coming purely from gravity mediated diagrams are

|MV |2qq,gr = as(µ
2
R)f(ε, µ2

R, s)CF

[

Υ (ε) |M (0)|2qq,gr + 4(2ζ(2)− 5)|M (0)|2qq,gr
]

,(4.36)

|MV |2gg,gr = as(µ
2
R)f(ε, µ2

R, s)CA

[ {

−16

ε2
+

4

CAε

(

11

3
CA − 4

3
nfTF

)}

|M (0)|2gg,gr

+
1

9

(

72ζ(2) + 70
nfTF
CA

− 203

)

|M (0)|2gg,gr
]

, (4.37)

Here µ2
R is the scale at which the theory is renormalized. The SM results are in agreement

with the literature [75].

Let us analyze the results we have obtained above.

• We first observe that the qq and gg initiated matrix element squares in pure gravity
case are proportional to their leading order contributions. But this is spoiled for
the SM qq initiated process due to the appearance of 4-point integrals.

• Next we see that all the qq initiated processes have the same singularity structure.
They are all proportional to their respective born matrix element squares and are
multiplied by the same common factor as(µ

2
R)CFΥ(ε). The gg initiated process

is also proportional to its born contribution and CA appears in the coefficients.
CF appears in qq case as fermions transform under fundamental representation of
SU(N) and CA appears in gg initiated process as gluons transform under the adjoint
representation. More information on CF and CA can be found in the appendix. The
reason for the universality in the singular pieces is that these are coming purely from
QCD. The poles in Υ(ε) arise due to soft and collinear singularities. As already
mentioned there are no ultraviolet divergences here and the poles are purely of
infrared origin. The soft singularities arise when gluon momentum in loop becomes
vanishingly small. Similarly collinear singularity arises when two massless partons
become collinear to each other. These singularities appear when two propagators
go onshell simultaneously and the contour of the integral gets pinched between
two poles. The soft and collinear singularities appear as poles in ε in dimensional
regularization. The 1/ε2 pole in Υ(ε) arises because a gluon can be simultaneously
soft and parallel to the parton which emits it. Thus it is a product of soft and
collinear singularity.

• The interference of gg initiated box diagrams in SM with leading order gravity
mediated process does not contain any poles in ε and is completely finite. This is
finite as the gg box contribution ( sum of six diagrams ) is finite. That it should be
finite is understandable as this is the first time a gg initiated contribution appears
and is like a leading order piece.
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Using the above matrix elements, the virtual contribution to cross-section can be obtained
by integrating over the phase space and multiplying with parton distribution functions.

dσvirt = as(µ
2
R)dx1dx2f(ε, µ2

R, s)

×
[

CF

(

−16

ε2
+

12

ε

)

∑

i

dσ
(0)
qiqi

(x1, x2, ε)
(

fqi(x1)fqi
(x2) + x1 ↔ x2

)

+CA

{

−16

ε2
+

4

CAε

(

11

3
CA − 4

3
nfTF

)}

dσ(0)
gg (x1, x2, ε)

(

fg(x1)fg(x2)
)

+CF
∑

i

dσV,finqiqi
(x1, x2, ε)

(

fqi(x1)fqi
(x2) + x1 ↔ x2

)

+CA dσ
V,fin
gg (x1, x2, ε)(fg(x1)fg(x2))

]

(4.38)

where dσV,finqq (x1, x2, ε) is the finite (in ε→ 0 limit) coefficient of as(µ
2
R)f(ε, µ2

R, s)CF that
appears in the above matrix element squares and integrated over 2-body phase space and
similarly dσV,fingg (x1, x2, ε) is the finite coefficient of as(µ

2
R)f(ε, µ2

R, s)CA integrated over
2-body phase space.

4.3.2 Real Emission

We have seen in the previous subsection that the contributions coming from virtual
processes are singular in 4-dimensions. According to the Bloch-Nordsick theorem [76]
soft divergences cancel, when both the virtual and their corresponding bremsstrahlung
diagrams are taken into account. For cancellation of soft singularity inclusion of soft
bremsstrahlung, which gives states degenerate to leading order states, is required. One
can choose some cutoff E for energy of real gluons (experimentally it translates to cutoff
on jet energy) and include only the ones which have energies less than E . However, then,
the final result would depend on E . Instead, it is more useful to integrate over the final
state gluons completely. The remaining collinear singularities are removed by mass fac-
torization. In this subsection we present the contributions coming from order as processes
where in addition to the two photons in the final state a parton is also emitted.

Eventually we will put several experimental cuts on the two photons to isolate them
from the photons coming from hadron decays such as π0 decays. Also we will obtain many
kinematical distributions to facilitate comparison with experiments. These requirements
make a Monte Carlo based method most apt for the computation. It facilitates an easy
implementation of kinematical constraints and repetition of calculation for different dis-
tributions is not required. With these things in mind we have opted for a semi numerical
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approach based on the method of two cutoff phase space slicing method . This method
[77] has already been used extensively to study various processes and has been nicely
reviewed in [78].

The idea of the two cutoff phase space slicing method is simple. The matrix elements
and phase space simplify in the soft and collinear limit, thus the phase space integrals
can be easily carried out analytically to get the soft and collinear singularities. After the
cancellation and mass factorization of these singularities the remaining finite pieces are
integrated numerically using Monte Carlo. The region of phase space which is free of any
singularities can again be integrated numerically and added to the above piece to get real
emission contributions. Thus in this method two small dimensionless parameters δs and
δc are introduced to divide the 3-body phase space into singular and non-singular regions.
The parameter δs slices phase space into soft and hard regions. The soft region contains
soft gluons. The hard region is further decomposed into collinear and non-collinear regions
parts using δc. This region contains collinear singularities. The hard non-collinear region
which is free of any singularities can be directly integrated in 4-dimensions.

In the following we will describe the computation using phase space slicing method.
First we will obtain real emission contribution to cross section in the soft limit and then
in the collinear limit.

Soft

The following momenta assignment for real emission diagrams will be used

a(p1) + b(p2) → γ(p3) + γ(p4) + c(p5). (4.39)

The Lorentz scalars that appear can be written as pij = (pi + pj)
2 if both i and j are

either incoming particles or outgoing particles. When one of them is incoming and the
other is outgoing we use pij = (pi − pj)

2. The incoming parton momenta in the center
of mass frame of incoming partons can be written using above definition of scalars, in n
dimensions, as

p1 =

√
p12

2
(1, 0, 0, · · · , 0, 1) ,

p2 =

√
p12

2
(1, 0, 0, · · · , 0,−1) , (4.40)

The Feynman diagrams in Figs. 7.5(a), 7.5(b) give soft divergences when the final state
gluons become soft. Similarly diagrams in Figs. 7.8(a), 7.8(b) and Figs. 7.8(i), 7.8(j) are
divergent in the soft limit. Let us first consider qq initiated process and denote by M1

the sum of diagrams Figs. 7.5(a) and 7.8(a), and by M2 the sum of diagrams Figs. 7.5(b)
and 7.8(b). In M1 the gluon is attached to the fermion line carrying momentum p1 and
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in M2 to the fermion line with momentum p2. Using δs soft region can be defined as the
region of phase space where the final state gluon has an energy less than δs

√
p12/2 in the

centre of mass frame of incoming partons. Let us now simplify the matrix elements in
soft limit. In this limit the matrix elements take the following simple form

Ma
1 ' M (0) (p1, p2 → p3, p4)

[

T aji
pµ1

p1 · p5

]

µ
− ε

2

R gs εµ(p5),

Ma
2 'M (0) (p1, p2 → p3, p4)

[

−T aji
pµ2

p2 · p5

]

µ
− ε

2

R gs εµ(p5). (4.41)

Here M (0) denotes the born amplitude and a is the color index carried by the soft gluon.
The factors in the square brackets are the eikonal currents which factor out in the soft
limit. The square of the sum of the above two matrix elements averaged and summed
over initial and final state color and polarizations is

|M1 +M2|2qq '
2p1 · p2

p1 · p5 p2 · p5

CFµ
−ε
R g

2
s |M (0)|2qq (p1, p2 → p3, p4) . (4.42)

Similarly for the gg initiated real emission process we denote by M1 the diagram Fig. 7.8(i)
and by M2 the diagram Fig. 7.8(j). In the soft limit

|M1 +M2|2gg '
2p1 · p2

p1 · p5 p2 · p5

CAµ
−ε
R g

2
s |M (0)|2gg (p1, p2 → p3, p4) . (4.43)

The soft singularities get revealed when the phase space integration over the eikonal
factors is carried out. Let us now simplify the phase space in this limit. The three body
phase space

dΓ3 =
5
∏

i=3

dn−1pi
(2π)n−1

1

2Ei
(2π)nδn(p1 + p2 − p3 − p4 − p5), (4.44)

in the soft limit can be written as

dΓSoft3 = dΓ2
dn−1p5

(2π)n−1

1

2E5
, (4.45)

where

dΓ2 =

4
∏

i=3

dn−1pi
(2π)n−1

1

2Ei
(2π)nδn(p1 + p2 − p3 − p4), (4.46)

is the two body phase space. Parameterizing gluon’s momenta in p1 + p2 rest frame as

p5 = E5 (1, 0, · · · , 0, sin θ1 sin θ2, sin θ1 cos θ2, cos θ1) , (4.47)

we can write

dΓSoft3 = dΓ2

(

4π

p12

)− ε
2 Γ
(

1 + ε
2

)

Γ(1 + ε)

