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Conventions and Notations

Symbol Description

Z(G) center of G

Φ(G) frattini subgroup of G

G′ commutator subgroup of G

γ3(G) third term of the lower central series of G

H ≤ G H is subgroup of G

H < G H is proper subgroup of G

H E G H is normal subgroup of G

H / G H is proper normal subgroup of G

H# set of non-trivial elements of H

[x, y] x−1y−1xy, the commutator of x and y

[x, y, z] [[x, y], z]

CH(x) the centralizer of x in H

xG the conjugacy class of x in G

[G, x] the set {[g, x] | g ∈ G}

exp(G) exponent of G

\ set minus

|A| cardinality of the set A

Un(q) group of lower unitriangular matrices with entries from field of order q

bxc integral part of x





Synopsis

Study of finite groups having only two conjugacy class sizes goes back to 1953,

when N. Ito studied them first time and proved that such groups are more or

less finite p-groups. It was later proved that the nilpotency class of such finite

p-groups is at most 3. Conjugate rank of such a group is defined to be 1. This

thesis deals with classification of such groups.

The thesis contains three principal parts. The first part deals with finite

p-groups of conjugate type (1, p3). If a finite group G has only two conjugacy

class sizes 1 and pn, n ≥ 1, then we say that G is of conjugate type (1, pn). In

1999, K. Ishikawa [1111] classified (up to isoclinism) finite p-groups of conjugate

type (1, p) and (1, p2). We contribute in the same line of research by presenting

classification (up to isoclinism) of finite p-groups of conjugate type (1, p3).

In the second part of thesis, we present a complete classification (up to

isoclinism) of finite p-groups of conjugate type (1, pn) and nilpotency class 3.

The last part of the thesis deals with the probability distribution associated

to commutator word map in finite p-groups of conjugate rank 1. Let P (G) denote

the set of sizes of fibers (for section 0.30.3 for definition) of non-trivial commutators

of the commutator word map. We prove that |P (G)| = 1, for any finite group G

of conjugate rank 1 and nilpotency class 3. We also show that for given n ≥ 1,

v
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there exists a finite group G of conjugate rank 1 and nilpotency class 2 such

that |P (G)| = n.

0.1 Finite p-groups of conjugate type (1, p3)

A finite group G is said to be of conjugate type (1 = m0,m1, . . . ,mr), mi < mi+1,

if mi’s are precisely the different sizes of conjugacy classes of G. We also say

that such groups G are of conjugate rank r.

In 1953, N. Ito started the study of finite groups with few conjugacy class

sizes. He proved the following result.

Theorem 0.1.1 [1313] If G is a finite group of conjugate type (1, m), then m =

pn, for some prime p and integer n ≥ 1, and G is isoclinic to a non-abelian

p-group.

Nearly half a century later, K. Ishikawa proved following important result.

Theorem 0.1.2 [1212] Let G be a finite p-groups of conjugate type (1, pn). Then

nilpotency class of G is at most 3, for odd primes p and exactlly 2 for p = 2.

In a different paper [1111], Ishikawa classified finite p-groups of conjugate type

(1, pn), up to isoclinism, for n ≤ 2.

The natural problem which arises here is: classify finite p-groups of conjugate

type (1, pn), where n ≥ 3.

For any positive integer r ≥ 1 and prime p ≥ 2, consider the following group

constructed by N. Ito [1313].

Gr =
〈
a1, . . . , ar+1 | [ai, aj] = bij, [ak, bij] = 1, (1)

api = apr+1 = bpij = 1, 1 ≤ i < j ≤ r + 1, 1 ≤ k ≤ r + 1
〉
.
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Ito showed that the group Gr (defined above) is of conjugate type (1, pr). Here

we give necessary and sufficient conditions for some quotients of Gr to be of

conjugate rank 1.

Lemma 0.1.3 [2020] Suppose G = Gn−1 (as defined in (1.11.1)) is generated by a1,

a2, . . . , an, where n ≥ 4. Suppose that M < Z(G) = G′ with |M | = p. Then

G/M is of conjugate type (1, pn−1) if and only if M can be reduced to the form

M = 〈[a1, a2][a3, a4][a5, a6] . . . [a2m−1, a2m]〉, where 2 ≤ m ≤ bn/2c.

For simplicity of notation, say G3 is generated by a, b, c and d.

Lemma 0.1.4 [2020] Suppose G = G3 and N < Z(G) = G′ with |N | = p2. Then

G/N is of conjugate type (1, p3) if and only if N can be reduced to the following

form

N = 〈[a, b][c, d], [a, c][b, d]r〉 , where r is any fixed non-square integer modulo p.

A finite group G is said to be a Camina group if xG = xG′ for all x ∈ G \ G′,

where xG denotes the conjugacy class of x in G.

We provide a classification of all finite p-groups of conjugate type (1, p3),

p > 2, upto isoclinism, in the following theorem.

Theorem 0.1.5 [2020] Let G be a finite p-group of conjugate type (1, p3), p > 2.

Then the nilpotency class of G is 2 and G is isoclinic to one of the following

groups:

1. A finite Camina p-group of nilpotency class 2 with commutator subgroup

of order p3;

2. The group G3 (as defined in (11));
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3. The quotient group G3/M , where M is a normal subgroup of G3 given by

M = 〈[a, b][c, d]〉;

4. The quotient group G3/N , where N is a normal subgroup of G3 given by

N = 〈[a, b][c, d], [a, c][b, d]t〉; with t any fixed integer non-square modulo

p.

Now, we consider a more general family of finite p-groups of class 2 and

conjugate type (1, p3) to include the case p = 2.

Let Ĝn denote the family consisting of (n+ 1)-generator non-abelian special

p-groups G of order p(n+1)(n+2)/2. Then it follows that all groups of this family

are of conjugate type (1, pn). It also turns out that any two groups in Ĝn

are isoclinic. So, all groups in the family Ĝ3 are of conjugate type (1, p3),

where p is any prime including 2. Let Ĝ3 denote the subfamily of Ĝ3 consisting

of 2-groups. For simplicity of notation, we assume that a group G from Ĝ3 is

minimally generated by the set {a, b, c, d}.

Here we give necessary and sufficient conditions for some quotients of G to

be of conjugate type (1, 8), where G ∈ Ĝ3. Following two results are analogous

to Lemma 0.1.30.1.3 and Lemma 0.1.40.1.4, for p = 2.

Lemma 0.1.6 [2020] Let G = 〈a, b, c, d〉 ∈ Ĝ3. Then G/M with |M | = 2 is of

conjugate type (1, 8) if and only N can be reduced to the formM = 〈[a, b][c, d]〉.

Lemma 0.1.7 [2020] Let G = 〈a, b, c, d〉 ∈ Ĝ3. Then G/N with |N | = 4 is of

conjugate type (1, 8) if and only N can be reduced to the form

N = 〈[a, b][c, d], [a, c][b, d][c, d]〉.

In the following theorem we provide a classification of 2-groups of conjugate
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type (1, 8) upto isoclinism.

Theorem 0.1.8 [2020] Let G be a finite 2-group of conjugate type (1, 8) and

nilpotency class 2. Then G is isoclinic to one of the following groups:

1. A finite Camina 2-group with commutator subgroup of order 8;

2. A fixed group G in the family Ĝ3, defined above;

3. The quotient group G/M , where M is a normal subgroup of G such that

M = 〈[a, b][c, d]〉;

4. The quotient group G/N , where N is a normal subgroup of G such that

N = 〈[a, b][c, d], [a, c][b, d][c, d].

0.2 Finite p-groups of nilpotency class 3 with 2

conjugacy class sizes

Ito [1313] constructed a group W of conjugate type (1, p2) and nilpotency class 3.

Presentation of W is as follows:

W =
〈
a1, a2, b, c1, c2 | [a1, a2] = b, [ai, b] = ci

api = bp = cpi = [ai, ci] = [a1, c2] = [a2, c1] = 1 (i = 1, 2)
〉
.

After that nothing much was known about finite p-groups of conjugate type

(1, pn) and nilpotency class 3. In 1996, the examples of p-group of nilpotency

class 3 and of conjugate type (1, p2m) appeared in the construction of certain

Camina p-groups of nilpotency class 3 by Dark and Scoppola [44, p. 796-797]. It

can be shown that for a given integer m ≥ 1 and a prime p > 2, the p-group
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of conjugate type (1, p2m) and class 3, constructed by Dark and Scoppola, is

isomorphic to Hm/Z(Hm), where Hm is presented as follows.

Hm =





1 0 0 0 0

a 1 0 0 0

c b 1 0 0

d ab− c a 1 0

f e c b 1


: a, b, c, d, e, f ∈ Fpm


. (2)

In view of these examples, a natural question which arises here is the following:

Question. Does there exist a finite p-group of nilpotency class 3 and conjugate

type (1, pn), for an odd prime p and odd integer n ≥ 5?

We answer this question, by proving the following much general result.

Theorem 0.2.1 [2121] Let p > 2 be a prime and n ≥ 1 an integer. Then there

exist finite p-groups of nilpotency class 3 and conjugate type (1, pn) if and only

if n is even. For each positive even integer n = 2m, every finite p-group of nilpo-

tency class 3 and of conjugate type (1, pn) is isoclinic to the group Hm/Z(Hm),

where Hm is as in (3.13.1).

0.3 Probability distribution associated to com-

mutator word map

Let G be a finite group and K(G) denotes the set of commutators of G. For

g ∈ K(G), we define fiber of g as, fiber(g) := {(x, y) ∈ G × G | [x, y] = g}.

In 2008, Pournaki and Sobhani [2525] introduced the notion of Prg(G), which is

defined as follows:
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Prg(G) = |{(x, y) ∈ G×G : [x, y] = g}|/|G|2 = |fiber(g)|/|G|2.

Nath and Yadav[2323] introduced the set P (G), which is defined as follows:

P (G) = {Prg(G) : 1 6= g ∈ K(G)}.

Nath and Yadav[2323] proved that |P (Gr)| = 1, for all r ≥ 2, where Gr is the

group as defined in (1.11.1). They asked the following question: Is it true that

|P (G)| = 1 for all finite p-groups G of conjugate rank 1 and nilpotency class 2 ?

We negatively answer this in the following theorem.

Theorem 0.3.1 [2222] Let n ≥ 2 be a given positive integer. Then there always

exist a group G of conjugate rank 1 and nilpotency class 2 such that |P (G)| = n.

For finite p-groups of conjugate rank 1 and nilpotency class 3, we prove the

following result.

Theorem 0.3.1 [2222] Let G be a finite p-group of conjugate type (1, p2n) and

nilpotency class 3. Then for g ∈ G′,

Prg(G) =


p3n + p2n − 1

p5n
, if g = 1

p2n − 1

p5n
, if 1 6= g ∈ G′.

Hence |P (G)| = 1.

This theorem rectifies a faulty statement [2323, Theorem 5.13], where it was proved

that |P (G)| > 1, for a finite p-group G of conjugate type (1, p2) and nilpotency

class 3.





CHAPTER1
Background

This chapter has three sections. In the first section, we present some basic

definitions and literature on finite p-groups of conjugate rank 1. In the second

section, we introduce the concept of isoclinism of finite groups. In the last section

of this chapter, we collect some results, which are used later in the thesis. We

do not give many proofs in this chapter as almost all the material presented, is

either well known or easily available from the references.

We mainly, with a little diversion, present what is relevant to this thesis, and

by no means this chapter is a complete overview of the subject.

1.1 Literature and Definitions

Throughout this thesis, all the groups are finite, unless stated otherwise. In-

particular, G always stands for a finite group.

Definition 1.1.1 (Conjugacy class) For any element x ∈ G, the conjugacy

1



2 §1.1. Literature and Definitions

class of x in G is defined as

xG = {y−1xy | y ∈ G}.

It is well known that x ∈ xG and |CG(x)||xG| = |G|. Hence |xG| = 1 if and only

if |CG(x)| = |G|, i.e., xG = {x} if and only if x belongs to the center of G. In

other words |xG| > 1 (i.e., there exists y 6= x ∈ xG) if and only if x /∈ Z(G).

Definition 1.1.2 (Conjugate type and conjugate rank) G is said to be of

conjugate type (1 = m0,m1, · · · ,mr), mi < mi+1, if mi’s are precisely the differ-

ent sizes of all conjugacy classes of G. In this case, we say that G is of conjugate

rank r.

Remark 1.1.3 G is of conjugate rank 0 if and only if G is abelian, and G is of

conjugate rank 1 if and only if there exists an integer m > 1 such that |xG| = m

for all x ∈ G \ Z(G).

N. Ito initiated the study of finite groups with few conjugacy class sizes. In

a series of paper “On finite groups with given conjugate type I, II, III” ([1313],

[1414], [1515]), he studied finite groups of conjugate rank 1, 2 and 3 respectively. He

proved [1313] the following path-breaking result for groups of conjugate rank 1.

Theorem 1.1.4 [1313] Let G be a finite group with exactly two conjugacy class

sizes, namely 1 and m. Then the following hold:

(i) m is a power of some prime p, say m = pn.

(ii) G = P × A, where P is the non-abelian sylow p-subgroup of G and A is

an abelian p′ subgroup of G. In particular, G is nilpotent.



§1.1. Literature and Definitions 3

Remark 1.1.5 To understand finite groups of conjugate rank 1 it is sufficient

to study finite p-groups of conjugate rank 1.

Remark 1.1.6 As p-group of conjugate type (1, pn) and p-group of conjugate

rank 1 both are equivalent, we use one of either terminology as per convenience.

In the same paper [1313], N. Ito gave examples of p-groups of conjugate rank

1 with nilpotency class 2 and 3 separately, which opened the path for future

research.

For any positive integer r ≥ 1 and prime p > 2, N. Ito constructed the

following group of conjugate rank 1 with nilpotency class 2.

Example 1.1.7 (Example 1, [1313])

Gr =
〈
a1, . . . , ar+1 | [ai, aj] = bij, [ak, bij] = 1, (1.1)

api = apr+1 = bpij = 1, 1 ≤ i < j ≤ r + 1, 1 ≤ k ≤ r + 1
〉
.

Note that the group Gr defined in (1.11.1) is a special p-group (see Definition 1.1.81.1.8)

of order p(r+1)(r+2)/2 with exponent p and |G′r| = pr(r+1)/2. The group Gr enjoys

the property CGr(x) = 〈x, Z(Gr)〉, for all x ∈ Gr \ Z(Gr). In particular Gr is of

conjugate type (1, pr) and nilpotency class 2.

Definition 1.1.8 (Special p-group) A p-group G is called special, if it’s com-

mutator, center and frattini subgroup are all equal and elementary abelian.

Definition 1.1.9 (Extra special p-group) A p-group G is called extra-special,

if it is special and |Z(G)| = p.

For prime p > 2, N. Ito constructed the following group of nilpotency class

3 and conjugate rank 1.
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Example 1.1.10 (Example 2, [1313])

W =
〈
a, b, h, z1, z2 | [a, b] = h, [a, h] = z1, [b, h] = z2 (1.2)

ap = bp = hp = zpi = [a, zi] = [b, zi] = 1 (i = 1, 2)
〉
.

Note that the group W defined in (1.21.2) is of order p5 with nilpotency class

3 and exponent p. The center, Z(W ) and commutator subgroup, W ′ of W are

elementary abelian p-groups of order p2 and p3 respectively. CW (x) = 〈x, Z(W )〉

and CW (h) = W ′, for each x ∈ W \W ′ and y ∈ W ′ \ Z(W ). In particular W is

of conjugate type (1, p2).

Now, we take a diversion from our discussion on finite p-groups of conjugate

rank 1, and recall some related results on groups of higher conjugate ranks.

In 1970, N. Ito proved following results for groups of conjugate rank 2 and 3

separately.

Theorem 1.1.11 (Page 231, [1414]) Let G be a finite group of conjugate rank

2, then G is solvable.

Theorem 1.1.12 (Page 267, [1515]) Let G be a finite simple group of conjugate

rank 3, then G is isomorphic with some SL(2, 2m), for m ≥ 2.

In 2009, S. Dolfi and E. Jabara studied finite groups of conjugate rank 2

and characterized all such groups G except the case when |G| is a prime power.

Before stating their results, we collect some related terminology used in their

work.

Definition 1.1.13 (Frobenius group) Let G be a group and H be a non-

trivial subgroup of G such that H ∩Hx = 1, for all x ∈ G \H. In this case G

is called a Frobenius group.
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Definition 1.1.14 (Op(G)) Let G be a group and p be a prime number. Then

the following two statements are equivalent:

(i) H is the intersection of all sylow p-subgroups of G.

(ii) H is the unique largest normal p-subgroup of G.

In this case the subgroup H is denoted by Op(G).

Definition 1.1.15 (F -group) A non-abelian group G is an F -group, if for

every x, y ∈ G \ Z(G), we have that CG(x) ≤ CG(y) implies CG(x) = CG(y).

Theorem 1.1.16 (Theorem A, [66]) A finite group G has conjugate rank 2 if

and only if, up to an abelian direct factor, either of the following cases hold:

(A) G is a p-group of conjugate rank 2; or

(B) G = KL with K E G, (|K|, |L|) = 1 and one of the following occurs:

(B1) Both K and L are abelian, Z(G) ≤ L and G/Z(G) is a Frobenius

group;

(B2) K is abelian, L is a non-abelian p-group, M = Op(G) is an abelian

subgroup of index p in L and G/M is a Frobenius group;

(B3) K is a p-group of conjugate rank 1, L is abelian, Z(K) = Z(G) ∩K

and G/Z(G) is a Frobenius group.

Theorem 1.1.17 (Theorem B, [66]) Let G be a finite group of conjugate rank

2. Then G is either an F -group or the direct product of an abelian group and a

group of prime power order.

Theorem 1.1.18 (Corollary C, [66]) Let G be a finite group of conjugate type

(1, m, n). If m and n are not coprime, then either m or n is a prime power.
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The following theorem was due to J. Cossey and T. O. Hawkes, where they

proved the existence of p-groups of given conjugate type.

Theorem 1.1.19 (Page 49, [33]) Let p be a prime and 0 = e0 < e1 < · · · < en

be integers. Then there exists a p-group G of nilpotency class 2 such that, G is

of conjugate type (1 = p0, pe1 , . . . , pem).

The preceding result is actually a dual of the following result, which was

proved by I. M. Isaacs.

Theorem 1.1.20 (Page 552, [1010]) Let p be a prime and 0 = e0 < e1 < · · · <

en be integers. Then there exists a p-group G of nilpotency class ≤ 2 such that the

set of irreducible complex character degrees of G is exactly (1 = p0, pe1 , . . . , pem).

In a short survey prepared for the workshop Finite Groups and Their Auto-

morphisms, Bogazici University, Istanbul, June 7-11, 2011, A. Mann raised a

problem, which is as follows.

Problem 1.1.21 (Problem 1, [1919]) Find other constructions, in particular

ones that produce groups of higher class.

After this much diversion, we come back to p-groups of conjugate rank 1. In

1970, I. M. Isaacs [99] proved the following beautiful result, from which, exact

nilpotency class for 2-groups of conjugate rank 1 can be derived.

Theorem 1.1.22 (Page 501, [99]) Let G be a finite group, which contain a

proper normal subgroup N such that all the conjugacy classes of G, which lie

outside N have same lengths. Then either G/N is cyclic or every non-identity

element of G/N is of prime order.

Putting N = Z(G) in Theorem 1.1.221.1.22, we get
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Corollary 1.1.23 Let G be a finite p-group with conjugate type (1, pn). Then

both G′ and G/Z(G) are of exponent p.

