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SYNOPSIS

The Standard Model (SM) is by far the most successful model of particle physics. Very
recently the discovery of the Higgs particle and other observations at LHC augment this
fact. Even after the immense success of SM the reticence of it to provide us with the
answer to some aesthetic (Gauge coupling unification, hierarchy problem etc.) and com-
pelling questions (massive neutrinos, baryon asymmetry, dark matter (DM) etc.) leads
us to think beyond SM (BSM). Supersymmetry (SUSY) and Extra Dimensional (ED) the-
ories are two strong proponents to solve some of these problems. A particular variant of
ED models is Universal Extra Dimensional (UED) models where all the Standard Model
(SM) fields can access one or more extra spatial dimensions. The simplest case can be
of one extra dimension. The extra spatial dimension must be compactified at a scale
1/R ∼ O(TeV), where R is the compactification radius. To get chiral fermions, orb-
ifold compactification is needed. Although orbifolding breaks 5D translational invariance
there remains a residual symmetry, called KK-parity, responsible for the stability of the
lightest Kaluza-Klein particle (LKP). In the effective four dimensional theory there will be
towers of heavy Kaluza-Klein (KK) modes for each SM field. The masses of these heavy
modes depend on the compactification scale. For a specific level the mass spectrum is
thus almost degenerate. But radiative corrections lift this degeneracy. Without violating
the 4D symmetries of SM, additional interaction terms between the KK modes can be
written at the fixed points of the orbifold. Such terms can also creep in as counterterms to
compensate for radiative effects of the 5D theory. In minimal UED (mUED) these terms
are chosen in such a way that the 5D loop contributions are exactly compensated at the
cut-off scale. Being a 5D quantum field theory, mUED is non-renormalisable and should
be considered as an effective field theory and valid up to some high energy scale. This
is why one should not discard a priori any operator that is allowed by 4D Lorentz invari-
ance and SM gauge invariance. Boundary localised terms (BLTs) are such operators. The
scenario with arbitrary non-vanishing BLTs is termed as non-minimal UED (nmUED).

Even after conclusive evidence of existence of DM, the actual identity of DM is still
unknown. In the context of mUED, the first KK level photon γ(1), being the LKP and thus
having the required stability governed by the conservation of KK parity, can be a good
candidate for DM. In nmUED the mass spectrum is determined by the BLT parameters



SYNOPSIS

and thus depending on them the identity of LKP can be changed. The existence of stable
LKP in nmUED is possible only when there are equal strength BLTs at two boundaries.
In the first study, we considered the possibility of various possible LKPs. In each case we
calculated the relic density following the standard procedure of solving Boltzmann equa-
tion with appropriate assumptions. Co-annihilation, which is a necessary consideration
for near degenerate mass spectra, has also been taken into account. We have derived all
the necessary cross sections analytically, using CalcHEP. We used direct detection data
from XENON100 to constrain the parameter space. We found for specific choice of pa-
rameters, not only γ(1) can be a good DM candidate but also the narrow bounds on com-
pactification scale from similar studies in mUED can be evaded. We also found that the
first level Z-boson, with mass at TeV range, can not be a single component DM candidate
as it does not meet the criteria for appropriate relic density.

The tour de force of LHC is the discovery of Higgs particle, till date. Apart from mea-
suring its mass, LHC data finds a few discrepancies in the Higgs couplings. For example,
global analysis of ATLAS and CMS data showed that there is slight excess in H → γγ

(which is actually a loop-induced process) decay rate from the SM prediction. However,
these deviations sustained even after the refined analysis of available data. It is possible
that this excess is due to some new physics. The heavier new particles can leave their
footprints in loop-induced processes where they can come as virtual intermediate parti-
cles. In this way, heavier KK modes can alter various loop-induced decay processes of
Higgs and we can compare between this alteration and observed data. In this spirit, in
the second work we showed that the present data disfavors new physics scale below 1.3
TeV with 95% confidence level for the mUED. However, we showed that a more general
scenario in nmUED can accommodate scales as low as 0.4 TeV.

In the simplest UED models KK parity distinguishes the states with odd and even
KK-number. As has already been mentioned, the KK-excitations of all SM particles at
any KK-level n are degenerate in mass which is lifted by mUED radiative corrections.
In the third work, in preparation, we focused our attention on the KK-parity conserving
coupling of a 2n-level KK top quark to the n = 0 top quark and an n = 0 Higgs boson.
Since mUED interactions are KK-number conserving this coupling will be loop induced.
We compare the decay mediated by this coupling with the KK-number conserving decay
to two n-level states which proceeds through tree-level couplings. The latter process is
phase space suppressed and becomes allowed only after mUED corrections are incorpo-
rated. As an application of this result we have examined the prospect of pair producing
n = 2 level KK top-antitop quarks at the LHC with

√
s = 13 TeV and 33 TeV and examine

iv
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the prospects of the detection of both of them in the above mentioned decay mode.
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Chapter 1

Universal Extra Dimension

1.1 Introduction

In this chapter we will set the notations and conventions required for the later chapters.
We will discuss extra-dimensional theories, with a special emphasis on universal extra
dimensional model which, along with some variants of it, is the main topic of interest in
this thesis. Before delving into the extra dimensions it would not be out of place to recall
the most successful theory of elementary particles, the Standard Model (SM). In Sec. 1.2
we revisit the SM and in subsequent Secs. 1.3 and 1.4 we will give a brief introduction to
extra dimensions.

1.2 Standard Model and beyond

The Standard Model (SM) of particle physics epitomizes our current understanding of the
basic building blocks of the universe. These basic building blocks are elementary particles
which are fundamental, in the sense that they are indivisible and have no sub-structure.
SM is a theory of three of the four fundamental forces of Nature, namely electromag-
netic, weak and strong interactions (gravity is not included in the paradigm of SM) that
superintend the dynamics of these particles. The matter of the universe is composed of
fermionic fields and the interaction between them is governed by the bosonic fields. In
SM we have three types of particles: spin-1/2 fermions, spin-1 gauge bosons and a spin-0
scalar field, Higgs boson. SM is a quantum field theory (QFT) based on various symme-
tries. Actually QFT is the result of the combination of quantum mechanics and special
theory of relativity. SM possesses the following symmetries.

(i) Lorentz symmetry : This is a space-time symmetry. The manifestation of Lorentz

1
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symmetry is that the laws of nature are independent of rotations and boosts. The
fields (elementary particles are described by fields in QFT) of SM have definite trans-
formation properties depending on their spins. Lorentz invariance is a symmetry
of the Lagrangian describing the theory. If the Lagrangian transforms as a scalar
under the Lorentz transformations then the theory is said to be Lorentz invariant.
As it stands SM is manifestly Lorentz invariant.

(ii) Gauge symmetry : Gauge transformations are local transformations of the fields.
Actually the interactions among matter fields, i.e., the fermionic fields and gauge
fields are described by the principle of local gauge invariance. The gauge group of
the SM is SU(3)c⊗SU(2)L⊗U(1)Y which dictates the three fundamental interactions
of Nature. The strong interactions are described by the SU(3)c gauge group whereas
SU(2)L ⊗U(1)Y accounts for the electroweak (EW) interactions. This EW symmetry
breaks to the electromagnetic symmetry, U(1)em via the Brout-Englert-Higgs (BEH)
mechanism with the help of a scalar field which is called Higgs field.

(iii) Discrete symmetry : There are discrete transformations that arise in QFT. Charge
conjugation (C), parity transformation (P ) and time reversal (T ) are examples of
such transformations. Among these P and T are just the subset of Lorentz transfor-
mations. Actually P and T are discrete Lorentz transformations. The action of P is
to reflect the spatial coordinates (e.g., ~x → −~x) which ultimately results in a flip in
chirality (handedness) of the field. The operation of T is just to flip the direction of
time. The effect of C is to interchange the particle to its antiparticle and vice-versa.
The electromagnetic interaction is invariant under C, P, and T . The electroweak
interaction violates both C and P . Thus, individually none of these are good sym-
metries of SM. However, the combined operation CPT is always conserved in any
standard QFT1.

(iv) Global symmetry : SM also has two accidental global symmetries: baryon number
(B) and lepton number (L). However, they can be violated by quantum effects.
These type of symmetries which are conserved classically but violated via quan-
tum effects are called anomalous. It is worth mentioning that (B − L) is still a good
symmetry of SM and is not anomalous.

Apart from these symmetries there are some other important aspects of SM. It is a
renormalizable theory, i.e., all the ultra-violet (UV) divergences that can arise from higher

1See [1] for a proof of CPT -theorem.
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order quantum effects can be removed by judicious redefinition of bare fields and param-
eters of the model. Unitarity, i.e., the conservation of probability in various interaction
processes, and the stability of EW vacuum are two other important facets of SM.

1.2.1 Particle content and interactions

We have already mentioned that the matter of the universe is made up of spin-1/2
fermions. Among these there are six types of quarks and six types of leptons (three elec-
trically charged and three neutral). The transformation properties of these fields under
SM gauge group are determined by their respective charges under the gauge groups. The
quark fields transform as triplets (fundamental representation) of SU(3)c, whereas the lep-
tons are singlet under this gauge group and have no color charge and consequently do
not take part in strong interactions. SM being a chiral theory, treats left-handed and right-
handed fields differently. The left-handed2 fields transform as doublets (fundamental
representation) under SU(2)L while the right-handed fields are singlets under this group.
Thus we have for quarks,

Doublets :

(
u

d

)

L

,

(
c

s

)

L

,

(
t

b

)

L

Singlets : uR, dR, cR, sR, tR, bR.

For leptons we have,

Doublets :

(
νe

e

)

L

,

(
νµ

µ

)

L

,

(
ντ

τ

)

L

Singlets : eR, µR, τR.

Note that there is no right-handed neutrino in SM3. The SU(2)L group has three genera-
tors constructed out of the three Pauli matrices, σa (a = 1, 2, 3). If T3 be the eigenvalue
of the third generator and Q be the electric charge of the field, then the transformation
of that field under the U(1)Y is determined by the quantum number called hypercharge
which is defined as,

Q = T3 +
Y

2
. (1.1)

2The left-handed projection of a field ψ is defined as ψL = PLψ = [(1−γ5)/2]ψ and for the right-handed
one, ψR = PRψ = [(1 + γ5)/2]ψ.

3In SM the neutrinos are massless particles. But recent neutrino experiments show that they have tiny
masses. Some extensions of SM add right-handed neutrinos to explain the mass of the neutrinos.
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With this convention the lepton doublets will have hypercharge (−1), and for lepton
singlets it is (−2). The quark doublets are of hypercharge +1/3 and up-type quark singlets
it is +4/3 and down-type quark singlets will have hypercharge (−2/3).

With the knowledge of the transformation property of the fields under SM gauge
group one can write the gauge invariant Lagrangian of the theory. The kinetic term4

for the fermionic fields (ψ) can be written as,

Lmatter = iψ̄ /Dψ = iψ̄γµDµψ, (1.2)

where the most general form of the covariant derivative Dµ is given by,

Dµ = ∂µ − ig1
Y

2
Bµ − ig2

σa

2
W a
µ − ig3

λi

2
Gi
µ, (1.3)

where g1, g2 and g3 are the gauge couplings for U(1)Y , SU(2)L and SU(3)c groups respec-
tively. It should be noted that if a field transforms as a singlet under a specific gauge
group then that specific gauge coupling will be zero for that field. Here Bµ is the gauge
field for U(1)Y , W a

µ (a = 1, 2, 3) are for SU(2)L and Gi
µ (i = 1, 2, . . . , 8) for SU(3)c group.

Substituting this form of Dµ in Eq. 1.2 one can obtain the interaction vertices between the
fermions and the gauge bosons.

Figure 1.1: Particle content of the SM.

The kinetic terms for the gauge fields can be written, in terms of their field strengths,
as,

Lgauge = −1

4
BµνB

µν − 1

4
W a
µνW

aµν − 1

4
Gi
µνG

iµν , (1.4)

4Mass terms will be discussed later.
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where the field strength tensors are defined as,

Bµν = ∂µBν − ∂νBµ, (1.5a)

W a
µν = ∂µW

a
ν − ∂νW a

µ + g2ε
abcW b

µW
c
ν , (1.5b)

Gi
µν = ∂µG

i
ν − ∂νGi

µ + g3f
ijkGj

µG
k
ν , (1.5c)

where εabc and fabc are the structure constants of SU(2)L and SU(3)c groups respectively.
Thus from the kinetic terms it is evident that for non-Abelian gauge fields there exists
triple and quartic self-interaction vertices.

We have talked about the kinetic terms of fermions and gauge bosons. Actually gauge
symmetry forbids any kind of mass terms for gauge fields. But it is an established fact that
the weak interaction mediator gauge bosons, W± and Z-bosons are massive. Moreover,
the incongruity in the transformation properties of the left-handed and right-handed
fermions prohibits gauge invariant mass term for fermions also. These facts lead us to
think that the electroweak gauge symmetry must be broken. The introduction of the con-
cept of spontaneous symmetry breaking (SSB) [2–10] helps to reconcile these mass related
issues. The crux of this SSB is that the Lagrangian of the theory is invariant under the
gauge transformations but the vacuum does not respect that symmetry. The electroweak
theory, also known as Glashow-Salam-Weinberg model [11–13] incorporates SSB by intro-
ducing a spin zero complex scalar field, called Higgs field, which transforms as doublet
under SU(2)L and takes appropriate vacuum expectation value (vev) to break the gauge
symmetry spontaneously. As a consequence of this breaking the fermions and the gauge
bosons can obtain masses. The SM particle zoo has been shown in Fig. 1.1. It is worth
mentioning that the spontaneously broken gauge theory is also renormalizable [14, 15].
In the next subsection we are going to describe the mechanism in a nut shell.

1.2.2 Brout-Englert-Higgs mechanism

We have already mentioned that to explain the masses for the W± and Z bosons and
fermions in the SM we have to resort to the spontaneous breaking of electroweak sym-
metry. The difference between explicit and spontaneous symmetry breaking is that in the
latter case the Lagrangian is invariant under the symmetry transformations of the theory
but the vacuum, i.e., the ground state is not. It is worth mentioning that spontaneous
breaking of global continuous symmetries gives rise to massless bosonic fields, called
Goldstone bosons. The previous statement summarizes, what is called Goldstone theo-

5



CHAPTER 1. UNIVERSAL EXTRA DIMENSION

rem [4]. In the case of spontaneous breaking of gauge symmetry5 the Goldstone boson
disappears from the spectrum and the gauge boson becomes massive. This mechanism is
called the Brout-Englert-Higgs mechanism.

It has been observed that in the SM the electric charge is conserved and therefore the
concerned gauge group of electromagnetism, U(1)em is an exact symmetry of the theory.
So, under SSB we should have the following symmetry breaking pattern,

SU(2)L ⊗ U(1)Y → U(1)em (1.6)

This breaking can be achieved by introducing a spin-0 scalar field, Φ, that transforms as a
doublet under the SU(2)L with U(1)Y hypercharge +1. This doublet is defined as,

Φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
. (1.7)

The gauge invariant Lagrangian for this field is given by,

LΦ = (DµΦ)†DµΦ− V (Φ), (1.8)

where Dµ is defined in Eq. 1.3 and the potential V (Φ) is given as,

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2 (1.9a)

=
µ2

2

(
4∑

k=1

φ2
k

)
+
λ

4

(
4∑

k=1

φ2
k

)2

. (1.9b)

Clearly this potential has a global SO(4) symmetry. In Eq. 1.9 we consider λ > 0. Now
using the minimization condition of the potential, ∂V

∂Φ
= 0, one can show that

• for µ2 > 0, ∃ a unique minimum at Φ†Φ = 0,

• for µ2 < 0, the potential develops degenerate minima at Φ†Φ = −µ2
2λ
≡ v2

2
.

The second scenario has been pictorially depicted in Fig. 1.2. Now, utilizing the freedom
of SU(2)L symmetry and without any loss of generality, one can choose the vev of the
field Φ entirely on the electrically neutral component of the field φ0 as,

〈Φ〉 ≡ 〈0|Φ|0〉 =

(
0
v√
2

)
. (1.10)

5It is interesting to note that spontaneous breaking of gauge symmetry is possible only for space dimen-
sions d > 2. This is known as Coleman-Mermin-Wagner-Hohenberg theorem [16–18].
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Figure 1.2: The Higgs potential in the SM (taken from [19]).

This vev of the field Φ is responsible for the breaking mentioned in Eq. 1.6. In the unitary
gauge the field Φ(x) can be parametrized as,

Φ(x) =
1√
2

(
0

v +H(x)

)
, (1.11)

where, H(x) is a real-valued field with 〈H(x)〉 = 0. The quantum of the field H(x) is
called the Higgs boson. Now substituting Φ(x) in the kinetic term of LΦ one can obtain
the mass terms for W± and Z-bosons. The W± is defined as,

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, (1.12)

whereas the Z-boson and photon are the orthogonal combinations of the fields Bµ and
W 3
µ ,

Zµ = − sin θWBµ + cos θWW
3
µ , (1.13a)

Aµ = cos θWBµ + sin θWW
3
µ . (1.13b)

The weak mixing angle θW is called Weinberg angle and is defined as,

θW ≡ tan−1

(
g1

g2

)
. (1.14)

The masses of the gauge bosons as obtained from the kinetic term in LΦ are,

mA = 0, (1.15a)

mW =
1

2
g2v, (1.15b)

mZ =
1

2
v
√
g2

1 + g2
2. (1.15c)

7



CHAPTER 1. UNIVERSAL EXTRA DIMENSION

Apart from the mass terms of gauge bosons the kinetic term also gives the interaction
vertices between the Higgs field H(x) and the gauge bosons W± and Z. Photon has no
coupling with H(x). A general rule of thumb, in this context, is worth mentioning; the
more massive a particle is, the stronger interaction it has with the Higgs boson. From the
potential term of LΦ we get the mass (mH = 2v2λ) of Higgs field itself and its cubic and
quartic self-couplings.

Apart from giving masses to the gauge fields the field Φ also takes care of the masses
of fermions6. The gauge invariant interactions between the scalar field and the fermions
are given by the Yukawa terms,

LYuk =
∑

i,j=generation

(
−Y u

ij Q̄iΦ̃uj − Y d
ijQ̄iΦdj − Y l

ijL̄iΦej + h.c.
)
, (1.16)

where Φ̃ = iσ2Φ∗ and Q and L represents the quark and lepton doublets respectively and
Y u, Y d, Y l are the Yukawa coupling matrices for the up-quark, down-quark and charged
leptons respectively. After the field Φ gets the vev v, the Yukawa Lagrangian takes the
form of mψψ̄LψR with the mass matrices,

mu
ij ∝ vY u

ij , m
d
ij ∝ vY d

ij , m
l
ij ∝ vY l

ij. (1.17)

These mass matrices are in the flavor basis and are to be diagonalized to get the mass
basis. These Yukawa couplings are free parameters in the SM and are fixed by the masses
of the corresponding fermions. Note that neutrinos do not have any mass terms due to
the absence of their right chiral partners.

The SM has undergone decades of experimental scrutiny with ever-increasing accu-
racy. Various experiments carried out at both high energy colliders like LEP, Tevatron
and LHC as well as low energy experiments of flavor physics and electroweak precision
measurements put SM on a strong footing. The long elusive Higgs boson has also been
discovered in LHC [20, 21]. Apart from a few minor discrepancies (e.g., anomalous mag-
netic moment of muon, the H → γγ decay width etc.) the SM is the most consistent
model of particle physics till date. But there are some observations that lead us to think
of something beyond the SM. In the next subsection we discuss some of them.

1.2.3 A few shortcomings of SM

We have seen in the earlier section how SM encompasses almost all of the experimen-
tal observations and all the predictions of it have been successfully verified. The latest

6Not only gauge symmetry breaking but also chiral symmetry breaking, in the fermionic sector, is in-
duced by Higgs vev.
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discovery of Higgs boson provides the last missing block in the particle spectrum of SM.