1

2(2π)2
dS, (4.48)
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where

dS =
1

π

(

4

p12

)
ε
2

∫ δs
√
p12/2

0

dE5E
1+ε
5 sin1+ε θ1dθ1 sinε θ2dθ2. (4.49)

Let us now carry out the dS integrals over eikonal factor

2p1 · p2

p1 · p5p2 · p5
(4.50)

appearing in 4.42 and 4.43. Substituting

2p1 · p2 = p12,

p1 · p5 =

√
p12

2
E5(1 − cos θ1),

p2 · p5 =

√
p12

2
E5(1 + cos θ1), (4.51)

it factors into an energy integral and an angular integral:

J =
1

π

(

4

p12

)
ε
2

∫ δs
√
p12/2

0

dE5E
−1+ε
5

×
∫ π

0

sin1+ε θ1dθ1

∫ π

0

sinε θ2dθ2
4

(1 + cos θ1)(1 − cos θ2)
. (4.52)

The energy integral can be done trivially and gives

1

ε

(

δs

√
p12

2

)ε

. (4.53)

To carry out angular integral we use the result [79, 80, 81]

∫ π

0

dθ1 sinn−3 θ1

∫ π

0

dθ2 sinn−4 θ2
(a+ b cos θ1)

−1

A +B cos θ1 + C sin θ1 cos θ2

=
2π

aA(n− 4)

(

A +B

2A

)n/2−3 [

1 +
1

4
(n− 4)2Li2

(

A−B

2A

)]

,

if A2 = B2 + C2, b = −a, Li2(0) = 0. The dilogarithm function Li2 is very briefly
discussed in the appendix. Using this the angular integral gives

∫ π

0

sin1+ε θ1dθ1

∫ π

0

sinε θ2dθ2
4

(1 + cos θ1)(1 − cos θ2)
=

8π

ε
. (4.54)
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Note that this pole comes when the gluon becomes collinear to the quark or antiquark
line. With this we have

J =
8

ε2
+

8 ln δs
ε

+ 4 ln2 δs. (4.55)

This gives finally

dΓ3|M1 +M2|2qq
soft' asCFf(ε, µ2

R, p12) dΓ2|M (0)|2qq

×
(

16

ε2
+

16 ln δs
ε

+ 8 ln2 δs

)

, (4.56)

and

dΓ3|M1 +M2|2gg
soft' asCAf(ε, µ2

R, p12) dΓ2|M (0)|2gg

×
(

16

ε2
+

16 ln δs
ε

+ 8 ln2 δs

)

, (4.57)

where

f(ε, µ2
R, p12) =

Γ
(

1 + ε
2

)

Γ(1 + ε)

(

4πµ2
R

p12

)−ε/2
. (4.58)

We can now write the final expression for soft part of cross-section

dσsoft ' asdx1dx2f(ε, µ2
R, p12)

(

16

ε2
+

16 ln δs
ε

+ 8 ln2 δs

)

×
[(

CF
∑

i

dσ
(0)
qiqi

(x1, x2, ε)fqi(x1)fqi
(x2) + x1 ↔ x2

)

+CA dσ
(0)
gg (x1, x2, ε)fg(x1)fg(x2)

]

. (4.59)

The pole of order 2 comes from gluons which are both soft and collinear. Note that
the coefficient of this double pole has the same coefficient but opposite sign to what was
obtained in the virtual case. Thus we see that the order 2 pole cancels between real
emission and virtual contributions. The simple poles in ε still remain uncanceled. Let us
next take up the collinear singularities.

Collinear

First we will give details for a qq initiated process with emission of a gluon in the final
state. The other processes will follow the similar steps. Let us consider the leading order
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qq initiated process. In this we properly include all the contributions coming from SM,
gravity mediated processes and their interference with SM. Let a fraction x1 of hadron H1

momentum be carried by the quark carrying momentum p1, and a fraction x2 of hadron
H2 be carried by the anti-quark carrying momentum p2. Next consider a next-to-leading
order process, with a quark and an anti-quark in the initial state which has as its hard
scattering part the above leading order process. For clarity we will use p1 instead of p1

for the momentum of the incoming quark. Let y be the fraction of hadron momentum
carried by p1. Also let z denote the fraction of p1 that enters into the hard scattering
with 1 − z taken away by the final state gluon. With this we can write the momenta in
the collinear limit as

p1 = (P, 0, · · · , 0, P )

p′1 =

(

zP +
pt

2

2zP
, ~pt, zP

)

p5 =

(

(1 − z)P +
pt

2

2(1 − z)P
,−~pt, (1 − z)P

)

. (4.60)

In this limit the matrix elements can be simplified to obtain

|M |2(p1 + p2 → p3 + p4 + p5)
coll' |M (0)|2(zp1, p2 → p3 + p4)

×Pqq(z, ε)g2
sµ

−ε
R

−1

2zp15

. (4.61)

The 3-body phase space can again be simplified in the same limit. To do the integral over
dn−1p5 we note that

p15 =
−p2

t

1 − z
, (4.62)

using this we can readily write

dn−1p5 = Pdz [−(1 − z)dp15]
n−2

2 dn−1p5 = Pdz [−(1 − z)dp15]
n−2

2

π1+ε/2

Γ(1 + ε
2
)
. (4.63)

Finally the integral over the final state gluon momentum in the phase space integral can
be written as

dn−1p5

2E5(2π)n−1
=

(4π)−ε/2

16π2Γ(1 + ε
2
)
dzdp15 [−(1 − z)dp15]

ε
2 . (4.64)

Collinear singularities get revealed when integration over p15 is carried out in the collinear
region

0 < −p15 < δcp12, (4.65)
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giving
∫ δcp12

0

−dp15(−p15)
−1+ ε

2 =
2

ε
(δcp12)

ε
2 . (4.66)

Thus we can write the hard collinear part of cross-section as

dσHC = fqi/H1
(y)dyfqi/H2

(x2)dx2 dσ̂
(0)
qiqi

(zp12, p23, p24)

×as(µ2
R)

(

4πµ2
R

p12

)−ε/2 Γ
(

1 + ε
2

)

Γ(1 + ε)

×
(

1

ε

)

δε/2c Pqq(z, ε)dz(1 − z)ε/2δ(yz − x1)dx1. (4.67)

Note that in writing the above expression we have appropriately absorbed a factor of
1/z in the flux factor of dσ̂

(0)
qiqi

. In order to be able to factorize collinear singularities

we require to have dσ̂
(0)
qiqi

in the above expression same as that appears at the leading
order. This is done by the delta function which ensures that x1 enters into the hard
scattering. Remembering that p1 = ypH1

and p1 = x1pH1
we can write p1 = y/x1p1. Thus

zp12 = zy/x1p1 = p1 Making this substitution and carrying out integration over y we
obtain

dσHC = fq/H1
(x1/z)dx1fq/H2

(x2)dx2 dσ̂
(0)
qiqi

(p12, p23, p24)

×as(µ2
R)

(

4πµ2
R

p12

)−ε/2 Γ
(

1 + ε
2

)

Γ(1 + ε)

×
(

1

ε

)

δε/2c Pqq(z, ε)
dz

z

(

1 − z

z

)ε/2

. (4.68)

The invariants that appear in the argument of the leading order cross-section in above
expression pertain to leading order kinematics. We can now rename p1 as p1 without
causing any confusion. The hard condition sets the limits on z integration. To determine
the limits let us first write the energy of the gluon in p1 + p2 rest frame. Squaring both
sides of energy momentum conservation p1 + p2 − p5 = p3 + p4 relation we obtain

(p1 + p2)
2 − 2p5 · (p1 + p2) = (p3 + p4)

2. (4.69)

In the p1 +p2 rest frame p1 +p2 =
√
p12(1, 0, 0, 0). Using this the gluon’s energy evaluates

to

E5 =
p12 − p34

2
√
p12

. (4.70)
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In the collinear limit we have (zp1 + p2)
2 = (p3 + p4)

2 which gives p34 = zp12. The hard
condition E5 > δs

√
p12/2 gives the condition on z:

0 < z < 1 − δs, hard condition. (4.71)

Finally we can write the contribution to Hard Collinear part of cross-section coming from
Pqq splitting, now allowing either of the quark and anti-quark to emit a gluon.

dσHC =
as(µ

2
R)

ε
dx1dx2f(ε, µ2

R, s)

×
[

∑

i

dσ̂
(0)
qiqi

(x1, x2, ε)
{

∫ 1−δs

x2

dz

z
H(z, ε, δc)Pqq(z, ε)fqi(x1)fqi

(x2/z)

+
∑

i

∫ 1−δs

x1

dz

z
H(z, ε, δc)Pqq(z, ε)fqi(x1/z)fqi

(x2) + x1 ↔ x2

}

qq

]

(4.72)

where

H(z, ε, δc) =

(

δc
1 − z

z

)ε/2

, (4.73)

and Pqq is the splitting function in 4 + ε dimensions. When quark qi emits a gluon the
combination fqi(x1/z)fqi

(x2) appears and when anti-quark qi emits a gluon the combina-
tion fqi

(x1/z)fqi(x2) enters. x1 ↔ x2 is included because the two partons can have their
momenta interchanged. Similarly we can find the contributions coming from the gg initi-
ated processes. Here Pgg splitting function is involved. The integration limits on z remain
the same. In addition to these we also have to include the qg initiated subprocesses. Here
a gluon can split into a quark and and anti-quark with one of these entering into the hard
scattering. This involves Pqg splitting function. Alternatively the initial state fermion
can split into gluon and a fermion with the gluon entering into the hard scattering, this
involves Pgq splitting function. In both of these cases the particle which is emitted in the
final state is a fermion, which does not give soft singularities. The upper limit on the z
integral is 1 in these cases. Adding all the pieces together we get

dσHC =
as(µ

2
R)

ε
dx1dx2f(ε, µ2

R, p12)