Putting p = 2 in Corollary 1.1.231.1.23, we get

Corollary 1.1.24 Let G be a finite 2-group with conjugate type (1, 2n). Then

G/Z(G) is abelian and thus the nilpotency class of G is exactly 2.

Apart from above result (Corollary 1.1.241.1.24), not much progress was made to

understand finite groups of conjugate rank 1. It was K. Ishikawa, who came

with some major breakthrough ([1111], [1212]). Not only he gave an exact bound for

nilpotency class of groups of conjugate rank 1, but he also initiated the study of

groups of conjugate type (1, pn), for n ≥ 1. He proved the following important

results.

Theorem 1.1.25 (Page 119, [1212]) Let G be a p-group with exactlly two con-

jugacy class sizes; p be a odd prime. Then the nilpotency class of G is either 2

or 3.

Theorem 1.1.26 (Proposition 3.1, [1111]) A finite p-group G has exactly two

conjugacy class sizes 1 and p if and only if G is isoclinic (see Section 1.21.2 for

definition) to an extra special p-group (see Definition 1.1.91.1.9).

Theorem 1.1.27 (Theorem 4.2, [1111]) Let G be a finite p-group of conjugate

type (1, p2) and nilpotency class 3. Then G is isoclinic to W (as defined in

(1.21.2)).

Theorem 1.1.28 (Theorem 4.1, [1111]) Let G be a finite p-group of conjugate

type (1, p2) and nilpotency class 2. Then G is isoclinic to one of the following:

(i) A camina p-group (see definition 1.1.291.1.29) H with |H ′| = p2.
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(ii) G2, as defined in (1.11.1), for r = 2.

We recall G2 below;

G2 =
〈
a1, a2, a3 | [ai, aj] = bij, [ak, bij] = 1,

api = ap3 = bpij = 1, 1 ≤ i < j ≤ 3, 1 ≤ k ≤ 3
〉
.

Definition 1.1.29 (Camina group) A finite group G is said to be a Camina

group if xG = xG′ for all x ∈ G \G′.

Example 1.1.30 (Camina Group) For an integer m > 1, let

H =




1 α1 α2

0 1 α3

0 0 1

 : α1, α2, α3 ∈ Fpm

 ,

where Fpm is a finite field of pm elements. It is easy to check that H is a Camina

p-group of nilpotency class 2 with |H′| = pm. This group is minimally generated

by 2m elements.

Let H be a finite Camina p-group of nilpotency class 2 with |H ′| = pm. Let A

be any subgroup of H ′ of order pm−n, where n < m. Then it is easy to see that

H/A is a Camina group of conjugate type (1, pn).

Remark 1.1.31 For a given integer n ≥ 1, the number of generators of Camina

groups of conjugate type (1, pn) and nilpotency class 2 can not be bounded.
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1.2 Isoclinism

The concept of isoclinism of groups was introduced by P. Hall [88]. Let X be a

finite group and X̄ = X/Z(X). Then commutation inX gives a well defined map

aX : X̄ × X̄ 7→ γ2(X) such that aX(xZ(X), y Z(X)) = [x, y] for (x, y) ∈ X ×X.

Two finite groups G and H are called isoclinic if there exists an isomorphism φ

of the factor group Ḡ = G/Z(G) onto H̄ = H/Z(H), and an isomorphism θ of

the subgroup G′ onto H ′ such that the following diagram is commutative

Ḡ× Ḡ aG−−−→ G′

φ×φ
y yθ

H̄ × H̄ aH−−−→ H ′.

The resulting pair (φ, θ) is called an isoclinism of G onto H.

Notice that isoclinism is an equivalence relation among finite groups. The

equivalence classes of finite groups with respect to the isoclinism relation are

called as isoclinism families.

The following two results follow from [88].

Proposition 1.2.1 Let G and H be two isoclinic finite p-groups. Then G and

H are of the same conjugate type.

Proposition 1.2.2 Let G be a finite p-group. Then there exists a group H in

the isoclinism family of G such that Z(H) ≤ H ′.

Group H which occurred in Proposition 1.2.21.2.2 is called a stem group in its

isoclinism family. In the light of the preceding two results, for the classification

of finite p-groups of conjugate type (1, pn) upto isoclinism, we only need to

consider a stem group from the respective isoclinism family.
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1.3 Key Lemmas

As mentioned earlier, here we collect some results which will be used in upcoming

chapters more often. We start with the following important result given by

N. Ito.

Proposition 1.3.1 (Proposition 3.2, [1313]) Let G be a finite p-group of con-

jugate type (1, pn). Then the number of elements in any minimal generating set

is at least n, and the order of the subgroup of all the elements of order p of Z(G)

is at least pn.

Before going forward, we recall the notion of breadth in finite p-groups.

Definition 1.3.2 (Breadth) Let G be a finite p-group and x ∈ G be such that

|xG| = pb(x). Then b(x) is called the breadth of x. The breadth of G, denoted by

b(G), is defined as max{b(x) | x ∈ G}.

The following important result is due to Vaughan-Lee.

Proposition 1.3.3 (Page 278, [2727]) Let G be a finite p-group such that b(G) =

n. Then |G′| ≤ pn(n+1)/2.

The following characterization of p-groups of breadth 3, p odd primes is due

to Parmeggiani and Stellmacher. Similar result was proved earlier by Gavioli et

al., (Corollary 3, [77]) for all primes p ≥ 5.

Proposition 1.3.4 (Page 53, [2424]) Let G be a p-group, p > 2. Then b(G) = 3

if and only if one of the following holds:

(i) |G′| = p3 and [G : Z(G)] ≥ p4.

(ii) |G′| = p4 and there exists H C G with |H| = p and [G/H : Z(G/H)] = p3.
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(iii) |G′| ≥ p4 and [G : Z(G)] = p4.

A similar result for p = 2 is proved by Wilkens (Pages 203-204, [2929]), a

consequence of which is stated in the last section of Chapter 2, for the groups

having conjugate type (1, 8).

Now, we recall the famous Hall-Witt Identity.

Lemma 1.3.5 (Hall-Witt Identity) If x, y, z ∈ G, then

[x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1.

We conclude this chapter with the following two elementary facts, proofs of

which are immediate from the Hall-Witt identity.

Lemma 1.3.6 Let G be a group of nilpotency class 3 and x, y, z ∈ G such that

[x, z], [y, z] ∈ Z(G). Then [x, y, z] = 1.

Lemma 1.3.7 Let G be a group of nilpotency class 3 and x, y ∈ G such that

[x, y] ∈ Z(G). Then [x, z, y] = [y, z, x], for all z ∈ G.





CHAPTER2
Finite p-groups of conjugate type

(1, p3)

K. Ishikawa classified (up to isoclinism) finite groups of conjugate type (1, p) and

(1, p2). Following his footsteps, we present the classification (up to isoclinism)

of finite p-groups of conjugate type (1, p3) in this chapter.

2.1 Introduction

Recall that the group Gr defined in (1.11.1) (preceding chapter) is of conjugate

type (1, pr) and nilpotency class 2. In particular G3 is of conjugate type (1, p3)

and nilpotency class 2. For simplicity of notation, now onwards we assume that

G3 is generated by a, b, c, and d. Now, we recall the group G3 below.

G3 =
〈
a, b, c, d | xp = [x, y]p = [x, y, z] = 1, (2.1)

x, y, z ∈ {a, b, c, d}
〉
.

13
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In the following theorem we provide a classification of all finite p-groups of

conjugate type (1, p3), p > 2, upto isoclinism.

Theorem 2.1.1 Let G be a finite p-group of conjugate type (1, p3), p > 2.

Then the nilpotency class of G is 2 and G is isoclinic to one of the following

groups:

(i) A finite Camina p-group of nilpotency class 2 with commutator subgroup

of order p3,

(ii) The group G3, defined in (2.12.1),

(iii) The quotient group G3/M , where M is a normal subgroup of G3 given by

M = 〈[a, b][c, d]〉,

(iv) The quotient group G3/N , where N is a normal subgroup of G3 given by

N = 〈[a, b][c, d], [a, c][b, d]t〉 with t any fixed integer non-square modulo

p.

Since the nilpotency class of a finite 2-group of conjugate type (1, 2n) for all

n ≥ 1 is 2 (see Corollary 1.1.241.1.24), classification problem reduces to finite 2-groups

of class 2. To include the case p = 2, we consider a more general class of finite

p-groups of class 2 and conjugate type (1, p3).

Let Ĝn denote the family consisting of (n+ 1)-generator non-abelian special

p-groups G of order p(n+1)(n+2)/2. Then it follows that all groups of this family

are of conjugate type (1, pn). It also turns out that any two groups in Ĝn are

isoclinic (see Remark 2.2.132.2.13). So, all groups in the family Ĝ3 are of conjugate

type (1, p3), where p is any prime including 2.

Let Ĝ3 denote the subfamily of Ĝ3 consisting of 2-groups. For simplicity

of notation, we assume that a group G from Ĝ3 is minimally generated by the
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set {a, b, c, d}. A magma check shows that this family has exactly 989 non-

isomorphic groups [11].

Now we are ready to state our next result which provides a classification of

2-groups of conjugate type (1, 8) upto isoclinism.

Theorem 2.1.2 Let G be a finite 2-group of conjugate type (1, 8) and nilpo-

tency class 2. Then G is isoclinic to one of following groups:

(i) A finite Camina 2-group with commutator subgroup of order 8;

(ii) A fixed group G in the family Ĝ3, defined above;

(iii) The quotient group G/M , where M is a normal subgroup of G such that

M = 〈[a, b][c, d]〉;

(iv) The quotient group G/N , where N is a normal subgroup of G such that

N = 〈[a, b][c, d], [a, c][b, d][c, d]〉.

2.2 Technical Lemmas

Here we prove some lemmas, which we require to prove our main results of this

chapter (Theorems 2.1.12.1.1 and 2.1.22.1.2).

Lemma 2.2.1 Let G be a finite p-group of conjugate type (1, p3), p > 2. Then

one of the following holds:

(i) |G′| = p3 and [G : Z(G)] ≥ p4;

(ii) |G′| ≥ p4 and [G : Z(G)] = p4.

Proof. Suppose that there exists a normal subgroup H of G such that |H| = p

and [G/H : Z(G/H)] = p3. Then, since G is of conjugate type (1, p3) and |H|



16 §2.2. Technical Lemmas

= p, it follows that Z(G/H) = Z(G)/H. Thus,

p3 = [G/H : Z(G/H)] = [G/H : Z(G)/H] = [G : Z(G)].

But, since G is of conjugate type (1, p3), we have [G : CG(x)] = p3, for all x ∈

G \ Z(G). Since x ∈ CG(x) \ Z(G), we have Z(G) < CG(x); contradicting the

equality [G : Z(G)] = [G : CG(x)] = p3. Hence there can not exist any H C

G with |H| = p and [G/H : Z(G/H)] = p3. The proof is now complete from

Proposition 1.3.41.3.4. �

Definition 2.2.2 (Autoclinism) For a given group G, an isoclinism (φ, θ)

from G onto itself is called an autoclinism of G.

It is not difficult to prove the following result.

Lemma 2.2.3 Let G be a group from the family Ĝn (defined above). Then a bi-

jection between any two minimal generating sets for G extends to an autoclinism

of G.

For the groups G := Gr defined in (1.11.1), the following more general result holds

true.

Lemma 2.2.4 A bijection between any two minimal generating sets for G := Gr

extends to an automorphism of G.

We have noticed above that any group G from the family Ĝn−1 is of conjugate

type (1, pn−1) with |G| = pn(n+1)/2 and G is minimally generated by n elements.

The following two results characterize all finite n-generator special p-groups of

order pn(n+1)/2−1 and conjugate type (1, pn−1).
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Lemma 2.2.5 Let G ∈ Ĝn−1 be a group generated by n ≥ 4 elements a1, a2,

. . . , an. Suppose that M < Z(G) = G′ with |M | = p. Then G/M is of conjugate

type (1, pn−1) if and only if M can be reduced to the form

M = 〈[a1, a2][a3, a4][a5, a6] . . . [a2m−1, a2m]〉, where 2 ≤ m ≤ bn/2c.

Proof. Notice that |G| = pn(n+1)/2. Also notice that any bijection between two

minimal generating sets for G extends to an autoclinism of G by Lemma 2.2.32.2.3.

Set G = G/M ; then |G| = p(n(n+1)/2)−1. Since G is of conjugate type (1, pn−1)

and |M | = p, we have

Z(G)/M = Z(G) = G
′
= Φ(G)

is an elementary abelian p-group of order p(n(n−1)/2)−1.

Thus [G : Z(G)] = pn. Hence G is of conjugate type (1, pn−1) if and only

if each non-central element of G commutes only with its own powers up to the

central elements.

Let x̄, ȳ ∈ G \ Z(G) be such that no one is a power of the other (reading

modulo Z(G)). Then it is not difficult to see that [x, y] 6= 1 in G. Hence, if

[x̄, ȳ] = 1 in G, then [x, y] ∈M#.

Any given central subgroup M1 of order p, without loss of generality, can be

written as

M1 = 〈[a1, a2][a1, a3]α1,3 . . . [ai, aj]
αi,j . . . [an−1, an]αn−1,n〉,

where 1 ≤ i < j ≤ n. Now applying the autoclinism induced by the map
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a2 7→ a2a
−α1,3

3 . . . a
−α1,n
n , ai 7→ ai for i 6= 2, M1 gets mapped to

M2 = 〈[a1, a2][a2, a3]α2,3 . . . [ai, aj]
αi,j . . . [an−1, an]αn−1,n〉

with 2 ≤ i < j ≤ n and modified αi,j. Notice that G/M1 is isoclinic to G/M2,

and therefore both G/M1 and G/M2 are of the same conjugate type. We now

apply another autoclinism induced by the map a1 7→ a1a
α2,3

3 . . . a
α2,n
n , ai 7→ ai for

i 6= 1, and see that M2 gets mapped to

M3 = 〈[a1, a2][a3, a4]α3,4 . . . [ai, aj]
αi,j . . . [an−1, an]αn−1,n〉

with 3 ≤ i < j ≤ n and modified αi,j.

Take x = aj11 a
j2
2 . . . a

jn
n and y = ak11 a

k2
2 . . . aknn be such that none is power of

the other (reading modulo Z(G)). Then [x, y] ∈ M#
3 only when the following

two conditions hold true:

(i) j3 = j4 = · · · = jn = k3 = k4 = · · · = kn = 0;

(ii) αi,j = 0, 3 ≤ i < j ≤ n.

Hence G/M3 is of conjugate type (1, pn−1) if and only if at least one αi,j is

non-zero modulo p. We now conclude that G/M3 is of conjugate type (1, pn−1)

if and only if

M3 = 〈[a1, a2][a3, a4]α3,4 · · · [ai, aj]αi,j · · · [an−1, an]αn−1,n〉

with 3 ≤ i < j ≤ n and at least one αi,j is non-zero modulo p. We can assume

that α3,4 6= 0.

Make further reductions by applying an autoclinism of G which is a composi-

tion of the autoclinisms induced by the maps (1) a4 7→ a
α−1
3,4

4 , ai 7→ ai for i 6= 4, (2)
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a4 7→ a4a
−α3,5

5 a
−α3,6

6 · · · a−α3,n
n , ai 7→ ai for i 6= 4 and (3) a3 7→ a3a

α4,5

5 a
α4,6

6 · · · aα4,n
n ,

ai 7→ ai for i 6= 3. This action reduces M3 to M4, which is of the following form

M4 = 〈[a1, a2][a3, a4][a5, a6]α5,6 . . . [ai, aj]
αi,j . . . [an−1, an]αn−1,n〉

with 5 ≤ i < j ≤ n and modified αi,j again.

Finally, if all αi,j are 0 modulo p, we are done by taking M = M4. If not,

then finite repetitions of the above process reduce M4 to the desired form M ,

completing the proof. �

Corollary 2.2.6 Let K be an n-generator special p-group of order pn(n+1)/2−1

and conjugate type (1, pn−1). ThenK is isoclinic to G/M , where G = 〈a1, a2, . . . , an〉

∈ Ĝn−1 and M < Z(G) = G′ with |M | = p is of the form

M = 〈[a1, a2][a3, a4][a5, a6] · · · [a2m−1, a2m]〉, where 2 ≤ m ≤ bn/2c.

Proof. Notice that the group K, given in the statement, is isomorphic to a quo-

tient of some group G from the family Ĝn−1 by a subgroup of order p contained

in G′. Now the proof follows from the preceding lemma. �

In particular, if, for an odd prime p, we take a p-group G from the class

Ĝn−1 such that the exponent of G is p, then G is isomorphic to the group Gn−1

defined in (1.11.1). Then by Lemma 2.2.42.2.4 a bijection between any two minimal

generating sets for G := Gn−1, extends to an automorphism of G. Therefore, on

the lines of the proofs of Lemma 2.2.52.2.5 and Corollary 2.2.62.2.6 (replacing autoclinism

by automorphism and isoclinic by isomorphic), we can prove the following.

Lemma 2.2.7 Let K be an n-generator special p-group of order pn(n+1)/2−1,

exponent p and conjugate type (1, pn−1), where p is an odd prime. Then K is
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isomorphic to Gn−1/M , where Gn−1 is the group as defined in (1.11.1) generated

by a1, a2, . . . , an and M < Z(G) = G′ with |M | = p is of the form

M = 〈[a1, a2][a3, a4][a5, a6] . . . [a2m−1, a2m]〉, where 2 ≤ m ≤ bn/2c.

For the case n = 3, the preceding lemma was proved by Brahana [22]. For

the application point of view, we state it explicitly as a corollary.

Corollary 2.2.8 Let K be a 4-generator special p-group of order p9, exponent

p and conjugate type (1, p3), where p is an odd prime. Then K is isomorphic

to G3/M , where G3 is generated by a, b, c, d and M < Z(G) = G′ with |M | = p

is of the form

M = 〈[a, b][c, d]〉 .

Now onward we concentrate only on the groups G from the family Ĝ3.

Lemma 2.2.9 Let G be a group from the family Ĝ3 which is generated by a, b, c

and d. Suppose that N < Z(G) = G′ with |N | = p2. Then G/N is of conjugate

type (1, p3) if and only if N can be reduced to the following form

N = 〈[a, b][c, d], [a, c][b, d]r〉 , where r is any fixed non-square integer modulo p.

Proof. Notice that |G| = p10. Set G = G/N ; then |G| = p8. Since G is of

conjugate type (1, p3) and |N | = p2, we have

Z(G)/N = Z(G) = G
′
= Φ(G)

is an elementary abelian p-group of order p4. Thus [G : Z(G)] = p4. Hence G is

of conjugate type (1, p3) if and only if each non-central element of G commutes
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only with its own powers up to the central elements.

Let x̄, ȳ ∈ G \ Z(G) be such that no one is a power of the other (reading

modulo Z(G)). Then it is not difficult to see that [x, y] 6= 1 in G. Hence, if

[x̄, ȳ] = 1 in G, then [x, y] ∈ N#.

Any given central subgroup N1 of order p2, without loss of generality, can be

written as one of the following two types:

(i)N1 = 〈[a, b][a, d]i1 [b, c]i2 [b, d]i3 [c, d]i4 , [c, d]〉.

(ii)N1 = 〈[a, b][a, d]i1 [b, c]i2 [b, d]i3 [c, d]i4 , [a, c][a, d]j1 [b, c]j2 [b, d]j3 [c, d]j4〉.