In spite of its successes there are at least two burning issues on which SM provides
no explanation and leaves room for some new physics beyond SM. One of them comes
from the observed oscillations in neutrinos (see e.g., [22, 23] and references therein). This
implies non-vanishing masses for neutrinos and we know that there are no mass terms
possible in SM. However, postulating the existence of right handed neutrinos can solve
the problem. Various proposals are put forward to address the neutrino mass problem
via see-saw mechanisms which are largely motivated by grand unified theories (GUT).

The second issue originates from various astrophysical/cosmological observations
which mandate the existence of dark matter. None of the ingredients of SM can fit in prop-
erly to explain this. See Sec. 3.1 for an elaborate discussion on this matter. It is also worth
mentioning, in this context, the observed matter-antimatter asymmetry in the universe is
another issue which can not be explained in the parlance of SM.

Apart from these experimental observations there are some theoretical problems too.
One of them arises from the presence of the all-important scalar sector. In the SM the
masses of the fermions are protected by inexact chiral symmetry, whereas the masses of
gauge bosons are protected by the remnant gauge symmetry after EWSB. But this is not
the case for the Higgs field. The mass of the Higgs boson receives radiative corrections
that are quadratically sensitive to the cut-off scale which is set by new physics, e.g., grav-
ity. So to keep the Higgs boson mass at electroweak scale one can add a counter-term to
cancel the large contribution. But such a huge cancellation would be highly unnatural as
it needs large fine-tuning of the parameters. This is called fine-tuning problem or natu-
ralness problem. Sometimes it is also termed as hierarchy problem owing to the fact that
the cancellation of such large numbers, of the order of the cut-off scale (usually the Planck
scale, MPl = 1.22× 1019 GeV), is required to leave behind a relatively much smaller Higgs
mass near the electroweak scale.

There are many free parameters in SM. They are fixed by experiments. There is no
explanation as to why they are the values the parameters take. Moreover the reason for
large hierarchy between the fermion masses remains unanswered. Lastly, gravity, one of
the four fundamental forces of Nature, is not included in SM.

Above, we mentioned some of the criticism of SM. Clearly we need some theory be-
yond SM (BSM) to address these shortcomings. BSM theories can be constructed in many
possible ways. Taking extra space-time symmetries as the guiding principle, theory of
supersymmetry (SUSY) has been put forward. According to SUSY all the SM particles
have their corresponding supersymmetric partner, differing in spin by half. Thus the
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quadratically divergent contributions that are coming in the Higgs mass correction from
the particles running in the loop are exactly canceled by the contributions coming from
their supersymmetric partners. In this way the Higgs mass is stabilized in SUSY theo-
ries. Apart from this there are many other virtues of the SUSY theories which we will not
discuss here. Also there are models where there are no fundamental scalars (composite
Higgs, technicolor type of models) and EWSB takes place dynamically based on some
new strong dynamics. Lastly, there are models with extra space-time dimensions. We are
going to talk at length about them in the next section.

A word of caution in this context would not be inappropriate. Even though there are a
host of BSM theories, as of now, none of them have received any confirmatory signatures
from any experiment. The currently operative highest energy collider, LHC has already
cornered many of the BSM theories and with more data that will come in future years
should be able to judge the remaining models.

1.3 Extra Dimension

The concept of extra space-time dimension is not a new import in theoretical physics.
It dates back to 1920s. At that time the only known forces of Nature were gravitation
(Einstein’s theory) and electromagnetism (discovered by Maxwell). As early as in 1914,
Gunnar Nordström [24] used a five-dimensional space-time setting to describe Maxwell’s
theory of electromagnetism and came up with a electromagnetic vector potential and a
scalar field which satisfies his own scalar theory of gravity. Later Theodore Kaluza [25]
and Oskar Klein [26] advanced this idea of extra space dimension to give a unified theory
of gravitation and electromagnetism. According to their idea, the extra spatial dimension
is compactified on a circle and thus the presence of this extra dimension can be felt only if
the experiments have a resolution higher than the radius of the circle of compactification.
However with new discoveries in the field of particle physics the original idea of Kaluza-
Klein (KK) has been discarded owing to many objections (see e.g., [27] for an account of
viability of KK theory in the context of SM).

In the modern parlance, extra dimensions revived with renewed interests in the late
70’s and 80’s, thanks to the developments in supergravity and string theory. For the
internal consistency of string theory one needs a total of 26 space-time dimensions if one
considers bosonic theory only; superstring theory takes fermions also into account and it
needs 10 space-time dimensions. The extra-dimensions considered in these theories are
extremely small (O(M−1

Pl )) and are beyond the reach of any experiment possible in near
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future.
Very recently the ideas of extra dimension much larger than the Planck length have

been put forward:

• TeV-scale extra dimensions, related to the SUSY-breaking, were first introduced by
Antoniadis [28].

• The possibility that large extra dimensions (LED) can solve the hierarchy problem
was considered by Arkani-Hamed, Dimopoulos and Dvali [29].

• The warped extra dimensional model proposed by Randall and Sundrum [30, 31]
is an interesting alternative to the large extra dimension scenario which solves the
hierarchy problem.

• Also there is universal extra dimensional model [32] which we will elaborate in
Sec. 1.4.

Below we will briefly mention the primary features of LED and the Randall-Sundrum
(RS) model.

1.3.1 Large Extra Dimension

We know that there is a large hierarchy between the electroweak scale (∼ 102−3 GeV)
and the Planck scale (MPl = 1019 GeV). To put it another way gravitational interaction
is extremely weak compared to the other interactions in SM. To address this question
Arkani-Hamed, Dimopoulos and Dvali [29] came up with the idea that there are flat extra
spatial7 dimensions which are compactified. Only gravity can propagate in the bulk of
the extra dimensions but the SM fields can not. Actually SM fields are localized on a
3-brane8. The weakness of the gravitational interactions can be explained by the large
volume suppression of the zero-mode (any extra dimension theory gives rise to a tower
of KK excitations and the zeroth level of these excitations are identified with the SM fields)
graviton9 interactions with the 3-brane localized SM fields.

In this model the number of extra spatial dimension, δ ≥ 2 is only allowed. Earlier it
was assumed that the size of the extra dimension (assuming δ = 2) is O(1 mm) but recent

7Extra temporal dimensions are problematic, in the sense that they can give rise to tachyonic states
also there can exist closed time-like loops which might violate causality. For a detailed discussion see the
Introduction section of [33].

8In the context of string theory, D-branes are a class of extended objects with spatial dimensionality D.
9Gravitons are spin-2 particles which are assumed to be the force carrier of gravitational interaction.
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experimental observations put bounds on the size to be less than 30µm [34]. However, no
significant bound is obtained for δ > 3.

1.3.2 Warped Extra Dimension

The assumption of flat extra dimension is valid as long as one assumes that the back-
ground metric remains unaffected by the gravity itself. However, the effect of this back-
reaction of gravity on the branes leads to warped extra dimension. This has important cos-
mological implications [35, 36]. It was shown by Randall and Sundrum [30, 31] warped
extra dimensional models can also solve the hierarchy problem in an elegant way. In
the original RS set-up two 3-branes (called TeV or IR brane and Planck or UV brane) are
present. Actually the bulk is a slice of 5D anti-de Sitter (AdS5) space which is bounded
by the two 3-branes. In the minimal version of the RS model only gravity can propagate
in the bulk while the Higgs field (and other SM fields) is localized on the brane where
the warp factor10 is small. This non-trivial warp factor is the main ingredient that helps to
solve the hierarchy problem by "warping down" the Planck scale. For more clarifications
see the TASI lectures by Sundrum [37] and Gherghetta [38].

It is worth mentioning that to comply with various experimental observations many
variants of the RS model have been adduced. However, from the experimental data from
LHC it is evident that even if warped extra dimension (in any variant) exists in Nature,
the size of it (i.e., the compactification radius) is smaller than the TeV−1 scale [39, 40].

1.4 Universal Extra Dimension

Amongst the many variants of extra-dimensional models, Universal Extra Dimensions
(UED) proposed by Appelquist et al. [32] is the main focus of this thesis. The universal
in UED reflects the fact that all of the Standard Model (SM) fields can access the extra
dimension instead of some being confined to a boundary as in the case of ADD and RS
model. Although UED is devoid of the virtue of solving the hierarchy problem which
some other extra-dimensional models do address, there is a wide range of phenomeno-
logical motivations for this model.

Proton stability is one of the perplexing issues in particle physics. In SM the existence
of dimension six baryon and lepton number violating operators can cause proton decay.
Now, to maintain the constraints of proton lifetime in an SM-only theory leads to a cut-

10Warp factor is a measure of the curvature (warping) along the extra dimension.
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off which is unnatural in many aspects. However, by the very construction of the UED
model, the operators leading to rapid proton can be forbidden [41]. This is unlike some
other BSM physics (e.g., SUSY) where ad hoc introduction of some symmetry is required to
alleviate the problem of rapid proton decay. The existence of three generation of fermions
can also be explained in a version of UED model from the requirement of gauge anomaly
cancellation in higher dimension [42]. The issue of gauge coupling unification is also well
addressed in these types of theories. Normally they predict a unification scale which is
substantially below the usual GUT scale [43–46]. But above all the most pressing motiva-
tion for UED comes from the fact that it provides, in a natural way, a stable, electrically
neutral and colorless state which can qualify as a viable dark matter candidate. For a
detailed review on this subject please see [47]. Moreover a flip side of the scenario is that
it shares striking similarities, barring a few subtle differences, with SUSY [48]. So in a
collider experiment it requires careful analysis to distinguish between these two scenar-
ios [49].

1.4.1 Basic features

We will consider one extra spatial dimension (y). The problems with extra temporal di-
mension has been noted in the previous section. In UED, this extra spatial dimension is
accessible to all of the SM fields. Now, the extra spatial dimension is compactified on a
circle (S1) of radius R. The inherent meaning of the earlier statement is that in the extra
spatial dimension y, we identify two points which are separated by a distance 2πR, i.e.,
y ∼ y+ 2πR. Clearly this type of periodicity will have further implications which we will
elucidate later. We denote our coordinates as,

xM = {xµ, y}, (1.18)

where xµ (µ = 0, 1, 2, 3) indicates the usual 4-dimensional (4D) non-compact space-time
coordinates and y denotes the compact extra spatial dimension. The metric convention
we will be using is the following,

gMN = diag(+1,−1,−1,−1,−1), (1.19)

which represents a flat metric. Had there been any coordinate dependence in the metric
we would get a non-flat space.

To illustrate the effect of the identification y ∼ y + 2πR, consider a real scalar field
in 5-dimension (5D), Φ(x, y). Since in the extra dimension the points y and y + 2πR are
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identified, the field Φ(x, y) satisfies the condition: Φ(x, y) = Φ(x, y + 2πR). Due to this
periodicity in the y-coordinate, we can expand the 5D field in an infinite series of Fourier
modes as,

Φ(x, y) =
1√
2πR

∞∑

n=−∞

φ(n)(x)e
iny
R , (1.20)

where 1/
√

2πR is just a normalization factor. This also reminds us that the dimensionality
of the 5D fields are different from that of 4D fields. Here φ(n)(x) is called the n-th Kaluza-
Klein (KK) mode. The zeroth mode φ(0) will be identified as the SM field. Now to clarify
some more issues, consider the 5D action of a real scalar field, given by,

S5D =
1

2

∫
d4x

∫ 2πR

0

dy
[
∂MΦ(x, y)∂MΦ(x, y)−m2

0Φ2(x, y)
]
, (1.21)

where m0 can be regarded as the zero-mode mass. The 4D action can be obtained by
dimensional reduction of the 5D action by performing the integration over the compacti-
fied extra dimension. Plugging the expansion of Φ(x, y) into Eq. 1.21 and performing the
integration one can get the effective 4D action to be,

S4D =
1

2

∑

n

∫
d4x

[
∂µφ

(n)(x)∂µφ(n)(x)−
(
m2

0 +
n2

R2

)
(φ(n)(x))2

]
. (1.22)

Thus the n-th KK mode φ(n)(x) has mass,

mn =

√
m2

0 +
n2

R2
. (1.23)

So, the smaller the compactification radius R, the larger the mass of the n-th mode. Also,
Eq. 1.22 asserts that the 5D theory is equivalent to a theory with an infinite tower of
4D fields with masses mn. This recasting of the 5D theory into a 4D theory is called KK
decomposition. In an alternate way [50], instead of substituting Eq. 1.20 in Eq. 1.21, one
can straightaway vary the 5D action to get the equation of motion and then solve them to
obtain the mass relation as well as the KK expansion of the fields.

Till now we have used a real scalar field to illustrate the situation. Generalizing this
to gauge fields and fermions is straightforward. But special care is to be taken for the
case of fermions. This is due to the fact that defining chirality operator in odd number of
dimension is not possible. Consider a massless fermion field Ψ(x, y) in 5D. It will satisfy
the Dirac equation i∂MΓMΨ(x, y) = 0, where ΓM satisfies the Clifford algebra,

{ΓM ,ΓN} = 2ηMN , (1.24)
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where ηMN is the Minkowski metric in 5D. Now in the 5D case,

ΓM = (γµ, iγ5). (1.25)

Since γ5 is being included among the Dirac matrices of 5D and there is no other matrix
with the anti-commuting properties of γ5, there is no explicit chirality in 5D theory. Ac-
tually, in any dimension (even or odd), say n, we have n-number of gamma matrices
Γa (a = 1, 2, . . . , n), satisfying {Γa,Γb} = 2ηab. Then a generalized γ5 can be defined as,

Γn+1 = Γ1Γ2 . . .Γn. (1.26)

Then for even number of dimension, i.e., n = 2p, Γn+1 will be nilpotent ((Γn+1)2 = 1) and
anti-commute with all Γa,

{Γn+1,Γa} = 0, ∀ a = 1, 2, . . . , 2p . (1.27)

However for odd number of dimension, n = 2p+ 1,

[Γn+1,Γa] = 0, ∀ a = 1, 2, . . . , 2p+ 1, (1.28)

and then by Schur’s lemma Γn+1 is just a multiple of unit matrix. Thus in odd number
of dimensions defining chiral fermion is not possible. Consequently, the fermions in odd
number of dimension will necessarily be vector-like. Even though we are interested in
the effective 4D theory, this problem will haunt us even after we integrate out the extra
dimension, in the sense that now even the zero modes, which we will identify as the SM
fields, will be vector-like which is in stark difference with the observations. To ameliorate
this problem we need to further modify the space. We need to orbifold the compactified
dimension. This is nothing but imposing one more identification y ∼ −y. Orbifolding

y = 0y = πR

Figure 1.3: Pictorial description of orbifolding.

essentially makes the circle an interval of length πR with two endpoints 0 and πR, which
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are basically fixed points of the manifold. After the orbifold compactification the resulting
space is called an S1/Z2 orbifold. Now, we can specify the transformation properties of
the fields under this orbifold projection. An appropriate choice of this transformation
property eliminates the phenomenologically undesirable degrees of freedom (DoF) at the
zero modes level. For example, consider a generic field Φ(x, y), then

Φ(x, y)
y→−y−−−→ Φ(x,−y) = ±Φ(x, y). (1.29)

The ‘even’(‘odd’) type field is defined by the +(−) value in Eq. 1.29 and is denoted by
Φ+ (Φ−). It can be shown that the even (odd) field satisfy Neumann (Dirichlet) boundary
conditions, ∂yΦ+|y=0,πR = 0 (Φ−|y=0,πR = 0). The KK decompositions of even and odd
fields are given by,

Φ+(x, y) =
1√
πR

φ(0)+(x) +

√
2

πR

∞∑

n=1

φ(n)+(x) cos
ny

R
, (1.30)

Φ−(x, y) =

√
2

πR

∞∑

n=1

φ(n)−(x) sin
ny

R
. (1.31)

Clearly, zero mode of the odd field is then disallowed. Likewise by imposing appropriate
transformation properties on the fermions we can obtain zero mode chiral (instead of
getting vector-like) fermion in the 4D theory.

A generic gauge field in 5D can be written as, AM(x, y) (M = 0, 1, 2, 3, 4). However
from now on we will use the index ‘5’ for the fourth spatial component. Thus a 5D
gauge boson has five components, the usual Aµ(x, y) (µ = 0, 1, 2, 3) and A5(x, y). The fifth
component A5(x, y) corresponds to the polarization of the gauge field along the extra di-
mension and from 4D point of view, after compactification, this just behaves as a tower
of spinless KK modes. Also this A5 will have no zero mode and will be an odd field.
Thus the boundary conditions for various components of AM(x, y) are, ∂yAµ|y=0,πR = 0

and A5|y=0,πR = 0. So the KK decomposition of Aµ(x, y) will be like Eq. 1.30 and that of
A5(x, y) will be like Eq. 1.31.

In passing it is worth-mentioning that the presence of this fifth component of gauge
field A5 can play crucial role in determining the unitarity of the 5D theory [51]. Interest-
ingly, in the pre-Higgs discovery era Higgs-less models were constructed based on this
idea [52, 53].
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1.4.2 KK parity

The KK number of a particle is a measure of its momentum in fifth dimension, i.e., p5 =

n/R. Unlike the 4D momentum, p5 is not a conserved quantity. The damage is done by
the orbifold compactification which breaks the translational invariance along the extra
dimension, rendering p5, viz. KK number, being violated. Even after the breaking of KK
number there remains an accidental discrete symmetry, called KK parity, which is the
translational symmetry y → y − πR. From Eqs. 1.30 and 1.31 it is evident that under this
transformation the even KK modes are invariant while the odd KK modes flip their sign.
Thus for the n-th level particle KK parity is (−1)n. KK parity is a multiplicative quantum
number. One important point to keep in mind here is that the discrete symmetry, KK
parity is not the Z2 of S1/Z2. Evidently all SM particles are then of even KK parity. A few
phenomenological consequences of KK parity conservation are,

• stability of Lightest Kaluza-Klein Particle (LKP),

• in collider experiments, odd KK level particles can be produced only pairwise,

• all direct couplings of SM particles to even number KK states are loop suppressed.

All of these points will be elaborated in due time. Normally in the minimal version of
UED, KK parity remains a good symmetry. But it can be broken by the introduction of
explicit KK parity violating interactions (which nevertheless respect other symmetries
e.g., gauge, Lorentz etc.) on the orbifold fixed points. In passing it is worth mentioning
that KK parity is somewhat analogous to the discrete symmetry, called R-parity, in the
context of SUSY.

1.4.3 Standard Model in 5D

Accoutered with the basic tenets of extra-dimensional theories, we are now in a posi-
tion to discuss the scenario where the SM is embedded in 5D with one extra spatial di-
mension and all SM fields can propagate in the bulk of this 5D. Even though SM will
be embedded in 5D the gauge structure of the theory will remain intact, i.e., the usual
SU(3)c ⊗ SU(2)L ⊗ U(1)Y . The 5D gauge fields for these gauge groups are Ga

M , W a
M and

BM , where a represents the non-Abelian gauge index. As for the fermion fields they
are simple 5D fermion fields satisfying appropriate parity transformations to ensure chi-
ral fermions in 4D. Actually in SM, there is no left handed SU(2)L-singlet fermion and
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right handed SU(2)L-doublet fermion. Thus in UED the SM doublet (Ψ) and singlet (ψ)
fermions are the zero modes in the expansions11

Ψ(x, y) =
1√
πR

[
Ψ

(0)
L +

√
2
∞∑

n=1

(
Ψ

(n)
L (x) cos

ny

R
+ Ψ

(n)
R (x) sin

ny

R

)]
, (1.32a)

ψ(x, y) =
1√
πR

[
ψ

(0)
R +

√
2
∞∑

n=1

(
ψ

(n)
R (x) cos

ny

R
+ ψ

(n)
L (x) sin

ny

R

)]
. (1.32b)

These fields satisfy Ψ(x, y) = −γ5Ψ(x,−y) and ψ(x, y) = +γ5ψ(x,−y) which ensures that
the zero modes i.e., the SM fermions, appear with correct chirality.