×
[

∑

i

dσ̂
(0)
qiqi

(x1, x2, ε)
{

∫ 1−δs

x2

dz

z
H(z, ε, δc)Pqq(z, ε)fqi(x1)fqi

(x2/z)

+

∫ 1−δs

x1

dz

z
H(z, ε, δc)Pqq(z, ε)fqi(x1/z)fqi

(x2) + x1 ↔ x2

}

qq
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+
∑

i

dσ̂
(0)
qiqi

(x1, x2, ε)
{

∫ 1

x2

dz

z
H(z, ε, δc)Pqg(z, ε)fqi(x1)fg(x2/z)

+

∫ 1

x2

dz

z
H(z, ε, δc)Pqg(z, ε)fqi

(x1)fg(x2/z) + x1 ↔ x2

}

qg

+dσ̂(0)
gg (x1, x2, ε)

{

∫ 1−δs

x2

dz

z
H(z, ε, δc)Pgg(z, ε)fg(x1)fg(x2/z) + x1 ↔ x2

}

gg

+dσ̂(0)
gg (x1, x2, ε)

{

∫ 1−δs

x2

dz

z
H(z, ε, δc)Pgq(z, ε)

∑

i

fg(x1)fqi(x2/z)

+

∫ 1−δs

x2

dz

z
H(z, ε, δc)Pgq(z, ε)

∑

i

fg(x1)fqi
(x2/z) + x1 ↔ x2

}

qg

]

. (4.74)

In the above expression we see that the collinear poles are proportional to the leading
order cross-sections. Let us introduce the convolution symbol ⊗ commonly used. It is
defined as

(f ⊗ g)(x) =

∫ 1

x

dz

z
f(z)g(x/z)

=

∫ 1

0

∫ 1

0

dz1dz2 f(z1)g(z2) δ(z1z2 − x). (4.75)

Let us also introduce a symbol ⊗ if the upper limit of integration is not 1.

(f⊗g)(x) =

∫ 1−δs

x

dz

z
f(z)g(x/z). (4.76)

With these we can write the hard collinear piece as

dσHC =
as(µ

2
R)

ε
dx1dx2f(ε, µ2

R, p12)

×
[

∑

i

dσ̂
(0)
qiqi

(x1, x2, ε)
{

(HPqq⊗fqi
)(x2)fqi(x1)

+(HPqq⊗fqi)(x1)fqi
(x2) + x1 ↔ x2

}

qq

+
∑

i

dσ̂
(0)
qiqi

(x1, x2, ε)
{

(HPqg ⊗ fg)(x2)(fqi(x1) + fqi
) + x1 ↔ x2

}

qg
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+dσ̂(0)
gg (x1, x2, ε)

{

(HPgg⊗fg)(x2)fg(x1) + x1 ↔ x2

}

gg

+dσ̂(0)
gg (x1, x2, ε)

{

∑

i

(HPgq ⊗ fqi)(x2)fg(x1)

+
∑

i

(HPgq ⊗ fqi
)(x2)fg(x1) + x1 ↔ x2

}

qg

]

. (4.77)

Thus we can remove these divergences by redefining the bare parton distributions func-
tions which appear in the above expression. We will use MS scheme to subtract the
singularities. As the renormalization is done at an arbitrary scale µR, the mass factor-
ization is carried out at an arbitrary scale µF called the factorization scale. In MS the
distribution functions are defined as

fq(x) = fq(x, µF ) − as(µ
2
R)

ε

Γ
(

1 + ε
2

)

Γ(1 + ε)

(

µ2
F

4πµ2
R

)

ε

2
[

(Pqq ⊗ fq(x) + (Pqg ⊗ fg)(x)
]

,

fg(x) = fg(x, µF ) − as(µ
2
R)

ε

Γ
(

1 + ε
2

)

Γ(1 + ε)

(

µ2
F

4πµ2
R

)

ε

2
[

(Pgg ⊗ fg)(x) + (Pgq ⊗ (fq + fq))(x)
]

.

(4.78)

This prescription subtracts a finite piece γE − ln 4π in addition to the pole. The counter
terms to cancel collinear singularities are obtained by substituting the above parton re-
definitions in the leading order cross-section

dσ(0) = dx1dx2

(

∑

i

dσ̂
(0)
qiqi

(x1, x2, ε)
[

fqi(x1)fqi
(x2) + fqi

(x1)fqi(x2)
]

+dσ̂(0)
gg (x1, x2, ε)fg(x1)fg(x2)

)

. (4.79)

There is a cancellation of singularities, however the cancellation is not complete due to
the difference in the upper limits of integration in ⊗ and ⊗. Consider the term

−1

ε

(

µ2
F

p12

)ε/2
[

(Pqa ⊗ fa)(x) −
(

µ2
R

p12

)−ε/2
(HPqa ⊗ fa)(x)

]

, (4.80)

where a labels partons and summation over repeated a is implied. We can write the first
term as

(Pqa ⊗ fa)(x) = (Pqa ⊗ fa)(x) +

∫ 1

1−δaqδs

dz

z
Pqa(z)fa(x/z). (4.81)
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Expanding the second term in (4.80) in powers of ε and using Pij(z, ε) = Pij(z)−ε/2P ′
ij(z)

we obtain to order ε.

−
{

1

ε
− 1

2
ln

(

p12

µ2
F

)}
∫ 1

1−δaqδs

dz

z
Pqa(z)fa(x/z) −

1

2
P ′
qa

+
1

2

∫ 1−δaqδs

x

dz

z
Pqa(z) ln

(

δc
1 − z

z

p12

µ2
F

)

fa(x/z) (4.82)

The integral in the first term can be evaluated easily using the definition of plus prescrip-
tion. Since for the off diagonal splitting functions the lower limits of the integrals are also
1, the integrals vanish for these splittings. The diagonal ones are

Aq→q+g ≡
∫ 1

1−δs

dz

z
Pqq(z) = 4CF

(

2 ln δs +
3

2

)

,

Ag→g+g ≡
∫ 1

1−δs

dz

z
Pgg(z) =

(

22

3
CA − 8

3
nfTF + 8CA ln δs

)

,

Aq→g+q = 0,

Ag→q+q = 0, (4.83)

where the terms of order δs have been dropped.

dσHC+CT = as(µ
2
R)dx1dx2f(ε, µ2

R, s)

×
[

∑

i

dσ̂
(0)
qiqi

(x1, x2, ε)

{

1

2
fqi

(x1, µF )f̃qi(x2, µF ) +
1

2
f̃qi

(x1, µF )fqi(x2)

+2

(

−1

ε
+

1

2
ln
p12

µ2
F

)

Aq→q+g fqi
(x1, µF )fqi(x2, µF ) + x1 ↔ x2

}

+dσ̂(0)
gg (x1, x2, ε)

{

2
1

2
f̃g(x1, µF )fg(x2, µF )

+2

(

−1

ε
+

1

2
ln
p12

µ2
F

)

Ag→g+g fg(x1, µF )fg(x2, µF )

}]

. (4.84)

Factors of 2 appear because both the incoming partons can emit gluons. The function
f̃q,g are defined by

f̃q(x, µF ) =

∫ 1−δs

x

dz

z
fq

(x

z
, µF

)

P̃qq(z) +

∫ 1

x

dz

z
fg

(x

z
, µF

)

P̃qg(z),
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f̃g(x, µF ) =

∫ 1−δs

x

dz

z
fq

(x

z
, µF

)

P̃gq(z) +

∫ 1

x

dz

z
fg

(x

z
, µF

)

P̃gg(z), (4.85)

with

P̃ij(z) = Pij(z) ln

(

δc
1 − z

z

p12

µ2
F

)

+ 2P ′
ij(z). (4.86)

Let us now add all the order as pieces together; the virtual cross-section dσvirt in Eq.( 4.38),
the soft piece dσsoft in Eq. (4.59) and the mass factorized hard collinear contribution
dσHC+CT as given in Eq. (4.84). We see that all the poles in ε cancel in the sum

dσ2−body = dσvirt + dσsoft + dσHC+CT . (4.87)

This finite result is a 2-body contribution and depends on the factorization scale µF . It
also depends on the slicing parameters δs and δc. By itself it is not a physical quantity.
To this we should add the finite hard noncollinear 3-body contribution dσ3−body

dσ = dσ2−body + dσ3−body. (4.88)

The sum of 2-body and 3-body contribution is physical and it should be independent of
the slicing parameters, at least, over some range of these parameters.
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4.4 Phase Space

Next we need to determine the 2-body and 3-body phase space over which we will integrate
the matrix elements. Further we need to find the transformation to boost from the parton
frame to center of mass frame of hadrons that is the lab frame. It is important as many
kinematical constraints will be imposed on the photons which pertain to laboratory frame.

Cross-section for production of N particles with momenta k1, k2, . . . ,kN in final
state when two particles with momenta ka, kb with masses ma and mb respectively scatter
is

dσ =
1

Φ
|M|2(2 → N) dΓN , (4.89)

where the flux factor is given by

Φ = 4
√

(ka · kb)2 −m2
am

2
b . (4.90)

The N body Lorentz invariant phase space ΓN in n dimensions has the following expres-
sion.