If N1 is of type (i), then c̄ commutes with d̄, although c̄ /∈ 〈Z(G), d̄〉. Hence

G can not be of conjugate type (1, p3). Therefore we only need to consider

N1 as in type (ii). Now applying the autoclinism induced by the map a 7→ a,

b 7→ bd−i1 , c 7→ cd−j1 , d 7→ d, N1 gets mapped to N2, where

N2 = 〈[a, b][b, c]i1 [b, d]i2 [c, d]i3 , [a, c][b, c]j1 [b, d]j2 [c, d]j3〉

with modified powers of the basic commutators. Notice that G/N1 and G/N2 are

isoclinic. We now apply another autoclinism induced by the map a 7→ aci1di2 ,

b 7→ b, c 7→ c, d 7→ d, and see that N2 gets mapped to

N3 = 〈[a, b][c, d]i, [a, c][b, c]j1 [b, d]j2 [c, d]j3〉

again with modified powers of commutators. Note that i is non-zero modulo p,

otherwise G/N3 can not be of conjugate type (1, p3). Thus the map a 7→ a,
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b 7→ b, c 7→ c, d 7→ di
−1 extends to an autoclinism of G and maps N3 to

N4 = 〈[a, b][c, d], [a, c][b, c]j1 [b, d]j2 [c, d]j3〉

with modified j2 and j3. Again note that j2 can not be zero modulo p, otherwise

[c, abj1d−j3 ] = 1 and so G/N3 can not be of conjugate type (1, p3). Therefore

the map a 7→ a, b 7→ b, c 7→ c, d 7→ c−j1j
−1
2 d is well defined. The autoclinism of

G induced by this map takes N4 to N5, where, after modifying powers,

N5 = 〈[a, b][c, d], [a, c][b, d]i1 [c, d]i2〉.

Now let x = aj1bj2cj3dj4 and y = ak1bk2ck3dk4 be such that none is power of the

other (reading modulo Z(G)). If [x, y] ∈ N#
5 , then at least one of j1 and k1 has

to be non-zero modulo p. Without loss of generality we take j1 to be non-zero.

Now we can write y as y = ak1bk2ck3dk4 = (aj1bj2cj3dj4)k1j
−1
1 bl2cl3dl4z1, where

z1 ∈ Z(G) and l2, l3, l4 are some suitable integers. So we can modify x and y

as x = aj1bj2cj3dj4 with j1 non-zero and y = bl2cl3dl4 . Now l2 has to be non-zero

modulo p and l4 has to be 0.

Using similar argument, we can remove power of b in x. So we can modify

x and y by x = aj1cj3dj4 and y = bl2cl3 . Now j3 has to be 0. So, finally we have

reduced x and y to x = aj1dj4 and y = bl2cl3 . If [x, y] ∈ N#
5 , then [xj

−1
1 , yl

−1
2 ]

also belongs to N#
5 . Also xj

−1
1 = adjz2 and yl

−1
2 = bckz3, where z2 and z3 are

some central elements. Therefore [xj
−1
1 , yl

−1
2 ] = [a, b][a, c]k[b, d]j[c, d]jk. So if

[x, y] ∈ N#
5 , then [a, b][a, c]k[b, d]j[c, d]jk ∈ N#

5 , and therefore can be written

as a product of powers of generators of N#
5 . Now comparing power of the basic
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commutators, we get

j ≡ ki1 (mod p) and jk ≡ ki2 + 1 (mod p).

Solving these we have

k2i1 − ki2 − 1 ≡ 0 (mod p).

This is possible only when i22 + 4i1 is a square modulo p. From this, we conclude

that G/N5 is of conjugate type (1, p3) if and only if N5 is of the following form

N5 = 〈[a, b][c, d], [a, c][b, d]i1 [c, d]i2〉; where i22+4i1 is a non-square modulo p.

Now we consider two cases, namely: Case 1. i2 6= 0; Case 2. i2 = 0, and take

these one by one.

Case 1: Let r be a fixed integer non-square modulo p. Then r must be non-

zero. Being non-square, i22+4i1 is also non-zero. Thus i22+4i1
4r

is a non-zero square

modulo p. Thus there exists a non-zero l such that l2 =
i22+4i1

4r
. Set t = i2

2
.

Now applying the autoclinism of G induced by the map a 7→ aldt, b 7→ b,

c 7→ btcl, d 7→ d, N5 gets mapped to

N6 = 〈[a, b]l[c, d]l, [a, b]lt[a, c]l
2

[b, d]ti2+i1−t
2

[c, d]li2−lt〉

= 〈([a, b][c, d])l, ([a, b][c, d])lt([a, c]l
2

[b, d]ti2+i1−t
2

)〉

= 〈[a, b][c, d], [a, c]l
2

[b, d]ti2+i1−t
2〉

= 〈[a, b][c, d], [a, c]
i22+4i1

4r [b, d]
i22+4i1

4 〉

= 〈[a, b][c, d], ([a, c][b, d]r)
i22+4i1

4r 〉
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= 〈[a, b][c, d], [a, c][b, d]r〉

= N.

Hence we are done in this case.

Case 2: In this case i1 must be a non-square. If i1 = r, then we are done. If

not, then i−11 r must be a non-zero square, and therefore there exists a non-zero

integer l such that i−11 r = l2.

Now the autoclinism of G induced by the map a 7→ a, b 7→ b, c 7→ cl
−1 ,

d 7→ dl maps N5 to

N7 = 〈[a, b][c, d], [a, c]l
−1

[b, d]li1〉

= 〈[a, b][c, d], ([a, c][b, d]l
2i1)l

−1〉

= 〈[a, b][c, d], [a, c][b, d]l
2i1〉

= 〈[a, b][c, d], [a, c][b, d]r〉

= N.

The proof is now complete. �

The following result characterizes all 4-generator special groups of order p8

and conjugate type (1, p3).

Corollary 2.2.10 Let K be a 4-generator special p-group of order p8 and con-

jugate type (1, p3). Then K is isoclinic to G/N , where G = 〈a, b, c, d〉 ∈ Ĝ3

and N < Z(G) = G′ with |N | = p2 is of the form

N = 〈[a, b][c, d], [a, c][b, d]r〉 , where r is any fixed non-square integer modulo p.



§2.2. Technical Lemmas 25

Proof. Notice that the group K, given in the statement, is isomorphic to a

quotient of some group G from the family Ĝ3 by a subgroup of order p2 contained

in G′. Now the proof follows from the preceding lemma. �

In particular, if, for an odd prime p, we take a p-group G from the class Ĝ3

such that the exponent of G is p, then G is isomorphic to the group G3 defined in

(2.12.1). Then by Lemma 2.2.42.2.4 a bijection between any two minimal generating sets

for G3, extends to an automorphism of G. Therefore, on the lines of the proofs

of Lemma 2.2.152.2.15 and Corollary 2.2.82.2.8 (replacing autoclinism by automorphism

and isoclinic by isomorphic), we can prove the following result, which has also

been proved by Brahana [22, Section 2]. But the proof in the present text is in

modern terminology.

Lemma 2.2.11 Let K be a 4-generator special p-group of order p8, exponent p

and conjugate type (1, p3), where p is an odd prime. Then K is isomorphic to

G3/N , where G3 is the group defined in (2.12.1) and N < Z(G) = G′ with |N | = p2

is of the form

N = 〈[a, b][c, d], [a, c][b, d]r〉 , where r is any fixed non-square integer modulo p.

Now we consider the family Ĝ3 of 2-groups defined in the introduction of

this chapter. We start with the following result which tells that certain type of

quotient groups of any two groups in Ĝ3 are isoclinic.

Lemma 2.2.12 Let G = 〈a, b, c, d〉 and G∗ = 〈s, u, v, w〉 be two groups from

the family Ĝ3. Then the following hold true.

(i) G and G∗ are isoclinic.

(ii) If M = 〈[a, b][c, d]〉 ≤ G′ and M∗ = 〈[s, u][v, w]〉 ≤ (G∗)′, then G/M
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and G∗/M∗ are isoclinic.

(iii) If

N = 〈[a, b][c, d], [a, c][b, d][c, d]〉 ≤ G′

and

N∗ = 〈[s, u][v, w], [s, v][u, w][v, w]〉 ≤ (G∗)′,

then G/N are G∗/N∗ are isoclinic.

Proof. We sketch proof only for (i). Note that both G/Z(G) and G∗/Z(G∗) are

elementary abelian 2-groups of order 24, generated by {aZ(G), bZ(G), cZ(G),

dZ(G)} and {sZ(G∗), uZ(G∗), v Z(G∗), w Z(G∗)} respectively. Similarly, both

G′ and (G∗)′ are elementary abelian 2-groups generated by the sets consisting

of all 6 basic commutators

{[a, b], [a, c], [a, d], [b, c], [b, d], [c, d]}

and

{[s, u], [s, v], [s, w], [u, v], [u, w], [v, w]}

respectively. Now the map a 7→ s, b 7→ u, c 7→ v and d 7→ w extends to

an isomorphism from G/Z(G) onto G∗/Z(G∗), which induces an isomorphism

from G′ onto (G∗)′, making G and G∗ isoclinic. �

Remark 2.2.13 The second and third assertions of the preceding lemma hold

true in the bigger family Ĝ3. And by the same argument as given in the preceing

proof, one can easily prove that any two groups in Ĝn are isoclinic. We have

stated this result for the family Ĝ3 because we here need it only for 2-groups.

The following lemma is immediate from Corollary 2.2.62.2.6, using Lemma 2.2.122.2.12,
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when restricted to the family Ĝ3.

Lemma 2.2.14 Let K be a 4-generator special 2-group of order 29 and conju-

gate type (1, 8). Then K is isoclinic to G/M , where G = 〈a, b, c, d〉 ∈ Ĝ3 is

any fixed group and M < Z(G) = G′ with |M | = 2 is of the form

M = 〈[a, b][c, d]〉.

The following lemma is analogous to Lemma 2.2.92.2.9 for p = 2, and therefore

the proof is mostly a duplication of the the proof of Lemma 2.2.92.2.9 with necessary

modifications.

Lemma 2.2.15 Let G = 〈a, b, c, d〉 ∈ Ĝ3. Then G/N with |N | = 4 is of conju-

gate type (1, 8) if and only N can be reduced to the form

N = 〈[a, b][c, d], [a, c][b, d][c, d]〉.

Proof. Notice that |G| = 210 and |G′| = 26. Both G/Z(G) and G′ = Z(G) are

elementary abelian. Set G = G/N ; then |G| = 28. Since G is of conjugate type

(1, 8) and |N | = 4, it follows that

Z(G)/N = Z(G) = G
′
= Φ(G)

is an elementary abelian 2-group of order 24. Thus [G : Z(G)] = 24. Hence G is

of conjugate type (1, 8) if and only if each non-central element of G commutes

only with its own powers up to the central elements.

Let x̄, ȳ ∈ G \ Z(G) be such that no one is a power of the other (reading

modulo Z(G)). Then it is not difficult to see that [x, y] 6= 1 in G. Hence, if

[x, y] = 1 in G, then [x, y] ∈ N#. Any given central subgroup N1 of order 4,
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without loss of generality, can be written as one of the following two types:

(i) N1 = 〈[a, b][a, d]i1 [b, c]i2 [b, d]i3 [c, d]i4 , [c, d]〉.

(ii) N1 = 〈[a, b][a, d]i1 [b, c]i2 [b, d]i3 [c, d]i4 , [a, c][a, d]j1 [b, c]j2 [b, d]j3 [c, d]j4〉.

If N1 is of type (i), then c̄ commutes with d̄, although c /∈ 〈Z(G), d〉. Hence

G can not be of conjugate type (1, p3). Therefore we only need to consider N1

as in type (ii). Now, as done in the proof of Lemma 2.2.92.2.9, we can reduce N1 to

the form

N2 = 〈[a, b][c, d], [a, c][b, d]i1 [c, d]i2〉.

Here i1 can not be 0, else c will commute with ad−i2 ; so i1 = 1. Again i2

can not be 0, else ad−1 will commute with bc; so i2 = 1, and hence N2 =

〈[a, b][c, d], [a, c][b, d][c, d]〉.

Now consider x = aj1bj2cj3dj4 and y = ak1bk2ck3dk4 be such that none is

power of the other (reading modulo Z(G)). If [x, y] ∈ N#
2 , then, on the lines of

the proof of Lemma 2.2.92.2.9, it follows that [a, b][a, c]k[b, d]j[c, d]jk ∈ N#
2 , and

therefore can be written as a product of powers of generators of N#
2 .

Now comparing powers of the basic commutators, we get

j ≡ k (mod 2) and jk ≡ k + 1 (mod 2)

Solving these we have

k2 − k − 1 ≡ 0 (mod 2).

This is not possible. Hence no non-central element commutes with other ele-
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ments except its power (modulo center) in G/N2 if and only if

N2 = 〈[a, b][c, d], [a, c][b, d][c, d]〉 .

This completes the proof. �

Now using Lemma 2.2.122.2.12, the preceding lemma gives

Corollary 2.2.16 Let K be a 4-generator special 2-group of order 28 and con-

jugate type (1, 8). Then K is isoclinic to G/N , where G = 〈a, b, c, d〉 ∈ Ĝ3 be

any fixed group and N < Z(G) = G′ with |N | = 4 is of the form

N = 〈[a, b][c, d], [a, c][b, d][c, d]〉 .

We conclude this section with the following result which is valid only for odd

primes.

Lemma 2.2.17 Every isoclinism family of finite p-groups of nilpotency class 2

and conjugate type (1, pn) contains a group of exponent p, where p is an odd

prime.

Proof. Notice that the isoclinism family of a finite p-group G of nilpotency class

2 and conjugate type (1, pn) contains a special p-group H (say). Then H has

the following presentation:

H =
〈
x1, x2, . . . , xd : [xi, xj, xk] = 1, [xi, xj]

p = 1,

xpi =
∏
j<k

[xj, xk]
cijk ,

∏
j<k

[xj, xk]
dljk = 1

〉
,

where cijk, dljk ∈ Z. Let F/R be a free presentation ofH, and R1 denote the sub-

group of R which is the normal closure of {[xi, xj, xk], [xi, xj]p,
∏

j<k[xj, xk]
dljk}
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in F . Let F := F/R1. Then the group F/F p lies in the isoclinism family of G

and is of exponent p. �

2.3 Proof of Theorems 2.1.12.1.1 and 2.1.22.1.2

We are now ready to prove our main results (Theorems 2.1.12.1.1 and 2.1.22.1.2) of this

chapter.

Proof of Theorem 2.1.12.1.1 Let G be a finite p-group of conjugate type (1, p3),

p > 2. Then by Theorem 1.1.251.1.25, G can be of nilpotency class 2 or 3. Without loss

of any generality, by Proposition 1.2.21.2.2, we can always assume that Z(G) ≤ G′.

First assume that G is of class 3. We are going to show that this case can not

occur, and therefore G must have nilpotency class 2.

By Proposition 1.3.11.3.1, |Z(G)| ≥ p3. Since Z(G) < G′; so |G′| ≥ p4. Then

it follows from Lemma 2.2.12.2.1 that [G : Z(G)] = p4. Since Z(G) < G′; we have

[G : G′] ≤ p3. But, if [G : G′] ≤ p2, then G can be minimally generated by at

most 2 elements, which contradicts Proposition 1.3.11.3.1. Thus | G : G′ |= p3 and

minimal generating set for G has exactly 3 elements. Assume that G = 〈a, b, c〉.

Now we have [G : Z(G)] = p4 and [G : G′] = p3. So, at least one of the three

commutators [a, b], [a, c] and [b, c] lies outside center. By the symmetry, we

can assume that [a, b] ∈ G′\Z(G). Set [a, b] = α. Then clearly G′ = 〈α, Z(G)〉.

So there exist integers i1 and i2 such that

[a, c] = [a, b]i1β1, where β1 ∈ Z(G)

and

[b, c] = [a, b]i2β2, where β2 ∈ Z(G).
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Replacing c by ai2b−i1c, we get [a, c], [b, c] ∈ Z(G). Then [α, c] = 1 (by Lemma

1.3.61.3.6). An arbitrary element of G can be written as g = aj1bj2cj3αj41 z; where

z ∈ G′ = Z(G) and 0 ≤ jk ≤ p− 1 for k = 1, 2, 3, 4. Then

αG = {(aj1bj2)−1α aj1bj2 | 0 ≤ jk ≤ p− 1, k = 1, 2}.

Thus |αG| ≤ p2, which contradicts the fact that G is of conjugate type (1, p3).

Hence the nilpotency class of G must be 2.

Now onward we assume that the nilpotency class of G is 2. Since Z(G) ≤ G′,

we have Z(G) = G′. By Corollary 1.1.231.1.23, G/Z(G) and G′ are elementary abelian

p-groups. So, finally we have Z(G) = G′ = Φ(G). By Proposition 1.3.11.3.1 and

Proposition 1.3.31.3.3, we have p3 ≤ |Z(G)| = |G′| ≤ p6. Thus, by Lemma 2.2.12.2.1,

there can be two possibilities, namely

(i) |G′| = p3 and [G : Z(G)] ≥ p4 or

(ii) |G′| ≥ p4 and [G : Z(G] = p4.

In case (i), G is a Camina group with |G′| = p3.

So it remains to consider case (ii) only. In this case, we have p4 ≤ |G′| =

|Z(G)| ≤ p6 and [G : Z(G)] = p4 = [G : G′] = [G : Φ(G)]. Thus G/Φ(G)

is an elementary abelian p-group of order p4. Hence G is minimally generated

by 4 elements. By Lemma 2.2.172.2.17 we can assume G to be of exponent p upto

isoclinism. Thus G is isoclinic to G3 or to a central quotient G3/H, where H

is a non-trivial central subgroup of G3 with |H| ≤ p2. Hence the order of H

is either p or p2. Proof of the theorem is now complete by Corollary 2.2.82.2.8 and

Lemma 2.2.112.2.11. �

Before proceeding to the proof of Theorem 2.1.22.1.2, we state the following

result which is a consequence of the main result of Wilkens [2929] stated on pages
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203− 204.

Theorem 2.3.1 Let G be a finite 2-group of nilpotency class 2 and conjugate

type (1, 8). Then one of the following holds:

(i) |G′| = 23.

(ii) [G : Z(G)] = 24.

(iii) |G′| = 24 and there exists R with R ≤ Ω1(Z(G)) and |R| = 2 such that

|G/R : Z(G/R)| = 23.

(iv) |G′| = 24 and G is central product HCG(H), where CG(H) is abelian and

H is the group given as follows:

There are i, j, k, l and m ∈ N such that H ∼= H̃/
〈
x2i, v2j, v2k1 , v

2l
2 , v

2m
3

〉
,

where H̃ = 〈x, v, v1, v2, v3〉 is of class 2 with Φ(H̃) ≤ Z(H̃) and is otherwise

defined by [v2, x] = [v1, v] = [v3, x][v3, v] = 1, [vi, vj] ∈ 〈[v3, x]〉.

We are now ready for the final proof.

Proof of Theorem 2.1.22.1.2 Let G be a finite 2-group of nilpotency class 2 and

conjugate type (1, 8). Then G is isomorphic to one of the groups G in (i), (ii),

(iii) and (iv) of the preceding theorem. We are going to show that third and

fourth possibilities can not occur. Suppose that (iii) occurs. Then |G′| = 24 and

there exists R with R ≤ Ω1(Z(G)) and |R| = 2 such that |G/R : Z(G/R)| = 23.

Since G is of conjugate type (1, 8) and |R| = 2, we have Z(G/R) = Z(G)/R.