Now we will describe the action for the 5D UED. In the following we write the ac-
tion for various sectors separately to avoid cluttering. Here we will follow the notations
of [54].

Sgauge =

∫
d4x

∫ πR

0

dy

[
−1

4
BMNB

MN − 1

4
W a
MNW

aMN − 1

4
Gi
MNG

iMN

]
, (1.33a)

SGF =

∫
d4x

∫ πR

0

dy

[
− 1

2ξ
(∂µB

µ − ξ∂5B5)2 − 1

2ξ
(∂µW

aµ − ξ∂5W
a
5 )2 (1.33b)

− 1

2ξ
(∂µG

iµ − ξ∂5G
i
5)2

]
,

Slepton =

∫
d4x

∫ πR

0

dy
∑

j=generation

[
iL̄j /DLj + iēj /Dej

]
, (1.33c)

Squark =

∫
d4x

∫ πR

0

dy
∑

j=generation

[
iQ̄j /DQj + iūj /Duj + id̄j /Ddj

]
, (1.33d)

SYuk =

∫
d4x

∫ πR

0

dy
∑

i,j=generation

[
−Ŷ u

ij Q̄iH̃uj − Ŷ d
ijQ̄iHdj − Ŷ l

ijL̄iHej

]
, (1.33e)

SHiggs =

∫
d4x

∫ πR

0

dy
[
(DMH)†(DMH)− µ̂2H†H − λ̂(H†H)2

]
. (1.33f)

The field strength tensor for the gauge fields, BM , W a
M and Gi

M are given by,

BMN = ∂MBN − ∂NBM , (1.34a)

W a
MN = ∂MW

a
N − ∂NW a

M + ĝ2ε
abcW b

MW
c
N , (1.34b)

Gi
MN = ∂MG

i
N − ∂NGi

M + ĝ3f
ijkGj

MG
k
N . (1.34c)

11The chirality projection operators for the 4D modes of any fermionic field Ψ, is defined in a similar
fashion, see footnote 2.
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Here εabc and fabc are structure constants for SU(2)L and SU(3)c respectively. Also, ĝi (i =

1, 2, 3) are the 5D gauge couplings for U(1), SU(2)L and SU(3)c gauge groups. Unlike its
4D counterparts, these 5D couplings are dimensionful parameters. As will be illustrated
later, there exists a scaling relation between the couplings in 4D and those of 5D. In the
context of UED, this relation is,

gi =
ĝi√
πR

, (1.35)

where gi represents the usual 4D coupling. An important observation from Eq. 1.35 is
that the 5D coupling has negative mass dimension. This is a well-known fact that theories
which have couplings with negative mass dimension are not renormalizable. Thus we ar-
rive at the well accorded maxim that extra-dimensional theories are non-renormalizable.

The guiding principle for the construction of the gauge fixing action, SGF , is to prohibit
Aµ-A5 mixing and this is ensured by the very form of SGF given in Eq. 1.33b.

In Eqs. 1.33c and 1.33d, the /D = ΓMDM , where ΓM is defined in Eq. 1.25 and DM

represents the covariant derivative. Since covariant derivatives, in a way, determine the
interaction between the fermion and the gauge boson, the explicit form of DM will be
dictated by the interaction properties of the corresponding fermionic field. For example,
the covariant derivative for the quarks are given by,

DM = ∂M − iĝ1
Yq
2
BM − iĝ2

σa

2
W a
M − iĝ3

λi

2
Gi
M , (1.36)

where sum over repeated gauge indices is implied. The hypercharge, Y , assignments of
fermions are the same as that of SM, i.e., YQ = 1/3, Yu = 4/3, Yd = −2/3, YL = −1 and
Ye = −2. Also σa (a = 1, 2, 3) are Pauli matrices and λi (i = 1, 2, 3, . . . , 8) are Gell-Mann
matrices which are related to the generators of SU(2)L and SU(3)c respectively. Various
Yijs in Eq. 1.33e are just the 5D Yukawa couplings and we define H̃ , used in Eq. 1.33f, as
H̃ ≡ iσ2H∗.

1.4.4 Particle content and interactions

In Sec. 1.4.1 we have seen that from 4D perspective the effect of 5D will be reflected as the
presence of an infinite KK tower of 4D fields with the lowest lying KK states, i.e., the zero
modes, being the SM particles. So the particle content of UED will be the SM particles,
augmented by the KK tower of each species of those particles. Now, since the KK tower
is infinite there is no harm in the assumption that there are infinite number of particles in
UED. But as we go to higher and higher rungs of the KK tower the particles become so
heavy (see Eq. 1.23) that they will not result in any observable consequences. Thus for any

19



CHAPTER 1. UNIVERSAL EXTRA DIMENSION

practical purpose the effect of first few KK level is important. In passing we also recall
the fact that for fermions only the zero modes are chiral but non-zero KK level fermions
are always vector-like.

In SM the masses of particles vary from12 MeV to GeV range. We have already men-
tioned that m0 in Eq. 1.23 represents the zero mode or SM mass. Also, for a very small
compactification radius (1/R ∼TeV), it is n2/R2 which is the dominant part in Eq. 1.23. As
a consequence, even if the zero mode masses of various particles are different, non-zero
mode masses will be autocratically dictated by 1/R and this being very large compared
to the masses of SM particles, all of the particles in a non-zero KK level will be highly de-
generate in mass. Later we will see that radiative corrections result in a non-degenerate
mass spectrum.

Now we turn our attention to the interactions between various particles in UED. Cal-
culating these interactions is also straightforward. In the coupling extraction process,
however, we have to make sure that the couplings in zero mode sector come exactly like
the SM couplings. So the procedure to calculate any coupling in UED is the following.

• Pick the corresponding action from the set of Eqs. 1.33.

• Collect the concerned interaction term between the fields.

• Write all the fields in terms of their respective KK expansion, keeping general mode
numbers.

• Lastly, perform the y-integral to get the effective 4D coupling.

For example, suppose we want to calculate the interaction between fermions and gauge
bosons. Now, this coupling comes from the fermion kinetic term, iχ̄(x, y)ΓMDMχ(x, y),
where χ(x, y) is any arbitrary 5D fermionic field. Then,

iχ̄(x, y)ΓMDMχ(x, y) = iχ̄(x, y)γµDµχ(x, y) + iχ̄(x, y)(iγ5)D5χ(x, y). (1.37)

For the time being, concentrate on the first term only. We write, illustratively, Dµ =

∂µ − iĝAµ. Hence, the interaction between gauge field Aµ and fermion χ will be
ĝχ̄(x, y) /A(x, y)χ(x, y). Then plug the KK expansion of each field in this term.

ĝ

∫
d4x

∫ πR

0

dy
∑

p,q,r

[(
1√
πR

χ̄(0)(x) +

√
2√
πR

∑

p

{
χ̄

(p)
+ (x) cos

py

R
+ χ̄

(p)
− (x) sin

py

R

})

12Leaving neutrinos from the considerations, as their exact masses are not yet measured but are assumed
to be very small.
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× γµ
(

1√
πR

Aµ(0)(x) +

√
2√
πR

∑

q

{
A
µ(q)
+ (x) cos

qy

R
+ A

µ(q)
− (x) sin

qy

R

})

×
(

1√
πR

χ̄(0)(x) +

√
2√
πR

∑

r

{
χ

(r)
+ (x) cos

ry

R
+ χ

(r)
− (x) sin

ry

R

})]
. (1.38)

From this equation we can extract the coupling between χ and Aµ for any arbitrary KK
level, i.e., the coefficient of χ̄(p)A(q)χ(r). The zero mode coupling can be obtained for p =

q = r = 0, and can be written from Eq. 1.38,

ĝ

(πR)3/2

∫
d4x

∫ πR

0

dyχ̄(0)(x)γµA
µ(0)(x)χ(0)(x)

=
ĝ√
πR

∫
d4xχ̄(0)(x)γµA

µ(0)(x)χ(0)(x)

= g

∫
d4xχ̄(0)(x)γµA

µ(0)(x)χ(0)(x). (1.39)

Thus we will get the right zero mode coupling if g = ĝ/
√
πR, which is the correct scaling

between 4D and 5D coupling, as we mentioned in Eq. 1.35. It can be shown, following
similar steps, that KK number violating couplings are vanishing. Thus a second level
particle can not have any tree level interaction with two zeroth level particles. Such a
coupling is, however, present at loop level. In the last chapter we will discuss one scenario
of this sort. Also we will see later, that this type of 2-0-0 coupling is possible, even at tree
level, in the non-minimal version of UED.

The method of coupling extraction, mentioned here, is thus the standard procedure to
obtain couplings between appropriate fields. Similar method will be used in the case of
non-minimal version of UED also.

1.5 Structure of this thesis

In this section we will briefly describe the build-up of this thesis. In the following Chap-
ter 2 we present an overview of the minimal and non-minimal UED. Chapter 3 consists
of basics of dark matter and its observational implications on UED. Sections 3.3.2 and
3.4.2 in that chapter is based on the original work [55]. Chapters 4 and 5 are based on the
original works [56] and [57]. Finally in Chapter 6 we conclude.
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Chapter 2

Minimal and Non-minimal Universal
Extra Dimension

In the previous chapter we have described the UED model. We also pointed out that for
non-zero KK level the mass spectrum is highly degenerate. In this chapter we will briefly
discuss, following [58], how radiative corrections lift the degeneracy. In the later part of
the chapter we will review the non-minimal version of UED and set the notations and
conventions for subsequent chapters.

2.1 Minimal Universal Extra Dimension

2.1.1 Radiative corrections

We have seen that the mass of the n-th mode particle is given by
√
m2

0 + (n/R)2. However,
this is just the outcome of 5D Lorentz invariance (LI) of the tree level Lagrangian. Under
radiative corrections this relation will be modified as

√
m2

0 + (n/R)2 + δm2
n, where δmn

is the correction in mass coming from radiative corrections. The mass correction comes
from the higher order contributions to the two-point correlation functions. There are two
types of contributions to these mass corrections.

• Bulk corrections coming from compactification.

• Corrections due to orbifolding

The first type of correction comes from the S1 compactification which breaks the 5D LI
globally. Due to this type of non-local effect there can be loops which wind around the
circle of the compactified dimension, see Fig. 2.1. The contributions coming from this
type of loops are well defined and finite.
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xµ

y

Figure 2.1: An example of a loop winding around the extra dimension.

The second type of correction is mandated by the orbifold compactification S1/Z2. Ac-
tually, orbifolding introduces fixed points (y = 0 and y = πR in our case) in the manifold
and they lead to additional breaking of 5D LI. This is a local effect. Radiative corrections
of a field theory in S1/Z2 orbifold has been calculated in [59]. Unlike bulk contribution,
the mass shift coming from this orbifold correction is no longer finite, but logarithmically
divergent. That means counterterms, localized at the orbifold fixed points, are needed
to renormalize them. At this point one simplifying assumption, that the boundary terms
at the cut-off Λ are small, is made. Then there is no mixing between different KK level
particles and each mode receives, in addition to the bulk correction, a shift in its mass that
is logarithmically dependent on the cut-off Λ.

The scenario with the assumption of vanishing boundary terms at the cut-off Λ is
termed as minimal UED (mUED). In the case of non-minimal UED this assumption will
be relaxed.

Combining the above mentioned two types of corrections the total mass shift δmn for
various particles are given by [58],

δmQ(n) =
n

16π2R

(
6g2

3 +
27

8
g2

2 +
1

8
g2

1

)
ln(ΛR), (2.1a)

δmu(n) =
n

16π2R

(
6g2

3 + 2g2
1

)
ln(ΛR), (2.1b)

δmd(n) =
n

16π2R

(
6g2

3 +
1

2
g2

1

)
ln(ΛR), (2.1c)

δmL(n) =
n

16π2R

(
27

8
g2

2 +
9

8
g2

1

)
ln(ΛR), (2.1d)

δme(n) =
n

16π2R

9

2
g2

1 ln(ΛR), (2.1e)

δm2
B(n) =

g2
1

16π2R2

(
−39

2

ζ(3)

π2
− n2

3
ln(ΛR)

)
, (2.1f)
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δm2
W (n) =

g2
2

16π2R2

(
−5

2

ζ(3)

π2
+ 15n2 ln(ΛR)

)
, (2.1g)

δm2
g(n) =

g2
3

16π2R2

(
−3

2

ζ(3)

π2
+ 23n2 ln(ΛR)

)
, (2.1h)

δm2
H(n) =

n2

16π2R2

(
3g2

2 +
3

2
g2

1 − 2λh

)
ln(ΛR), (2.1i)

where g1, g2 and g3 are the gauge couplings for the U(1)Y , SU(2)L and SU(3)c groups re-
spectively and λh is the Higgs quartic coupling. The factor ζ(3) =

∑∞
n=1 n

−3 ≈ 1.20205 . . .,
is the third Riemann zeta function. The factor ln(ΛR) in the Eqs. 2.1 comes from the orb-
ifold corrections and the Λ-independent contributions are from bulk corrections. Actually,
the factor is ln

(
Λ
µ

)
where µ is the renormalization scale. Generally µ is approximately

taken as the mass of the corresponding KK mode. The factor ΛR counts the number of
KK levels below Λ. If the contributions from Yukawa coupling is also considered (which
is significant for top quark), then SU(2) doublet quark T and singlet t receive corrections,

δYukmT (n) =
n

16π2R

(
−3

2
y2
t

)
ln(ΛR), (2.2a)

δYukmt(n) =
n

16π2R

(
−3y2

t

)
ln(ΛR). (2.2b)

Thus to get the radiatively corrected mass for top quark of n-th mode we need to add
these with appropriate corrections presented in Eq. 2.1. Also since the non-zero KK
level fermions are vector-like so appropriate eigenstates and mass eigenvalues of the KK
fermions can be obtained by diagonalizing the mass matrix of the form,

(
n
R

+ δtotmF (n) mf

mf − n
R
− δtotmf (n)

)
, (2.3)

where mf is the zero mode mass obtained from EWSB and δtot represents the total cor-
rection arising from bulk, boundary as well as Yukawa corrections that are mentioned in
Eqs. 2.1 and 2.2.

KK mass eigenstates and the eigenvalues of photon and Z-boson are obtained, in the
similar spirit of SM, by diagonalizing the mass squared matrixMGB in theB(n) andW 3(n)

basis,


(
n2

R2 + δm2
W 3(n)

)
+ 1

4
g2

2v
2 −1

4
g1g2v

2

−1
4
g1g2v

2
(
n2

R2 + δm2
B(n)

)
+ 1

4
g2

1v
2


 (2.4)
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Clearly for the zeroth level the diagonal entries will have only v2-dependent terms, and
then the eigenvalues of this matrix will be {0, (g2

1 + g2
2)v2/4}where zero is the mass eigen-

value of the SM photon and (g2
1 + g2

2)v2/4 is the mass squared eigenvalue of the SM Z-
boson and the vacuum expectation value (vev) of Higgs, v = 246 GeV. For the non-zero
mode particles the full matrix in Eq. 2.4 is to be used. Evidently, for the KK particles, the
Weinberg mixing angle, θn will also be different from that of zero mode particles and is
given by,

θn =
1

2
tan−1

(
g1g2v

2

2
[
δm2

W 3(n) − δm2
B(n) + v2

4
(g2

2 − g2
1)
]
)
. (2.5)

As it stands, θn is small which makes the KK photon moreB(n)-like and KK Z-boson more
W 3(n)-like. They are often used interchangeably.

Unlike 4D SM, in mUED the KK W and Z-boson acquire their masses by absorbing
the linear combination of the fifth component of the gauge fields and the KK Goldstone
bosons. After this for each KK level there remains four scalar states: two charged scalars
H(n)±, CP-even neutral scalar H(n) and CP-odd neutral scalar A(n)

0 . Clearly, the zero
modes H(0)± and A

(0)
0 are the usual Goldstone bosons in the SM. The one loop corrected

masses of these extra scalar states are,

m2
H(n)± =

n2

R2
+m2

W (0) + δm2
H(n) , (2.6a)

m2

A
(n)
0

=
n2

R2
+m2

Z(0) + δm2
H(n) , (2.6b)

where δm2
H(n) is given by Eq. 2.1i.

2.1.2 Mass spectrum

After the discussion of radiative corrections of masses for various species of particles we
are now in a position to discuss the particle spectrum of the full one loop corrected mUED.
We have seen in the previous section that the shift in mass is different for different types
of particles (see Eqs. 2.1). Then for non-zero KK level particle spectrum will no longer be
degenerate. Clearly, now the phenomenology of the model will be quite different from
what would have been the case for the tree level degenerate spectrum. In Fig. 2.2 (taken
from [58]) an illustrative spectrum, for a definite choice of mUED parameters (mH , 1/R

and Λ)1, for the first KK level has been shown.

1Here mH is the mass of SM Higgs boson. After the discovery of Higgs, [20, 21] and subsequent analy-
sis [60], mH = 125.9± 0.4 GeV.
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(a) (b)

Figure 2.2: (From [58]). Particle spectrum for the first level KK particles at tree level (left)
and after one loop correction (right). Assuming Higgs mass mH = 120 GeV, 1/R = 500
GeV and ΛR = 20.

An important observation is that at any specific level the mass of KK photon (γ(n)) re-
ceives the merest contribution from radiative corrections. The upshot of this observation
is that the first level photon, i.e., γ(1) (or B(1), so to say) is the lightest KK particle (LKP).
B(1) is a particle with odd KK parity. The decay of this particle to any KK level particle is
kinematically forbidden and to SM particles is forbidden due to the conservation of KK
parity. Thus B(1) is a stable particle and it has all the properties to qualify as a suitable
dark matter candidate. We will discuss more about this in Chapter 3.

2.2 Non-minimal Universal Extra Dimension

In the previous section 2.1 we have discussed how the radiative correction modify the
mass spectrum of the model. Also we have seen that the orbifold corrections are logarith-
mically divergent and to remove these divergences boundary localized counterterms are
needed. A general form of these type of terms would be,

r{δ(y) + δ(y − πR)} × (appropriate field combinations) (2.7)

The two Dirac delta functions assure the localization. Now as a counterterm (Eq. 2.7), the
parameter r can be chosen such that the divergent contribution from orbifold corrections
are just canceled out at a scale, say Λarb. Indeed without any loss of generalization, one
can take Λarb = Λ, where Λ is the cut-off scale. But then again, in time of renormalization
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group (RG) running from Λ down to the electroweak scale these terms will be induced
radiatively. So, from the point of view of effective field theory, a constant like r has to be
considered as a free parameter of the theory and experimental data are to be used to put
constraint on it. However, these boundary localized terms (BLT) obey 4D LI and gauge
symmetries of SM. Actually every bulk term in the action will have their corresponding
BLTs. In the following we will write these BLTs and study their effects. This scenario
is called non-minimal UED (nmUED) where the ‘non-minimality’ reflects the fact that as-
sumption of vanishing BLTs at the cut-off scale is relaxed. Various physical aspects of
these BLTs are discussed in [61–66].