∏

i

(

dn−1ki
(2π)n−1

1

2Ei

)

(2π)nδn(ka + kb − Σki). (4.91)

|M|2(2 → N) represents the matrix element square, averaged over initial and summed
over final spin, colour and polarizations.

2 →2 phase space. Let us consider the process p1 +p2 → p3 +p4 and evaluate 2 → 2
phase space in n dimensions. In p1 + p2 rest frame

δn(p1 + p2 − p3 + p4) = δn−1(p3 + p4)δ(Ecm − E1 − E2) (4.92)

Integrating over p4 using the δ function we can write the 2-body phase space as

dΓ2 =
dn−1p3

(2π)n−1

1

2E1

1

2E2
2πδ(Ecm − E1 − E2), (4.93)

where

E1 =
√

p2
3 +m2

3, E2 =
√

p2
3 +m2

4.

Here we have not put the final state masses to be zero. We will eventually make this
identification. If we denote the angle between p1 and p3 by θ and define y = cos θ, then
we can write

dn−1p3 = pn−2
3 dp3dΩn−2, (4.94)

where dΩn−2 denotes volume of a n− 2 dimensional sphere and it evaluates to

dΩn−2 =
2π(n−2)/2

Γ(n/2 − 1)
(1 − y2)n/2−2dy. (4.95)
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Substituting the above two equations we can write the 2-body phase space as

dΓ2 =
pn−2

3 dp3

(2π)n−1

1

2E1

1

2E2

2πδ(Ecm − E1 − E2)dΩn−2 (4.96)

In Eq. (4.96) substitute t = p2
3 and define α =

√

t+m2
3 +

√

t+m2
4, this gives

dΓ2 =
1

4

dα

α

(

[α2 − (m3 −m4)
2]1/2[α2 − (m3 +m4)

2]1/2

2α

)n−3
2πδ(Ecm − α)

(2π)n−1
dΩn−2

Integrating over α and putting Ecm =
√
s we obtain

dΩn−2
2π

4
√
s
Πo

n−3, (4.97)

where

Πo =
[s− (m3 −m4)

2]1/2[s− (m3 +m4)
2]1/2

2
√
s

. (4.98)

Defining

Πi =
[s− (m1 −m2)

2]1/2[s− (m1 +m2)
2]1/2

2
√
s

, (4.99)

we can write Φ = 4
√
sΠi and the cross-section can be expressed as

dσ =
1

4
√
sΠi

2π

4
√
s

∑

|M|2Πn−3
o dΩn−2, (4.100)

or explicitly

dσ =
1

32πs

1

2n−4πn/2−2Γ(n/2 − 1)

×Πn−3
o

Πi
|M|2(1 − y2)n/2−2dy.

If all the masses are equal Π0 = Πi. As we have taken care of all the singularities
using phase space slicing method, the phase space integrals are required only in n = 4
dimensions. We can finally, write dσ for equal masses in initial and final state in 4
dimensions, defining v = cos2(θ/2), as

dσ =
1

16πs
|M|2dv. (4.101)
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In the CM frame of colliding hadrons H1 and H2 carrying a centre of mass energy (pH1
+

pH2
)2 = S the incoming parton momenta are

p1cmH =

√
S

2

(

xa, 0, 0, xa

)

, (4.102)

p2cmH =

√
S

2

(

xb, 0, 0,−xb
)

. (4.103)

In the CM frame of partons p3
1 + p3

2 = 0, using this we can determine the transformation
matrix to boost to CM frame of partons.

(

coshχ sinhχ
sinhχ coshχ

)

, (4.104)

which transforms the 0 and 3 components of momenta. The entries of the matrix are
given by

coshχ =
xb + xa
2
√
xaxb

, sinhχ =
xb − xa
2
√
xaxb

. (4.105)

Let us parameterize the momenta in p1 + p2 rest frame as

p3 =
(

p0
3, 0, |p3| sin θ, |p3| cos θ

)

,

p4 =
(

p0
3, 0,−|p3| sin θ,−|p3| cos θ

)

, (4.106)

and apply the inverse transformation obtained by replacing χ→ −χ
(

coshχ − sinhχ
− sinhχ coshχ

)

, (4.107)

to obtain momenta in Laboratory frame

p3cmH =

√
S

2

(

[xav + xb(1 − v)], 2
√

xaxbv(1 − v), 0, [xav − xb(1 − v)]
)

, (4.108)

where v = cos2(θ/2).

2 →3 phase space. In the CM frame of the two final state photons we can parameterize
the momenta as follows. We can take p1 to define the z axis, and using p1 and p2 define
a plane. The momentum p5 is determined by momentum conservation.

p1 = E1

(

1 , 0, 0, 1
)

,

p2 = E2

(

1, 0, sinψ, cosψ
)

,
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p3 =

√
s2

2
(1, sin θ2 sin θ1, cos θ2 sin θ1, cos θ1),

p4 =

√
s2

2
(1,− sin θ2 sin θ1,− cos θ2 sin θ1,− cos θ1), (4.109)

where sinψ > 0. The three body processes are characterized by five independent scalar
quantities:

p12 = (p1 + p2)
2,

p15 = (p1 − p5)
2,

p25 = (p2 − p5)
2,

p13 = (p1 − p3)
2,

p24 = (p2 − p4)
2. (4.110)

Of course any other set of five independent scalars can be chosen. For convenience let
us introduce the variables x and y, where x = p34/p12 and y is the cosine of the angle
between p1 and p5. We have

0 ≤ x ≤ 1, −1 ≤ y ≤ 1, (4.111)

and
p15 = −p12

2
(1 − x)(1 − y), p25 = −p12

2
(1 − x)(1 + y). (4.112)

The phase space is given in 4-dimensions by

dΓ3 =
1

(4π)2

1

16π
d cos θ1dx

xp12

2π
(1 − x)dydθ2. (4.113)

We want to express the momenta in the Lab-frame. The transformation matrix can
be obtained by first boosting to the p1 + p2 rest frame and rotating to align p1 and p2

parallel to the z−axis. Finally we will boost to the laboratory frame. First let us ensure
(p1 + p2)

(2) = 0.

(

coshχ sinhχ
sinhχ coshχ

)(

E1

E2 sinψ

)

=

(

A
0

)

. (4.114)

We make another boost along the z− axis to make the z components back to back.

(

cosh χ̄ sinh χ̄
sinh χ̄ cosh χ̄

)(

A
E1 + E2 cosψ

)

=

(

B
0

)

. (4.115)
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The energy components A and B are positive. Solving the above equations we obtain

coshχ =
E1 + E2

√

(E1 + E2)2 − E2
2 sin2 ψ

, sinhχ =
−E2 sinψ

√

(E1 + E2)2 − E2
2 sin2 ψ

,

cosh χ̄ =
A

√

A2 − (E1 + E2 cosψ)2
, sin χ̄ =

−(E1 + E2 cosψ)
√

A2 − (E1 + E2 cosψ)2
. (4.116)

Making the above transformations successively we can determine p1, and the angle α
which it makes with the z-axis after the transformations.

p1 = (E1 cosh χ̄ coshχ + E1 sinh χ̄, 0, E1 sinhχ,E1 sinh χ̄ coshχ + E1 cosh χ̄) (4.117)

cosα =
1

H
(E1 sinh χ̄ coshχ + E1 cosh χ̄), sinα = −E1 sinhχ

H
, (4.118)

where
H =

(

E2
1 sinh2 χ+ (E1 sinh χ̄ coshχ+ E1 cosh χ̄)2

)1/2
. (4.119)

Note that we have put a minus sign in the above expression because sinhχ is negative.
After rotating by an angle α we get p1 in p + p2 rest frame aligned along the positive z
direction.

p1 =

[

E1E2

2
(1 − cosψ)

]1/2

(1, 0, 0, 1). (4.120)

As a check we can find p2 and it comes out to be as expected

p1 =

[

E1E2

2
(1 − cosψ)

]1/2

(1, 0, 0, − 1). (4.121)

Finally we boost to the laboratory frame making the transformation (4.107) and obtain
the momenta as given in Eq. 4.102 and Eq. 4.103.

4.4.1 Conversion factor

Till now all the calculations have been carried out in natural units. But we need to convert
to SI units for making numerical predictions. In the following we will briefly summarize
the system of natural units and the conversion from it to SI units.

We know that there are three fundamental constants of nature, the velocity of light
in vacuum c (Special Relativity), the Planck’s constant h6 (Quantum Mechanics) and
the Newtons’s constant G (Gravity). Also there are three dimensions M,L and T. The
dimensions of fundamental constants are as follows

[h6 ] =
ML2

T
, [c] =

L

T
, [G] =

L3

MT−2
(4.122)
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Let us take a system of units, called natural units, such that the velocity of light is
a dimensionless number and equals unity, that is c = 1. This puts time and length
dimensions of equal footing: L = T . Next we can choose to make one of h6 and G to
be equal to unity. For our purpose obvious choice is h6 = 1. We see that it makes the
length to have dimensions of inverse mass, L = M−1. Now there is no freedom left and
the dimension of G is completely determined by the above relations. Depending on the
context, one may instead choose c = G = 1, and this would fix the dimensions of h6 . Let us
now determine the factor with which to multiply the cross-section to convert to SI units
from natural units. Remembering that cross-section has dimensions of area which is L−2

and noting

σ = k
1

(Energy)2
, (4.123)

where k is a dimensionless number, we can determine the conversion factor.