Then from the fact that |G/R : Z(G/R)| = 23, we get |G : Z(G)| = 23, which

contradicts our hypothesis that G is of conjugate type (1, 8).

Next consider the case (iv)(5). So G ∼= HCG(H), where H̃ is a 2-group of

class 2. It is easy to see that the conjugacy class of the image of v3 in H is of
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lenght at most 2. Hence H is not of conjugate type (1, 8) and so is for G. So

we are left with only two cases (i) and (ii).

In case (i), |G′| = 23, which forces G to be isoclinic to a Camina 2-group

with commutator subgroup of order 8.

Finally we consider the case (ii). For any group G, in this case, we have

[G : Z(G)] = 24. Since G is of conjugate type (1, 8), we have [G : CG(x)] = 23,

and consequently [CG(x) : Z(G)] = 2 for all x ∈ G \ Z(G). Hence for all

x ∈ G \ Z(G), x2 ∈ Z(G), i.e., G/Z(G) is an elementary abelian 2-group. Thus

G′ ≤ Z(G), and therefore G is of class 2.

By Proposition 1.2.21.2.2 we can assume Z(G) = G′. By Proposition 1.3.31.3.3, |G′| =

|Z(G)| ≤ 26. Since, G being conjugate type (1, 8), |G′| ≥ 23, it follows that

27 ≤ |G| = 210. Since G is of class 2, obviously G′ = Z(G) is elementary abelian.

Therefore the exponent of G is 4. If |G| = 27, then G is a Camina group, which

is not possible by [1717, Theorem 3.2]. Hence 28 ≤ |G| ≤ 210, and therefore G

must be isomorphic to some group T in the family Ĝ or its central quotient

T/K with |K| ≤ 4. Now the proof is complete by Lemmas 2.2.122.2.12, 2.2.142.2.14 and

Corollary 2.2.162.2.16. �





CHAPTER3
Finite p-groups of nilpotency class

3 with two conjugacy class sizes

In this chapter, we prove that “for a prime p > 2 and an integer n ≥ 1, finite

p-groups of nilpotency class 3 and having only two conjugacy class sizes 1 and

pn exist if and only if n is even; moreover, for a given even positive integer, such

a group is unique up to isoclinism.”

3.1 Introduction

It has been known (from Corollary 1.1.241.1.24) that there does not exist 2-groups

of conjugate rank 1 and nilpotency class 3. But very little was known about

p-groups of conjugate rank 1 and nilpotency class 3, for odd primes p. Till now,

we have learnt that

(i) There is no finite p-group of nilpotency class 3 and of conjugate type (1, p)

35
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[Theorem 1.1.261.1.26],

(ii) There is a unique group (up to isoclinism) of nilpotency class 3 and of

conjugate type (1, p2) [Theorem 1.1.271.1.27],

(iii) There is no finite p-group of nilpotency class 3 and of conjugate type (1, p3)

[Theorem 2.1.12.1.1].

Apart from these, there are examples of p-group of nilpotency class 3 and

of conjugate type (1, p2m) for all m ≥ 1. These examples appeared in the con-

struction of certain Camina p-groups of nilpotency class 3 by Dark and Scoppola

(page 796-797, [44]). For a given integer m ≥ 1 and a prime p > 2, they con-

structed the following group,

Hm =





1 0 0 0 0

a 1 0 0 0

c b 1 0 0

d ab− c a 1 0

f e c b 1


: a, b, c, d, e, f ∈ Fpm


, (3.1)

where Fpm denotes the finite field with pm elements. It is not difficult to see that

Hm/Z(Hm) is of conjugate type (1, p2m) and class 3 (see Section 3.33.3 for more

details). Also note that H1/Z(H1) ∼= W (defined in (1.21.2)).

In view of the above example and observation, the following natural question

arises.

Question 3.1.1 Does there exist a finite p-group of nilpotency class 3 and con-

jugate type (1, pn), for an odd prime p and odd integer n ≥ 5?

Question 3.1.2 Are there other examples of finite p-groups of nilpotency class

3 and conjugate type (1, pn), for an odd prime p and even integer n, different
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from the one given in (3.13.1).

We answer these questions, by proving the following much general result,

which is the main theorem of this chapter.

Theorem 3.1.3 Let p > 2 be a prime and n ≥ 1 an integer. Then there exist

finite p-groups of nilpotency class 3 and conjugate type (1, pn) if and only if n is

even. For each positive even integer n = 2m, every finite p-group of nilpotency

class 3 and of conjugate type (1, pn) is isoclinic to the group Hm/Z(Hm), where

Hm is as in (3.13.1).

In view of Corollary 1.1.241.1.24, Theorem 1.1.261.1.26 and Proposition 1.2.21.2.2, we only

need to consider finite p-groups G satisfying the following conditions:

(1) G is of nilpotency class 3 and conjugate type (1, pn), n ≥ 2.

(2) Z(G) ≤ G′.

(3) p > 2.

For notational convenience, we set

Hypothesis (A1). We say that a finite p-group G satisfies Hypothesis (A1), if

(1)-(3) above hold for G.

3.2 Key results

In this section we determine some important invariants associated to a finite

p-group satisfying Hypothesis (A1).

Lemma 3.2.1 Let G satisfy Hypothesis (A1). Then [G′ : Z(G)] < pn.
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Proof. Let [G : G′] = pm for some integer m ≥ 1. Since the nilpotency class of

G is 3, G′ is abelian. Hence by the given hypothesis, for any y ∈ G′ \ Z(G), we

have

pn = [G : CG(y)] ≤ [G : G′] = pm;

hence n ≤ m.

Suppose that [G′ : Z(G)] = pk with n ≤ k. We prove this lemma by the

method of contradiction. Our plan is to count the cardinality of following set in

two different ways:

X =
{(
〈xG′〉, 〈y Z(G)〉

)
| x ∈ G \G′, y ∈ G′ \ Z(G), [x, y] = 1

}
.

Note that X is well defined. For, if 〈xG′〉 = 〈x1G′〉 and 〈y Z(G)〉 = 〈y1 Z(G)〉,

then x1 = xh and y1 = yz for some h ∈ G′ and z ∈ Z(H) and thus [x1, y1] =

[xh, yz] = [x, y][x, z][h, yz] = [x, y]. By Corollary 1.1.231.1.23 G/Z(G) is of

exponent p. As Z(G) < G′, we get

exp(G/G′) = exp(G/Z(G)) = exp(G′/Z(G)) = p.

Hence there are (pk − 1)/(p − 1) subgroups of order p in G′/Z(G). Fix some

y0 ∈ G′ \ Z(G). Since G′ is abelian, G′ ⊆ CG(y0) and [CG(y0) : G′] = pm−n. As

there are (pm−n − 1)/(p− 1) subgroups of order p in CG(y0)/G
′, we get

|X| =
(pk − 1

p− 1

)(pm−n − 1

p− 1

)
=

(pm−n − 1)(pk − 1)

(p− 1)2
.

On the other hand, fix x0 ∈ G \ G′. Set CG′(x0) := CG(x0) ∩ G′. If pn ≤ [G′ :

CG′(x0)], then there are at least pn conjugates of x0 in G′. Thus, by the given

hypothesis, there are exactly pn conjugates of x0 in G′. Consequently we have
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xG0 = xG
′

0 .

Let {x1, . . . , xm} be a minimal generating set of G. Then xxi0 = xhi0 for some

hi ∈ G′; hence xxih
−1
i

0 = x0 for 1 ≤ i ≤ m. Hence {x1h−11 , . . . , xmh
−1
m } is also

a generating set for G, which centralizes x0, which implies that x0 ∈ Z(G), a

contradiction. Thus [G′ : CG′(x0)] ≤ pn−1 and [CG′(x0) : Z(G)] ≥ pk+1−n ≥ p.

Consequently, there are at least (pk+1−n−1)/(p−1) subgroups 〈y Z(G)〉 of order

p in G′/Z(G) with [x0, y] = 1. Counting all together, we get

|X| ≥ (pm − 1)(pk+1−n − 1)

(p− 1)2
.

Comparing the size of X, we get

(pm − 1)(pk+1−n − 1) ≤ (pm−n − 1)(pk − 1),

which on simplification gives

p+ p−k + pn−m ≤ 1 + p1−m + pn−k < 3,

a contradiction on the choice of p. Hence [G′ : Z(G)] < pn. �

Before proceeding further, we recall the notion of relative breadth and some

related terminology from [2424].

Definition 3.2.2 (Relative breadth) Let G be a finite p-group. For x ∈ G

and an abelian normal subgroup A of G, the relative breadth of x with respect to

A in G is denoted by bA(x) and defined as

pbA(x) = [A : CA(x)].
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We collect the following terminology from (page 52, [2424]).

bA(G) = max{bA(x) | x ∈ G}.

BA(G) = {x ∈ G | bA(x) = bA(G)}.

For the ease of notation, we denote BA(G) by BA.

Lemma 3.2.3 Let G satisfiy Hypothesis (A1). Then BG′ = {x ∈ G | CG′(x) =

Z(G)} and 〈BG′〉 = G.

Proof. Let [G : G′] = pm for some integer m. As in the proof of Lemma 3.2.13.2.1,

we have m ≥ n. Let [G′ : Z(G)] = pk. Then, by Lemma 3.2.13.2.1, k ≤ n− 1.

Note that bG′(G) ≤ [G′ : Z(G)] = pk. So to show BG′ = {x ∈ G | CG′(x) =

Z(G)}, we need to show that there exist x ∈ G such that CG′(x) = Z(G). Define

T := {x ∈ G | x commutes with some element y ∈ G′ \ Z(G)}.

Note that T = {x ∈ G | Z(G) < CG′(x)} = ∪ CG(h), where union is taken over

all subgroups 〈hG′〉 of order p in G′/Z(G). By Corollary 1.1.231.1.23, exp(G/Z(G)) =

p, and hence exp(G′/Z(G)) = p. So there are (pk−1)
p−1 of subgroups order p in

G′/Z(G).

Fix some h0 ∈ G′ \ Z(G). Since G is of nilpotency class 3, G′ is abelian and

G′ ≤ CG(h0). As G is of conjugate type (1, pn), we have [G : CG(h0)] = pn

and therefore |CG(h0)| = |G′| pm−n. This is true for all h0 ∈ G \ Z(G). Thus,

|T | ≤ |G′| pm−n (pk − 1)

p− 1
< |G′| pm−n+k ≤ |G′| pm−1 < |G|.

Consequently, T is a proper subset of G, and therefore there exists an element
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x ∈ G \G′ such that CG′(x) = Z(G). Thus

BG′ = {x ∈ G | CG′(x) = Z(G)} = G \ T.

If 〈BG′〉 = H < G, then |H| ≤ |G′| pm−1. Thus, since p is odd, we have

|G| = |T ∪BG′ | ≤ |G′|pm−1 + |G′| pm−1 < |G′|pm = |G|,

which is a contradiction. Hence 〈BG′〉 = G, which completes the proof. �

Now we compute the index of G′ in G in the following lemma.

Lemma 3.2.4 If G satisfy Hypothesis (A1), then [G : G′] = pn.

Proof. For n = 2, the result is proved in Theorem 1.1.271.1.27. So we assume that

n > 2. Since G′ is abelian, it follows that [G : G′] ≥ pn. If [G : G′] = pn, then

there is nothing to prove. So assume that [G : G′] = pn+m with m > 0. We now

prove this lemma by the method of contradiction. Let [G′ : Z(G)] = pk, where

k ≤ n− 1 (by Lemma 3.2.13.2.1). We complete the proof in several steps.

Step 1. For all h ∈ G′ \ Z(G), CG(h) = CG(G′).

It follows from Lemma 3.2.33.2.3 that we can choose an element x1 ∈ G such that

CG′(x1) = CG(x1) ∩G′ = Z(G).

Let {x1, x2, . . . , xm+k, . . . , xm+n} be a minimal generating set for G such that

CG(x1) = 〈x1, x2, . . . , xm+k,Z(G)〉.

If {[x1, xi] | m + k < i ≤ m + n} ⊆ Z(G), then [x1, xi] ∈ Z(G) for all i with

1 ≤ i ≤ m + n. By Lemma 1.3.61.3.6, we get [xr, xs] ∈ CG(x1) ∩ G′ = Z(G) for all

r, s with 1 ≤ r, s ≤ m+ n. This implies G′ ⊆ Z(G), a contradiction. Thus there
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exists at least one i, m+ k < i ≤ m+n such that [x1, xi] /∈ Z(G). Without loss

of generality, we can assume that [x1, xm+n] /∈ Z(G).

Now consider the following subgroup,

K = 〈[x1, xm+n], [x2, xm+n], . . . , [xm+k, xm+n],Z(G)〉.

Since [G′ : Z(G)] = pk, among the commutators [xi, xm+n], 1 ≤ i ≤ m + k,

at most k are independent over Z(G) (these can be viewed as elements of the

vector space G′/Z(G)). We can assume, without loss of generality, that for some

integer l with 1 ≤ l ≤ k, [x1, xm+n], [x2, xm+n], . . . , [xl, xm+n] are independent

elements modulo Z(G), and generate K along with Z(G). Now, we proceed to

show that

l = k and K = G′.

For any t with l < t ≤ m+ k, we have

[xt, xm+n] ≡ [x1, xm+n]i1 [x2, xm+n]i2 · · · [xl, xm+n]il (mod Z(G)).

Let x′t = xtx
−i1
1 · · ·x−ill . Then [x′t, xm+n] ∈ Z(G). Thus, with CG(x1) = 〈x1,

x2, . . ., xm+k, Z(G)〉, we can assume, modifying xt by x′t (if necessary), that

[xt, xm+n] ∈ Z(G) for l < t ≤ m+ k. (3.2)

Note that, even after above modification (xt by x′t, for l < t ≤ m + k,

wherever necessary), [x1, xj] = 1 and thus by Lemma 1.3.61.3.6, we get [xi, xj] ∈

CG(x1) ∩ G′ = Z(G), for any i, j ≤ m + k. In particular, [xi, xt] ∈ Z(G), for

1 ≤ i ≤ l and l < t ≤ m+ k. Consequently by (3.23.2) and Lemma 1.3.61.3.6,
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[xt, [xi, xm+n]] = 1 (1 ≤ i ≤ l < t ≤ m+ k).

Thus for any i with 1 ≤ i ≤ l, 〈xl+1, . . . , xm+k, G
′〉 ≤ CG([xi, xm+n]); so

pn = [G : CG([xi, xm+n])] ≤ pm+n−(m+k−l) = pn−k+l ≤ pn. Unless l = k, the last

inequality is strict. Consequently, we get

(i) k = l,

(ii) K = 〈[x1, xm+n], [x2, xm+n], . . . , [xk, xm+n],Z(G)〉 = G′, and

(iii) CG([xi, xm+n]) = 〈xk+1, xk+2 . . . , xk+m, G
′〉 := H (say), for all i, 1 ≤ i ≤ k.

By (ii) and (iii), we get CG(h) = H = CG(G′) for all h ∈ G′ \ Z(G). This

completes the proof of Step 1.

Observe that, by Lemma 3.2.33.2.3,

G \H = {x ∈ G | CG′(x) = Z(G)} = BG′ ,

which implies that CH(x) ∩G′ = Z(G) for all x ∈ G \H.

Step 2. For any y ∈ G \H, there exist elements h1, h2, . . . , hm ∈ G′ such that

〈xk+ihi | 1 ≤ i ≤ m〉Z(G)/Z(G) = (CG(y) ∩H)/Z(G)

and

|(CG(y) ∩H)/Z(G)| = pm.

Let y ∈ G \ H be an arbitrary element. Then CG′(y) = Z(G). Consider a

minimal generating set Y := {y = y1, y2, . . . , ym+k, . . . , ym+n} of G such that
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CG(y1) = 〈y1, y2, . . . , ym+k,Z(G)〉. As in Step 1, we can modify (if necessary)

the elements yk+1, . . . , ym+k so that

〈yk+1, yk+2, . . . , ym+k, G
′〉 = H = 〈xk+1, xk+2, . . . , xm+k, G

′〉.

Consequently, for 1 ≤ i ≤ m, it follows that xk+i = (
∏m

j=1 y
aij
k+j)h

−1
i for some

integers aij and some element hi ∈ G′. Hence xk+ihi ∈ CG(y), which shows that

〈xk+ihi | 1 ≤ i ≤ m〉Z(G)/Z(G) ≤ (CG(y) ∩H)/Z(G). (3.3)

Note that for 1 ≤ i, j ≤ m, [xk+ihi, xk+jhj] ∈ Z(G). Thus

|〈xk+ihi | 1 ≤ i ≤ m〉Z(G)/Z(G)| = pm. (3.4)

By the vary choice of yk+1, . . . , ym+k, it follows that

〈yk+1, . . . , yk+m,Z(G)〉 = CG(y) ∩H;

hence |(CG(y) ∩H)/Z(G)| = pm. This, along with (3.33.3) and (3.43.4), proves Step

2.

Step 3. The cardinality of

S :=
{(
〈xZ(G)〉, 〈y Z(G)〉

)
| x ∈ G \H, y ∈ H \G′, [x, y] = 1

}

is pm+k(pn − 1)(pm − 1)/(p− 1)2.

Since the exponent of G/Z(G) is p, it follows that G/Z(G), H/Z(G) and

G′/Z(G) have (pn+m+k − 1)/(p − 1), (pm+k − 1)/(p − 1) and (pk − 1)/(p − 1)
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number of subgroups of order p respectively. Consequently

|{〈xZ(G)〉 | x ∈ G \H}| = pm+k(pn − 1)

p− 1
(3.5)

and

|{〈y Z(G)〉 | y ∈ H \G′}| = pk(pm − 1)

p− 1
. (3.6)

For each x ∈ G \H, by Step 2, we have |(CG(x) ∩H)/Z(G)| = pm; hence

|{〈y Z(G)〉 | y ∈ H \G′, [x, y] = 1}| = pm − 1

p− 1
. (3.7)

Hence, by (3.53.5) and (3.73.7), we have

|S| = pm+k(pn − 1)(pm − 1)

(p− 1)2
, (3.8)

and the proof of Step 3 is complete.

Step 4. In this step, we proceed to get the final contradiction.

Note that there exists some element y0 ∈ H \G′ such that

|{〈xZ(G)〉 | x ∈ G \H, [x, y0] = 1}| ≥ pm(pn − 1)

p− 1
. (3.9)

For, if there is no such y0, then for each y ∈ H \G′, we get

|{〈xZ(G)〉 | x ∈ G \H, [x, y] = 1}| < pm(pn − 1)

p− 1
.

But then

|S| < pm+k(pn − 1)(pm − 1)

(p− 1)2
,

which is absurd.
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Note that;

(i) G′ ≤ CG(y0) and [CG(y0) : G′] = pm.

(ii) |G/H| = pn and |H/G′| = pm.

(iii) |CG(y0)H/H||CH(y0)/G
′| = [CG(y0) : G′] = pm.

Assume that |CG(y0)H/H| = pn−s and |CH(y0)/G
′| = pm−r, for some

integers s and r. From (iii) it follows that n = s+ r. Then

|CH(y0)/Z(G)| = pk+(m−r) and |CG(y0)/Z(G)| = pk+m.

Thus

|{〈xZ(G)〉 | x ∈ G \H, [x, y0] = 1}| =
(pk+m − 1)− (pk+m−r − 1)

p− 1

=
pm+k−r(pn−s − 1)

p− 1
.

The preceding equation along with (3.93.9) gives

pm(pn − 1)/(p− 1) ≤ pm+k−r(pn−s − 1)/(p− 1).