2.2.1 Model description

In this section we will discuss the basic features of nmUED. We are going to consider a 5D
theory, compactified on S1/Z2, with additional kinetic terms localized at the boundaries
at y = 0 and y = πR. The action for various fields in the presence of boundary localized
kinetic terms (BLKT) are given by [67],

Sgauge = −1

4

∫
d4x

∫ πR

0

dy
∑

a

[
F a
MNF

aMN + ra{δ(y) + δ(y − πR)}F a
µνF

aµν
]
, (2.8a)

Slepton =

∫
d4x

∫ πR

0

dy
∑

j=generation

[
iL̄jΓ

MDMLj + rf{δ(y) + δ(y − πR)}φ†jLiσ̄µDµφjL

+ iējΓ
MDMej + rf{δ(y) + δ(y − πR)}χ†jRiσ̄µDµχjR

]
, (2.8b)

Squark =

∫
d4x

∫ πR

0

dy
∑

j=generation

[
iQ̄jΓ

MDMQj + rf{δ(y) + δ(y − πR)}φQ†jL iσ̄µDµφ
Q
jL

+ iūjΓ
MDMuj + rf{δ(y) + δ(y − πR)}χu†jRiσ̄µDµχ

u
jR

+ id̄jΓ
MDMdj + rf{δ(y) + δ(y − πR)}χd†jRiσ̄µDµχ

d
jR

]
, (2.8c)

SHiggs =

∫
d4x

∫ πR

0

dy

[
(DMH)†(DMH)− µ̂2H†H − λ̂(H†H)2

+ rH{δ(y) + δ(y − πR)}(DµH)†DµH

]
. (2.8d)

Here in Eqs. 2.8a, a represents the gauge group index. We will use rB, rW , rG as the
BLKT parameters for U(1)Y , SU(2)L, SU(3)c gauge bosons respectively. The fields labeled
by φ and χ, in Eqs. 2.8b and 2.8c, will be described shortly.
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One important point to note here is that these type of symmetric BLTs preserve KK
parity. Asymmetric BLT is the case where the BLT parameters, r, are different at the two
boundaries, i.e.,

r{δ(y) + δ(y − πR)}︸ ︷︷ ︸
Symmetric BLT

and {r1δ(y) + r2δ(y − πR)}︸ ︷︷ ︸
Asymmetric BLT

.

Asymmetric BLTs violate KK parity [68]. Very trivially this can be shown as follows. The
KK parity is actually a translational symmetry under the transformation, y → y−πR. For
symmetric BLTs:

r{δ(y) + δ(y − πR)} → r{δ(y − πR) + δ(y − 2πR)}
= r{δ(y − πR) + δ(y)}, (2.9)

and for asymmetric BLTs,

{r1δ(y) + r2δ(y − πR)} → {r1δ(y − πR) + r2δ(y − 2πR)}
= {r1δ(y − πR) + r2δ(y)}, (2.10)

Thus we see from Eqs. 2.9 and 2.10 that under y → y−πR the symmetric BLT case remains
invariant, ensuring the conservation of KK parity. But asymmetric BLTs violate KK parity.
Although KK parity violation would lead to unstable LKP and kill one good motivation
of the universal extra dimensional scenario, but it may also give rise to some interesting
phenomenology in the context of collider physics. Some recent studies in this line can
be found in [69–71]. In passing we also note that in the literature (e.g., [67, 72, 73]) some
other form of BLT has been used, like r{δ(y − L) + δ(y + L)} with L = πR/2. Clearly in
those cases the orbifold fixed points are at y = ±L. By a simple mapping y → y + πR

2
the

results from here to that of reference [67,72] can be obtained, provided other conventions
are taken care of appropriately.

Now we will take, for illustrative purpose, the fermionic action with BLTs and discuss
some of the basic features of nmUED. We will follow [55] here. The 5D action for typical
free fermion fields ΨL and ΨR whose zero modes are the chiral projections of an SM
fermion is given by [53],

Sf =

∫
d4x

∫ πR

0

dy

[
Ψ̄LiΓ

M∂MΨL + rf{δ(y) + δ(y − πR)}φ†Liσ̄µ∂µφL

+ Ψ̄RiΓ
M∂MΨR + rf{δ(y) + δ(y − πR)}χ†Riσ̄µ∂µχR

]
, (2.11)
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with σµ = (1, ~σ) and σ̄µ = (1,−~σ), ~σ being the 2 × 2 Pauli matrices. Here we take same
BLKT parameter, rf for both the fields ΨL and ΨR. The 5D fermion fields can be expressed
using two component chiral spinors [53]2,

ΨL(x, y) =

(
φL(x, y)

χL(x, y)

)
=
∞∑

n=0

(
φ(n)(x)f

(n)
L (y)

χ(n)(x)g
(n)
L (y)

)
, (2.12a)

ΨR(x, y) =

(
φR(x, y)

χR(x, y)

)
=
∞∑

n=0

(
φ(n)(x)f

(n)
R (y)

χ(n)(x)g
(n)
R (y)

)
. (2.12b)

Now, using Eq. 2.12a and variation of the action Sf , we get the coupled differential
equations for the y-dependent wave functions of Ψ,

mng
(n)
L + ∂yf

(n)
L = 0, (2.13a)

[1 + rf {δ(y) + δ(y − πR)}]mnf
(n)
L − ∂yg

(n)
L = 0. (2.13b)

Similarly, using Eq. 2.12b, one can get,

mnf
(n)
R − ∂yg

(n)
R = 0, (2.14a)

[1 + rf {δ(y) + δ(y − πR)}]mng
(n)
R + ∂yf

(n)
R = 0. (2.14b)

We can now eliminate g(n)
L and f

(n)
R from Eqs. 2.13 and 2.14, to get,

∂2
yf

(n)
L + [1 + rf {δ(y) + δ(y − πR)}]m2

nf
(n)
L = 0, (2.15a)

∂2
yg

(n)
R + [1 + rf {δ(y) + δ(y − πR)}]m2

ng
(n)
R = 0. (2.15b)

Clearly, f (n)
L and g

(n)
R satisfies similar EoM. To find the solutions of these functions we

impose the boundary conditions [68],

f
(n)
L |0− = f

(n)
L |0+ , f

(n)
L |πR− = f

(n)
L |πR+ , (2.16a)

∂yf
(n)
L |0+ − ∂yf

(n)
L |0− = −rfm2

nf
(n)
L |0, (2.16b)

∂yf
(n)
L |πR+ − ∂yf (n)

L |πR− = −rfm2
nf

(n)
L |πR. (2.16c)

Using these boundary conditions we get the solution,

f
(n)
L = Nn

[
cos(mny)− rfmn

2
sin(mny)

]
, for y ∈ [0, πR), (2.17)

where Nn is some normalization factor. Evidently, the same solution will hold for g(n)
R . As

for f (n)
R and g(n)

L , we can now use Eq. 2.13a and 2.14a and use the form of Eq. 2.17 to solve
2The Dirac γ-matrices are in the chiral representation with γ5 = diag(−1,1)
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for g(n)
L and f

(n)
R respectively. The masses mn (n = 0, 1, 2, . . .) satisfy the transcendental

equation [68], (
r2
fm

2
n − 4

)
tan(mnπR) = 4rfmn. (2.18)

Also f (n)
L and g

(n)
L satisfy the following orthonormality relations,
∫ πR

0

dy [1 + rf{δ(y) + δ(y − πR)}] f (m)
L (y)f

(n)
L (y) = δmn, (2.19a)

∫ πR

0

dy g
(m)
L (y)g

(n)
L (y) = δmn. (2.19b)

These equations can be used to get the normalization factor for each mode function. For
example, the normalization factor, Nn in Eq. 2.17, comes out to be,

Nn =

√
2

πR


 1√

1 +
rf
πR

+
r2fm

2
n

4


 . (2.20)

A quick glance at Eqs. 2.17 and 2.20 reveals that in the limit rf → 0 we get back the familiar
result of mUED. Before proceeding further we would like to spend some time on the mass
determining transcendental equation, Eq. 2.18. Recall that in the case of UED, the mass of
n-th KK mode is n/R (if no bulk mass is present) and after the radiative corrections n/R
gets modified accordingly. But now, in case of nmUED, the mass of the n-th mode is given
by the solution of transcendental equation 2.18. Also the mass of n-th mode depends on
the BLT parameter, r and thus the mass of the n-th mode can no longer be presented in
a closed form. The masses are now calculated by numerically solving Eq. 2.18. It can
be shown by explicit calculation that the mode functions for gauge and scalar fields also
satisfy analogous differential equations (cf. Eq. 2.15), boundary conditions (cf. Eq. 2.16)
and consequently have similar forms (cf. Eq. 2.17). So the masses of n-th mode of gauge
and scalar fields will also be given by equations analogous to Eq. 2.18 with appropriate
BLT parameters (e.g., rGauge or rH etc.). Now we write the Eq. 2.18 with a general BLT
parameter r as,

(r2m2
n − 4) tan(mnπR) = 4rmn, (2.21)

and from this,
rmn

2
=

cos(mnπR)± 1

sin(mnπR)
. (2.22)

Hence,
rmn

2
=

{
cot
(
mnπR

2

)
for positive case,

− tan
(
mnπR

2

)
for negative case.

(2.23)
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Also this is easy to convince oneself from the sequential mode-wise solution of Eq. 2.21
that the solutions for even n comes from the tangent case while those for odd n follows
from the cotangent case. Thus we can write,

rmn

2
=

{
cot
(
mnπR

2

)
for n : odd,

− tan
(
mnπR

2

)
for n : even.

(2.24)

As an aside, we note that using the solutions for mode functions (cf. Eq. 2.17) and Eq. 2.24
one can write,

f(y) = Nn ×





− sin{mn(y−πR2 )}
sin(mnπR2 )

for n : odd,
cos{mn(y−πR2 )}

cos(mnπR2 )
for n : even.

(2.25)

This form of mode functions are similar to the forms used in [66] and also with the re-
placement y → y + πR

2
we can obtain the convention of [67, 72, 73].

Now we would like to investigate how mn depends on r. To see this, for convenience,
we define the dimensionless variables,

M (n) = mnR and RBLT =
r

R
. (2.26)

For illustration consider only n = 1 modes. In Fig. 2.3 we plot M (1) as a function of RBLT

as obtained from the first equation in Eq. 2.24. For any choice of RBLT there is a unique

M
(1

)

0.5

0.6

0.7

0.8

0.9

1

RBLT
0 0.5 1 2 2.5 3

Figure 2.3: Variation of M (1) = m1R with BLT strength RBLT = r/R. Larger RBLT yields a
smaller mass. This result applies to any type of fields when their corresponding BLTs are
symmetric.

M (1) = m1R. It is noteworthy that when RBLT = 0, i.e., in the absence of BLT, one gets
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m1 = 1/R, as expected. Moreover, m1 monotonically decreases as the BLT strength, RBLT

increases. Clearly, the mass spectrum of nmUED thus depends on what BLT parameters
are present in the theory. Of immediate consequence is the fact that the identity of LKP,
which for obvious reasons is an n = 1 KK excitation, will be determined by the largest
BLT parameter in entire field content. An elaborate discussion of this point will be given
in the next chapter.

We have seen that the presence of BLTs modify the masses of the KK particles from
their UED values. This is true for the couplings as well. In subsection 1.4.4 we have
shown how to calculate the interactions between various KK level particles in the case of
UED. Again if we take that very example, then in the context of nmUED, the cosine and
sine in Eq. 1.38 will now be replaced by the mode functions given in Eq. 2.25. Evidently
the modification in the coupling will be dependent on the BLT parameters which enter,
even at the mode function level, in two places: explicitly in the normalization factor, Nn

and implicitly in the mn. At any time it is straightforward to revert to the UED case from
nmUED, simply by taking the limit, r → 0.

Thus we see nmUED differs from UED in two perspicuous ways. Due to the presence
of BLTs, firstly the mass spectrum and secondly the couplings alter from its UED values,
depending on the BLT parameters. It is to be noted that the mUED is an intermediate
state between UED and nmUED, as in mUED only the corrections to the masses are taken
into account, but the couplings are rendered as that of UED case.
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Chapter 3

Dark Matter & Non-minimal Universal
Extra Dimension

3.1 Dark Matter

From various astrophysical observations it has become evident that there exists, in the
universe, a lion’s share of matter content which can not be constituted out of our known
building blocks of matter, i.e., the fundamental particles of SM. Apropos of this, the un-
known matter content of the universe, for which there are several evidences as detailed
below, is called dark matter (DM). Actually, according to the observations of Planck [74],
our universe consists of 4.9% ordinary matter (constituted out of SM particles), 26.8%
dark matter and 68.3% dark energy. From the particle physics point of view, it is thus im-
perative to solve the DM conundrum by identifying, at least theoretically, some suitable
DM candidate.

In this chapter we will see how nmUED fares when it is subjected to the constraints
from DM observations. We will preface this by a brief introduction of DM: evidences
of its existence, basic properties and a few candidates from various BSM scenarios. The
standard calculation of thermal relic density of DM and direct detection methods will also
be discussed in subsequent subsections.

Some of the good reviews and books on DM and related literature are [47, 75–81].

3.1.1 Evidences

It has long been established that in the universe there is matter which is non-luminous
and not visible in telescopes. Later it was also ascertained that most of it is non-baryonic.
In this subsection we will discuss some of the compelling evidences that consolidate this
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paradigm.

Galactic rotation curves

The earliest astrophysical evidence of DM come from the study of rotation curves in spi-
ral galaxies. F. Zwicky [82] observed that the outer constituents of the Coma cluster were
moving far too quickly than what can be explained by the visible cluster mass. To recon-
cile this observation with the virial theorem, one has to postulate that the cluster contains
another large component of mass which is invisible, viz., dark matter. An example of such

Figure 3.1: The observed rotation curve of the dwarf spiral galaxy M33. The dashed line
is predicted purely on the basis of luminous stellar disc. The observed curve is flatter
than the predicted one. This suggests the presence of a halo of dark matter, extending to
large galactic radii. (From [77]).

anomalous velocity distribution has been shown in Fig. 3.1. These galactic rotation curves
are important not only to establish the presence of DM, but also it can be used to obtain
the local density of the DM halo, which is a very important quantity in the context of DM
detection.

Another observation from spiral galaxies is the Tully-Fisher relation [83],

L ∝ vβmax, β = 3 ∼ 4, (3.1)

where L is the luminosity of the galaxy and vmax is the maximum circular velocity of
the constituent members. This relation can be explained using virial theorem only if the
existence of DM is taken into account [84].
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Gravitational lensing and Bullet cluster

Gravitational lensing is the bending (or lensing) of light due to the presence of massive
objects. This is a general-relativistic phenomenon. Now, galaxy clusters being very mas-
sive structures show this effect. Due to this, a background object appear brighter than it
otherwise would (see, e.g., [85,86]). The dark matter present in the galaxy cluster, though
not visible, contributes significantly to the total mass of the cluster. The best evidence to
date for the existence of DM comes from the weak lensing observations of famous Bullet
Cluster (1E0657-558), a unique cluster merger [87], where the lensing effect shows a large
amount of dark matter. On top of it, another property of DM comes out of this cluster
merger, that is, the DM halos have passed right through both the gas clouds and appear
almost undisturbed after the collision. But the visible gas clouds of both clusters have un-
dergone characteristic changes. It becomes evident from this, that the DM interacts with
luminous matter as well as itself, very weakly.

Other astrophysical observations

There are many other observations which put the evidence of DM on a stronger footing.
Big bang nucleosynthesis (BBN), in the parlance of standard big bang cosmology, allows
us to measure the primordial baryon density of the universe. On the other hand from
the measurements of the cosmic microwave background (CMB) power spectra and large-
scale structure of the universe the matter density of the universe can be obtained. From
recent experimental observations [74, 88] it is evident that the baryonic density and total
matter density are different. This mandates that the DM is necessarily non-baryonic.

3.1.2 Basic properties

The existence of DM is now established almost definitely. The observations that provide
doubtless evidence for the existence of DM also shed light on some of the obvious prop-
erties of DM. So a theory which attempts to put forward any DM candidate must satisfy
these requirements. Below we enlist some of the properties that any dark matter candi-
date should abide by.

• The DM must be dark, i.e., it should have no (or extremely weak) interactions with
photons. So it must be electrically neutral. Otherwise it would be able to emit photons
which could have modified observations from astrophysical objects, like quasars.

• The DM should have very small self-interactions.
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• The interaction between DM and baryons should also be weak. Observations of
baryonic acoustic oscillation (BAO) and CMB angular power spectrum suggest this.

• The DM must be stable. To put it another way, DM must have lifetime larger than
the age of the universe. Actually, from the search for the decay products of DM one
can put bounds on the decay width of the DM.

• Large scale structure formation requires the DM to be "cold" enough which is al-
ready non-relativistic.

• DM can not be made up of SM particles as most of them are charged. Within the
ambit of SM only neutrinos can be a potential DM candidate. Actually it does con-
tribute in the relic density of DM minutely. But it can not be the ultimate candidate
satisfying all observations. Neutrinos are very light particles. Although its mass has
not been measured exactly, but it is of the order of electron volt or smaller [89]. With
this small mass it can not contribute significantly to the matter density of universe.
See chapter 5 of [75] for a discussion. From the Gunn-Tremaine bound [90] we know
that massive galactic halos can not be made up of neutrinos of mass≤ 1 MeV. More-
over, being so light neutrinos are still relativistic and they constitute what is called
hot dark matter. This type of hot DM can not explain the galaxy formation rate of
the universe after the big bang.

Thus it becomes evident that SM can not accommodate a viable DM candidate. But it is
also worth noting that although observations tend to implicate that DM is non-baryonic,
there are exotic baryonic objects e.g., white dwarfs, neutron stars, super-massive black
holes which comprise MAssive Compact Halo Objects (MACHO) [91, 92], if not ruled
out, are not favorable as baryonic DM candidates.

3.1.3 A few candidates

Now-a-days the most attractive, and rightfully so, non-baryonic cold dark matter candi-
dates are weakly interacting massive particles (WIMP), χ. They are elementary particles
arising from many BSM theories. Normally WIMPs are heavy (∼ O(GeV-TeV)) elemen-
tary particles and till now our colliders are not energetic enough to create them. But at
the time of Big Bang they were produced copiously along with a slew of other particles.
In the next subsection 3.2.1 we will discuss the standard method of calculating the relic
abundance of this WIMP DM.
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For completeness, now we are going to mention a few BSM scenarios where appro-
priate WIMP can arise. The list, however, is not at all exhaustive and for more details
see e.g., [77, 93]. Any BSM theory, that tries to address DM problem, has to have a sta-
ble particle in its particle spectrum. It is a general theme of these type of theories that
they are endowed with some discrete symmetry that makes the lightest symmetry-odd
particle stable. That particle, if satisfies the relevant cosmological observational data, will
be identified as the DM candidate of that model. In the following we will discuss such
examples.

Axion

Although its not WIMP type DM, but axion is one of the leading non-baryonic cold DM
candidates. The idea of axion, a light pseudoscalar boson, was put forward to solve the
strong CP problem [94]. A number of astrophysical observations and laboratory experi-
ments put bound on axion mass to be ∼ 10−4 − 10−5eV. Even though the mass is so small
they are still cold as their production is non-thermal. Some reviews and recent studies
can be found in [95–101].

Supersymmetry

By far the most popular and extensively studied BSM scenario is Supersymmetry (SUSY).
In supersymmetric theories every SM particle has its super-partner particle differing in
spin by half. In most versions of SUSY, there is a conserved discrete symmetry,R-parity, to
fill up the requirement of proton stability, i.e., to avoid baryon number violating processes.
It is defined as,

R = (−1)3(B−L)+2S. (3.2)

Here B and L is baryon and lepton number respectively and S is the spin of the particle.
For SM particles R = 1 and for supersymmetric particles R = −1. In the minimal su-
persymmetric standard model (MSSM) a linear combination of the super-partner of pho-
ton, Z-boson and neutral Higgs, called neutralino is the lightest supersymmetric particle
(LSP). Neutralino is of fermionic nature. This can serve as a good DM candidate. Some of
the recent studies on neutralino LSP are [102–105]. However, there are other variants of
SUSY model where the DM candidate is not neutralino but some other supersymmetric
particle (sneutrino or gravitino for example).
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Inert Higgs Doublet Model

Two Higgs doublet model (2HDM) is a simple extension of SM. In 2HDM there is one
extra Higgs doublet in addition to the SM Higgs doublet. This model is attractive because
it is a minimal extension to SM which can accommodate additional source of CP violation
which is needed to explain the baryon asymmetry of the universe. Also there are other
motivations. In a version of 2HDM, named as inert Higgs doublet model (IDM) [106] one
unbroken Z2 symmetry assures the stability of the lightest neutral scalar (or pseudoscalar)
particle. A recent study of this DM candidate can be found in [107].

mUED and nmUED

We have already pointed out in subsection 2.1.2 that in mUED the first KK level photon,
γ(1) (or effectively B(1)) is the LKP. The stability of LKP is ensured by the conservation of
KK parity. Various aspects of LKP as a dark matter has been discussed in [108–119].