L2 = [h6 ]n1 [c]n2

(

ML2

T 2

)−2

, (4.124)

where we have used the fact that energy has dimensions

E =
ML2

T 2
. (4.125)

Solving for n1 and n2 we obtain n1 = n2 = 2. So we have to multiply by a factor of (h6 c)2.
It is customary to use barn as unit for cross-section which is defined by the relation

1b = 10−24cm2. (4.126)

This gives
(h6 c)2 = 0.3894 × 109 (GeV )2pb, (4.127)

where pb = 10−12b is pico barn.



Chapter 5

Results and Conclusions

In the preceeding chapters we have presented the details of the next-to-leading order cal-
culation for the production of two direct isolated photons at the hadron colliders. This
calculation was based on the semi-analytical two cutoff phase space slicing method. We
presented all the order αs pieces: dσsoft, dσHC+CT , dσvirt. The full matrix elements
squares for real emission processes which go into evaluation of the 3-body hard non-
collinear contribution were not presented as the expressions are large. We also discussed
the smooth cone isolation prescription which we will use to remove the fragmentation
photons. In this chapter we will present the results obtained form our Monte Carlo code
based on the method of two cutoff phase space slicing. Various kinematical distributions
will be presented here both to leading order and next-to-leading order in strong coupling
constant in the ADD and unparticle models. We will show that inclusion of higher order
QCD radiative corrections reduces the sensitivity to the factorization scale and enhances
the cross sections significantly.

Let us define the kinematical variables below. The incoming hadron momenta will
be labeled by P1 and P2 and the square of the sum of momenta of two final state photons
by Q2.

1. Invariant Mass Q of photon pair

Q2 = (p3 + p4)
2 (5.1)

2. Rapidity Y of photon pair

Y =
1

2
ln

(

P1 ·Q
P2 ·Q

)

(5.2)

3. Rapidity yγ of a photon

yγ =
1

2
ln

(

E + pz
E − pz

)

(5.3)
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where E and pz are its energy and the longitudinal momentum respectively.

4. cosθ∗

cosθ∗ =
P1.(p3 − p4)

P1.(p3 + p4)
(5.4)

5. Transverse momentum QT

QT =
√

q2
x + q2

y. (5.5)

At LO, the photon pairs will have zero QT as incoming partons have no transverse mo-
mentum, and hence QT distribution will be proportional to δ(QT ). However, at NLO, the
photon pairs will be accompanied by a quark (anti-quark) or a gluon in the final state
resulting in a non-zero QT .

The material in the following pages is presented as follows. First we will present
results for photon pair production in the context of scalar unparticles. This will be
presented only to leading order in QCD. Here we will present the matrix elements as they
were not given in the previous chapter. Next we will present the results in the ADD model
and the unparticle model with spin-2 unparticles. These results will be presented at full
next-to-leading order in QCD.

5.1 PP → γγ with scalar unparticles

The operators that describe the interaction of scalar unparticle fields with those of the SM
are given in Eq. (2.34). At leading order two photons are produced by quark anti-quark
annihilation in SM and through quark anti-quark annihilation with an intermediate scalar
unparticle propagator. At this order gg initiated processes also occur as gluons couple
to scalar unparticles. The SM contribution is given in Eq. (4.3). Below we give the
contributions coming from unparticle mediated partonic subprocesses :

|M qq̄|2 =
1

8Nc
λ4
s χ

2
u

(

s

Λ2
u

)2du−1

,

|Mgg|2 =
1

8(N2
c − 1)

1

4
λ4
s χ

2
u

(

s

Λ2
u

)2du

. (5.6)

where χu = Adu
/(2 sin(duπ)) and Nc is the number of colors. Adu

is defined in (2.29). The
variables s, t and u are the Mandelstam invariants which are given in Eq. (4.8). In the
above matrix elements we have already done spin and colour averages and included the a
factor of 1/2 for identical photons. Note that the interference with SM matrix elements
vanishes. This happens because there is no gg initiated process at LO in SM and because
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Figure 5.1: The function χ2
u showing its variation with the scaling dimension du of the

unparticle operator.

the interference of qq initiated process is zero due to trace over an odd number of Dirac
gamma matrices.

Before, we present the effects of unparticles on various distributions of di-photon
system at the LHC, we discuss the coefficient χ2

u that appears in the above equations.
Unitarity imposes constraint [82] on the scaling dimension of these operators, which for
scalar unparticle is du > 1. In Fig. (5.1), we have plotted it against the scaling dimension
du of the unparticle operator. χu is negative when 1 < du < 2 and singular as du → 2.
As du → 1, χu approaches a limiting value and as we go below du = 1.01, the variation
is found to be mild. In the plateau region, where 1.3 < du < 1.9, the function is almost
constant and relatively small. For our numerical analysis we have taken λs in the range
0.4 ≤ λs < 1, so that the unparticle effects are treated as perturbation. The other
parameter that appears in this model is Λu which we choose to be 1 TeV.

We will carry out analysis for the LHC with
√
S = 14 TeV. We have imposed the

cuts: rapidity |yγ| < 2.5, and transverse momentum of the photons pγT > 40 GeV [83]
for all the distributions that we have reported here in order to make our predictions
for an environment which is as close as possible to that of the experiment. Moreover,
for the invariant mass distribution, in order to suppress the SM background and also
to enhance the signal we have imposed an angular cut on the photons | cos θγ | < 0.8,
where θγ is the angle of the photons in the lab frame. Similarly, for the angular and
rapidity distributions, to suppress the background, we have considered only those events
that satisfy the constraint Q > 600 GeV. For all our plots, we have used MRST 2001
leading order (LO) parton density sets [84].

In Fig. 5.2 (left panel) we have plotted dσ/dQ distribution for Q between 100 <
Q < 900 GeV. Here we have chosen du = 1.01 and Λu = 1 TeV. With this choice of
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parameters, we find that the unparticle effects can be seen only in the large Q region.
In addition, we have presented different contributions coming from various sub-processes
to the cross section. The quark anti-quark initiated process dominates over the gluon
initiated process due to higher power of scale in the later case.

In Fig. 5.2 (right panel) we show the variation of the invariant mass distribution
with respect to the scaling dimension du for Λu = 1 TeV. As expected, we find that the
unparticle effects show up significantly when the value of du decreases. When du is around
1.9, the unparticle effects are completely washed away.

We have also studied the effects of λs variations on the distributions. They are
shown in Fig. 5.3 for du = 1.01. From the figure, we see that in the region where du is
below 1.1 and λs above 0.6 the scalar unparticle contribution is substantial even at low
energies.

In Fig. 5.4 and Fig. 5.5 we have plotted the angular and rapidity distributions.
These have been obtained for du = 1.01, Λu = 1 TeV. We show the results for two
different choices of the coupling constants. To enhance the signals an integration over Q
in the range 600 < Q < 0.9Λu has been carried out. We see from Fig. 5.4 that the signal
differs appreciably from SM prediction for both the choices λs = 0.4, 0.6 of the coupling
constant. In the rapidity distributions shown in Fig. 5.5 we see that the signal is different
significantly from the SM predictions in the central region of rapidities Y and yγ.

5.2 PP → γγ in ADD and unparticle model

In this section we will present the next-to-leading order results for both the unparticle
model and ADD model. Here only spin-2 unparticles will be considered. Let us make
some general remarks first.

General remarks. The kinematical distributions will be presented for the LHC with
a centre of mass energy 14 TeV. In our analysis we will use CTEQ6L and CTEQ6M [85]
parton density sets for leading order and next-to-leading order kinematical distributions
with the corresponding value of strong coupling constant αs(MZ) = 0.118. The fine
structure constant will be taken as αem(MW ) = 1/128. Unless mentioned otherwise we
identify the renormalization and factorization scales to the invariant mass of the photon
pair, ie., µR = µF = Q. As already mentioned in previous chapters we will treat all the
quarks to be massless.

We have seen in chapter 4 that the phase space slicing parameters δs and δc are
introduced at the intermediate stages of calculation and the final results should be inde-
pendent of these parameters. To check this we will present the variation of the sum of
2-body and 3-body contributions with the variation of the slicing parameters. The region
in which the sum is stable under variations will be chosen for further study.
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We have imposed the kinematical cuts on the photons as used by the ATLAS detector
[86]:

1. pγT > 40 (25) GeV for harder (softer) photon,

2. |ηγ| < 2.5 for each photon.

The photons are restricted to have a separation of at least Rγγ = 0.4 in the pseudo-rapidity
azimuthal angle, η − φ, plane. In addition to these constraints, we impose smooth cone
isolation criterion on photons given in (4.1). R0 = 0.4 is taken for the cone radius. Unless
otherwise specified we use n = 2 and E iso

T = 15 GeV which appear in H(R).

As SM NLO results exist in literature [17, 25, 21] , to check our code we have
compared our results with [25] using their isolation criterion

[H(R) = pT (γ)ε ([1 − cos(R)]/[1 − cos(R0)])
n] (5.7)

and their choice of µF , µR and parton distribution sets. We have found good agreement
with [25].

5.2.1 Large extra dimension model

A leading order study for effects of the ADD model KK gravitons on production of two
direct photons was carried out in [37]. Here it was also shown that unitarity restricts the
largest invariant mass of the two photons to be less than the cutoff scale MS. Following
[37] we will restrict to Q < 0.9MS in our study. As a check we reproduced the leading
order results presented in this paper and found good agreement. Results that are more
precise and less sensitive to the µF will be presented in this section.