Since n = r + s, after simplification, the preceding inequality gives

pn − 1 ≤ pk−r(pn−s − 1) = pk − pk−r.

Hence, by Lemma 3.2.13.2.1,

pn ≤ pk + 1 ≤ pn−1 + 1.

which is absurd. Hence the proof is complete. �
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As an immediate consequence of the preceding lemma, we get the follow-

ing important information about centralizers of elements in G, which we use

frequently without any further reference.

Corollary 3.2.5 If G satisfies Hypothesis (A1), then for all h ∈ G′ \ Z(G) and

x ∈ G \G′ the following hold:

(i) CG(h) = G′.

(ii) CG(x) ∩G′ = Z(G).

(iii) [CG(x) : Z(G)] = [G′ : Z(G)] = pn.

Theorem 3.2.6 Let G satisfy Hypothesis (A1). If [G′ : Z(G)] = pm, then

n = 2m.

Proof. Consider x, y ∈ G such that [x, y] /∈ Z(G). We consider two cases,

namely (1) n > 2m and (2) n < 2m, and get contradiction in both.

Case 1. n > 2m

Write G = G/Z(G). Note that

(i) G is of order pm+n and nilpotency class 2.

(ii) G′ = Z(G) = G/Z(G), and are of order pm.

So, we get

[G : CG(x)] ≤ pm and [G : CG(y)] ≤ pm.

Consequently

[CG(x) : Z(G)] ≥ pn−m ≤ [CG(y) : Z(G)].

Since [G : Z(G)] = pn < p2(n−m), there exists w ∈
(
CG(x) ∩ CG(y)

)
\ Z(G), i.e.,

[x, w], [y, w] ∈ Z(G) with w /∈ G′. By Lemma 1.3.61.3.6, [x, y] ∈ CG(w)∩G′ = Z(G),

a contradiction to our supposition that [x, y] /∈ Z(G).
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Case 2. n < 2m.

Since G is of nilpotency class 3 and [x, y] /∈ Z(G), both x, and y can not lie in

G′. By Corollary 3.2.53.2.5, CG(x) ∩G′ = Z(G) = CG(y) ∩G′. Thus, we get

[CG(x)G′ : G′] = [CG(x) : CG(x) ∩G′] = [CG(x) : Z(G)] = pm,

and similarly [CG(y)G′ : G′] = pm. Since 2m > n, we have [G : G′] = pn < p2m.

Hence CG(x)G′ ∩ CG(y)G′ contains G′ properly. Consider w ∈
(
CG(x)G′ ∩

CG(y)G
)
\G′. As G is of nilpotency class 3, it is easy to see that [w, x], [w, y] ∈

Z(G). Thus by Lemma 1.3.61.3.6, [x, y] ∈ CG(w)∩G′ = Z(G), a contradiction again.

Hence n = 2m, and the proof is complete. �

Before proceeding further, we strengthen Hypothesis (A1) as follows:

Hypothesis (A2). We say that a finite p-group G satisfies Hypothesis (A2), if

G is of nilpotency class 3 and of conjugate type (1, p2m) with Z(G) ≤ G′.

Now we recall the following result of Verardi [2828] (also see [Lemma 1.2,

[1818]]), which we need for determining the structure of G/Z(G) when G satisfies

Hypothesis (A2).

Theorem 3.2.7 [1818, Lemma 1.2] For an odd prime p, let G be a Camina p-

group of order p3m, of exponent p and of nilpotency class 2. Let [G : G′] = p2m

and there are two elementary abelian subgroups A∗, B∗ of G such that G = A∗B∗,

A∗ = A×G′, B∗ = B×G′, and thus G = ABG′. Then the following statements

are equivalent:

1. G is isomorphic to U3(p
m).

2. All the centralizers of non-central elements of G are abelian.
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Theorem 3.2.8 Let G satisfy Hypothesis (A2). Write G = G/Z(G) and x =

xZ(G) for x ∈ G. Then the following hold:

(i) CG(x)G′ = CG(x) and |CG(x)| = p2m for x ∈ G \G′.

(ii) G is a Camina p-group of order p3m, exponent p, and |G′| = pm.

(iii) All the centralizers of non-central elements in G are elementary abelian of

order p2m.

(iv) If A = CG(x) and B = CG(y) for x, y 6∈ Z(G) are distinct centralizers in

G, then A ∩B = Z(G) and G = AB.

(v) G is isomorphic to U3(p
m).

Proof. (i) By Lemma 3.2.43.2.4 and Theorem 3.2.63.2.6, we have [G : G′] = p2m and

[G′ : Z(G)] = pm; hence

|G| = p3m and |G′| = pm.

Further, for h ∈ G′ \ Z(G), CG(h) = G′, by Corollary 3.2.53.2.5.

Fix x ∈ G \ G′. Since G is of nilpotency class 2, G′ is contained in the

centralizer of every element in G. Hence CG(x)G′ ≤ CG(x). By Corollary 3.2.53.2.5,

[CG(x) : Z(G)] = [G′ : Z(G)] = pm with CG(x) ∩ G′ = Z(G). So, we get,

[CG(x)G′ : Z(G)] = p2m and [G : CG(x)G′] = pm. Hence

|CG(x)| ≥ p2m and [G : CG(x)] ≤ pm.

If possible, suppose that |CG(x)| > p2m, that is, [G : CG(x)] < pm. Note that

x /∈ Z(G). For, let x ∈ Z(G). For any minimal generating set {x1, . . . , x2m} of

G, {x1, . . . , x2m} is also a minimal generating set for G. Then [x, xi] = 1, that is
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[x, xi] ∈ Z(G) for 1 ≤ i ≤ 2m. Then by Lemma 1.3.61.3.6, for 1 ≤ i ≤ 2m, [xi, xj] ∈

CG(x) ∩G′ = Z(G) (by Corollary 3.2.53.2.5); hence G′ ⊆ Z(G), a contradiction.

Then there exists t ∈ G such that [t, x] /∈ Z(G). Since |G′| = pm, we

have [G : CG(t)] ≤ pm, and therefore it follows that CG(x) ∩ CG(t) contains

G
′ properly. Take w ∈ CG(x) ∩ CG(t) \ G′. Then [w, x], [w, t] ∈ Z(G) with

w /∈ G′. By Lemma 1.3.61.3.6, [x, t] ∈ CG(w) ∩ G′ = Z(G), a contradiction. Thus

|CG(x)| = p2m = |CG(x)G′|. This proves assertion (i).

(ii) By Corollary 1.1.231.1.23, exp(G) = p. Now the assertion (ii) follows from

assertion (i).

(iii) Consider any x ∈ G \G′. For y1, y2 ∈ CG(x), by Lemma 1.3.61.3.6, [y1, y2] ∈

CG(x) ∩ G′ = Z(G). Hence [CG(x),CG(x)] ≤ Z(G). Since G is of nilpotency

class 3, we have

[CG(x)G′, CG(x)G′] = [CG(x), CG(x)] [CG(x), G′] [G′, G′] ≤ Z(G),

i.e., CG(x) = CG(x)G′ is abelian. Since G is of exponent p, then so is CG(x).

This completes the proof of (iii).

(iv) It is given that A = CG(x) and B = CG(y) are distinct proper subgroups

of G, and are abelian by assertion (iii). Thus for any element w ∈ A ∩ B, it

follows that |CG(w)| ≥ |AB| > p2m. Hence, by (iii), w ∈ Z(G). Since |G| = p3m,

|Z(G)| = pm and |A| = |B| = p2m, we have G = AB.

(v) The assertion follows by (ii)-(iv) along with Theorem 3.2.73.2.7. �

Corollary 3.2.9 Let G satisfy Hypothesis (A2) and x, y ∈ G \ G′ such that

[x, y] ∈ Z(G). Then there exists an element h ∈ G′ such that [x, yh] = 1.

Proof. Let G = G/Z(G). As [x, y] ∈ Z(G), y ∈ CG(x) = CG(x)G′ (by Theorem

3.2.83.2.8). Thus, we get y = x0h
′z, for some x0 ∈ CG(x), h′ ∈ G′ and z ∈ Z(G).
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Putting h = (h′z)−1 ∈ G′, we get that x0 = yh ∈ CG(x). This completes the

proof. �

Lemma 3.2.10 Let G satisfy Hypothesis (A2). Then Z(G) = γ3(G), and is

elementary abelian of order p2m.

Proof. Since G′ is elementary abelian (by Corollary 1.1.231.1.23), so are γ3(G) and

Z(G). Consider x1 ∈ G \ G′. Recall that [G : G′] = p2m, CG(x1) ∩ G′ = Z(G),

and [CG(x1) : Z(G)] = [G′ : Z(G)] = pm. Consider y1 ∈ G \ CG(x1)G
′. Let

CG(x1) =〈x1, . . . , xm,Z(G)〉 = A

and

CG(y1) =〈y1, . . . , ym,Z(G)〉 = B.

Then CG(x1) = 〈x1, . . . , xm, G
′〉 = A and CG(y1) = 〈y1, . . . , ym, G

′〉 = B are

distinct proper subgroups of G. Hence, by Theorem 3.2.83.2.8(iv), they generate

G. It follows that {x1, . . . , xm, y1, . . . , ym} is a (minimal) generating set for G.

Define

[x1, yi] = hi, 1 ≤ i ≤ m.

By Theorem 3.2.83.2.8(ii), h1, . . . , hm are independent modulo Z(G), and G′ =

〈h1, . . . , hm,Z(G)〉. Since x1, . . . , xm, y1, . . . , ym are independent modulo G′ =

CG(h1), it follows that [h1, x1], . . . , [h1, xm], [h1, y1], . . . , [h1, ym] are indepen-

dent, and they generate a subgroup K of order p2m in γ3(G). Define

[h1, xi] = zi, and [h1, yi] = zm+i, 1 ≤ i ≤ m.

Now, we proceed to show that K = 〈z1, . . . , z2m〉 = γ3(G). It is sufficient

to show that for any h ∈ G′ \ Z(G), [h, xi], [h, yi] ∈ K for 1 ≤ i ≤ m.
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For any h ∈ G′ \ Z(G) and fixed i with 1 ≤ i ≤ m, consider [h, xi]. Since

〈[x1, y1], . . . , [x1, ym],Z(G)〉 = G′, there exists y ∈ B such that h ≡ [x1, y]

(mod Z(G)). Then by Lemma 1.3.71.3.7, we have

[h, xi] = [[x1, y], xi] = [[xi, y], x1].

Again, since 〈[x1, y1], . . . , [xm, y1],Z(G)〉 = G′, there exists x ∈ A such that

[xi, y] ≡ [x, y1] (mod Z(G)). Therefore, again by Lemma 1.3.71.3.7, we get

[h, xi] = [[xi, y], x1] = [[x, y1], x1] = [[x1, y1], x] = [h1, x] ∈ K.

Similarly we can show that [h, yi] ∈ K, 1 ≤ i ≤ m; hence K = γ3(G) and is of

order p2m.

It only remains to show that Z(G) = γ3(G). For this, since [x1, y1], . . . , [x1, ym]

are independent modulo Z(G) and G′ = 〈[x1, y1], . . . , [x1, ym],Z(G)〉, it suffices

to prove that

G′ = 〈[x1, y1], . . . , [x1, ym], γ3(G)〉. (3.10)

Note that γ3(G) = 〈z1, . . . , z2m〉 ⊆ Z(G). If (3.103.10) does not hold, then there

exist z ∈ Z(G)\γ3(G) and a commutator [xi, yj] for some i, j with 1 ≤ i, j ≤ m,

such that

[xi, yj] = [x1, y1]
e1 · · · [x1, ym]emz,

where ei ∈ Fp, for 1 ≤ i ≤ m. Let y = ye11 · · · yemm . Then the preceding equation

implies

[xi, yj] ≡ [x1, y]z (mod γ3(G)). (3.11)

Consequently [xi, yj] ≡ [x1, y] (mod Z(G)). Since [x1, xi] ≡ [y, yj] ≡ 1

(mod Z(G)), it follows that [x1yj, xiy] ≡ [x1, y][yj, xi] ≡ 1 (mod Z(G)).
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Hence, by Corollary 3.2.93.2.9, there exists h ∈ G′ such that [x1yj, xiyh] = 1. Since

G/γ3(G) is of nilpotency class 2, using (3.113.11), we get

1 = [x1yj, xiyh] ≡ [x1, xi][x1, y][xi, yj]
−1[yj, y] (mod γ3(G))

≡ z−1[yj, y] (mod γ3(G)).

Since yj, y ∈ CG(y1), we have yi, y ∈ CG(y1), which is abelian by Theorem

3.2.83.2.8(iii); hence [yj, y] = 1, i.e., [yj, y] ∈ Z(G). Again by Corollary 3.2.93.2.9, there

exists h1 ∈ G′ such that [yj, yh1] = 1. Then [yj, y] = [yj, h1]
−1 ∈ γ3(G). Thus,

we get

1 ≡ z−1 (mod γ3(G)), a contradiction.

This proves that (3.103.10) holds. Hence the proof is complete. �

3.3 Examples

In this section, we describe the examples of p-groups of conjugate type (1, p2m)

and class 3, from the construction by Dark and Scoppola [44].

For an odd prime p and an integer m ≥ 1, let q = pm and Fq denote the field

of order q. Consider the set G of quintuples (a, b, c, d, e) over Fq. Define an op-

eration ‘.’ on G as follows. For any two quintuples (a, b, c, d, e) and (x, y, z, u, v),

define (a, b, c, d, e).(x, y, z, u, v) to be the quintuple

(a+ x, b+ y, c+ z + bx, d+ u+ az + (ab− c)x, e+ v + cy + b(xy − z).

A routine check shows that G is a group under this operation, with identity
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element (0, 0, 0, 0, 0), which we denote by 0, and

(a, b, c, d, e)−1 = (−a,−b,−c+ ab,−d,−e).

Then (a, b, c, d, e).(x, y, z, u, v).(a, b, c, d, e)−1.(x, y, z, u, v)−1 is the quintuple

(0, 0, bx− ay, 2az − 2cx+ a2y − bx2, 2(c− ab)y − 2b(z − xy)− ay2 + b2x).

It is easy to see that

1. G ′ = {(0, 0, c, d, e) | c, d, e ∈ Fq}.

2. γ3(G) = {(0, 0, 0, d, e) | d, e ∈ Fq} = Z(G).

Consider (0, 0, c, d, e) ∈ G ′ \ Z(G). Then c 6= 0. If

[(0, 0, c, d, e), (x, y, z, u, v)] = 0,

then by the commutator formula above, −2cx = 2cy = 0. Since characteristic

of Fq is odd and c 6= 0, x = y = 0. Noting that G ′ is abelian, it follows that the

centralizer of any element of G ′ \ Z(G) is G ′, which has index q2 = p2m in G.

Next fix g = (a, b, c, d, e) with (a, b) 6= (0, 0). Then (x, y, z, u, v) centralizes g

if and only if

bx− ay = 0, (3.12)

2az − 2cx+ a2y − bx2 = 0, (3.13)

2(c− ab)y − 2b(z − xy)− ay2 + b2x = 0. (3.14)

Suppose a 6= 0. For arbitrary x, u, v ∈ Fq, we see that y is uniquely determined

from (3.123.12) and then z is uniquely determined from (3.133.13). Further the values
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of y, z obtained satisfy (3.143.14). Hence the centralizer of (a, b, c, d, e) has order

q3 = p3m, and therefore has index p2m in G. Similarly, if a = 0 and b 6= 0, then

it follows that the centralizer of (a, b, c, d, e) in G has index p2m. Hence G is of

conjugate type (1, p2m).

We show that the group G has a nice description in terms of a matrix group

over Fq. Consider the following collection of unitriangular matrices over Fq:

Hm =





1

a 1

c b 1

d ab− c a 1

f e c b 1


: a, b, c, d, e, f ∈ Fq


.

It is easy to see thatHm is a subgroup of U5(q). Denote the general element ofHm

by (a, b, c, d, e, f). An easy computation shows that Z(Hm) = {(0, 0, 0, 0, 0, f) |

f ∈ Fq}. Therefore, we have a natural homomorphism Hm → Hm/Z(Hm), in

which we identify

(a, b, c, d, e, f) Z(Hm)←→ (a, b, c, d, e).

Then one can check that the product (a, b, c, d, e)(x, y, z, u, v) in Hm/Z(Hm) is

the same as (a, b, c, d, e).(x, y, z, u, v) in G. Hence Hm/Z(Hm) is isomorphic to

G, and therefore is of conjugate type (1, p2m) and class 3.

As a conclusion of the preceding discussion, we obtain

Lemma 3.3.1 For any even integer n ≥ 1 and an odd prime p, there exists a

finite p-group of nilpotency class 3 and of conjugate type (1, pn).
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3.4 Proof of Main Theorem [Theorem 3.1.33.1.3]

Let G be a p-group of nilpotency class 3 such that G/Z(G) is isomorphic to the

group U3(p
m). Our strategy for proving the theorem is to obtain presentations

of groups G satisfying Hypothesis (A2) from a presentation of U3(p
m); then we

proceed to show that the groups, given by the presentations obtained, belong to

the same isoclinism family.

We start with finding some structure constants of U3(p
m). Let Fpm denote

the field of order pm. Then Fpm = Fp(α), where α satisfies a monic irreducible

polynomial of degree m over Fp. Consider the following matrices in U3(p
m) for

any integer i ≥ 1:

Xi =


1

0 1

0 αi−1 1

 , Yi =


1

αi−1 1

0 0 1

 , Hi =


1

0 1

αi−1 0 1

 .

Then it is easy to see that {X1, . . . , Xm, Y1, . . . , Ym} is a minimal generating

set for U3(p
m) and {H1, . . . , Hm} is a minimal generating set for the center

(which is also equal to the commutator subgroup) of U3(p
m). Further, these

matrices satisfy the following relations.

Xp
i = Y p

i = Hp
i = 1, (3.15)

[Xi, Xj] = [Yi, Yj] = 1, (3.16)

[Hi, Xj] = [Hi, Yj] = 1, (3.17)

[Xi, Yj] = Hi+j−1 for all i, j ≥ 1. (3.18)

Since Fp(α) is a vector space over Fp with basis (1, α, . . . , αm−1), for αi+j−2 ∈
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Fp(α), there exist unique κi,j,1, . . . , κi,j,m ∈ Fp such that

αi+j−2 = κi,j,1 + κi,j,2 α + · · ·+ κi,j,m α
m−1.

Then, by (3.183.18), we have

Hi+j−1 = H
κi,j,1
1 H

κi,j,2
2 · · ·Hκi,j,m

m = [X1, Y
κi,j,1
1 Y

κi,j,2
2 · · ·Y κi,j,m

m ],

which in turn implies that

[Xi, Yj] = [X1, Y
κi,j,1
1 Y

κi,j,2
2 · · ·Y κi,j,m

m ], 1 ≤ i, j ≤ m. (3.19)

The constants κi,j,l for 1 ≤ i, j, l ≤ m, which we call the structure constants

of U3(p
m), will be frequently used in the remaining part of the proof. The

generators Xi, Yi, Hi (1 ≤ i ≤ m), the constants κi,j,l, and the relations (3.153.15)

- (3.193.19) give a presentation of the group U3(p
m). From (3.183.18), it follows that

[Xi, Yj] = [Xj, Yi] for all i, j ≥ 1, and so

κi,j,l = κj,i,l. (3.20)

Also, combining (3.193.19) with the relation [Xi, Yj] = [Xj, Yi], we obtain

[Xj, Yi] = [X
κi,j,1
1 X

κi,j,2
2 · · ·Xκi,j,m

m , Y1], 1 ≤ i, j ≤ m. (3.21)

We now build up a presentation of a finite p-group G such that G/Z(G) ∼=

U3(p
m).