In the case of nmUED the identity of LKP is no longer fixed, it can change depending
on the BLT parameter. Due to this flexibility, either of γ(1) (or B(1)), Z(1) (or W (1)

3 ), ν(1) and
H(1) [66, 120] can be the DM candidate. In a later section we will study the details of the
B(1) and W

(1)
3 LKP case based on the results obtained in [55].

Actually there are a lot of BSM theories which predict a suitable DM particle. In the
above we just mentioned a few. We are now going to give a brief summary of the standard
relic density calculation. This will also set the notations and conventions for the later
section 3.3.2 where we will discuss the nmUED case in a detailed manner.

3.2 Relic density

3.2.1 Standard calculation of relic density

A brief history of WIMPs is as follows. After its production such particles remain in ther-
mal equilibrium and in abundance when the temperature of the universe is greater than
the mass of the particle, mχ. The equilibrium abundance (or density) of these particles
is maintained by the annihilation of these particles with their anti-particles, χ̄ into other
lighter particles (X), (χχ̄→ XX̄) and vice versa, (XX̄ → χχ̄). But the temperature of the
universe decreases and when it becomes less than mχ, the equilibrium abundance drops.
Clearly the annihilation (χχ̄ → XX̄) rate will also drop. At the point when the annihila-
tion rate falls below the expansion rate of the universe, H , the interactions maintaining
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the thermal equilibrium "freeze out". Since the χs are stable (i.e., they can not decay) then
after the freeze out the abundance of them also become fixed and what remains afterward
is just the thermal relic of WIMPs. In the following we will describe how to calculate the
relic density following standard equilibrium thermodynamics [75].

It is a fairly good approximation that the early universe was in thermal equilibrium.
The number density of the particle, χ, in thermal equilibrium is given by,

neq =
g

(2π)3

∫
d3pf(~p), (3.3)

where g is the internal degrees of freedom (DoF) of χ and f(~p) is the phase space distribu-
tion function and is given by usual Fermi-Dirac (FD) or Bose-Einstein (BE) distribution,

f(~p) =
1

exp
(
E−µ
T

)
± 1

, (3.4)

where ’+’ is for FD statistics and ’-’ for BE statistics and µ is the chemical potential of the
corresponding species.
In the relativistic limit (T � m) and T � µ,

neq =





(
ζ(3)
π2

)
gT 3 for BE statistics,(

3ζ(3)
4π2

)
gT 3 for FD statistics,

(3.5)

and in the non-relativistic limit (m� T ), both for FD and BE species,

neq = g

(
mT

2π

)3/2

exp

(
m− µ
T

)
. (3.6)

The evolution, with time (or temperature), of the number density of χ is given by the
Boltzmann equation,

dn

dt
= −3Hn− 〈σv〉(n2 − n2

eq), (3.7)

where
H =

1

a

da

dt
(3.8)

is the Hubble parameter (a is the scale factor of the universe) and 〈σv〉 is the thermally
averaged annihilation cross section times relative velocity. The first term in the right-
hand side of Eq. 3.7 accounts for the reduction of number density due to the expansion
of the universe. The second term takes care of decrease (or increase) in n due to the
interaction of χwith other particles in the spectrum. After solving Eq. 3.7 we can calculate
the contribution of χ in the energy density of the universe by defining the quantity, Ωχ as,

Ωχh
2 ≡ ρχ

ρc
=
mχn

ρc
, (3.9)
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where h is the Hubble parameter in the units of 100 km s−1 Mpc−1 and ρc is the critical
density of the universe and is given by,

ρc =
3H2

8πGN

. (3.10)

At the point when the annihilation rate Γ = n〈σv〉 . H , the annihilation of χs ceases and
the relic abundance remains fixed afterward. At the freeze out temperature the annihila-
tion cross section can be expanded in powers of squared relative velocity,

σv = a+ bv2 + . . . , (3.11)

where the first term comes from the s-wave annihilation and the second from both s and
p-wave annihilation. A nice discussion on the these type annihilation cross section in the
low velocity limit can be found in [121]. In most of the cases these first two terms in the
expansion are enough to produce a fair estimate of the relic density. With appropriate
approximations Eq. 3.7 can be solved analytically and the relic density is given by [75,
108, 110, 122],

Ωχh
2 ≈ 1.04× 109/1GeV

MPl

xF√
g∗(xF )

1

a+ 3b
xF

, (3.12)

where MPl is the Planck mass and g∗(xF ) is the total number of relativistic DoF at the
freeze out temperature. Here xF (= m/TF , TF being the freeze out temperature) is solved
from the equation,

xF = ln

(
15

8

√
5

2

g

2π3

mMPl(a+ 6b/xF )√
g∗(xF )xF

)
. (3.13)

However, there are three important exceptions to the validity of the above mentioned
prescription1 [76, 123],

• annihilation near mass thresholds (i.e., kinematically forbidden channels at T = 0,
but can be significant at higher temperatures),

• coannihilations (i.e., when there are particles which are slightly heavier than χ and
affect the number density of χ), and

• resonances in the annihilation cross section (i.e., when the mχ is half the mass of the
particle exchanged in the s-channel annihilation process).

Systematic treatment of finite temperature corrections takes care of the first case. But
this marginally affects the relic density. The latter two cases depend significantly on the
particle spectrum and thus on the parameters of the theory.

1In the relevant parameter space of mUED or nmUED, only coannihilation will play an important role.
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3.2.2 Coannihilation

In the particle spectrum of the theory if there are particles nearly degenerate with the relic
particle then the freeze out of these particles occurs almost at the same epoch when the
relic particle χ decouples and can affect the relic abundance of χ. For example, consider
there are N particle species, χi (i = 1, 2, . . . , N) and mi < mj if i < j, i.e., χ1 is the light-
est particle. The number density ni of each species χi will obey appropriate Boltzmann
equations. Moreover, all the heavier particles (χi with i > 1) will ultimately decay to χ1.
So from any number Ni of χi particles we end up getting exactly Ni number of χ1 at the
end of the decay chain. Thus to determine the relic abundance of χ1 it is meaningful to
study the evolution of the number density n(=

∑
j nj) instead of each number density

separately. The Boltzmann equation will be modified from the form we have given in
Eq. 3.7 as,

dn

dt
= −3Hn− 〈σeffv〉(n2 − n2

eq). (3.14)

The quantity σeff is given by,

σeff(x) =
1

g2
eff

N∑

i,j=1

σijFiFj (3.15)

where

geff(x) =
N∑

i=1

Fi(x), (3.16a)

Fi(x) = gi(1 + ∆i)
3/2 exp(−x∆i), (3.16b)

with
∆i =

mi −m1

m1

and x =
m

T
. (3.17)

Here σij ≡ σ(χiχj → SM) and gi is the number of internal DoF of the species χi taking
part in the annihilation or coannihilation process. In the non-relativistic limit we have,
〈σeffv〉 ∼ aeff(x) + beff(x)v2 +O(v4). The approximate expression for the relic density will
now become,

Ωχh
2 ≈ 1.04× 109/1GeV

MPl

xF√
g∗(xF )

1

Ia + 3Ib
xF

, (3.18)

where Ia,b are given by,

Ia = xF

∫ ∞

xF

aeff(x)x−2dx, (3.19a)
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Ib = 2x2
F

∫ ∞

xF

beff(x)x−3dx. (3.19b)

The freeze out temperature is given by,

xF = ln

(
15

8

√
5

2

geff(xF )

2π3

m1MPl(aeff(xF ) + 6beff(xF )/xF )√
g∗(xF )xF

)
. (3.20)

After this discussion on relic density calculation we are now in a position to look at
mUED and nmUED in the light of dark matter observations.

3.3 Relic density in mUED and nmUED

In this section we will discuss the relic density constraints on mUED and nmUED. As
has been already mentioned earlier, in mUED, B(1) is the dark matter candidate and in
nmUED the identity of DM is not fixed. We will first see in the case of mUED, ifB(1) is the
LKP then how it satisfies the relic density observation, i.e., how do the observations put
constraint on the parameters of mUED. In the later part we will see how those constraints
can be relaxed if we consider the nmUED. We will also discuss how well-suited other
possible candidates in nmUED are.

3.3.1 mUED

In the context of mUED, we know that the LKP is the first KK level photon, γ(1) which
due to a small mixing angle behaves purely like the first KK level U(1)Y gauge boson
B(1). After radiative correction its mass gets the smallest correction and it remains the
LKP. Even in mUED departing from the standard scenario if one by hand relaxes the re-
striction that fields which experience only the U(1)Y interaction are lighter than those of
the fields which experience the SU(2) interaction, then W

(1)
3 (i.e., first KK level Z-boson)

or level one KK neutrino ν(1) can be considered as the LKP [108, 109]. As it stands, ν(1) is
ruled out as an LKP from DM direct detection experiments [109]. Another less popular
candidate for LKP is first level KK graviton. The problem is that since KK graviton will
have very feeble gravitational interaction only, their inefficient annihilation will lead to
overclosure of the universe. Also there are other stringent constraints on KK graviton
as the LKP [124]. Another possibility is to add extra fields, e.g., right handed neutrinos,
in the already existing spectrum. Such possibilities and their advantages have been dis-
cussed in [125–127]. Below we will present the case of γ(1) (or B(1)) and Z(1) (or W (1)

3 ) LKP
following [108, 110, 117].
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Actually these are variants of mUED model where the mass spectra is not kept as it is
obtained after radiative corrections and the usual practice is to take a different LKP (ν(1)

or Z(1) or H(1)2), purely from phenomenological point of view, and study their effects.
Not only the identity of LKP but also the mass splitting (e.g., ∆q1 in [117]) is put in by
hand.

In the case of B(1) LKP, the relevant cross sections are the annihilation of B(1) pairs
into fermions and into Higgs boson. If the EWSB effects are neglected then there are no
channels into vector bosons. If the coannihilation processes are neglected then from the
observed value of relic density the allowed mass for B(1) lies in the range 900− 1200 GeV.
With coannihilation effects taken into account this bound decreases. Considering only
the coannihilation of first level singlet electron e

(1)
R with B(1), the allowed band of mB(1)

becomes 600 − 1050 GeV [108], depending on the mass splitting ∆
e
(1)
R

. A more elaborate
study, done in [110], with a modified data set and taking coannihilation processes for
other set of particles as well, reveals that the allowed range of mB(1) should be 500 − 600

GeV which is in good agreement with an independent study done in [114]. In a similar
study [117] on a variant of mUED model with B(1) LKP it is shown (left panel of Fig. 3.2)
that allowed rangemB(1) (presented asmγ1 in the figure) is from 500−1600 GeV depending
on the mass splitting of B(1) with q(1).

The case of Z(1) (or W (1)
3 ) LKP in the context of a variant of mUED3 has been discussed

in [117]. Due to the larger value of weak gauge coupling the annihilation cross section of
Z(1) is relatively large. The relic density as a function of Z(1) mass, mZ(1) has been shown
in Fig. 3.2 (right panel). It is evident from this figure that quark coannihilation processes
increase the effective cross section reducing the relic density and thus the allowed band
of mZ(1) consistent with data becomes 1800 − 2700 GeV depending on the mass splitting
with first KK level quarks which in this case are the next to lightest LKPs (NLKP). We will
see a similar effect in the case of nmUED too.

It is worth mentioning that the inclusion of second KK level particles, in the calcula-
tion, changes many of the bounds mentioned earlier. Actually the second level particles
can be exchanged in an s-channel annihilation of two level one particles. For example, in
B(1)B(1) annihilation, second level HiggsH(2) can be exchanged in s-channel. So there is a
possibility of enhancement in annihilation cross section near resonance. Due to this, there
is significant reduction in relic abundance [111, 112, 116]. The second level particles can
affect the relic density not only through s-channel resonance but also they can be singly

2See e.g., [128] for H(1) LKP study.
3For a different discussion of Z(1) LKP see, for example, [129]
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Figure 3.2: Relic density of LKP (i) γ(1) (left) and (ii) Z(1) (right) as a function of LKP
mass. The green band gives 2σ allowed region from WMAP 5yr data [130], ΩCDMh

2 ∈
(0.1037, 0.1161) and the vertical cyan band excludes the mass of LKP from precision data.
Here KK singlet and doublet quarks are assumed to be degenerate and the mass of the
level one quarks are varied by hand, such that ∆q1 = 0.01, 0.02, 0.05, 0.1 and 0.5. Also
Z(1) and W (1)± are taken to be degenerate. The red dotted line gives the result of full
mUED calculation including all coannihilation processes. Adapted from [117].

produced in association with SM particle in the final state and subsequently this level
two particle decays to SM particles through loop induced processes. In such a scenario
coannihilation processes can even dominate over the annihilation processes which in turn
reduce the relic density. Considering these points, in a recent study [118], it is pointed out
that the preferred compactification scale (1/R) and thus the mass of the LKP should be
1.3 TeV. However in non-minimal version of UED the LKP can have masses much lower
than this bound while satisfying other constraints.

3.3.2 nmUED

We are now going to discuss the nmUED scenario. We have described the model in
Sec. 2.2. The action is given in Eqs. 2.8. We have already mentioned that in nmUED the
mass spectrum and couplings are dependent on the BLT parameters (rX for the field X).
We will use the dimensionless parameter RX(= rX/R), where R is the compactification
radius. We will concentrate on the bosonic LKP states:4, B(1) and W

(1)
3 . The discussion of

this subsection will follow [55].

4Depending on the BLT parameter ν(1) or H(1) can also be LKP.
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From our earlier discussion it is evident that M(1)(= m1R) is determined entirely by
the BLT parameter, RBLT, and the compactification radius R. The gauge coupling plays
no role. Therefore the earlier discussion applies for both W

(1)
3 and B(1) as long as the

appropriate BLT parameters are used. Which of them will be identified as LKP is deter-
mined purely by the choice of the respective BLT parameters. In the subsequent part of
this subsection we investigate the prospects of these WIMPs playing the role of the dark
matter particle.

On the electroweak gauge boson mass matrix

Before going to the details of DM study it is important to clarify some of the points re-
garding the masses of B(1) and W

(1)
3 . It is imperative to see how the inclusion of zero

mode masses (which we did not discuss in the subsection 2.2.1) affect the masses and
mixing of W (1)

3 and B(1). In a 5D theory the electroweak gauge boson eigenstates with
BLKT have been discussed in the literature [66]. It can be easily verified that for the range
of BLKT parameters which we will consider the states of different KK level, n, mix neg-
ligibly. Further, only if the BLKT parameters for the B and W gauge bosons are exactly
equal (or their difference is very small) the mixing between B(1) and W (1)

3 is substantial, it
being equal to the zero-mode weak mixing angle in the case of equality. If (rB − rW )/R is
of order 0.1 (or larger) this mixing is negligible. This can be verified from the mass matrix
which we now discuss.

The mass matrix for the n = 1 neutral electroweak gauge bosons including spon-
taneous electroweak symmetry breaking, as well as the extra-dimensional contribution
(discussed in Sec. 2.2) is5:

M
W

(1)
3 B(1) =




g22v
2

4
SW
SH
IW3W3 +m2

W
(1)
3

−g2g1v2

4

√
SWSB
SH

IW3B

−g2g1v2

4

√
SWSB
SH

IW3B
g21v

2

4
SB
SH
IBB +m2

B(1) ,


 (3.21)

where

Iij =

∫ πR

0

(1 + rH{δ(y) + δ(y − πR)}) a(1)
i (y)a

(1)
j (y)dy, (i, j = W3, B). (3.22)

Above, rH is the strength of the Higgs scalar BLKT and RH = rH/R. Also,

a
(1)
W3

(y) = N
(1)
W3

[
cos
(
m
W

(1)
3
y
)
−
rWmW

(1)
3

2
sin
(
m
W

(1)
3
y
)]

, (3.23a)

5Here m
W

(1)
3

and mB(1) stand for the extra-dimensional mass contribution m1, obtained from solving
the mass determining transcendental equation, for the n = 1, W3 and B states, respectively.
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a
(1)
B (y) = N

(1)
B

[
cos (mB(1) y)− rBmB(1)

2
sin (mB(1) y)

]
, (3.23b)

with N
(1)
W3

, N (1)
B being normalization factors as in Eq. 2.20. The 5D gauge couplings ĝ2, ĝ1

and the vacuum expectation value (vev) v̂ are related to the 4D couplings g2, g1 respec-
tively and the vev v through

ĝ2 = g2

√
πR SW , ĝ1 = g1

√
πR SB , v̂ = v/

√
πR SH , (3.24)

where

SW =

(
1 +

RW

π

)
, SB =

(
1 +

RB

π

)
, SH =

(
1 +

RH

π

)
. (3.25)

A few comments about the mass matrix, M
W

(1)
3 B(1) in Eq. 3.21 are in order. The ma-

trix is given in the W (1)
3 − B(1) basis6. As an estimate of the relative magnitudes of the

terms inM
W

(1)
3 B(1) , notice that the Si are O(1) as are the overlap integrals Iij . Hence the

contributions to the mass matrix from the EWSB are O(v2). The extra-dimensional con-
tributions, m2

(W3/B)(1)
, are of the order of (1/R)2 and are always dominant by far. As a

consequence these terms affect significantly the mass eigenvalues and the mixing is neg-
ligible for (RW − RB) ∼ 0.1 or larger7. So, in our discussion below we take B(1) and W

(1)
3

to be the neutral electroweak gauge eigenstates. This is similar to the case in mUED. The
contributions to the masses from the EWSB are insignificant and hence dropped. It is
verified that for the cases of our interest there is negligible dependence of the results on
the Higgs BLKT strength, rH . In our calculations we keep RH = 0.1 throughout.

Dark matter study

Since in nmUED masses of the KK-excitations are determined by the BLT parameters, it
is the choice of these BLT parameters which determine whether or not the mass of any
KK-excitation would lie close to the relic particle mass (∆i ≤ 10%) so that their coanni-
hilation process could contribute significantly. In our analysis we have chosen the BLKT
parameters for quarks, gluons and right-handed leptons such that their masses are suffi-
ciently larger than the B(1) mass and their contributions to coannihilation are negligible.
With this choice the only relevant coannihilation processes are those of KK-excitations of
the left-handed lepton doublets.

6It can be easily checked that the mixing with states of n 6= 1 is very small.
7If RW = RB then the dominant diagonal terms become equal and keep the mixing unaffected and

simply make a constant shift in the masses of the eigenstates. In this case the mixing between W
(1)
3 and

B(1) is just like the Standard Model with tan θ = g1/g2.
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B(1) annihilation B(1)-lepton scattering

B(1)B(1) → ff̄ ν
(1)
L B(1) → W+`−

B(1)B(1) → h+h− ν̄
(1)
L B(1) → W−`+

ν
(1)
L B(1) → Zν`

ν̄
(1)
L B(1) → Zν̄`

`
(1)−
L B(1) → W−ν`

`
(1)+
L B(1) → W+ν̄`

`
(1)−
L B(1) → Z`−

`
(1)+
L B(1) → W+ν̄`

Table 3.1: The B(1) annihilation and relevant B(1)-lepton scattering process that are im-
portant for the relic density calculation of B(1).