Before proceeding further we present the stability of the sum of 2-body and 3-
body contributions against the variation of the slicing parameters δs and δc. In Fig. 5.6
and Fig. 5.7 the individual 2-body and 3-body order αs contributions and their sum
are presented in invariant mass distribution in the SM and SM+ADD respectively as a
function of δs with δc fixed at 10−5. From these figures it is clear that the sum is fairly
stable against the variation of slicing parameters; this serves as a check on the numerical
implementation of the phase space slicing in our numerical code. For all further analysis,
we choose δs = 10−3 and δc = 10−5.

First, we present our results for the invariant mass distribution. In Fig. 5.8 (left
panel), we present LO and NLO contributions to the signal (SM+ADD) and the SM
background against Q between 300 GeV and 1 TeV. We choose the fundamental scale
MS = 2 TeV and the number of extra dimensions d = 3. We do not treat the gluon-gluon
fusion process through quark loop as LO as its contribution is significant only at small Q
and there is no reason to consider it as a LO piece at high Q values.
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For the above choice of parameters the signal starts deviating from the SM back-
ground around Q = 500 GeV. The value of Q at which the deviation occurs depends very
much on the choice of the parameters, namely the scale MS, d and the cut-off scale Λ for
the summation of the KK modes. In Fig. 5.8 (right panel) we show how the invariant
mass distribution depends on the choice of the fundamental scale MS when d = 3. As
expected smaller the MS, the larger the deviation one observes. The dependence on the
number of extra dimensions d is presented in Fig. 5.9 (left panel) for d = 3 − 6 keeping
MS = 2 TeV fixed. We find that the ADD contribution decreases with increase in d.
In Fig. 5.9 (right panel) we present the cut-off scale Λ dependence for Λ = 0.6MS to
MS. For lower values of cut-off scale, the number of KK modes available are less and the
signal will decrease with decrease in Λ as shown in the figure. In the following, we choose
MS = 2 TeV, d = 3 and Λ = MS. For the rest of the kinematic distributions that we have
considered, to reduce the SM background and to enhance the signal, we integrate over Q
in the range 600 < Q < 1100 GeV.

In the left panel of Fig. 5.10, we show the production cross section as a function
of Y between −2.0 and 2.0 after integrating over Q in the region 600 < Q < 1100 GeV
where the ADD model shows significant contribution over the SM background. From the
left panel of this figure, we observe that the signal exceeds the background by more than
an order of magnitude at the central rapidity region Y = 0.

The transverse momentum of the photon pair is defined by QT =
√

q2
x + q2

y. At LO,
the photon pairs will have zero QT as incoming partons have no transverse momentum,
and hence QT distribution will be proportional to δ(QT ). However, at NLO, the photon
pairs will be accompanied by a quark (anti-quark) or a gluon in the final state resulting
in a non-zero QT . The numerical results for the QT distribution is presented in the right
panel of Fig. 5.10.

In Fig. 5.11, the left panel shows the rapidity distribution of the photons as a
function of yγ in the region −2.0 < yγ < 2.0. The SM cross sections both at LO and
NLO level do not show significant dependence on yγ unlike contribution from the ADD
model. We also find that the QCD corrections are large for the signal as compared to the
SM background.

Next we present cos(θ∗) distribution. Since gravitons are spin-2 particles, the angu-
lar dependence of the cross section in ADD model will be different from SM. It is shown
in the right panel of Fig. 5.11.

Scale variations. In this section, we discuss the impact of NLO QCD corrections to
various distributions. The uncertainty in LO computation of observables in the hadron
colliders originates from two important sources, namely, the missing higher order radia-
tive corrections and the choice of factorization and renormalization scales. The former
enters through parton density sets and the latter through the renormalized parameters
such as running coupling constant αs of the theory. The radiative corrections coming
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from QCD in our case enhance both SM as well as ADD distributions. Hence, the K-
factor (K = σNLO/σLO), that quantifies these effects is always positive for the cases we
studied in this paper. It is clear from the plots that the K-factor is different for different
distributions and also within a given distribution, it varies with the kinematical variable,
say Q or Y etc. More importantly, the numerical value of K depends very much on the
kinematical cuts imposed on each distribution. We find that the K factors of the distri-
butions reported in the paper are not large and hence our NLO results are stable under
perturbation and reliable for further study. Observables are expected to be independent
of renormalization and factorization scales, thanks to renormalization group invariance.
However, any truncated perturbative expansion does depend on the choice of these scales.
This is expected to improve if higher order corrections are included in the perturbative
expansion. Indeed, our NLO results of these distributions show significant improvement
on the factorization scale uncertainty entering through parton density sets at LO level. In
order that the perturbative expansion does not break down these scales should be chosen
close to the scale in the problem such as Q or QT . In the Fig. 5.12 we show the effect
of variation of µF between Q/2 and 3Q/2. We studied this variation for Y and cos θ∗

distributions in the ADD model.

5.2.2 Tensor unparticles

The matrix element squares with spin-2 unparticle propagator can be obtained by making
the following replacement to κ2D(s) in chapter 4.

κ2D(s) → −4
λ2
t

Λ2du
u

CTdu(du − 1)

4du−1

Γ(2 − du)

Γ(du + 2)
e−iπdusdu−2 (5.8)

The scale Λu at which scale invariance sets in the BZ sector is chosen to be 1 TeV.
Scale invariance restricts the scaling dimension of tensor operators to du ≥ 3, in our
calculation we have chosen du = 3.01. The coupling λt is taken to be of order one.

To show that the results are independent of the choice of the slicing parameters δs
and δc, we have plotted 2-body and 3-body pieces of dσ/dQ as functions of δs with δc kept
fixed at a very small value 10−5 in Fig. 5.13. We see that the sum is fairly stable under
the variation. For rest of our numerical study, we have chosen δs = 10−3 and δc = 10−5.

We present various subprocess contributions to NLO in QCD in the invariant mass
distribution for the range 400 < Q < 900 GeV in Fig. 5.14. In the SM both qq̄ and
qg subprocess contributions are positive with qq̄ contribution being dominant over that
of qg for the range of Q considered. In the unparticle sector the qq̄ and gg subprocess
contributions via the pure unparticle exchange (direct) are positive while the qg contri-
bution is negative. At the interference level the gg interference with the SM box has
a positive contribution and is almost constant for the range of Q considered. However,
the interference of both qq̄ and qg subprocesses with the SM have negative contributions
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and are larger in magnitude compared to the direct ones. The direct unparticle exchange
contributions can become significant in the large Q region because the cross sections go
as powers of Q/ΛU , thus leading to the visibility of the unparticles only in that region of
Q. It is worth noting that only the gg initiated subprocess has the dominant contribution
over the rest in this region.

In Fig. 5.15 we present our results for dσ/dQ (left panel) for Q between 400 and
900 GeV and dσ/dY (right panel) for |Y | < 2.0, where Y is the rapidity of the diphoton
system. The short dashed (LO) and the long dashed lines (NLO) correspond to SM distri-
butions. The dotted (LO) and the solid (NLO) lines correspond to the signal (SM+UP)
of the unparticle physics. As expected we find that the unparticle contribution to the
invariant mass distribution grows with Q and it dominates over the SM contributions
above Q = 600 GeV. The precise value where this happens will depend very much on
the choice of ΛU and other unparticle parameters. Since unparticle effects can be seen in
the larger values of Q, rapidity distributions are computed by integrating Q between 600
and 900 GeV. Near the central value of Y , we find large enhancement of the cross section
from the SM results if we include unparticle contributions.

At next-to-leading order the total transverse energy of the hadrons is due to a single
parton around the photons and does not correspond to the actual hadronic energy in an
experiment. Hence the Eiso

T at the parton level is a crude estimate of that of the jets
at the detector level. To show the dependence on E iso

T we present the invariant mass
distribution for Eiso

T = 15 GeV and Eiso
T = 30 GeV, for n = 2. To study the dependence

of our predictions on the choice of H(R) we have varied it by changing n from 1 to 2 and
keeping Eiso

T fixed at a value of 15 GeV. These variations are shown in Fig. 5.16 and show
a very small dependence for R0 = 0.4.

Until now our analysis was restricted to the case where 3 < du < 4, which was
essential for a tensor unparticle as a consequence of scale invariance. There are no known
examples of unitary quantum field theory that are scale invariant but not conformal
invariant. For conformal invariance, unitarity demands that du > 4 for the tensor unpar-
ticles. In Fig. 5.17 (left panel) the unparticle sector as a result of scale invariance and not
conformal (du = 3.01) is contrasted to the case where the unparticle sector is conformal
(du = 4.001). This is to both LO and NLO in QCD and for Λu = 1 TeV. In Fig. 5.17 (right
panel) we have considered the invariant mass distribution for du > 4 to LO in QCD. For
this plot we have considered Λu = 2 TeV and have probed Q < 0.9Λu. Closer to du = 4
there could still be sufficient unparticle contribution for the tensor operator. The turn-
around with energy behaviour of the unparticle effects is a typical feature of any physics
beyond the SM. One observes a similar behaviour in models with large extra-dimensions.
The origin of this turn around contribution comes from the terms proportional to (s/Λu)

du

in the matrix elements involving unparticles.
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Figure 5.2: Spin-0 unparticles: Invariant mass distribution for the choice Λu = 1 TeV and
λs = 0.9. We imposed an angular cut | cos θγ| < 0.8 on the photons to suppress the SM
background. Left panel: The contribution of the various sub processes with du = 1.01.
Right panel: Variation with du.
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Figure 5.3: Spin-0 unparticles: Invariant mass distribution is plotted for various values
of the coupling λs for spin-0 with Λu = 1 TeV and du = 1.01, with an angular cut on the
photons |cos θγ | < 0.8.
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Figure 5.4: Spin-0 unparticles: Angular distributions dσ/dcos θ∗ of the photons for spin-0
with Λu = 1 TeV and du = 1.01. We have taken couplings λs = 0.6, 0.4 integrating Q in
the range 600 GeV < Q < 0.9Λu.
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Figure 5.5: Spin-0 unparticles: Left Panel:dσ/dY of the di-photon system. Right panel:
dσ/dyγ of photons. Λu = 1 TeV and du = 1.01. We have taken the couplings to be
λs = 0.6, 0.4 with Q in the region 600 GeV < Q < 0.9Λu.