Lemma 3.4.1 Fix a prime p > 2 and an integer m ≥ 2. Let H be a p-group of



58 §3.4. Proof of Main Theorem [Theorem 3.1.33.1.3]

nilpotency class 3 and of conjugate type (1, p2m). Then there exists

αi,j,l, βi,j,l, γi,j,l, δi,j,l, λi,j,l, µi,j,l, εi,l, νi,l ∈ Fp (1 ≤ i, j ≤ m, 1 ≤ l ≤ 2m),

such that H is isoclinic to the group G admitting the following presentation:

G =
〈
x1, . . . , xm, y1, . . . , ym, h1, h2, . . . , hm, z1, z2, . . . , z2m

∣∣∣
xpi =

2m∏
l=1

z
εi,l
l , ypi =

2m∏
l=1

z
νi,l
l , hpi = 1 (1 ≤ i ≤ m), zpi = 1 (1 ≤ i ≤ 2m),

(R0)

[zk, zr] = [zk, xi] = [zk, yi] = [zk, hi] = 1 (1 ≤ k, r,≤ 2m, 1 ≤ i ≤ m),

(R1)

[hi, hj] = 1 (1 ≤ i, j ≤ m), (R2)

[hi, xj] =
2m∏
l=1

z
γi,j,l
l (1 ≤ i, j ≤ m), (R3)

[hi, yj] =
2m∏
l=1

z
δi,j,l
l (1 ≤ i, j ≤ m), (R4)

[xi, xj] =
2m∏
l=1

z
αi,j,l
l (1 ≤ i, j ≤ m), (R5)

[yi, yj] =
2m∏
l=1

z
βi,j,l
l (1 ≤ i, j ≤ m), (R6)

[xi, yj] = [x1, y
κi,j,1
1 y

κi,j,2
2 · · · yκi,j,mm ]

2m∏
l=1

z
λi,j,l
l (1 ≤ i, j ≤ m), (R7)

[xj, yi] = [x
κi,j,1
1 x

κi,j,2
2 · · · xκi,j,mm , y1]

2m∏
l=1

z
µi,j,l
l (1 ≤ i, j ≤ m), (R8)

[x1, yi] = hi, [h1, xi] = zi, [h1, yi] = zm+i (1 ≤ i ≤ m)
〉
, (R9)

where κi,j,l, 1 ≤ i, j, l ≤ m, are the structure constants of U3(p
m).
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Proof. By Propositions 1.2.11.2.1 and 1.2.21.2.2, H is isoclinc to a group G satisfying

hypothesis (A2). Then by Lemma 2.2.92.2.9, Theorem 2.2.142.2.14 and Lemma 3.2.33.2.3,

[G : G′] = p2m = |Z(G)|, and [G′ : Z(G)] = pm.

The desired presentation of G is obtained from the presentation of U3(p
m) (∼=

G/Z(G)) described just before the lemma. As G is of nilpotency class 3, G′ is

abelian and consequently elementary abelian by Corollary 1.1.231.1.23. As Z(G) ≤ G′,

Z(G) is also elementary abelian.

Since |Z(G)| = p2m, Z(G) is minimally generated by 2m elements z1, z2, . . . ,

z2m (say). Let ϕ : G→ U3(p
m) denote a surjective homomorphism with kerϕ =

Z(G). Let Xi’s, Yi’s and Hi’s be the generators of U3(p
m) considered in the

discussion preceding the lemma.

Choose x1, . . . , xm, y1, . . . , ym, h1, . . . , hm in G such that

ϕ(xi) = Xi, ϕ(yi) = Yi and ϕ(hi) = Hi (1 ≤ i ≤ m).

It follows that the set

{x1, . . . , xm, y1, . . . , ym, h1, h2, . . . , hm, z1, z2, . . . , z2m} generates G,

and

{h1, h2, . . . , hm, z1, z2, . . . , z2m} generates G′.

Since kerϕ = Z(G) and ϕ(xpi ) = 1, 1 ≤ i ≤ m, there exist some εi,l ∈ Fp,

1 ≤ l ≤ 2m, such that xpi =
∏

l z
εi,l
l . Similarly there exist some νi,l ∈ Fp,

1 ≤ l ≤ 2m, such that ypi =
∏

l z
νi,l
l , 1 ≤ i ≤ m. Since G′ is elementary abelian,

we get hpi = 1, [hi, hj] = 1, 1 ≤ i, j ≤ m and zpi = 1, 1 ≤ i ≤ 2m. This
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gives all the relations in (R0) and (R2). Since zi ∈ Z(G), the relations (R1) are

the obvious commutator relations of zi’s with the other generators of G. The

relations (3.163.16), (3.173.17), (3.193.19) and (3.213.21) of U3(p
m) give the relations (R3)-(R8)

for some α’s, β’s, γ’s, δ’s, λ’s and µ’s in Fp.

It remains to obtain relations (R9). Since, for 1 ≤ i ≤ m, [X1, Yi] = Hi, by

the choice of x1, yi and hi, we have

[x1, yi] ≡ hi (mod Z(G)).

Thus [x1, yi] = hiwi for some wi ∈ Z(G). Replacing hi by hiwi, which do not

violate any of the preceding relations, we can assume, without loss of generality,

that

[x1, yi] = hi, 1 ≤ i ≤ m. (3.22)

Finally, we have h1 ∈ G′\Z(G). Further, G is of conjugate type (1, p2m), and [G :

G′] = p2m with G′ abelian. Therefore CG(h1) = G′. Since x1, . . . , xm, y1, . . . , ym

are independent modulo CG(h1) = G′, it follows that the 2m commutators

[h1, x1], . . . , [h1, xm], [h1, y1], . . . , [h1, ym]

are independent, and they belong to γ3(G) = Z(G), which is elementary abelian

of order p2m. Thus, without loss of generality, we can take [h1, xi] = zi and

[h1, yi] = zm+i for 1 ≤ i ≤ m. This, along with (3.223.22), gives relations (R9). �

Theorem 3.4.2 Given an even integer n = 2m ≥ 2 and an odd prime p, there

is a unique finite p-group satisfying Hypothesis (A2), upto isoclinism. Moreover,

such a group is isoclinic to the group Hm/Z(Hm).

Assuming Theorem 3.4.23.4.2, we are now ready to prove our main theorem ( Theo-
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rem 3.1.33.1.3).

Proof of Theorem 3.1.33.1.3: For an integer n ≥ 1 and a prime p, let G be a

finite p-group of nilpotency class 3 and of conjugate type (1, pn). In view of

Propositions 1.2.11.2.1 and 1.2.21.2.2, we can assume that Z(G) ≤ G′. Then, by Theorem

3.2.63.2.6, n is even. Conversely, if n ≥ 1 is an even integer and p is an odd prime,

then that there exists a finite p-group of nilpotency class 3 and of conjugate

type (1, pn), follows from Theorem 3.3.13.3.1. This proves the first assertion of Main

Theorem. The second one follows from Theorem 3.4.23.4.2. �

The rest of this section is devoted to the proof of Theorem 3.4.23.4.2. For m = 1,

Theorem 3.4.23.4.2 has been proved by Ishikawa in [Theorem 4.2, [1111]]. Thus, assume

that m ≥ 2.

In remaining part of this chapter, now onwards, for a prime p, and integer

m ≥ 1, G (or more precisely, G(α, β, γ, δ, λ, µ, ε, ν)) always denotes a group of

conjugate type (1, p2m), admitting the presentation as in Lemma 3.4.13.4.1, where

α’s, β’s, γ’s, δ’s, λ’s, µ’s, ε’s, and ν’s belong to Fp. Further, let the homomor-

phism ϕ : G→ U3(p
m),

xi 7→ Xi, yi 7→ Yi, and hi 7→ Hi

be as in the proof of Lemma 3.4.13.4.1.

First, we proceed to show that there is a unique choice for α’s, β’s, γ’s, δ’s,

λ’s and µ’s for which the group G considered in Lemma 3.4.13.4.1 is of conjugate

type (1, p2m). We start with simplifying the relations of G without any loss of

generality.
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Lemma 3.4.3 We can choose generators xj’s and yj’s of G such that

[x1, xj] = [y1, yj] = 1 (j = 2, . . . ,m).

Proof. Fix j with 2 ≤ j ≤ m. Since [x1, xj] ∈ Z(G), by Corollary 3.2.93.2.9,

there exists hj ∈ G′ such that [x1, xjhj] = 1. Thus replacing xj by xjhj, if

necessary, we can assume that [x1, xj] = 1. Similarly, we can choose yj’s such

that [y1, yj] = 1. �

Theorem 3.4.4 In the relations (R3) and (R4), for 1 ≤ i, j ≤ m, we have

[hi, xj] = [hj, xi] = z
κi,j,1
1 z

κi,j,2
2 · · · zκi,j,mm

and

[hi, yj] = [hj, yi] = z
κi,j,1
m+1 z

κi,j,2
m+2 · · · z

κi,j,m
2m .

In particular, γ’s and δ’s (in the relations (R3) and (R4)) are uniquely de-

termined by the structure constants κi,j,l of U3(p
m).

Proof. Since Hi = [X1, Yi] in U3(p
m) for 1 ≤ i ≤ m, we get hi ≡ [x1, yi]

(mod Z(G)) in G. Therefore

[hi, xj] = [[x1, yi], xj].

Since [x1, xj] ∈ Z(G), by Lemma 1.3.71.3.7, we get

[hi, xj] = [[x1, yi], xj] = [[xj, yi], x1].

From the relation (R8), [xj, yi] ≡ [x
κi,j,1
1 x

κi,j,2
2 · · ·xκi,j,mm , y1] (mod Z(G)). Then,
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again by Lemma 1.3.71.3.7, we get

[hi, xj] = [xj, yi, x1] = [x
κi,j,1
1 x

κi,j,2
2 · · · xκi,j,mm , y1, x1]

= [x1, y1, x
κi,j,1
1 x

κi,j,2
2 · · ·xκi,j,mm ]

= [h1, x
κi,j,1
1 x

κi,j,2
2 · · ·xκi,jmm ]

= z
κi,j,1
1 z

κi,j,2
2 · · · zκi,j,mm .

Since the structure constants κi,j,l are symmetric in i, j (see Lemma 3.203.20),

[hi, xj] = [hj, xi]. This proves the first assertion of the Lemma, and the second

one goes on the same lines. �

As an immediate consequence of the preceding result, we have

Corollary 3.4.5 Consider the elements x = xa11 · · ·xamm , x′ = xb11 · · · xbmm , y =

yc11 · · · ycmm and y′ = yd11 · · · ydmm in G. If

[x, y, x′] =
2m∏
l=1

zrll and [y, x, y′] =
2m∏
l=1

zsll ,

for some rl, sl ∈ Fp, then the values of rl and sl are uniquely determined by the

structure constants of U3(p
m) and, respectively, by ai’s, bi’s, ci’s and ai’s, ci’s,

di’s.

Up to now, we have shown the uniqueness of γ’s and δ’s (Theorem 3.4.43.4.4).

Next we show the uniqueness of λ’s and µ’s. First we prove some lemmas.

Lemma 3.4.6 For 1 ≤ i, j ≤ m, the following hold:

(i) [xi, xj] ∈ 〈z1, . . . , zm〉.

(ii) [yi, yj] ∈ 〈zm+1, . . . , z2m〉.
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Proof. Fix i, j with 1 ≤ i, j ≤ m. Since [xi, xj] ∈ Z(G), by Corollary 3.2.93.2.9, there

exists h ∈ G′ (depending on xi, xj) such that [xi, xjh] = 1. Then

[xi, xj] = [xi, h]−1 = [h, xi].

Since G′ = 〈h1, h2, . . . , hm,Z(G)〉, by Theorem 3.4.43.4.4, [h, xi] ∈ 〈z1, . . . , zm〉, prov-

ing the first assertion. The second assertion follows on the same lines. �

Before proceeding further, we recall the following commutator identities in

a finite p-group G of nilpotency class 3 with p odd, which will be used in com-

putations without any reference. Note that, in this case G′ is abelian, so the

ordering of commutators is immaterial. For a, b, c ∈ G,

(i) [ab, c] = [a, c][b, c][a, c, b] and [a, bc] = [a, b][a, c][a, b, c];

(ii) [ai, bj, ck] = [a, b, c]ijk (since G is of class 3);

(iii) [as, b] = [a, b]s[a, b, a](
s
2) and [a, bs] = [a, b]s[a, b, b](

s
2) (s ∈ Fp),

where
(
s
2

)
= s(s−1)

2
in Fp, p > 2.

Lemma 3.4.7 For x = xa11 · · ·xamm and y = ya11 · · · yamm in G, the following hold:

(i) [x1, y] ≡ [x, y1] (mod Z(G)).

(ii) If [x1, y] = [x, y1]
∏2m

l=1 z
cl
l , then cl’s are uniquely determined by ai’s and

the structure constants of U3(p
m).

Proof. If ai = 0 for all i, then x = y = 1, and so ci = 0 for all i, there is

nothing to prove. Thus, assume that not all ai’s are 0. In U3(p
m), consider

X = Xa1
1 · · ·Xam

m and Y = Y a1
1 Y a2

2 · · ·Y am
m . Since [Xi, Yj] = [Xj, Yi] for all i, j

(by (3.183.18)), we have [X1, Y ] = [X, Y1]; hence [x1, y] ≡ [x, y1] (mod Z(G)) in

G. This proves assertion (i).
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We prove assertion (ii) in two steps, as the arguments of Step 1 will be used

further.

Step 1. For m+1 ≤ l ≤ 2m, cl is uniquely determined by the structure constants

of U3(p
m).

With X, Y as in the proof of assertion (i), we have [X1, Y ] = [X, Y1],

which implies that [X1Y
r
1 , XY

r] = 1 for any r ∈ Fp; hence, in G, we get that

[x1y
r
1, xy

r] ≡ 1 (mod Z(G)). By Corollary 3.2.93.2.9, there exists an element h(r),

depending on r, in G′ such that

[x1y
r
1, xy

rh(r)] = 1.

Since [x1, x] = [y1, y] = 1 (see Lemma 3.4.33.4.3), we have

1 = [x1y
r
1, xy

rh(r)] =[x1, y]r[x1, y, y](
r
2)[x1, y, y1]

r2 [x1, h(r)]

[y1, x]r[y1, x, y1]
(r2)[y1, x, y]r

2

[y1, h(r)]r.

Consequently, by the given hypothesis, we get

(
2m∏
l=1

zcll )−r = ([x1, y][y1, x])−r =[x1, y, y](
r
2)[x1, y, y1]

r2 [x1, h(r)] (3.23)

[y1, x, y1]
(r2)[y1, x, y]r

2

[y1, h(r)]r.

By Theorem 3.4.43.4.4, [G′, y], [G′, y1] ≤ 〈zm+1, . . . , z2m〉 and [x1, h(r)] ∈ 〈z1, . . . , zm〉;

hence all the commutators on the right side of (3.233.23), except [x1, h(r)], belong

to 〈zm+1, . . . , z2m〉. Thus

(
m∏
l=1

z−cll )r = [x1, h(r)] (3.24)
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and

(
2m∏

l=m+1

z−cll )r = [x1, y, y](
r
2)[x1, y, y1]

r2 [y1, x, y1]
(r2)[y1, x, y]r

2

[y1, h(r)]r.

(3.25)

Since, by Theorem 3.4.43.4.4, zi = [h1, xi] = [hi, x1] for 1 ≤ i ≤ m, we have

m∏
l=1

z−cll =
m∏
l=1

[x1, hl]
cl = [x1, h

c1
1 · · ·hcmm ] = [x1, h̃],

where h̃ = hc11 · · ·hcmm , which is independent of r. Then from (3.243.24) we get

[x1, h(r)] = [x1, h̃]r, which implies that h̃rh(r)−1 ∈ CG(x1)∩G′ = Z(G). Hence

h(r) ≡ h̃r (mod Z(G)).

Using this in (3.253.25), we get

(
2m∏

l=m+1

z−cll )r = [x1, y, y](
r
2)[x1, y, y1]

r2 [y1, x, y1]
(r2)[y1, x, y]r

2

[y1, h̃]r
2

.

Since this equation holds for all r ∈ Fp, for r = 1 and r = −1, we, respectively,

get

2m∏
l=m+1

z−cll = [x1, y, y1][y1, x, y][y1, h̃]

and

2m∏
l=m+1

zcll = [x1, y, y][x1, y, y1][y1, x, y1][y1, x, y][y1, h̃].
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From these equations, we obtain

2m∏
l=m+1

z2cll = [x1, y, y][y1, x, y1].

By Corollary 3.4.53.4.5, the right hand side of the preceding equation is uniquely

determined by ai’s and the structure constants of U3(p
m), so are cl for m+ 1 ≤

l ≤ 2m.

Step 2. For 1 ≤ l ≤ m, cl is uniquely determined by the structure constants of

U3(p
m).

With X, Y as in the proof of assertion (i), we have [Y, X1] = [Y1, X], which

implies that [Y1X
r
1 , Y X

r] = 1 for any r ∈ Fp; hence, in G, we get

[y1x
r
1, yx

r] ≡ 1 (mod Z(G)).

By Corollary 3.2.93.2.9, there exists an element k(r), depending on r, in G′ such

that [y1x
r
1, yx

rk(r)] = 1. With appropriate modifications in Step (1), it follows

that cl for 1 ≤ l ≤ m are uniquely determined by ai’s and the structure constants

of U3(p
m).

Finally by Step 1 and Step 2, cl for 1 ≤ l ≤ 2m are uniquely determined by

ai’s and the structure constants of U3(p
m). �

Lemma 3.4.8 In the relations (R7), namely, for 1 ≤ i, j ≤ m,

[xi, yj] = [x1, y
κi,j,1
1 y

κi,j,2
2 · · · yκi,j,mm ]

2m∏
l=1

z
λi,j,l
l , (3.26)

λi,j,l, m + 1 ≤ l ≤ 2m, are uniquely determined by the structure constants of

U3(p
m).
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Proof. For simplicity, we fix i, j ≤ m and write yκi,j,11 y
κi,j,2
2 · · · yκi,j,mm = y. Since

[xi, yj] ≡ [x1, y] (mod Z(G)), we have [x1y
r
j , xiy

r] ≡ 1 (mod Z(G)) for any

r ∈ Fp.

That λi,j,l, m + 1 ≤ l ≤ 2m, are uniquely determined by the structure

constants of U3(p
m), follows on the lines (without any extra work) of Step 1 of

Lemma 3.4.73.4.7. �

By the symmetry of xi’s and yi’s, the following lemma is dual of the preceding

one.

Lemma 3.4.9 In the relations (R8), namely, for 1 ≤ i, j ≤ m,

[xj, yi] = [x
κi,j,1
1 x

κi,j,2
2 · · ·xκi,j,mm , y1]

2m∏
l=1

z
µi,j,l
l , (3.27)

µi,j,l, 1 ≤ l ≤ m, are uniquely determined by the structure constants of U3(p
m).

We are now ready to prove the uniqueness of λ’s and µ’s.

Theorem 3.4.10 In the relations (R7) and (R8), λi,j,l and µi,j,l, 1 ≤ i, j ≤ m,

1 ≤ l ≤ 2m, are uniquely determined by the structure constants of U3(p
m).