In Tables 3.1-3.3 the relevant processes which are used to calculate effective cross sec-
tion, σeff , have been listed. Some of the couplings between the level one KK particles and
SM particles will get modification in nmUED in view of non-trivial mode functions of
the KK excitations8. Consequently, the cross sections of some of the processes which are
contributing in σeff will accordingly be scaled up or down with respect to their mUED
values.

ν(1) annihilation and scattering `(1) annihilation and scattering

ν
(1)
L ν̄

(1)
L → ff̄ `

(1)+
L `

(1)−
L → h+h−

ν
(1)
L ν̄

(1)
L → h+h− `

(1)+
L `

(1)−
L → ZZ, Zγ, γγ

ν
(1)
L ν̄

(1)
L → ZZ `

(1)+
L `

(1)−
L → W+W−

ν
(1)
L ν̄

(1)
L → W+W− `

(1)±
L `

(1)±
L → `±`±

ν
(1)
L ν

(1)
L → ν`ν` `

(1)±
L `

′(1)±
L → `±`′±

ν
(1)
L ν

′(1)
L → ν`ν

′
` `

(1)±
L `

′(1)∓
L → `±`′∓

ν
(1)
L ν̄

′(1)
L → ν`ν̄`′ `

(1)+
L `

′(1)−
L → ff̄ or `+

R`
−
R

ν
(1)
L ν̄

′(1)
L → `−`′+ `

(1)+
L `

′(1)−
L → ν`ν̄` or `+

L`
−
L

ν
(1)
L ν̄

(1)
L → `+`− `

(1)+
L `

′(1)−
L → ν`ν̄`′

Table 3.2: The ν(1) and `(1) annihilation and scattering processes which contribute to the
relic density calculation.

8Such interactions with the Feynman rules are listed in the Appendix at the end of this chapter.
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Now we are going to discuss the results for each LKP case (B(1) and W
(1)
3 ) separately.

ν(1) − `(1) scattering

ν
(1)
L `

′(1)
L → ν``

′ `
(1)−
L ν̄

(1)
L → ff̄ ′

`
(1)−
L ν̄

(1)
L → h−h0 `

(1)−
L ν̄

(1)
L → γW−

`
(1)−
L ν̄

(1)
L → ZW− `

(1)−
L ν̄

(1)
L → `−ν̄`

`
(1)−
L ν

(1)
L → `−ν` ν

(1)
L `

′(1)
L → ν`′`

−

ν
(1)
L `

′(1)
L → ν``

′− ν̄
(1)
L `

′(1)
L → ν̄``

′−

Table 3.3: The ν(1)-`(1) scattering processes which contribute to the relic density calcula-
tion.

Results for B(1) LKP

In mUED the oft-chosen DM candidate is B(1). Here for this choice the modifications in
the mass spectrum and the couplings will be used to estimate the relic density in nmUED.
The main outcome of this analysis has been presented in Fig. 3.3 where in the three panels
RB is chosen differently. Variation of Ωh2 with the mass of B(1) has been plotted for
different choices of the fermion BLKT parameter, Rf . As mentioned above, the BLKT
parameters for gluons, quarks and right-handed fermions are so chosen that the masses
of these KK-excitations are well above that of the B(1). Consequently, they will not play
any role in the determination of relic density of B(1). Furthermore, it is checked that Ωh2

is nearly insensitive to the choice of rH , the Higgs BLKT parameter.
At this point we would like to make a comment about the choice of parameter values

in the plots in Fig. 3.3. In each panel RB has a fixed value. Thus by changing R−1, the
mass mB(1) is being varied along the x-axes. To make it certain that B(1) is the LKP, n = 1

KK-lepton masses should be greater than mB(1) . This can be achieved if Rf (chosen same
for all three left-handed lepton doublets) is smaller thanRB in every panel. In each panel,
we also show the values of ∆f corresponding to five (equi-spaced) choices of Rf .

It is worth mentioning that while calculating σeff we have taken level one leptons, `(1)
L

and ν
(1)
L as mass degenerate and they are the NLKPs assuming all other KK modes being

heavy enough so that their contribution in coannihilation can be neglected. For a given
value of R−1, it is found that the cross sections of the processes listed in Tables 3.1 -
3.3 are higher compared to the corresponding rates in mUED. Relatively lower values of
the n = 1 KK-masses and enhanced couplings in nmUED are responsible for the higher
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Figure 3.3: Variation of Ωh2 with relic particle mass, mB(1) . Curves for different choices
of the fermion BLKT parameter Rf are shown and the corresponding ∆f indicated. The
narrow horizontal blue band corresponds to the 1σ allowed range of relic particle density
from Planck data [74]. The allowed 1/R (or mB(1)) can be read off from the intersections
of the curves with the allowed band. The three panels are for different choices of RB, the
BLKT parameter for B.

reaction rates for a given value of R−1. Thus the numerical value of the relic density in
nmUED is always less than in mUED as long as the BLKT parameters are positive (as
used in our analysis).

It is possibly useful to mention here the magnitudes of the coefficients Ia and Ib in
Eq. 3.18 which reflect the model dynamics. For the choices that we have made for RB and
Rf , Ia and Ib are in the range of (1− 10) pb. Both Ia and Ib decrease with increasing mB(1) .

One can see from Fig. 3.3 that Ωh2 increases with increase of R−1 or RB. Both increases
serve to reduce mB(1) and also enhance the couplings. In contrast, Ωh2 decreases with
increasing Rf , the fermion BLKT coefficient. Unlike in mUED, the allowed range of R−1

depends on Rf in nmUED. This is expected, as Rf moves away from RB the splitting in
mass between B(1) and fermions, ∆f , increases (noted in the figures) and coannihilation
becomes less important.

It is seen from Fig. 3.3 that depending on the choice of RB and Rf the allowed range
of R−1 can be as much as 0.6 TeV to 2 TeV or even more, while remaining consistent with
the observed dark matter limits. It should be kept in mind that in nmUED the mass of the
LKP is actually a little lower than R−1 as seen in the lower x-axes in the panels and also
illustrated in Fig. 2.3.

In passing we would like to comment on the upper bounds on R−1 that arise by de-
manding that the LKP does not overclose the universe. This can happen if Ωh2 ≈ 0.48.
Some sample results are presented in Table 3.4. To be conservative, the smallest Rf has
been chosen for every RB (which implies the largest ∆f ) in Fig. 3.3. For larger Rf the
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LKP RB or RW Rf ∆f R−1 mB(1) or m
W

(1)
3

(in TeV) (in TeV)

0.3 0.05 7.7% 1.9 1.7
B(1) 0.6 0.1 15% 1.7 1.4

1.2 0.2 27.8% 1.5 1.1

W
(1)
3 0.6 - - 10.0 8.4

Table 3.4: Upper bound onR−1 from overclosure of the universe (Ωh2 = 0.48). The masses
of the LKP for the limiting R−1 are also presented. For the W (1)

3 LKP case only the process
W

(1)
3 W

(1)
3 → W+ W− is taken into account. Including coannihilation will further enhance

the upper bound in this case.

upper bound on R−1 is increased.

The observed 1σ limits of Ωh2, that we have used, are very restrictive. In Fig. 3.4 we
have presented the regions consistent with the observed range of Ωh2 in the mB(1)-mf (1)

plane. While deriving these limits it is assumed that B(1) is the only relic particle in the
model. Fig. 3.4 reveals that a very narrow region in the mB(1) - mf (1) plane – between the
two curves in each panel – is allowed by the data. In view of the present precision of

Figure 3.4: Allowed region in themf (1)−mB(1) plane that satisfies the observed Ωh2 limits.
The three panels are for different choices of RB. Only the narrow strip between the two
curves is allowed from the relic density constraints.

cosmological measurements, when translated to the mB(1)-mf (1) plane one has essentially
reduced the allowed region to almost a line. The plots in Fig. 3.4 shows that the allowed
range is very close to the mB(1) = mf (1) line. The region above this line is not interesting
in the sense that there f (1) becomes the LKP and since we take BLKT parameters for both
left handed neutrinos as well as leptons to be same we would get charged fermion LKP.
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Results for W (1)
3 LKP

The masses of the n > 0 KK-states are determined by their respective BLKT parameters ri
or equivalently Ri = ri/R. Thus to avoid a fermion LKP one must choose RB, RW > Rf .
Besides the just discussed case of RB > RW , corresponding to B(1) LKP, one should
also consider RW > RB which makes W (1)

3 the dark matter candidate9. In such a case
it is found that the annihilation cross section is large (notably because of the process
W

(1)
3 W

(1)
3 → W+W−) and therefore the relic density is too small10. The relic density as

Figure 3.5: Variation of the relic density with m
W

(1)
3

in the case of W (1)
3 LKP. The current

observed value (∼ 0.12) disfavors this alternative.

a function of the W (1)
3 mass, m

W
(1)
3

is shown in Fig. 3.5 for a typical value of RW = 0.6.
It is important to note that the obtained relic density is far below the observed [74] value
(around 0.12). For RW = 0.6 the lower (upper) bounds on Ωh2 – which are outside the
range of the figure – correspond to R−1 = 4.66 (4.7) TeV with the respective W (1)

3 masses
3.92 (4.04) TeV. This establishes that W (1)

3 would not be an attractive dark matter candi-
date for easy detection at the LHC unless the DM consists of several components and
W

(1)
3 is one of them11.

3.4 Direct Dark Matter Detection in mUED and nmUED

Once the evidence of dark matter has been proved with certainty from various observa-
tions, the next exigent issue in the DM paradigm is to detect it and pinpoint its other
characteristic features. Presently various DM search strategies are operative e.g., collider

9For a different discussion of the W (1)
3 LKP see, for example, [129].

10The coannihilation in this case has not been considered as it would further reduce the relic density.
11The overclosure bound on R−1 for RW = 0.6 is 10 TeV (see Table 3.4).
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searches, indirect searches (searching for annihilation products of DM which have fea-
tures allowing for a discrimination from other astrophysical background sources) and
direct searches (scattering of DM particles off ordinary matter). We will begin this section
with a brief exposition to the direct detection methods of WIMPs. Then in the later parts
its implications on mUED and nmUED will be examined. Actually from Fig. 3.6 it is ev-

Figure 3.6: Schematic presentation of DM interaction (taken from [131]).

ident that the amplitude for DM annihilation to SM particles is related to the amplitude
for elastic scattering of DM particles from SM particles by crossing symmetry. Thus it is
expected that the DM will have small, but non-zero coupling to atomic nuclei through
the coupling to quarks. Now, assuming a certain DM distribution in our galaxy, such ex-
periments can be devised where DM particle scatters off a target nucleus and releases an
amount of energy which will be measured as the recoil of the target nucleus or ionization
of the target medium12.

The calculation of DM-nuclei interaction proceeds through three important steps. The
first step involves the calculation of interactions of DM with quarks and gluons. Al-
though straightforward, this procedure is marred with model parameter uncertainties as
these creep in at various stages of the calculations. In the second step these microscopic
interactions are to be translated to the interactions of DM with nucleons. To perform this
one needs the matrix elements of quark and gluon operators in a nucleon state. At this
comes in uncertainty stemmed from nuclear physics. The last step requires adding up the
DM-nucleon interactions to obtain the DM-nucleus interactions by using nuclear wave

12See, for example [132] for an overview of various experimental setups.
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functions. Various nuclear form factors are to be used in this step, leaving scope of more
nuclear physics uncertainty13. One important aspect of this calculation is that the scatter-
ing of DM happens in extreme non-relativistic limit. It is straightforward to show that in
this limit the axial vector current leads to interaction between quark spin and DM parti-
cle spin, also vector and tensor currents take the form of scalar interactions. Thus there
are two types of interactions that the DM-nucleus elastic scattering proceeds through,
namely, spin independent or scalar interactions and spin dependent interactions. In the
spin independent interaction the mass of nucleus plays the major role whereas for the
case of spin dependent interaction it is the spin of the nucleus [134]. It may so happen
that a specific DM candidate (e.g., neutralino in the case of SUSY or B(1) in the case of
mUED or nmUED) has both scalar as well as spin dependent interactions. In that case the
full elastic scattering cross section is the sum of these two interactions.

There are many experiments, operative presently (and in the past), which are trying
to search DM by direct detection method. They fall into different classes depending
on the detection technique and detector material, for example cryogenic crystal experi-
ments (e.g., CDMS [135], EDELWEISS [136], CRESST [137]), scintillator experiments (e.g.,
DAMA [138]), noble liquid experiments (e.g., XENON [139, 140], LUX [141]) etc. In our
study of nmUED (subsection 3.4.2, following [55]) we will compare our results with the
XENON experiment. Before going to nmUED it will not be out of place to mention a few
things about the direct detection studies in the context of mUED.

3.4.1 mUED

In mUED the detection prospect of B(1) LKP has been discussed in [142] followed by
subsequent studies in [109,117]. In [142], taking B(1) to be the LKP it has been shown that
the scalar cross sections are suppressed with respect to the spin dependent one. As we
will see in the next subsection this is the case for nmUED too.

In Fig. 3.7 it is illustrated that the cross sections can be increased up to one order de-
pending on the mass splitting ∆q(1) which has been varied by hand. The cross sections are
below the reach of currently running experiments. Experiments with improved sensitiv-
ity will be required to probe the scenario.

In a variant of mUED, the first level KK neutrino, ν(1) is also considered to be the
LKP [109]. But it has been shown that this case is not viable as to be consistent with the
observations of experiments like, EDELWEISS [143] or CDMS [144] the ν(1) LKP should

13For a nice pedagogic review on direct detection see, e.g., [133]
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Figure 3.7: Spin dependent and scalar LKP-nucleon cross section as a function of B(1)

mass for ∆q(1) = 5, 10, 15% and mH = 120 GeV. Adapted from [109].

have a mass & 50 TeV. But relic density calculations do not favor the ν(1) masses to be
greater than 10 TeV. The direct detection study of the W (1)

3 (or Z(1)) LKP has been per-
formed in [117, 145].

3.4.2 nmUED

In this subsection we will consider nmUED and how the DM direct detection experiments
constrain it. At this point it would be useful to recall that the main difference with the
mUED scenario will come through the BLKT parameters which modify the mass spectra
as well as couplings. The discussion of this subsection will closely follow [55].

We would like to elaborate on the prospects of direct detection ofB(1) at an experiment
such as XENON [140, 146]. The actual event rates at such an experiment will not be esti-
mated; instead, we will present the spin dependent and spin independent cross sections
of B(1) scattering off Xenon nuclei (A = 131, Z = 54). Event rates and cross sections of
DM in the context of mUED have been obtained in ref. [109, 142]. As masses and also the
couplings in nmUED show a distinctive departure from the corresponding quantities in
UED, we wish to revisit the calculation.

We have already mentioned that the scattering cross section of dark matter off nuclei
is ultimately related to its scattering from quarks. Also in the non-relativistic limit the
total cross section can have two components: the spin-independent (i.e., scalar) and spin-

56



3.4. DIRECT DARK MATTER DETECTION IN MUED AND NMUED

dependent parts.
The spin independent part of the scattering cross section ofB(1) with a nucleus of mass

mN with atomic number Z and mass number A at zero momentum transfer is given by,

σscalar
0 =

m2
N

4π(mB(1) +mN)2

(
ZfB

(1)

p + (A− Z)fB
(1)

n

)2

, (3.26)

where
fB

(1)

p,n = mp,n

∑

q

γq + βq
mq

f
(p,n)
Tq

. (3.27)

The subscript p and n refers to the proton and neutron respectively. In our numerical
calculations we have used f

(p,n)
Tq

= 〈qq̄〉p,n(mq/mp,n), that relate the quark-level cross sec-
tions to that for the nucleons, as given in [76]. The model dependence of the specific dark
matter candidate is captured in the quantities γq and βq which here represent the inter-
action of B(1) with quarks, mediated via the SM Higgs exchange and n = 1 KK-fermion
exchange respectively. We find that

γq = −g
′2
1

2

(
mq

m2
h

)
, and βq = −g̃2

1

(
Y 2
qL + Y 2

qR

) mq

(
m2
B(1) +m2

q(1)

)

(
m2
B(1) −m2

q(1)

)2 , (3.28)

with
g′21 = g2

1 πR

(
1 +

RB

π

)
1√

1 + RH
π

IB(1)B(1)h(0) , (3.29)

where IB(1)B(1)h(0) is given in Eq. 3.37.

g̃1 = g1

√
πR

(
1 +

RB

π

)
IB(1)q(1)q(0) , (3.30)

where IB(1)q(1)q(0) is given in Eq. 3.35. Numerically γq is almost insensitive to mB(1) and
about two orders of magnitude larger than βq.

The corresponding spin-dependent cross section is given by:

σspin
0 =

2

3π
(µ2g̃4

1)

(
ap〈Sp〉+ an〈Sn〉
m2
B(1) −m2

q(1)

)2
(J + 1)

J
, (3.31)

where µ is the reduced mass of the target nucleus and LKP system and the other nuclear
parameters can be found in [76]. In particular,

ap =
17

36
∆u+

5

36
(∆d+ ∆s) and an =

17

36
∆d+

5

36
(∆u+ ∆s) (3.32)
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Following [109], in our calculations we have used the central values of ∆u = 0.78± 0.02,
∆d = −0.48± 0.02 and ∆s = −0.15± 0.02.

Experimental results are often presented in terms of effective dark matter-nucleon scat-
tering cross sections given by:

σscalar
p,n = σ0

m2
p,n

µ2

1

A2
, (3.33a)

σspin
p,n =

g̃4
1

2π

µ2
p,na

2
p,n

(m2
B(1) −m2

q(1)
)2
, (3.33b)

where µp,n is the reduced mass of the WIMP-nucleon system.
We can now turn to the numerical results for the spin-dependent and scalar WIMP-

nucleon cross section for Xenon. The cross sections will be presented as a function of
the LKP (B(1)) mass which is fixed by R−1 and the BLKT parameter RB. For the direct
detection the relevant parton level processes involve the interaction of B(1) with quarks.
The relevant Feynman diagrams for these processes are shown in Fig. 3.8. We see that

q(1)

B(1)

qB(1)

q

B(1)

q(1)

q

B(1)

q

H(0)

q

B(1)B(1)

q

Figure 3.8: The Feynman diagrams for B(1) and quark scattering.

the first KK level quarks, q(1), can come as intermediate particles in B(1)-quark scattering
processes. For simplicity we keep the mass of the level one quarks much higher than
the mass of B(1) as well as first level leptons. Due to this choice the first level quarks
can not contribute significantly in the relic density of B(1) via coannihilation, i.e., the ∆q(1)

becomes larger. To serve this purpose we take the BLKT strength of quarks, Rq to be less
than zero14. For a fixed value of RB (i.e., any one panel) we show the region bounded by
curves of Rq = 0 and −π/2.

Scattering rates of the the LKP off nucleons are presented in Fig. 3.9 (scalar cross sec-
tion, σscalar

n ) and in Fig. 3.10 (spin dependent cross section, σspin
n ). Over the range of input

14High negative BLKTs can result in tachyonic modes. The limit to circumvent a tachyonic zero mode
is [72], RX > −π/2. In our choice of BLKT parameters we respect this limit.
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parameters we have considered, σscalar
n decreases by three orders of magnitude from 10−43

cm2 to 10−46 cm2 while σspin
n varies from 10−41 − 10−45 cm2. It would be relevant here to

mention that the values of the spin dependent LKP scattering cross sections are well be-
low the sensitivity of the XENON experiment in the relevant mass range of our case15. As
for the spin independent or scalar cross sections, the XENON bound [140] can be evaded
in the region where Rq is negative.
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Figure 3.9: Variation of the scalar B(1)-nucleon cross section with relic particle mass for
Xenon. The three panels are for three values of RB. The shaded (blue) region represents
the cross section for a continuous variation of Rq within the range bounded by the two
curves.
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Figure 3.10: Variation of the spin dependent B(1)-nucleon cross section with relic particle
mass for Xenon. The three panels are for three values of RB. The shaded (blue) region
shows the cross section for a continuous variation of Rq within the range bounded by the
two curves.