5.2. PP → γγ IN ADD AND UNPARTICLE MODEL 69

-0.1

-0.05

0

0.05

0.1

x 10
-2

10
-5

10
-4

10
-3

10
-2

Variation with δs

dσNLO / dQ (pb/GeV)
LHC
SM
Q=700 GeV
δc = 10-5

2-body
3-body

2-body + 3-body

δs

δs

0.07

0.08

0.09

0.1

x 10
-3

10
-5

10
-4

10
-3

10
-2

Figure 5.6: ADD: Stability of the order αs contribution to the SM cross section against
the variation of the slicing parameter δs (top), with δc = 10−5 fixed, in the invariant mass
distribution of the di-photon. Below is shown the variation of the sum of 2-body and
3-body contributions over the range of δs considered and contrasted against the one at
δs = 10−3.
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Figure 5.7: ADD: Stability of the order αs contribution to the SM+ADD cross section
against the variation of the slicing parameter δs (top), with δc = 10−5 fixed, in the
invariant mass distribution of the di-photon with MS = 2 TeV and d = 3. Below is
shown the variation of the sum of 2-body and 3-body contributions over the range of δs
considered and contrasted against the one at δs = 10−3.
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Figure 5.8: ADD: Invariant mass distribution of the di-photon production in the ADD
model at the LHC. Both SM and the signal (SM+ADD) are presented at LO and NLO
for MS = 2 TeV and d = 3 in the left panel. Further the dependence of the cross sections
on the scale MS in right panel has been shown to NLO in QCD.
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Figure 5.9: ADD: Invariant mass distribution of the di-photon production in the ADD
model at the LHC. The dependence of the cross sections on the number d of extra di-
mensions is presented in the left panel and on the cut-off scale Λ for the summation over
virtual KK modes in the right panel to NLO in QCD.
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Figure 5.10: ADD: Transverse momentum rapidity dσ/dY (left) and dσ/dQT (right)
distributions of the di-photon production are presented in the ADD model with MS = 2
TeV, d = 3 and by integrating over Q in the range 600 < Q < 1100 GeV.
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Figure 5.11: ADD: Rapidity dσ/dyγ (left) and angular distributions dσ/d cos θ∗ (right)
of the photons are presented in the ADD model with MS = 2 and d = 3. Both of these
distributions are obtained by integrating over the invariant mass of the di-photon in the
range 600 < Q < 1100 GeV.
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Figure 5.12: ADD: Factorization scale dependency of the LO and NLO cross sections in
the ADD model with MS = 2 TeV and d = 3 for a scale variation of Q/2 < µF < 3Q/2.
For both the rapidity (left) and angular (right) distributions of the di-photon production,
we have integrated over the invariant mass in the range 600 < Q < 1100 GeV.
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Figure 5.13: Spin-2 unparticles: Plots showing stability of dσ/dQ for the SM (left panel)
and the SM+ UP (right panel) against δs variation with the choice of δc = 10−5.
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Figure 5.14: Spin-2 unparticles: Subprocess contributions in the SM and unparticle model
in the invariant mass distribution at NLO for 400 < Q < 900 GeV.
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Figure 5.15: Spin-2 unparticles: Plots showing invariant mass (left panel) and rapidity
(right panel) distributions of the diphoton system with du = 3.01, Λu = 1 TeV and
λt = 0.9. For rapidity distribution Q is integrated in the range 600 GeV < Q < 0.9Λu.
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Figure 5.16: Spin-2 unparticles: Dependence on isolation parameters E iso
T (left panel) and

n (right panel) is shown in invariant mass distribution for the range 400 < Q < 900 GeV.
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Figure 5.17: Spin-2 unparticles: Invariant mass distribution of the diphoton system (left
panel) for du > 4 (conformal invariance) is contrasted with the 3 < du < 4 (scale invari-
ance). To LO in QCD and for Λu = 2 TeV (right panel), we have plotted the invariant
mass distribution of the diphoton system for du > 4.



Chapter 6

Summary and conclusions

In this section we summarize the thesis and conclude. In this thesis we have considered
production of isolated direct photon pairs in hadronic collisions at the LHC at 14TeV .
This process is one of the important discovery channels at the LHC. Here we carried out
the study at next-to-leading order accuracy in strong coupling in the extra dimension
model of ADD and the unparticle model. The necessity of going beyond leading order
is two fold. A NLO computation includes higher order piece which is missing in a LO
computation and thus makes the predictions more accurate. Secondly it makes the ob-
servable less sensitive to the choice of factorization scale µF and the renormalization scale
µR (if LO starts at order αs). As we have seen in the previous chapters, LO predictions
are very sensitive to the choice of factorization scale. This scale enters at LO through
parton distribution functions and is arbitrary to a large extent. The sensitivity to µF is
reduced at NLO as the (reduced) hard partonic crosssection, now, also depends on the µF
and partially cancels µF dependence of the observable coming from parton distribution
functions.

The task involved two components of calculation. Analytical calculation of matrix
elements was carried out using FORM. The numerical computations to obtain various
kinematical distributions were implemented using FORTRAN 77. The requirement of
experimental cuts of the final state particles and necessity of obtaining many kinematical
distributions give the Monte Carlo methods an edge over completely analytical methods.
Using Monte Carlo methods the programs can be tailored easily to impose various kine-
matical cuts and obtain many kinematical distributions simultaneously. We developed our
Monte Carlo code using integrator VEGAS, based on the two cutoff phase space slicing
method. In this method two small dimensionless parameters δs and δc are introduced to
divide the phase space into regions which contain soft and collinear singularities. These
singularities appear as poles in ε in dimensional regularization and are canceled with vir-
tual contributions or mass factorized. The remaining finite pieces are integrated using
Monte Carlo.
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Various checks on the code were carried out to ensure that the slicing method has
been implemented correctly. The first is to check that the observables do not depend
on the arbitrary slicing parameters δs and δc which appear at the intermediate stages of
the computation. We found that the sum of 2-body and 3-body (explained in previous
chapters) is fairly independent of the slicing parameters over a wide range.

We obtained many kinematical distributions at NLO accuracy both in the ADD
model and spin-2 unparticle model such as invariant mass (Q), transverse momentum QT ,
rapidity of photon pair (Y ), rapidity of individual photons (yγ), and (cos θ∗) distributions
were obtained. In order to isolate the direct photons we used the isolation cuts used by
ATLAS and CMS in their Higgs search studies. In additions, to suppress the contributions
coming from photons arising from fragmentation of partons, we used the smooth cone
isolation criterion advocated by Frixione.

Photon pair production with scalar unparticles was presented to LO accuracy for
the choice Λu = 1TeV . the scaling dimesion du was chosen to be du = 1.01 as a default
choice for presenting many kinematical distributions, however effects of variation of du
and the scalar coupling constant λs were also presented. We observed that the scalar
unparticle effects could be observed easily over a wide region of parameter space.

In the ADD model we used MS = 2TeV and number of extra spatial dimensions
d = 3 as the default choices and presented various distributions. We observed significant
enhancements in the predictions as we move from LO to NLO. This was observed in all
the distributions presented here. We also studied the effects of varying MS and d on
the signal. As expected we found decrease in signal with increase in the values of these
parameters. For angular, QT and rapidity distributions, integrations over a Q range were
carried out in general to enhance the signals. Lastly we could show that the sensitivity to
the factorization scale µF was significantly reduced and the new results are more precise.
This makes these new results more suitable for further study and useful to constrain
various parameters of these two models.

For spin-2 unparticles we used the following choices for the parameters: Λu = 1TeV
and du = 3.01 and the coupling constant to be close to 1. Again significant enhancement
over SM predictions were obtained. Also increase in signals in going from LO to NLO was
observed. We also varied the isolation parameters which appear in smooth cone isolation
criterion to see the effect of the variation. We did not find any significant variations.

We observe here that our Monte Carlo base FORTRAN code which uses the two
cutoff phase space slicing method is capable of easily accommodating new processes in
various models. Many distributions can be obtained easily from this code for studying
SM and new physics scenarios.