Proof. The proof involves a careful application of Lemmas 3.4.73.4.7, 3.4.83.4.8 and 3.4.93.4.9.

Interchanging i and j in (3.273.27), and observing the fact that κi,j,l = κj,i,l, we get

[xi, yj] = [x
κi,j,1
1 x

κi,j,2
2 · · ·xκi,j,mm , y1]

2m∏
l=1

z
µj,i,l
l . (3.28)

By Lemma 3.4.93.4.9, µj,i,l, 1 ≤ i, j, l ≤ m, are uniquely determined by the structure

constants of U3(p
m).
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By (3.263.26) and (3.283.28), we get

[x1, y] = [x, y1]
2m∏
l=1

z
µj,i,l−λi,j,l
l ,

where x = x
κi,j,1
1 · · ·xκi,j,mm and y = y

κi,j,1
1 · · · yκi,j,mm . By Lemma 3.4.73.4.7, µj,i,l−λi,j,l,

1 ≤ i, j,≤ m, 1 ≤ l ≤ 2m, are uniquely determined by the structure constants

of U3(p
m).

Hence λi,j,l, 1 ≤ i, j,≤ m, 1 ≤ l ≤ m, are uniquely determined by the

structure constants of U3(p
m). This, together with Lemma 3.4.63.4.6, completes the

uniqueness of λ’s.

Similarly, µi,j,l, 1 ≤ i, j ≤ m, 1 ≤ l ≤ 2m, are uniquely determined by the

structure constants of U3(p
m). �

Finally we prove the uniqueness of α’s and β’s in the relations (R5) and (R6).

Although the proofs are almost similar to the proofs of the previous cases, these

can not go verbatim. Thus, we give complete proof of uniqueness of α’s and β’s.

We need the following preliminary lemma.

Lemma 3.4.11 For any i with 1 ≤ i ≤ m and cj, c′j, dj, d′j ∈ Fp for 1 ≤ j ≤ m,

assume that the commutator equations

[hc11 · · ·hcmm , xi] = zd11 · · · zdmm

and

[h
c′1
1 · · ·hc

′
m
m , yi] = z

d′1
m+1 · · · z

d′m
2m

hold in the group G. Then there exists an m × m invertible matrix A, whose
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entries are the structure constants κi,j,l of U3(p
m), such that

[
c1 · · · cm

]
A =

[
d1 · · · dm

]

and [
c′1 · · · c′m

]
A =

[
d′1 · · · d′m

]
Proof. Since h1, h2, . . . , hm are independent modulo CG(xi), it follows that [h1, xi],

[h2, xi], . . ., [hm, xi] are independent, and lie in 〈z1, z2, . . . , zm〉 (by Theo-

rem 3.4.43.4.4). In other words, {[h1, xi], [h2, xi], . . . , [hm, xi]} is also a basis

for the vector space 〈z1, z2, . . . , zm〉 over Fp. From Theorem 3.4.43.4.4, [hj, xi] =

z
κj,i,1
1 z

κj,i,2
2 · · · zκj,i,mm . The desired matrix A is the matrix of change of basis from

{z1, . . . , zm} to {[h1, xi], [h2, xi], . . . , [hm, xi]}, which is given by

A = (ar,s),

where ar,s = κr,i,s for 1 ≤ r, s ≤ m. This proves the first part. Changing xi by

yi and zi by zm+i, similarly, we get the second assertion. �

Theorem 3.4.12 In the relations (R5) and (R6), αi,j,l and βi,j,l, 1 ≤ i, j ≤ m,

1 ≤ l ≤ 2m, are uniquely determined by the structure constants of U3(p
m).

Proof. Fix i, j with 1 ≤ i, j ≤ m. Consider the relations (R7):

[xi, yj] = [x1, y
κi,j,1
1 y

κi,j,2
2 · · · yκi,j,mm ]

2m∏
l=1

z
λi,j,l
l .

Since κi,j,l = κj,i,l, interchanging i and j, we get

[xj, yi] = [x1, y
κi,j,1
1 y

κi,j,2
2 · · · yκi,j,mm ]

2m∏
l=1

z
λj,i,l
l .
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From the preceding two equations, we obtain

[xi, yj] = [xj, yi]
2m∏
l=1

z
λi,j,l−λj,i,l
l . (3.29)

Hence [xi, yj] ≡ [xj, yi] (mod Z(G)). Since [xi, xj] ≡ [yi, yj] ≡ 1 (mod Z(G)),

it follows that [xiy
r
i , xjy

r
j ] ≡ 1 (mod Z(G)) for all r ∈ Fp. By Corollary 3.2.93.2.9,

there exists an element k(r), depending on r, inG′ such that [xiy
r
i , xjy

r
jk(r)] = 1.

Then

1 = [xiy
r
i , xjy

r
jk(r)] =[xi, xj][xi, yj]

r[xi, yj, yj]
(r2)[xi, yj, yi]

r2 [xi, k(r)]

[yi, xj]
r[yi, xj, yi]

(r2)[yi, xj, yj]
r2 [yi, yj]

r2 [yi, k(r)]r

Using (3.293.29), we get

( 2m∏
l=1

z
λi,j,l−λj,i,l
l

)−r
=
(

[xi, xj][xi, k(r)]
)(

[xi, yj, yj]
(r2)[xi, yj, yi]

r2

[yi, xj, yi]
(r2)[yi, xj, yj]

r2 [yi, yj]
r2 [yi, k(r)]r

)
.

Using Theorem 3.4.43.4.4 and Lemma 3.4.53.4.5, it follows that [xi, xj][xi, k(r)] ∈

〈z1, . . . , zm〉 and the rest of the terms in the right side of the preceding equation

belong to 〈zm+1, . . ., z2m 〉. Thus

( m∏
l=1

z
λj,i,l−λi,j,l
l

)r
= [xi, xj][xi, k(r)] (3.30)

and

( 2m∏
l=m+1

z
λj,i,l−λi,j,l
l

)r
=[xi, yj, yj]

(r2)[xi, yj, yi]
r2 [yi, xj, yi]

(r2) (3.31)

[yi, xj, yj]
r2 [yi, yj]

r2 [yi, k(r)]r.
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Since [h1, xi], [h2, xi], . . . , [hm, xi] are independent and belong to 〈z1, z2, . . . , zm〉

(see Theorem 3.4.43.4.4), we get

〈z1, z2, . . . , zm〉 = 〈[h1, xi], [h2, xi], . . . .[hm, xi]〉,

Hence there exists k̃ ∈ G′, independent of r, such that
∏m

l=1 z
−λi,j,l+λj,i,l
l = [xi, k̃].

Similarly there exists k̂ ∈ G′, independent of r, such that

[xi, xj] = [xi, k̂
−1]. (3.32)

Therefore from (3.303.30), we get [xi, k̃]r = [xi, k̂
−1][xi, k(r)], which implies that

k̃rk̂k(r)−1 ∈ CG(xi) ∩G′ = Z(G). Hence

k(r) ≡ k̃rk̂ (mod Z(G)).

Using this in (3.313.31), we get

2m∏
l=m+1

z
r(λj,i,l−λi,j,l)
l =[xi, yj, yj]

(r2)[xi, yj, yi]
r2 [yi, xj, yi]

(r2)[yi, xj, yj]
r2

[yi, k̃]r
2

[yi, yj]
r2 [yi, k̂]r.

Writing this equation for r = 1 and r = −1, we get

2m∏
l=m+1

z
λj,i,l−λi,j,l
l = [xi, yj, yi][yi, xj, yj][yi, k̃][yi , yj][yi, k̂]

and

2m∏
l=m+1

z
λi,j,l−λj,i,l
l =[xi, yj, yj][xi, yj, yi][yi, xj, yi][yi, xj, yj][yi, k̃]
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[yi, yj][yi, k̂]−1.

Preceding two equations give

2m∏
l=m+1

z
2(λj,i,l−λi,j,l)
l = [xi, yj, yj]

−1[yi, xj, yi]
−1[yi, k̂]2.

Rearranging the terms, we get

2m∏
l=m+1

z
(λj,i,l−λi,j,l)
l [xi, yj, yj]

1/2[xi, yj, yi]
1/2 = [yi, k̂].

Note that the left side of the preceding equation is of the form zd1m+1 · · · zdm2m.

By Corollary 3.4.53.4.5 and Theorem 3.4.103.4.10, di’s are uniquely determined by the

structure constants of U3(p
m). Let k̂ = hc11 · · ·hcmm (mod Z(G)). Thus, we have

the commutator equation

zd1m+1 · · · zdm2m = [yi, h
c1
1 · · ·hcmm ].

By Lemma 3.4.113.4.11, it follows that ci’s are uniquely determined by the structure

constants of U3(p
m).

By Lemma 3.4.63.4.6, αi,j,l = 0 for l > m. Then by (3.323.32), we have

m∏
l=1

z
αi,j,l
l = [xi, xj] = [k̂, xi] = [hc11 · · ·hcmm , xi].

Again, by Lemma 3.4.113.4.11, it follows that αi,j,l, 1 ≤ i, j ≤ m, 1 ≤ l ≤ 2m, are

uniquely determined by the structure constants of U3(p
m).

That βi,j,l, 1 ≤ i, j ≤ m, 1 ≤ l ≤ 2m, are uniquely determined by the

structure constants of U3(p
m), follows on the same lines. �
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Before proceeding for the proof of Theorem 3.4.23.4.2, we summarize the preced-

ing discussion of this section.

For simplicity, fix a prime p > 2, an integer m ≥ 2, and a finite p-group

H of nilpotency class 3 and of conjugate type (1, p2m). Then, there exist

αi,j,l, βi,j,l, γi,j,l, δi,j,l, λi,j,l, µi,j,l, εi,l, νi,l ∈ Fp (1 ≤ i, j ≤ m, 1 ≤ l ≤ 2m)

such that H is isoclinic to the group G with presentation as in Lemma 3.4.13.4.1.

By Theorems 3.4.43.4.4, 3.4.103.4.10 and 3.4.123.4.12, αi,j,l, βi,j,l, γi,j,l, δi,j,l, λi,j,l, µi,j,l, are

uniquely determined.

In particular, the isoclinism type of the group H depends only on εi,l and νi,l,

1 ≤ i, j ≤ m, 1 ≤ l ≤ 2m. Thus, for the proof of Theorem 3.4.23.4.2, we fix those

unique αi,j,l, βi,j,l, γi,j,l, δi,j,l, λi,j,l, µi,j,l ∈ Fp (1 ≤ i, j ≤ m, 1 ≤ l ≤ 2m),

for which, a group given by the presentation as in Lemma 3.4.13.4.1 is of conjugate

type (1, p2m), for some ε’s and ν’s in Fp. Then we denote the resulting group

with presentation as in Lemma 3.4.13.4.1 by G(ε, ν).

Lemma 3.4.13 For any choice of εi,l, νi,l, ε′i,l, ν ′i,l ∈ Fp, 1 ≤ i ≤ m, 1 ≤ l ≤ 2m,

the groups G(ε, ν) and G(ε′, ν ′) are isoclinic.

Proof. Consider the presentation of G(ε, ν) as in Lemma 3.4.13.4.1. To distinguish

the generators of G(ε, ν) and G(ε′, ν ′), we write the presentation of G(ε′, ν ′) as

in Lemma 3.4.13.4.1, where we replace xi by x̂i, yi by ŷi, hi by ĥi, and zl by ẑl for

1 ≤ i ≤ m, 1 ≤ l ≤ 2m. For simplicity, we denote the groups G(ε, ν) and

G(ε′, ν ′) by G1 and G2 respectively.

It follows, from the construction of G1 and G2, that the map

xi Z(G1) 7→ x̂i Z(G2), yi Z(G1) 7→ ŷi Z(G2), hi Z(G1) 7→ ĥi Z(G2)

extends to an isomorphism φ : G1/Z(G1) → G2/Z(G2). Since G′1 and G′2 are
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elementary abelian, it is clear that the map

hi 7→ ĥi, zl 7→ ẑl

extends to an isomorphism θ : G′1 → G′2. Consider the diagram

G1 ×G1

aG1−−−→ G′1

φ×φ
y yθ

G2 ×G2

aG2−−−→ G′2,

where aG1 and aG2 are the commutation maps as defined in Section 1.21.2 of Chap-

ter 1.

From the commutator relations of G1 and G2 (that is, the relations (R1)-

(R9) of G1, and correspondingly those of G2), it follows that the above diagram

commutes for the generators of G1 and G2 taken in their presentation. A routine

calculation now shows that the diagram commutes.

Stitching all the above pieces together, we get

Proof of Theorem 3.4.23.4.2: For a prime p > 2 and integer n = 2m ≥ 2, let H

be a finite p-group of nilpotency class 3 and of conjugate type (1, pn). If m = 1,

then the result follows from Theorem 1.1.271.1.27. Thus, we can assume that m ≥ 2.

By Lemma 3.4.13.4.1, there exist α’s, β’s, γ’s, δ’s, λ’s, µ’s, ε’s and ν’s in Fp such

that H is isoclinic to a group G with the presentation as in Lemma 3.4.13.4.1. By

Theorems 3.4.43.4.4, 3.4.103.4.10 and 3.4.123.4.12, α’s, β’s, γ’s, δ’s, λ’s, and µ’s are uniquely de-

termined by the structure constants of U3(p
m). By Lemma 3.4.133.4.13, the isoclinism

type of G is independent of the choice of ε’s and ν’s in Fp.

Thus, for any m ≥ 1, H is uniquely determined up to isoclinism, and hence

is isoclinic to the group Hm/Z(Hm) (see Section 3.33.3). �





CHAPTER4
On the probability distribution

associated to commutator word

map in finite groups

Let P (G) denote the set of sizes of fibers (for section 4.14.1 for definition) of

non-trivial commutators of the commutator word map. In this chapter, we prove

that |P (G)| = 1, for any finite group G of nilpotency class 3 with exactlly two

conjugacy class sizes. We also show that for given n ≥ 1, there exists a finite

group G of nilpotency class 2 with exactlly two conjugacy class sizes such that

|P (G)| = n.
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4.1 Introduction

Let G denote the family of all finite groups. Define Pr : G → Q ∩ (0, 1] as

follows:

Pr(G) =
| {(x, y) ∈ G×G | xy = yx} |

|G|2
, for G ∈ G.

P r(G) is called the commuting probability of G. Various probability distribu-

tions associated to commuator word map have been subject of active research

in recent years (see [55], [2323], [2525], [2626]). In 2008, Pournaki and Sobhani [2525]

introduced the notion of Prg(G), which is defined as follows:

Prg(G) =
|{(x, y) | [x, y] = g}|

|G|2
, for g ∈ G.

Note that Pr1(G) = Pr(G), where 1 denotes the identity element in the group.

In [2525], Pournaki and Sobhani computed Prg(G) for finite groups G, which have

only two different irreducible complex character degrees. They also obtained

explicit formulas for Prg(G), when G is a finite group with |G′| = p, where p is

a prime integer. Motivated by this, Nath and Yadav [2323] studied Prg(G), when

G is either of conjugate type (1, pn) or a Camina p-group.

Denote by K(G) the set {[x, y] | (x, y) ∈ G×G}. For g ∈ K(G), define fiber

of g as follows:

fiber(g) := {(x, y) ∈ G×G | [x, y] = g}. (4.1)

Note that, formula for Prg(G) can be re-written as follows:

Prg(G) =


|fiber(g)|
|G|2

, if g ∈ K(G)

0, otherwise.
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Following the notation used by Nath and Yadav [2323], we recall the notion of

P (G), which is defined as follows:

P (G) = {Prg(G) | 1 6= g ∈ K(G)}.

Note that

|P (G)| = |{|fiber(g)| | 1 6= g ∈ K(G)}|. (4.2)

Here, we restrict our attention to finite p-groups of conjugate type (1, pn).

Since nilpotency class of such a group can be either 2 or 3, we consider following

two family; G2, the family of finite p-groups of nilpotency class 2 and conjugate

type (1, pn), n ≥ 1, and G3, the family of finite p-groups of nilpotency class 3

and conjugate type (1, pn), n ≥ 1.

Recall that the group Gr (defined in 1.11.1) and Camina p-groups of class 2 are

two major examples of groups from family G2. Nath and Yadav [2323] computed

Prg(Gr) and proved that |P (Gr)| = 1, for all r ≥ 1. They also gave explicit

formula for Prg(G), when G is a Camina p-group of nilpotency class 2 and

proved that |P (G)| = 1, for such a group G. Then they asked the following

question:

Question 4.1.1 Is it true that |P (G)| = 1 for all finite p-groups G of conjugate

type (1, pn) and nilpotency class 2 ?

In an attmpt to answer this, we prove the following theorem, in this chapter.

Theorem 4.1.2 Let n ≥ 1 be a given positive integer. Then there always exist

a group G (depending on n) in G2 such that |P (G)| = n.

For groups belonging to G3, we prove the following result.
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Theorem 4.1.3 Let G ∈ G3 be a finite p-group of conjugate type (1, p2n). Then

for g ∈ G′,

Prg(G) =


p3n + p2n − 1

p5n
, if g = 1

p2n − 1

p5n
, if 1 6= g ∈ G′.

Hence |P (G)| = 1.

We remark that this theorem rectifies a faulty statement [2323, Theorem 5.13],

where it was claimed that |P (G)| > 1, for a finite p-group G of conjugate type

(1, p2) and nilpotency class 3.

4.2 Key Results

Proof of following interesting result can be found in [Lemma 3.5, [2525]] and [The-

orem 2.3, [2323]].

Lemma 4.2.1 Let G and H be two isoclinic groups with isoclinism (φ, θ). Then

Prg(G) = Prθ(g)(G).

In the light of the preceding result, for any finite group G, we only need

to consider a stem group from the isoclinic family of G to compute Prg(G) or

P (G).

For a finite group G and an element g ∈ K(G), we define

Tg = {x ∈ G | g ∈ [x, G]}

and

TZg = {xZ(G) ∈ G/Z(G) | g ∈ [x, G]}.
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Note that

|Tg| = |Z(G)||TZg|.

Following useful expression of Prg(G) is due to Das and Nath [55].

Lemma 4.2.2 Let G be a finite group and g ∈ G. Then

Prg(G) =
1

|G|
∑
x∈Tg

1

|xG|
.

We remark that for any finite group G and element 1 6= g ∈ G,

Pr1(G)− Prg(G) ≥ 1

[G : Z(G)]
.

If G is finite group with exactly two conjugacy class sizes, then we can further

simplify the formula of Prg(G).

Lemma 4.2.3 Let G be a finite group of conjugate type (1, pn) and g ∈ K(G).

Then

Prg(G) =



1

[G : Z(G)]

|TZg|
pn

, if g 6= 1

1

[G : Z(G)]

(
1 +

[G : Z(G)]− 1

pn
)
, if g = 1

Proof. Suppose 1 6= g ∈ K(G). Then for each x ∈ Tg, |xG| = pn. By Lemma

4.2.24.2.2, we get

Prg(G) =
1

|G|
∑
x∈Tg

1

pn
=
|Tg|
|G|pn

=
|Z(G)||TZg|
|G|pn

=
1

[G : Z(G)]

|TZg|
pn

.
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Now let g = 1. Then note that Tg = G. By Lemma 1.3.61.3.6, we get

Pr1(G) =
1

|G|
∑
x∈G

1

|xG|

=
1

|G|
∑

x∈Z(G)

1

|xG|
+

1

|G|
∑

x∈G\Z(G)

1

|xG|

=
|Z(G)|
|G|

+
1

|G|
|G| − |Z(G)|

pn

=
1

[G : Z(G)]

(
1 +

[G : Z(G)]− 1

pn
)
.