15For the range of WIMP masses in Fig. 3.10, sensitivity of the XENON experiment [146] for the scalar
cross section is above 10−40 cm2.
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The plots in Figs. 3.9 and 3.10 for the dark matter cross sections appear somewhat
different from those given for mUED in [109] and [142]. This is due to the fact that in
nmUED, in contrast to the mUED, the mass of B(1) as well as its couplings are dependent
on the BLKT parameters and this in turn modifies the cross sections in comparison to the
mUED. However the overall nature (e.g., the dependence on ∆q(1) etc.) remains the same.

The nature of variation of the DM scattering cross sections as presented in Figs. 3.9
and 3.10 can by seen to follow from Eq. 3.33. BLKT parameter dependence creeps into

σspin
n via the

(
m2
q(1)
−m2

B(1)

)2

factor in the denominator along with g̃1. The scalar cross
section, σscalar

n has a more complicated dependence on the BLKT parameters. While γq
mq

is
almost independent of BLKT parameters, βq

mq
increases with mB(1) and Rf . However, the

γq contribution dominates and thus the combination (−γq−βq)
mq

changes slowly with mB(1)

and Rf . An overall factor of m2
B(1) in the denominator of σ0 (see Eq. 3.26), accounts for the

rapid decrease of the scalar cross section, which falls monotonically in Fig. 3.9.

3.5 Summary and Conclusions

In this chapter we discussed the generalization of the UED model where the extra four-
dimensional kinetic terms located at the two fixed points are of a strength which is a
free parameter and varies from particle to particle. To ensure the conservation of a Z2

symmetry, called KK parity, the strengths are taken equal at the two fixed points. This
ensures the stability of the LKP. The BLKT parameters determine the wave-functions of
the KK-excitations in the fifth dimension, y, as well as their masses. Moreover, the non-
trivial y-dependence of the wave-functions affects the couplings of the KK-excitations;
these are also controlled by the BLKT parameters. We allow different BLKT strengths for
the various SM particles and ensure that B(1) is the LKP. We also examine the alternative
case of a W (1)

3 LKP but find that the relic density is too small for a WIMP mass ∼ 1 TeV.
We conclude that W (1)

3 cannot serve the role of a single component dark matter when its
mass is within the LHC reach. We make a note of the bounds on the LKP dark matter
particle mass which follow from the overclosure of the universe.

In this work we consider dark matter in this nmUED scenario retaining the impact
of BLKT parameters on the masses and the couplings. We show that the range of relic
densities preferred by the Planck data places stringent restrictions on the BLKT strengths
of the gauge bosons and fermions and these get correlated. We find that in this process
the allowed range of the compactification scale R−1 is much relaxed from its narrow UED
prediction of 0.5− 0.6 TeV.
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We discussed the prospects of direct detection of the nmUED dark matter candidate
keeping the relic density constraints in mind. As an example, we evaluate the spin-
dependent and spin-independent scattering cross section of dark matter off Xenon nu-
clei. Our calculations indicate that the signal is well below the existing limits set by the
XENON experiment.

Appendix

In this Appendix we note the Feynman rules for the n = 1 Kaluza-Klein excitations. Each
of these vertices involves a nontrivial coupling determined by the five-dimensional wave-
functions of the KK-excitations. These couplings are listed separately below. Besides
these Feynman rules and couplings, only the SM rules are required.

Overlap integrals:

Here we list the overlap integrals which appear in the Feynman rules given below.

IB(1)f (1)f (0) =

∫ πR

0

[1 + rf{δ(y) + δ(y − πR)}] a(1)
B f (1)f (0)dy. (3.34)

IB(1)H(1)H(0) =

∫ πR

0

[1 + rH{δ(y) + δ(y − πR)}] a(1)
B H(1)H(0)dy. (3.35)

IB(1)2H(0)2 =

∫ πR

0

[1 + rH{δ(y) + δ(y − πR)}] a(1)2
B H(0)2dy. (3.36)

IB(1)B(1)H(0) =

∫ πR

0

[1 + rH{δ(y) + δ(y − πR)}] a(1)
B a

(1)
B H(0)dy. (3.37)

IW (1)f (1)f (0) =

∫ πR

0

[1 + rf{δ(y) + δ(y − πR)}] a(1)
W f (1)f (0)dy. (3.38)

where a(n)
B (y), f (n)(y) are the the wave-functions for the gauge boson and fermion fields

introduced earlier, and H(n)(y) is the same for the Higgs field.
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Feynman Rules:

The B(1)f (1)f (0) vertex

B(1) f (0)

f̄ (1)
≡ −i


g1

√√√√√πR

1 + RB

π


 × I

B(1)f (1)f (0)


 γµ(PLYL + PRYR)

The B(1)H(1)H(0) vertex

B(1) H(0)−

H(1)+

p−

p+

≡ −i

g1

√√√√√πR

1 + RB

π


 × I

B(1)H+(1)H−(0)


YH(p−µ − p+µ )

The B(1)B(1)H(0)H(0) vertex

B(1)

B(1)

H(0)−

H(0)+

≡ −2i

g21πR


1 + RB

π


 × I

B(1)B(1)H+(0)H−(0)


 ηµνY

2
H
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The B(1)B(1)H(0) vertex

B(1)

B(1)

H(0)

≡ −2i

g21πR


1 + RB

π


 × I

B(1)B(1)H(0)


 × v√√√√1+

RH
π

Y 2
H

The W (1)f (1)f (0) vertices

W
(1)
3

f (0)

f̄ (1)

≡ −i

g2

√√√√√πR

1 + RW

π


 × I

W (1)f (1)f (0)


 γµT3PL

W (1)+
f (0)

f̄ (1)

≡ −i

g2

√√√√√πR

1 + RW

π


 × I

W (1)f (1)f (0)



γµ√
2
PL
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Chapter 4

Non-minimal Universal Extra Dimension
Confronting Higgs Data

By now it is almost evident that the observed scalar boson at CERN as reported by
ATLAS [20] and CMS [21] collaborations has properties that are close to the Standard
Model (SM) Higgs, i.e., it almost behaves like a spin zero [147] and dominantly CP-even
field [148–151]. However, present trends indicate substantial constraints on New Physics
(NP) scenarios that result in a modification of the Higgs production cross sections and
branching ratios. The loop-induced Higgs couplings to the photon and the gluon are
of particular interest as they are susceptible to considerable corrections from TeV scale
NP. Indeed the impact of these couplings has been explored extensively in the recent
past [152]. Aficionados of TeV scale NP scenarios have been compelled to move to more
general versions of specific models typically with a larger parameter space to accommo-
date these experimental constraints.

In this chapter we will discuss the constraints coming from the LHC Higgs data on the
UED scenario. However, generalizing to models with BLKT, i.e., nmUED, [66] that arise
naturally due to the cut-off dependent radiative corrections, facilitates a considerable re-
covery of the constrained parameter space.

We begin by reviewing the formalism to study the Higgs couplings gg → H and H →
γγ, including possible contributions from new states beyond the SM. Then we compute
in turn the contributions from UED and nmUED scenarios and compare with present
experimental values. This chapter follows largely from [56].
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DATA

4.1 Loop-induced Higgs couplings

At the LHC, the Higgs production chiefly proceeds through the gluon fusion process
gg → H, driven by the fermion (dominant effect comes from top quark) triangle loop
[153]. Similarly an important decay mode for a 125 GeV Higgs is the di-photon channel.
This proceeds through a fermion and a W -boson loop within SM. New states with correct
quantum numbers can show up as virtual particles in these loops and may lead to a
sizable correction of the effective couplings. The corresponding decay width and cross
section, including possible contributions from new massive states are given below [154],

ΓH→γγ =
GFα

2m3
H

128
√

2π3

∣∣∣∣∣AW (τW ) + 3

(
2

3

)2

At(τt) +Nc,NPQ
2
NP ANP(τNP)

∣∣∣∣∣

2

, (4.1a)

σgg→H =
GFα

2
sm

3
H

16
√

2π3

∣∣∣∣
1

2
At(τt) + C(rNP)ANP(τNP)

∣∣∣∣
2

, (4.1b)

where
ANP(τNP) =

∑

NP

v

mNP

∂mNP

∂v
AF,V,S(τNP). (4.2)

In these expressions τi = m2
H/4m

2
i , and the function AX(τX) represents the amplitude

when the particle X is running in the loop. Here Nc,NP is the number of color states in the
color representation and QNP is the electric charge of the particle in the loop and C(rNP)

is an appropriate group theoretic factor.
In SM the masses of all the particles are proportional to the vev of the Higgs field, vSM.

The couplings of the SM particles to Higgs can be written as,

ySM
Hf̄f =

mf

vSM

for fermions, (4.3a)

gSM
Hφφ =

2m2
φ

vSM

for bosons. (4.3b)

It is evident that the contribution of a state in the loops depends on the spin statistics
of that state (F, V and S stand for fermions, vector bosons and scalars respectively). The
various contributions are given as [155],

AF (τ) =
2

τ 2
(τ + (τ − 1)f(τ)) , (4.4a)

AV (τ) = − 1

τ 2

(
2τ 2 + 3τ + 3(2τ − 1)f(τ)

)
, (4.4b)

AS(τ) = − 1

τ 2
(τ − f(τ)) , (4.4c)
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where, f(τ) = (sin−1√τ)2. In the light Higgs limit, i.e., mH � 2mi, we get, AF ∼
4/3, AV ∼ −7, AS ∼ 1/3.

Normally the masses of the NP particles are not proportional to Higgs vev, but receive
a small correction from it. For example, the KK particles acquire the mass from compact-
ification with minute contribution from EWSB. Hence the coupling to the Higgs boson
can in general be written as,

yHf̄f =
∂mf (v)

∂v
, gHφφ =

∂m2
φ(v)

∂v
. (4.5)

Thus in the amplitude the NP contribution can be written as,

ANP
F =

yNP
Hf̄f

ySM
Hf̄f

AF for fermions, (4.6a)

ANP
V,S =

yNP
Hφφ

ySM
Hφφ

AV,S for bosons, (4.6b)

and these can be expressed in a generalized form by Eq. 4.2.
It will be useful to define two dimensionless parameters, Cgg = σNPgg→H/σ

SM
gg→H and

Cγγ = ΓNPH→γγ/Γ
SM
H→γγ, to compare the correction induced by NP scenarios with experi-

mentally allowed values. The best fit values for Cgg and Cγγ from the LHC Higgs re-
sults were computed in [152]. We are going to use the numerical values quoted in [156]:√
Cgg = 0.88± 0.11 and

√
Cγγ = 1.18± 0.12.

4.2 mUED results

In this section we will talk about the constraints that are imposed on the UED model
after the discovery of Higgs boson. Since then, many studies have been performed to
examine various implications on this model [157–161]1. We have introduced the UED
model in Sec. 1.4. Recall that in UED the extra spatial dimension is compactified on an
S1/Z2 orbifold and all the SM fields can propagate in the extra dimension. In this chapter
we will take the convention that the orbifold fixed points are at y = ±πR/2 instead of
being y = 0, πR. The relevant part of the action for our study in this chapter can be
written as,

S =

∫ L

−L
dy

∫
d4x

[
− 1

4

∑

g

F g
MNF

gMN

1Some of the earlier studies in this field can be found in [162–164]
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+ (DMH)†DMH − µ̂2H†H − λ̂(H†H)2

+ iQ̄3 /DQ3 + iū3 /Du3

− {iλ̂u5Q̄3H̃u3 + h.c.}
]
, (4.7)

where L = πR/2 and the summation in the first term is over all the gauge groups. Here
Q3 and u3 represent the third generation quarks and λu5 is the corresponding Yukawa
coupling. Other symbols are defined in Sec. 1.4.

We are interested in the contribution of the KK excitations that may show up as virtual
particles and modify the loop level couplings of the zero mode scalar field (i.e., SM Higgs
field) with the photon and gluon. The contribution from the entire KK top tower is a
convergent sum which can be computed in closed form in the light Higgs approximation
by using Eq. 4.2 is given by [154],

ANPt ∼ 8

6

{πmt

R
coth

(πmt

R

)
− 1
}
. (4.8)

To consider the effect of the KK W -boson in the loop, one needs to be careful to also
incorporate the contribution from the additional scalar states present in the spectrum.
These are states that are a linear combinations of KK excitations of the fifth component
of the gauge bosons W (n)

5 and the KK excitations of the Goldstone modes G(n), that are
orthogonal to the longitudinal component of the massive W (n)

µ boson. A systematic study
of this within the light Higgs approximation gives us,

ANPW ∼ −20

6

{πmW

R
coth

(πmW

R

)
− 1
}
. (4.9)

Using these expressions in Eq. 4.1, we compute the corrections to the Higgs couplings as
a function of the radius of compactification of the fifth spatial dimension.

From Fig. 4.1 we find that the measurement of the Higgs coupling to gluons at 95%

confidence disfavors 1/R < 1.3 TeV. The constraints from the effective couplings to pho-
tons are smaller primarily owing to the partial cancellation of the contributions between
the KK fermions and KK gauge-Goldstone bosons. This is in consonance with other
constraints, which are typically stringent, from the oblique corrections estimated to be
around: 1/R > 0.8 TeV [165]. The bounds from direct searches at colliders lead to sub-
dominant or comparable constraints [166], owing to the relatively compressed mass spec-
trum within this class of models. Recent LHC Higgs mass bounds can constrain UED
from the renormalization group running of the physical parameters [167]. The vacuum
stability bounds on UED can be found in [157]. It may be noted that an exclusion limit at
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Figure 4.1: The ratios of the Higgs couplings in UED scenario to their SM values are plot-
ted as functions of the inverse radius of compactification of the extra dimension (1/R).
The blue (shaded) bands represent the 95% confidence level allowed values for these ra-
tios [156], with the red (solid) horizontal lines representing the central values from LHC
data. The blue (dashed) lines correspond to the SM points. The black (dark) curves are
the UED predictions. We have assumed mH = 125 GeV.

1/R > 1.3 TeV closes in on the overclosure limit from dark matter relic abundance in the
minimal model [118]. A similar study [161] taking Higgs data into account also demon-
strated that the lower bound on 1/R is 1.3 TeV at 95% confidence level. We will see in the
next section 4.3 that this limit may be avoided in non-minimal models.

Thus it can be asserted that if the current trend of the Higgs data gets support in future
with increased statistics, it will result in tighter bounds than from direct observations and
pose a challenge to the parameter space of these models that is accessible to present and
future collider experiments.

4.3 nmUED results

To consider the case of nmUED we need to introduce the appropriate BLTs. The relevant
BLTs for this purpose will be the BLTs of fermionic and Yukawa sectors. The boundary
localized part of the action will be given by2,

SBLT =

∫ L

−L
dy

∫
d4x

[
rQ {δ(y − L) + δ(y + L)}

(
iQ̄3 /DPLQ3 + iū3 /DPRu3

)

− rY {δ(y − L) + δ(y + L)}
(
iλu5Q̄3H̃u3 + h.c.

)]
(4.10)

Here we will consider the BLT strengths rQ and rY at the weak scale to be free and inde-
pendent parameters. As has been already mentioned, inclusion of these types of terms

2We will use the notations and conventions of [72] in this section.
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can lead to deviations in the bulk profile, masses and the couplings of the bulk field. The
KK masses are given by the subsequent roots of the following transcendental equations3,

rQmn =

{
cot
(
mnπR

2

)
for n : odd,

− tan
(
mnπR

2

)
for n : even.

(4.11)

In the present scenario, the Yukawa sector that couples the fermions, with a non-trivial
bulk profile, with the zero mode of the Higgs, which is assumed to be flat in the bulk, is
of interest and can be written as,

SYuk = − vλ√
2

∫
d4x

[(
Q̄

(0)
L u

(0)
R + r′QnnQ̄

(n)
L u

(n)
R −R′Qnnū

(n)
L Q

(n)
R + . . .

)
+ h.c.

]
, (4.12)

where, r′Qnn(rQ, rY ,mn) and R′Qnn(rQ, rY ,mn) are overlap integrals obtained by introduc-
ing the bulk profile of the fermions into Eq. 4.10 and integrating the fifth dimension. The
effects of possible KK level mixing terms in Eq. 4.12 will be discussed separately. The
overlap integrals can be adopted from the expression given in [72] and are given by,

r′
Qnn(e/o) =

2rQ + πR

2rY + πR




2rY + 1
A2

Q(n)

[
πR
2
± 1

2m
Q(n)

sin(mQ(n)πR)

]

2rQ + 1
A2

Q(n)

[
πR
2
± 1

2m
Q(n)

sin(mQ(n)πR)

]


 , (4.13a)

R′
Qnn(e/o) =

2rQ + πR

2rY + πR




2rY (BQ(n))2 + 1
A2

Q(n)

[
πR
2
∓ 1

2m
Q(n)

sin(mQ(n)πR)

]

1
A2

Q(n)

[
πR
2
∓ 1

2m
Q(n)

sin(mQ(n)πR)

]


 . (4.13b)

The subscript (e/o) represents whether n is even or odd. AQ(n) = sin
(
mQ(n)πR/2

)
, for n

odd and cos
(
mQ(n)πR/2

)
, for n even, similarly BQ(n) = cot

(
mQ(n)πR/2

)
, for n odd and

tan
(
mQ(n)πR/2

)
, for n even and mQ(n) is the n-th root of Eq. 4.11. The mass part of the

action for the n-th KK excitation of the top quark can be written as,

St(n) = −
∫
d4x

{[
Q̄

(n)
3 , ū

(n)
3

]
L

[
m
Q

(n)
3

r′Qnn
v√
2
λt

−R′Qnn v√
2
λt m

u
(n)
3

][
Q

(n)
3

u
(n)
3

]

R

+ h.c.

}
. (4.14)

In the above expressions we have assumed that in the 4D effective theory obtained by
integrating out the fifth dimension, the bulk fields QL(x, y) and uR(x, y) split into a mass-
less zero mode and an infinite tower of massive 4D states given by (Q

(0)
L , Q

(n)
L , Q

(n)
R ) and

(u
(0)
R , u

(n)
L , u

(n)
R ) respectively.

3Note that the equations given here differs by a factor of two in the left hand side of Eq. 2.24. The origin
of this mismatch is just due to the conventions.
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The introduction of the BLKT parameters lead to KK level mixing at the leading order
in the Yukawa interactions. However the symmetric nature of the BLKT parameters as
introduced in Eq. 4.10 confines the mixing within the odd or even modes, due to a resid-
ual unbroken KK parity in the theory. The mixing angle between the n-th KK level and
(n + 2l)-th KK level can be estimated as θmix ∼ f(rY , rQ, n, l)mtR/2l, where f(rY , rQ, n, l)

schematically represents the corresponding overlap integrals. Though the mixing angle
is suppressed by the new physics scale (1/R), significant level mixing between zero mode
and n = 2 KK states are possible in certain regions of the parameters space specially for
smaller values of 1/R [72]. For the collider implications of this mixing in the top sector
see [67].

We now turn our attention to make a careful study of this mixing. The relevant part of
the action can be written as,

St(0−2) = −
∫
d4x

{[
Q

(0)

3 , Q
(2)

3 , u
(2)
3

]
L




v√
2
λt 0 r′Q02

v√
2
λt

r′Q20
v√
2
λt m

Q
(2)
3

r′Q22
v√
2
λt

0 −R′Q22
v√
2
λt m

u
(2)
3






u

(0)
3

Q
(2)
3

u
(2)
3




R

+ h.c.