Chapter 7

Appendix

7.1 Feynman rules and diagrams

In Fig. 7.1 we give Feynman rules for spin-0 unparticle, the corresponding vertices for
spin-2 KK coupling to SM fields are given in Fig. 7.2. The spin-2 unparticle vertices are
same as that of spin-2 KK vertices (as the coupling in both the cases is through the SM
energy momentum tensor ) except for small modification of the coupling constant.

i
λs

Λdu−1
u

k2, ν

k1, µ

−i λs
Λdu
u

(−p1 · p2 g
µν + pν1p

µ
2 )

Figure 7.1: Spin-0 unparticle vertices.
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Acλ(k3)

Abσ(k2)

Aaρ(k1)

Adδ

µν

−ig2
sκ/2(f eacf ebdGµν,ρσλδ + f eabf ecdGµν,ρλσδ

+f eadf ebcGµν,ρσδλ)

µν

k2, n

k1, m

−iκ/2δmnCµν,ρσkρ1kσ2

Figure 7.2: Coupling of gravity (spin-2 unparticles) to SM fields. The functions Cµν,ρσ,
Dµν,ρσ(k1, k2), Eµν,ρσ(k1, k2), Fµν,ρσλ(k1, k2, k3), Gµν,ρσλδ which appear in the Feynman
rules are defined in the section 2.1 in the text.
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Figure 7.3: Leading order diagram in SM. The diagram with the momenta of final state
photons interchanged (which is not shown here) also contributes

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 7.4: Order αs virtual diagrams in SM. The diagram with the momenta of final
state photons interchanged (which is not shown here) also contribute.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.5: Order αs real emission Feynman diagrams in SM. The diagram with the
momenta of final state photons interchanged (which are not shown here) also contribute.
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(a) (b)

Figure 7.6: LO gravity (spin-2 unparticle) mediated diagrams.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.7: Order αs gravity (spin-2 unparticle) mediated virtual correction Feynman
diagrams.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 7.8: Gravity (spin-2 unparticle) mediated real emission diagrams which contribute
at NLO.
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7.2 Area of a unit sphere in n dimensions

Let us label the Cartesian coordinates as x1, x2, . . . , xn. A sphere of radius r is defined by
the equation x1

2 + x2
2 + . . .+ xn

2 = r2, introducing spherical coordinates we can write a
point on the sphere in terms of its radius r and the n− 1 angles

xn = r sin θ1 sin θ2 . . . sin θn−2 sin θn−1 (7.1)

xn−1 = r sin θ1 sin θ2 . . . sin θn−2 cos θn−1 (7.2)

xn−2 = r sin θ1 sin θ2 . . . cos θn−2 (7.3)
... =

... (7.4)

x3 = r sin θ1 sin θ2 cos θ3 (7.5)

x2 = r sin θ1 cos θ2 (7.6)

x1 = r cos θ1 (7.7)

We have, thus, for the volume element

dnx = dx1dx2 . . . dxn = Jdrdθ1dθ2 . . . dθn−1 (7.8)

Jacobian J is given by determinant of matrix Jij = ∂xi/∂θj, where θn = r.

Jii = r sin θ1 . . . sin θi−1(− sin θi) i < n (7.9)

Jij = 0 i < j < n (7.10)

Jin =
xi
r

(7.11)

J =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

J11 0 0 . . . 0 0 J1n

• J22 0 . . . 0 0 J2n

• • J33 . . . 0 0 J3n

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
• • • • • Jn−1,n−1 Jn−1,n

• • • • • Jn−1,n Jn,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(7.12)

We have denoted the entries which do not bother us by •. To simplify the structure let
us do elementary operations on the rows. Multiply last row with −Jin/Jnn and add to
the ith, this will annihilate the last entry in ith row. Jii gets modified to

Jii → Ĵii = Jni
−Jin
Jnn

+ Jii

= −r sin θ1 . . . sin θi−1
1

sin θi
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Now we have cast the determinant in a triangular form and it can be easily evaluated as
a product of diagonal entries,

J =

n−1
∏

i=1

Ĵii (7.13)

J = rn−1 sinn−2 θ1 sinn−3 θ2 . . . sin
2 θn−3 sin θn−2. (7.14)

Area of a sphere of radius r is thus
∫

rn−1 sinn−2 θ1 sinn−3 θ2 . . . sin
2 θn−3 sin θn−2dθ1 . . . dθn−1

To determine the integration limits, let us put n = 3 to get to familiar 3- dimensions.
This identifies θ1 with the polar angle θ which ranges from 0 to π, and θn−1 with the
azimuthal angle, and this ranges between 0 and 2π.

7.3 Dilogarithm and its properties

Here we very briefly discuss the dilog function Li2(z) which is defined as [87]

Li2(z) = −
∫ z

0

dt
log(1 − t)

t
(7.15)

and it has a series expansion as

Li2(z) =
∞
∑

n=1

zn

n2
|z| ≤ 1. (7.16)

Li2(z) has a brach cut on the +ive real axis with branch point z = 1.

Duplication (7.17)

Li2(z) + Li2(−z) =
1

2
Li2(z

2) (7.18)

Inversion (7.19)

Li2(−z) + Li2

(

−1

z

)

= 2Li2(−1) − 1

2
log2(z) (7.20)

Li2(z) + Li2(1 − z) = Li2(1) − log(z) log(1 − z) (7.21)

Li2(z) + Li2

[ −z
1 − z

]

= −1

2
log2(1 − z) (7.22)
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Below we give some useful identities after Abel.

Li2

[

x

1 − x

y

1 − y

]

= Li2

[

x

1 − y

]

+ Li2

[

y

1 − x

]

−Li2(x) − Li2(y) − log(1 − x) log(1 − y) (7.23)

Li2

[

x

1 − x

y

1 − y

]

= Li2

[

x

1 − y

]

+ Li2

[

y

1 − x

]

+ Li2

[ −x
1 − x

]

+ Li2

[ −y
1 − y

]

+
1

2
log2

(

1 − x

1 − y

)

. (7.24)

Li2(xy) = Li2(x) + Li2(y) + Li2

[

−x1 − y

1 − x

]

+ Li2

[

−y1 − x

1 − y

]

+
1

2
log2

[

1 − x

1 − y

]

(7.25)

We can determine Li2(1)andLi2(−1) easily using duplication and inversion identities.
Substituting z = −1 + iε we obtain

Li2(1) = −2Li2(−1) (7.26)

and

2Li2(1) = 2Li2(−1) − 1

2
log2(−1 + iε) (7.27)

These two equations give

Li2(1) =
π2

6
,

Li2(−1) = −π
2

12
= −1

2
ζ(2) (7.28)

7.4 Gamma function Γ(x)

Expansion of Γ(x) near its poles is

Γ(ε) =
1

ε
− γE + O(ε) (7.29)

Another useful result is

Γ(1 + ε) = e−γEε exp

( ∞
∑

2

(−1)kζ(k)εk

k

)

, |ε| < 1 (7.30)



7.5. CASIMIR INVARIANTS OF SU(N) ALGEBRA 93

where Euler’s gamma has a value

γE = 0.5772. (7.31)

7.5 Casimir invariants of SU(N) algebra

SU(N) algebra is generated by N × N traceless Hermitian matrices. There are N 2 − 1
such independent matrices. The operator

T 2 =
N2−1
∑

i=1

T iT i (7.32)

is an invariant of the algebra as it commutes with all other generators. Thus it is pro-
portional to the identity matrix. Let us denote by CF and CA the values it takes in
fundamental (F ) and adjoint (A) representations respectively:

N2−1
∑

i=1

T irT
i
r = Cr · 1, (7.33)

where r = F,A. The Casimir invariants CF and CA are given by

CF =
N2 − 1

2N
, CA = N. (7.34)

Another useful quantity which appears frequently in NLO QCD calculations is TF . It
appear in the following relation:

Tr(T iFT
j
F ) = TF δ

ij, (7.35)

and

TF =
1

2
. (7.36)

7.6 Integrals

Below we give the scalar integrals which appear in the calculation of loop integrals. Results
are given in 4 + ε dimensions. The
1. The two point integral B0(p)

∫

dnl

(2π)n
1

l2 (l + p)2
= −i

(

−p2
)

ε
2

1

(4π)
ε
2
+2

2

ε

Γ
(

1 − ε
2

)

Γ2
(

1 + ε
2

)

(1 + ε) Γ (1 + ε)

(7.37)
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(a)
r

p k

q
(b)p

k

q

Figure 7.9: Scalar diagrams. All the momenta are going into the diagrams

2. The three point integral C0(p, k); p
2 = k2 = 0, q2 6= 0 (see Fig. 7.9(b)).

∫

dnl

(2π)n
1

l2 (l + p)2 (l + p+ k)2 = −i
(

− (p + k)2)−1+ ε
2

1

(4π)
ε
2
+2

4

ε2
Γ
(

1 − ε
2

)

Γ2
(

1 + ε
2

)

Γ (1 + ε)

(7.38)

3. The four point integral D0(p, k, q); p
2 = k2 = q2 = r2 = 0 (see Fig. 7.9(a)).

∫

dnl

(2π)n
1

l2 (l + p)2 (l + p+ k)2 (l + p+ k + q)2 =
i

(4π)
ε
2
+2

8

ε2
Γ
(

1 − ε
2

)

Γ2
(

1 + ε
2

)

Γ (1 + ε)

× 1

(k + q)2 (p+ k)2

[

(

− (k + q)2)
ε
2

{

1 +
ε

2
ln

(

−(p+ k)2

(k + q)2

)

+
ε2

4
Li2

(

− (p+ q)2

(k + q)2

)

+
ε2

8
ln2

(

−(p+ k)2

(k + q)2

)

}

+
(

− (p+ k)2)
ε
2

{

1 − ε

2
ln

(

−(p+ k)2

(k + q)2

)

−ε
2

4
Li2

(

− (p+ q)2

(k + q)2

)

}]

(7.39)
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