This completes the proof. �

Nath and Yadav [2323] gave explicit formula for Prg(Gr), for r ≥ 1.

Lemma 4.2.4 Let Gr be as defined in 1.21.2. Then

Prg(Gr) =



p2 − 1

p2r+1
, if g 6= 1

pr+1 + pr − 1

p2r+1
, if g = 1

Using preceding lemma and the formula Prg(G) =
|fiber(g)|
|G|2

, we get an

expression for the sizes of fibers in Gr.

Lemma 4.2.5 Let Gr be as defined in (1.11.1). Then

|fiber(g)| =


(p2 − 1)pr

2+r+1, if g 6= 1

(pr+1 + pr − 1)pr
2+r+1, if g = 1

From preceding Lemma, we get an expression for |K(G)|.
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Lemma 4.2.6 Let Gr be as defined in 1.11.1. Then |K(Gr)|−1 =
(pr+1 − 1)(pr − 1)

p2 − 1
.

Proof. For any finite group G, we know that
∑

g∈K(G)

|fiber(g)| = |G|2. Thus we

get,
∑

g∈K(G)\1
|fiber(g)| = |G|2 − |fiber(1)|. Therefore by Lemma 4.2.54.2.5, we have

(
|K(Gr)| − 1

)
(p2 − 1)pr

2+r+1 = pr
2+3r+2 − (pr+1 + pr − 1)pr

2+r+1

= (pr
2

+ r + 1)(p2r+1 − pr+1 − pr + 1)

= (pr
2

+ r + 1)(pr+1 − 1)(pr − 1).

Hence |K(Gr)| − 1 =
(pr+1 − 1)(pr − 1)

p2 − 1
.

Lemma 4.2.7 Suppose G = Gn−1 (as defined in (1.11.1)) is generated by a1, a2, . . . an,

with n ≥ 4. Then there do not exist x, y ∈ G such that

[x, y] = [a1, a2]
i1 [a3, a4]

i2 . . . [a2m−1, a2m]im , (4.3)

where 2 ≤ m ≤ bn/2c and ik 6= 0 (mod p), for k = 1, 2, . . . ,m.

Proof. We prove this lemma by the method of contradiction. Suppose that

there exist x and y ∈ G satisfying equation (4.34.3). Let x = aj11 a
j2
2 . . . a

jn
n and

y = ak11 a
k2
2 . . . aknn

(
reading modulo Z(G)

)
. As i1 6= 0 (mod p), at least one of j1

and k1 has to be non-zero modulo p. Without loss of generality, we take j1 to

be non-zero. Then we can write y as

y = ak11 a
k2
2 . . . aknn = (aj11 a

j2
2 . . . a

jn
n )k1j

−1
1 (al22 a

l3
3 . . . a

ln
n z1) = xk1j

−1
1 (al22 a

l3
3 . . . a

ln
n z1),

where z1 ∈ Z(G) and l2, l3, l4 are some suitable integers. Now

[x, y] = [x, y1], where y1 = al22 a
l3
3 . . . a

ln
n .
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Computing [x, y1], we get that [a1, a
j1l2
2 aj1l33 . . . aj1lnn ] is exactlly the commutator

involving a1 in left-hand side of equation (4.34.3). Compairing it with right-hand

side of equation (4.34.3), we see that l2 has to be non-zero modulo p, in particular

l2 = i1j
−1
1 and l3, l4, . . . , ln have to be zero modulo p. Thus we have

y1 = a
i1j
−1
1

2 with j1 non-zero modulo p.

Now, again computing [x, y], considering commutator involving a2 and com-

pairing with equation (4.34.3), we see that j2, j3, . . . , jn have to be zero mod-

ulo p. So we have x = aj11 and y1 = a
i1.j
−1
1

2 with j1 non-zero. Therefore

[x, y] = [x, y1] = [a1, a2]
i1 , a contradiction to given hypothesis. �

Lemma 4.2.8 Suppose G = Gn (as defined in (1.11.1)) is generated by a1, a2, . . . an,

with n ≥ 6. Then there do not exist x, y, z and w ∈ G such that

[x, y][z, w] = [a1, a2]
i1 [a3, a4]

i2 . . . [a2m−1, a2m]im , (4.4)

where 3 ≤ m ≤ bn/2c and ik 6= 0 (mod p), for k = 1, 2, . . . ,m.

Proof. We also prove this lemma by the method of contradiction. Suppose that

there exist x, y, z and w ∈ G satisfying equation (4.44.4). Let x = aj11 a
j2
2 . . . a

jn
n ,

y = ak11 a
k2
2 . . . aknn , z = al11 a

l2
2 . . . a

ln
n and w = at11 a

t2
2 . . . a

tn
n

(
reading modulo Z(G)

)
.

As i1 6= 0 (mod p), at least one of j1, k1, l1 and t1 has to be non-zero modulo p.

Without loss of generality, we take j1 to be non-zero. So {x, a2, a3, . . . , an} also

forms a generating set for G.

Let N be the subgroup of G generated by x, a2 and their commutators

with G. It is easy to see that N is a normal subgroup. Set G = G/N . Now

{a3, a4, . . . , an} is a generating set for G and easy to see that G ∼= Gn−2, as
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defined in (1.21.2). In G, (4.44.4) reduced to

[z, w] = [a3, a4]
i2 . . . [a2m−1, a2m]im ,

where 3 ≤ m ≤ bn/2c and ik 6= 0 (mod p), for k = 2, 3, . . .m. This is not

possible by Lemma 4.2.74.2.7. Thus there do not exist x, y, z and w ∈ G satisfying

equation (4.44.4). This completes the proof. �

4.3 Proof of Theorem 4.1.24.1.2

We are now ready to prove Theorem 4.1.24.1.2.

Proof of Theorem 4.1.24.1.2: We know that |P (Gr)| = 1 for all r ≥ 1, from

[Theorem B, [2323]]. Therefore, we only need to prove the statement for n ≥ 2.

For given n ≥ 2, consider G = Gm, with m = n2 + n − 3. Note that G is of

nilpotency class 2 and conjugate type (1, pm). Suppose that G is generated by

a1, a2, . . . , am, am+1. Then consider the central subgroup H as follows:

H = 〈[a1, a2][a3, a4],

[a5, a6][a7, a8], [a5, a6][a9, a10],

[a11, a12][a13, a14], [a11, a12][a15, a16], [a11, a12][a17, a18],

...

[aα+1, aα+2][aα+3, aα+4], [aα+1, aα+2][aα+5, aα+6] . . . [aα+1, aα+2]

[aα+2n−1, aα+2n]〉;

where α = (n− 2)(n+ 1).

Note that |H| = pn(n−1)/2 and α + 2n = n2 + n− 2 = m+ 1.
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Set G̃ := G/H. Note that [ã1, ã3] 6= 1 in G̃. Thus G̃ is non-abelian, in

particular, nilpotency class of G̃ is 2. Our aim is to show that G̃ has exactlly

two conjugacy class sizes and |P (G̃)| = n. We complete the proof in two steps.

Claim 1: G̃ has exactlly two conjugacy class sizes.

It is sufficient to prove that each non-central element commutes only with its

powers (reading modulo center). Let x̃, ỹ ∈ G̃ be such that neither is a power

of the other. It is not difficult to see that [x, y] 6= 1 in G. Hence, if [x̃, ỹ] = 1

in G̃ = G/H, then [x, y] ∈ H#, the set of non-trivial elements of H. Suppose

that

1 6= [x, y] =([a1, a2][a3, a4])
i1,1

([a5, a6][a7, a8])
i2,1([a5, a6][a9, a10])

i2,2

([a11, a12][a13, a14])
i3,1([a11, a12][a15, a16])

i3,2([a11, a12][a17, a18])
i3,3

...

([aα+1, aα+2][aα+3, aα+4])
in−1,1([aα+1, aα+2][aα+5, aα+6])

in−1,2 . . .

([aα+1, aα+2][aα+2n−1, aα+2n])in−1,n−1 .

Since [x, y] 6= 1, at least one ij,k is non-zero (mod p). After simplification, we

get

[x, y] =[a1, a2]
i1,1 [a3, a4]

i1,1

[a5, a6]
i2,1+i2,2 [a7, a8]

i2,1 [a9, a10]
i2,2

[a11, a12]
i3,1+i3,2+i3,3 [a13, a14]

i3,1 [a15, a16]
i3,2 [a17, a18]

i3,3

...

[aα+1, aα+2]
in−1,1+in−1,2+···+in−1,n−1 [aα+3, aα+4]

in−1,1 [aα+5, aα+6]
in−1,2 . . .
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[aα+2n−1, aα+2n]in−1,n−1 .

Note that in the right-hand side at least two commutators have non-zero power.

Thus, by Lemma 4.2.74.2.7, [x, y] /∈ H# and consequently [x̃, ỹ] 6= 1 in G̃. Hence G̃

has exactlly two conjugacy class sizes.

Claim 2: |P (G̃)| = n.

Here our plan is to show that

|{|fiber(g)| | 1 6= g ∈ K(G̃)}| = n.

First, note the following elementary facts:

(i) K(G̃) = ˜K(G).

(ii) For any h ∈ K(G), | ˜fiber(h)| = |fiber(h)|
|H|2

=
(p2 − 1)pm(m−1)/2

pn(n−1)
.

The last equality in (ii) is due to Lemma 4.2.54.2.5.

For each h ∈ K(G), set Ah := K(G) ∩ hH. We claim that for each x ∈ Ah,

fiber(x̃) = fiber(h̃) = ∪y∈Ah ˜fiber(y) (4.5)

The first equality of (4.54.5) holds because of the fact: x ∈ Ah ⇒ x̃ = h̃ in G̃.

Now, we proceed to show the second equality of (4.54.5).

Suppose (ã, b̃) ∈ fiber(h̃), i.e., [ã, b̃] = h̃. Then there exist some y ∈ hH

such that [a, b] = y, i.e., (a, b) ∈ fiber(y). This implies (ã, b̃) = ˜(a, b) ∈
˜fiber(y). By definition of Ah, y ∈ Ah. Hence fiber(h̃) ⊆ ∪y∈Ah ˜fiber(y). Sim-

ilarly reverse inclusion can be shown by backtracking the above steps. This

completes the proof of second equality of (4.54.5) and hence (4.54.5) holds true.
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Now, for h ∈ K(G) and x ∈ Ah, by (4.54.5), we get

|fiber(x̃)| = |Ah|
(p2 − 1)pm(m−1)/2

pn(n−1)
.

Hence, to show |{|fiber(x̃)| | 1 6= g ∈ K(G̃)}| = n, it is sufficient to show that

|{|Ah| | 1 6= h ∈ K(G)}| = n.

Note that h ∈ Ah, for all h ∈ K(G). Now fix some h ∈ K(G) \ 1. If

h 6= g ∈ Ah, then

gh−1 = h′, for some 1 6= h′ ∈ H.

As both g, h−1 ∈ K(G), consider g = [a, b] and h−1 = [c, d], for some

a, b, c, d ∈ G. Thus, we get

[a, b][c, d] = h′.

By Lemma 4.2.84.2.8 and presentation of H, this is only possible when h′ is of the

form

h′ = [a2i−1, a2i]
α[a2j−1, a2j]

α or h′ = [a2i−1, a2i]
α[a2j−1, a2j]

−α,

for some suitable indices i, j and integer 1 ≤ α ≤ p − 1, with either g =

[a2i−1, a2i]
α and h−1 = [a2j−1, a2j]

±α or vice versa.

Using this observation, presentation of H, Lemma 4.2.74.2.7 and Lemma 4.2.84.2.8,

we proceed to compute Ah, for all h ∈ K(G) \ 1. First we partition K(G) \ 1 as
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K(G) \ 1 = K(G)1 ∪K(G)2, where

K(G)1 = {[a2i−1, a2i]β | 1 ≤ β ≤ p− 1, 1 ≤ i ≤ (m+ 1)/2}

and K(G)2 = (K(G) \ 1) \K(G)1.

Note that if h ∈ K(G)2, then Ah = {h}. Now we proceed to compute Ah,

for h ∈ K(G)1. For simplification of notation, now onwards, we denote [ai, aj]

by hi,j in this proof.

A
h
k1
1,2

= {hk11,2, h−k13,4 },

A
h
k2
5,6

= {hk25,6, h−k27,8 , h
−k2
9,10},

A
h
k3
11,12

= {hk311,12, h−k313,14, h
−k3
15,16, h

−k3
17,18},

...

A
h
kn−1
α+1,α+2

= {hkn−1

α+1,α+2, h
−kn−1

α+5,α+6, h
−kn−1

α+3,α+4, . . . h
−kn−1

α+2n−1,α+2n},

for all 1 ≤ ki ≤ p− 1, i = 1, 2 . . . n− 1.

So, we get {|Ah| | 1 6= h ∈ K(G)} = {1, 2, . . . , n}. Hence

|P (G̃)| = |{|fiber(g)| | 1 6= g ∈ K(G̃)}| = |{|Ah| | 1 6= h ∈ K(G)}| = n.

This completes the proof. �
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4.4 Proof of Theorem 4.1.34.1.3

We recall some results from preceding chapter. We start with an elementary

result which follows from Lemma 3.2.43.2.4, Theorem 3.2.63.2.6, Lemma 3.2.103.2.10 and defi-

nition of conjugate type.

Lemma 4.4.1 Let G be a stem p-group of class 3 with conjugate type (1, p2n).

Then the following hold true:

(i) |Z(G)| = p2n, |G′ : Z(G)| = pn and |G : G′| = p2n.

(ii) For each g ∈ G \ Z(G), |gG| = [G : CG(x)] = p2n and |CG(x) : Z(G)| =

pn.

Following technical result on finite p-groups of conjugate type (1, p2n) and

nilpotency class 3 follows from Section 3.43.4 of preceding chapter.

Lemma 4.4.2 Let G be a stem p-group of class 3 with conjugate type (1, p2n).

Then there exists a generating set of G, say {a1, . . . , an, b1, . . . , bn} such that the

following hold true:

(i) G′ = 〈h1, . . . , hn,Z(G)〉, where hi = [a1, bi] for i = 1 . . . n;

(ii) Z(G) = 〈z1, z2, . . . , z2n〉, where [h1, ai] = zi and [h1, bi] = zn+i for i =

1, . . . , n.

(iii) Say A = {
∏n

i=1 a
ki
i | 0 ≤ ki ≤ p − 1} and B = {

∏n
i=1 b

li
i | 0 ≤ li ≤ p − 1}.

Then

(1) [x, y] ∈ Z(G), for x, y ∈ A or x, y ∈ B.

(2) [x, y] /∈ Z(G), for 1 6= x ∈ A and 1 6= y ∈ B.

(3) {[a, bi] | 1 ≤ i ≤ n} generates G′ over Z(G), for any 1 6= a ∈ A.

(4) {[ai, b] | 1 ≤ i ≤ n} generates G′ over Z(G), for any 1 6= b ∈ B.
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(iv) Say Z1 = 〈z1, . . . , zn〉 and Z2 = 〈zn+1, . . . , z2n〉. Then for any 1 6= a ∈ A,

1 6= b ∈ B and h ∈ G′ \ Z(G),

(1) [h, A] = Z1 = [a, G′].

(2) [h, B] = Z2 = [b, G′].

(v) For each h ∈ G′ \ Z(G), [h, G] = Z(G).

Set G = G/Z(G) and consider Φ to be the canonical homomorphism from

G onto G. For g ∈ G \G′, define

Hg = Φ−1(CG(g)). (4.6)

Note that

Hg = Cg(G)G′.

As Cg(G) ∩ G′ = Z(G) and [Gg(G) : Z(G)] = pn = [G′ : Z(G)], we have

[Hg : Z(G)] = p2n.

Lemma 4.4.3 Let g ∈ G \G′. Then for any x ∈ Hg \G′, [G′, x] = [G′, g].

Proof. Take an arbitrary element of [G′, x], say [[g, y], x], for some y ∈ G. As

x ∈ Hg, so [x, g] ∈ Z(G). Then by Lemma 1.3.71.3.7, we get [[g, y], x] = [[x, y], g]

and so [G′, x] ⊆ [G′, g]. Similarly we can show the reverse inclusion and hence

[G′, x] = [G′, g]. �

Lemma 4.4.4 Given any h ∈ G′ \ Z(G) and any ab 6= 1, for some a ∈ A and

b ∈ B, there always exists some h∗ ∈ G′ such that h ∈ [abh∗, G].

Proof. Without loss of generality we can assume that a 6= 1. By Lemma
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4.4.24.4.2(iii)(3), there exists some b∗ ∈ B such that

[a, b∗] = h (mod Z(G)).

Now [ab, b∗] = hw1w2, for some w1 ∈ Z1 and w2 ∈ Z2. By Lemma 4.4.24.4.2(iv)(1),

there exists some h1 ∈ G′ such that [a, h1] = w−11 . So

[ab, b∗h1] = [ab, b∗][a, h1][b, h1] = hw1w2w
−1
1 [b, h1] = hw2w3

where w3 = [b, h1] ∈ Z2 (by Lemma 4.4.24.4.2(iv)(2)). Again using Lemma 4.4.24.4.2(iv)(2),

we get some h∗ ∈ G′ such that [h∗, b∗] = (w2w3)
−1. Therefore

[abh∗, b∗h1] = [ab, b∗h1][h
∗, b∗h1] = hw2w3(w2w3)

−1 = h.

This completes the proof. �

Now we are reday to prove Theorem 4.1.34.1.3.

Proof of Theorem 4.1.34.1.3: Let G ∈ G3 be a finite p-group of conjugate type

(1, p2n). Then |G| = p5n and [G : Z(G)] = p3n = |G′|. By Lemma 4.2.34.2.3, we get

Pr1(G) =
1

p3n
+

1

p2n
(
1− 1

p3n
)

=
p3n + p2n − 1

p5n
.

Note that ∑
g∈K(G)

Prg(G) = 1.
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Thus

∑
g∈K(G)\1

Prg(G) = 1− Pr1(G) =
p5n − p3n − p2n + 1

p5n
= (p3n − 1)

p2n − 1

p5n
.

Claim: Prg(G) ≥ p2n − 1

p5n
, for each g ∈ G′ \ 1.

By Lemma 4.2.34.2.3, it is sufficient to show that |TZg| ≥ p2n − 1, for all g ∈ G′ \ 1.

Case 1: g ∈ Z(G) \ 1.

Consider any α ∈ G′ \ Z(G). By Lemma 4.4.24.4.2(v), there exist some β ∈ G \ G′

such that [α, β] = g. Now consider Hβ (as defined in (4.64.6)). Take x ∈ Hβ \Z(G),

then either x ∈ Hβ \G′ or x ∈ G′ \Z(G). If x ∈ Hβ \G′, then by Lemma 4.4.34.4.3,

g = [α, β] ∈ [G′, β] = [G′, x]. If x ∈ G′ \ Z(G), then by Lemma 4.4.24.4.2(v),

g ∈ [G′, x]. So

|TZg| ≥
(Hβ \ Z(G))Z(G)

Z(G)
= p2n − 1.

Case 2: g ∈ G′ \ Z(G).

By Lemma 4.4.44.4.4, we get

|TZg| ≥ |{ab : a ∈ A, b ∈ B and ab 6= 1}| = p2n − 1.

Hence our claim holds true. Then by the counting argument, we get Prg(G) =

p2n − 1

p5n
, for each h ∈ G′ \ 1. This completes the proof. �
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