}
,

(4.15)
where,

r′Q20 =
2rQ + πR

2rY + πR




1√
2rQ + πR

2 (rY − rQ)√
2rQ + 1

A2

Q(2)

[
πR
2

+
sin

(
m
Q(2)πR

)
2m

Q(2)

]




(4.16)

The overlap integral between the zero mode and second level, r′Q20 is symmetric in its last
two indices. In Eq. 4.15, the identification of the lightest eigenvalue with the SM top with
mass in the range4, mt = 173.07 ± 0.52 ± 0.72 GeV [60] puts a severe constraint on the
allowed BLKT parameters and consequently constrains the Higgs couplings that we will
now discuss.

In order to obtain the Higgs couplings, we diagonalize the mass matrix in Eq. 4.14, that
gives us the physical mass of the n-th KK excitations. One can use this to compute the
Higgs cross section and decay width in the BLKT scenario by using Eqs. 4.1 and 4.2. We
perform the KK summation numerically and terminate the procedure at n = 20, as the
contribution decouples with higher KK number and becomes numerically insignificant
beyond this. Note that the gauge and scalar parts of the Lagrangian are unaffected by the
introduction of the BLKT action given in Eq. 4.10. For the gauge-Goldstone sector one

4According to the most recent analysis from the results of Tevatron [168], mt = 174.98± 0.76 GeV
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can adopt the analytic expression in Eq. 4.9. As indicated above we take care to include
the constraint from the mixing effect on the parameter space of the theory. We find that
once the constraint on the top mass is imposed the numerical effect of the mixing on
the Higgs coupling is insignificant. However we include the leading order contribution
from the mixing effect by considering the 0-2 KK level mixing. This can be consistently
included into the calculation by replacing the contribution of the second KK top to the
sum in Eq. 4.2 by the following expression,

A(2)
NP =

4

3

[
3∑

j=1

v

mj

∂mj

∂v
− 1

]
, (4.17)

where, mj (j = 1, 2, 3) are the three eigenvalues of the mass matrix in Eq. 4.15 with the
lowest eigenvalue identified with SM top mass.
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Figure 4.2: The ratios of the Higgs couplings in the BLKT scenario to their SM values
are plotted as functions of the inverse radius of compactification of the extra dimension
(1/R). The blue (shaded) bands represent the 95% confidence level allowed values for
these ratios [156], with the red (light) horizontal lines representing the central values from
LHC data. The blue (dashed) lines correspond to the SM points. The black (dark) points
represent the BLKT results. We have assumed mh = 125 GeV. The BLKT parameters rQ
and rY are varied within the range [−πR/2, πR/2].

After the KK sum is done the ratios Cgg and Cγγ still remain functions of the BLKT
parameters (rQ, rY ) and the inverse radius of compactification (1/R). We vary the BLKT
parameters within the range [−πR/2, πR/2] and obtain the corresponding scatter plots for
Cgg and Cγγ as functions of 1/R in Fig. 4.2. As is expected the points form a band around
the minimal UED prediction that corresponds to rQ = rY = 0.

Crucially we find that in certain regions of the parameter space, the contribution from
the KK fermions can change sign relative to the zero mode (SM) contribution. As can
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be seen from the plot this reduces constraint from the coupling, which was at 1.3 TeV
for mUED models, now becoming around 0.5 TeV. Significantly we find (see Fig. 4.1)
that the mUED couplings are farther from the best fit line than the SM predictions in
all regions of the parameter space. In the extended scenario with the BLKT parameters,
we find (see Fig. 4.2) that in certain regions of the parameter space the couplings are
closer to the best fit values than the SM. The limits on 1/R, from dark matter relic density
measurements and their direct detection at experiments within the BLKT framework, are
rather model dependent and can lead to considerable relaxation over the minimal UED
bound [55, 73]. The corresponding constraints on this class of models from electroweak
precision measurements can be found in [65, 66, 73].

4.4 Conclusion

In this chapter we presented the studies about the impact of Higgs couplings as measured
at the LHC on Universal Extra Dimension models. We find that the minimal models are
particularly constrained from the Higgs coupling to the gluon. We make a simple exten-
sion of the model by introducing relevant boundary localized kinetic terms. This leads
to non-trivial 5D profiles for the bulk fields. The interactions are modified by the cor-
responding overlap integrals. In certain regions of the parameter space this can lead to
better fitting of the experimental data implying a considerable relaxation of the experi-
mental constraints.
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Chapter 5

Signal of Second Level Kaluza-Klein
Particles

In our discussion of UED (see Chapter 1) we mentioned that KK number, the incarnation
of fifth dimensional momentum, is conserved at the tree level. Clearly, KK number vi-
olating processes will be loop-induced. An outcome of this is that the second KK level
particles can decay to SM, i.e., the zero mode, particles only via loop diagrams. Such KK
number violating effective interactions are considered in [58]. A very important obser-
vation has been made based on these type of loop-induced second level decays in the
context of dark matter [118]. In the present chapter (based on the original work [57]) we
will take up the case of second level top quark and consider its loop-induced decay to SM
top quark and Higgs boson.

We will first examine the loop-driven strong interaction mediated t(2n)t(0)H(0) cou-
pling1. The strength of this coupling is calculated and is used to compute the decay rate
of a 2n-level top quark to a zero mode top quark and a Higgs boson. For the top quark KK
excitation this Yukawa coupling driven decay mode will dominate over decays to other
zero mode states, e.g., those with weak gauge bosons in the final state. The comparison
between this rate and the KK number conserving decay to a pair of n-level states has also
been done. These findings can be used to explore the prospects of detecting an mUED
signal through the pair production of n = 2 KK top quark at the future runs of the LHC.

In the next section we will set up the notations and conventions for this chapter. This
will be followed by an estimation of the branching ratio of the decay of the t(2n) through
this coupling.

1The notation is schematic here and will be elaborated later.
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5.1 Coupling of the 2n-level top quark to zero mode states

We have already mentioned that the 5D fields of UED are usually expressed in terms of a
tower of 4-dimensional KK states. For example, the left- and right-chiral2 quark fields of
the i-th generation will be written as,

Qi(x, y) =

√
2√

2πR

[(
ui

di

)

L

(x) +
√

2
∞∑

n=1

(
Q

(n)
iL (x) cos

ny

R
+Q

(n)
iR (x) sin

ny

R

)]
, (5.1)

Ui(x, y) =

√
2√

2πR

[
uiR(x) +

√
2
∞∑

n=1

(
U

(n)
iR (x) cos

ny

R
+ U

(n)
iL (x) sin

ny

R

)]
. (5.2)

The expansion forDi(x, y), containing diR, is similar to Eq. 5.2. The fields satisfyQi(x, y) =

−γ5Qi(x,−y) and Ui(x, y) = +γ5Ui(x,−y), Di(x, y) = +γ5Di(x,−y) which ensure that the
zero-modes are the SM quarks with the correct chirality. The notation used for the third
generation is,

Q
(n)
3L ≡

(
t(n)

b(n)

)

L

, U
(n)
3R ≡ t

(n)
R , D

(n)
3R ≡ b

(n)
R , (n = 0, 1, . . .) , (5.3a)

Q
(n)
3R ≡

(
T (n)

B(n)

)

R

, U
(n)
3L ≡ T

(n)
L , D

(n)
3L ≡ B

(n)
L , (n = 1, 2, . . .). (5.3b)

As for the SM third generation quarks, t(0)
L , b

(0)
L are the left-handed quarks while t(0)

R , b
(0)
R

are similarly their right-handed counterparts.

We know that in UED the mass of the n-th level KK excitation is n/R irrespective of
the other properties of the field so long as 1/R is much larger than the zero-mode mass,
m0, which arises through the electroweak symmetry breaking. In mUED higher order
corrections to these masses are included. In our calculation of the t(2n)t(0)H(0) coupling
we use the lowest order (i.e., UED) masses of the KK states. However, when we calculate
the decay rates in the next section we do include the mUED corrected masses.

The 4D theory, with the tower of Kaluza-Klein states, is valid up to the cut-off scale Λ.
The magnitude of a coupling at Λ is determined by the theory which takes over beyond
this energy and is to be regarded as a boundary condition for mUED. A common practice,
pioneered, as noted earlier, in the context of masses of KK-states in minimal UED [58], is
to take this boundary value of the coupling at Λ to be zero and obtain its magnitude at low

2The left- and right-chiral projectors are (1− γ5)/2 and (1 + γ5)/2, respectively.
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energy through calculable corrections3. We evaluate the KK-number violating couplings
using the same principle.

As seen from Eq. 5.3, at any KK-level n, excepting n = 0, there are four top-quark
excitations: t(n)

L , T
(n)
R , T

(n)
L and t

(n)
R , the first two being members of electroweak SU(2)L

doublets while the last two are singlets. For the zero-modes there is no right-handed
doublet member, T (0)

R , nor a left-handed singlet, T (0)
L .

The effective coupling which we want to calculate involves a decay of a 2n-level top
quark to a zero mode top quark and a zero mode Higgs. The SU(2)L doublet nature of
the Higgs permits only the following possibilities t(2n)

R t
(0)
L H(0) and t

(2n)
L t

(0)
R H(0).

t
(2n)
L

g(n)

t
(n)
R

t
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t
(0)
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t
(0)
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(c)

Figure 5.1: The dominant diagrams in the unitary gauge generating an effective
t
(2n)
L t

(0)
R H(0) coupling.

We will now present some details of the calculation that is performed in the unitary
gauge4. The dominant contributions to the second of these couplings5 will arise from
the Feynman diagrams shown in Fig. 5.1. We ignore smaller contributions which are
generated, for example, by virtual W (1)± exchange.

Each of the diagrams, Fig. 5.1a, 5.1b and 5.1c are individually divergent. We use Di-
mensional Regularisation to evaluate them. Using the techniques of Passarino-Veltman
reduction [169] the contributions can be expressed after euclideanization in terms of scalar
loop integrals which include the divergent pieces,

i

π2

∫
dnq

1

[q2 +m2]
= m2(−∆− 1 + lnm2) , (5.4)

3It has been shown in [157, 167] that the present experimental observation constrains the cut-off to be
rather small, i.e., ΛR < 10.

4We have verified that identical results are obtained in the ‘t Hooft-Feynman gauge.
5The t(2n)R t

(0)
L H(0) coupling is obtained from similar diagrams – with (L ↔ R) exchange – which we

have not shown.
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i

π2

∫
dnq

1

[q2 +m2] [(q + p)2 +m2]
= ∆ + finite terms , (5.5)

where
∆ = − 2

n− 4
+ γ − ln π , γ = Euler′s constant . (5.6)

In Pauli-Villars regularization, the momentum integral in Eq. 5.4 is quadratically diver-
gent while the one in Eq. 5.5 has a logarithmic behavior.

The effective couplings, that are obtained from the contributions from the diagrams in
Fig. 5.1, can be presented by using an overall common factor,

ξ = −
(

g2
3

16π2

)
mt

v
(T cabT

c
ba) . (5.7)

Using Eqs. 5.4 and 5.5 we find the contribution from Fig. 5.1a to be,

−iM1 = ξ ū0(k1)

{
− 1

M2
n

[
M2

n(−∆− 1 + lnM2
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]
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2
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2n
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+ finite

}
1− γ5

2
u2(p) . (5.8)

Similarly from Figs. 5.1b and 5.1c we respectively get,

−iM2 =ξ ū0(k1)
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(5.9)

and

−iM3 =ξ ū0(k1)

{
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2
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(5.10)

The leading (quadratic) divergences cancel out when Eqs. 5.8 - 5.10 are taken together. As
mentioned earlier, in the spirit of mUED calculations the boundary value of the effective
t
(2n)
L t

(0)
R H(0) coupling is taken as zero at the scale Λ. At lower energies, µ, the net contribu-

tion is logarithmically dependent on the energy scale – i.e., proportional to ln(Λ/µ). We
thus get from Eqs. 5.8 - 5.10,

geff

t
(2n)
L t

(0)
R H(0)

= ξ ln

(
Λ

µ

){
1 +

1

M2
n

[
M2

n

(
−2 +

1

2

M2
2n +M2

0

M2
2n −M2

0

)
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+
3

2

(
M2

2n − (M2
2n +M2

0 )
)]} 1− γ5

2

= −1

2
ξ ln

(
Λ

µ

)
1− γ5

2
, (5.11)

where in the last step we have substituted Mn = n/R for all n. Notice that the resultant
coupling is independent of n.

5.2 Decays of a 2n-level top quark

After the discussion of the effective coupling we are now in a position to examine the
decay rate of a 2n-level top quark induced through the coupling calculated in the previous
section. We also compare it with other KK-number conserving decays that are allowed.

In general the decay width of a heavier fermion F of mass mF decaying to a lighter
fermion f and a scalar H with masses mf and mH is given by,

Γ(F → fH) =
g2

eff

8πm3
F

[
(mF −mf )

2 −m2
H

]

×
{(
m2
F −m2

f −m2
H

)2 − 4m2
Hm

2
f

}1/2

, (5.12)

where geff is the effective Yukawa coupling between F , f and H .
For the case of our concern, using Eq. 5.11 we have

Γ
(
t
(2n)
L → t

(0)
R H(0)

)
=

[
1

2
ξ ln

(
Λ

µ

)]2(
2n/R

8π

)
, (5.13)

where the zero-mode masses are ignored in comparison to 2n/R. We will identify the
mass scale µ with mF = 2n/R.

This decay rate has to be compared with the KK number conserving decays that pro-
ceed through tree level couplings. A typical example would be the decay t(2n)

L → t
(n)
R H(n).

In this case the coupling strength is simply mt/v. From the phase space considerations
this decay is prohibited. But in mUED, due to the corrections in the KK state masses this
channel opens up. Keeping only the strong interaction effects the corrected mass mcorr

n of
the n-th level KK quark is given by [58],

mcorr
n = mn

[
1 +

3g2
3

8π2
ln

(
Λ

µ

)]
. (5.14)

This correction has the same form for quarks of both chirality. Clearly, the Higgs
scalar and its excitations receive no corrections from the strong interactions. Now using
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Eqs. 5.12 and 5.14 one can write,

Γ
(
t
(2n)
L → t

(n)
R H(n)

)
=
(mt

v

)2

ln

(
Λ

µ

)(
n/R

16π

)
. (5.15)

The decay width for more general channels, e.g., t(2n)
L → t

(m)
R H(2n−m), can be easily ob-

tained using the appropriate daughter particle masses in Eq. 5.12.

BR
(t(2

) → 
t(0

) H(0
) )

10−3

0.01

0.1

Λ R
5 10 15 20 25 30

Figure 5.2: The branching ratio for the process t(2) → t(0)H(0) as a function of ΛR. The red
solid (blue dot-dashed) curve is for t(2)

L (t(2)
R ) decay.

Now, using Eqs. 5.7, 5.13 and 5.15 one can write,

Γ
(
t
(2n)
L → t

(0)
R H(0)

)

Γ
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(2n)
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(n)
R H(n)
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[(
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3

16π2
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(T cabT
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ba)

]2

ln

(
Λ

µ

)
=
[
3
(αs

4π

)]2

ln

(
ΛR

2n

)
. (5.16)

According to the recent practice, Λ is chosen such that ΛR ∼ 10. To get meaningful results
the masses of the KK particles must not exceed Λ. The implication of it in our case is that
we need to stay in the limit where n ≤ 5.

In the next section will examine the possibility of detection of the KK number non-
conserving decay of n = 2 top quarks after their pair production at the LHC. The branch-
ing ratio for the decay t(2) → t(0)H(0) taking into account all the KK-number conserving
decay modes is shown in Fig. 5.2 as a function of the parameter ΛR. The red solid curve
corresponds to the decay of a t(2)

L quark while the blue dot-dashed curve is for t(2)
R decay.

5.3 Detection prospect of the n = 2 top quark

In this section we discuss the manifestations of the t(2n)
L t

(0)
R H(0) coupling that can be exper-

imentally probed with particular reference to the LHC. We consider the pair production
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of t(2)
L,Rt̄

(2)
L,R at the LHC and the subsequent decay of both of them through the t(2)

L,Rt
(0)
R,LH

(0)

coupling and compare this signal with the SM background. Assuming that both n = 2

top-quarks decay in the t(0)H(0) mode the signal consists of two top quarks6 and two
Higgs bosons such that the correct pairing leads to identical invariant masses for the two
t(0)H(0) pairs. We estimate the Standard Model background for this channel and find it to
be insignificant, see the discussion below. However, with

√
s = 13 TeV the signal is small

in number and inadequate for vindicating the strength of the coupling. On the other
hand, with the HL-LHC option with the same

√
s with

∫
Ldt = 3000 fb−1 the signal could

be viable. For the HE-LHC with
√
s = 33 TeV and

∫
Ldt = 300 fb−1 the reach would be

more. The 100 TeV hadron Future Circular Collider (FCC) would surely do the best.

√s = 13 TeV
√s = 33 TeV

σ(
pp

→
 t(2

) t(2
) ) (

fb
)

10−3

0.01

0.1

1

10

100

1000

1/R (GeV)
600 800 1000 1200 1400

Figure 5.3: The production cross section for a t(2)t̄(2) pair at the LHC. The blue solid (red
dashed) curve corresponds to

√
s = 13 TeV (33 TeV).

We add the couplings of our concern in the CalcHEP implementation of mUED [54,
165] to generate the events. A parton-level Monte Carlo has been utilized with the
CTEQ6l [170] distribution functions. The renormalization scale (for αs) and the factor-
ization scale (for the parton distributions) are both taken as 2n/R.

The production of the t(2)t̄(2) pair proceeds through gluon-gluon fusion – both s-
channel and t-channel processes – as well as qq̄ annihilation. We find that at the

√
s

that we study the former dominate. The production cross sections for LHC running at
√
s = 13 TeV and in the future at 33 TeV are shown in Fig. 5.3.

The goal of this section is only to make a preliminary examination of this channel. So,
we have refrained from including detailed detector simulation or indeed the subsequent

6Surely, one would be a top anti-quark but we forego this distinction for ease of presentation.
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Figure 5.4: The cross section for the (tH)(tH) signal at the LHC as a function of the t(0)H(0)

invariant mass. The histograms for different choices of 1/R (explained in the legend) and
the SM background (shown shaded) at the LHC running at

√
s = 13 TeV (left) and 33 TeV

(right).

decays of the top-quark or the Higgs bosons. We incorporate these effects by appropriate
detection efficiency factors for these particles after applying kinematic cuts7. For all tracks
we impose the following pT and rapidity η cuts:

pT > 25 GeV , |η| < 2.5 . (5.17)

In addition, all four tracks are required to be isolated. For any two tracks i, j we require:

∆Rij =
√

(∆η)2
ij + (∆φ)2

ij > 0.5 . (5.18)

From the surviving events we pick those for which there are two distinct t(0)H(0) pairs
of the same invariant mass. We ensure that the pT of the two reconstructed t(2) are bal-
anced to within 10%.

In Fig. 5.4 is shown the cross section for the above process as a function of the t(0)H(0)

invariant mass. In the left (right) panel are the results for
√
s = 13 (33) TeV. The histograms

correspond to the signal for 1/R = 600 GeV (red dotted), 800 GeV (green dashed), 1000
GeV (blue solid), and 1200 GeV (pink dot-dashed). For both panels the SM background,
shown shaded gray, is insignificant in the region of the signal. So, a signal of 10 events
would be strong evidence for this model.

7The usage of these detection efficiencies, at least approximately, avoids the considerations of experi-
mental signatures of the tt̄HH final states (number of jets etc.) and thereby bypasses the concerned combi-
natorial problems associated with the counting of the final state jets.
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The detection efficiency of boosted top quarks and Higgs bosons have been under
much investigation in the literature. Using jet substructure features the tagging efficiency
of boosted top quarks with pT in the 800 - 1000 GeV range is estimated around εtop = 0.40-
0.45 [171]. For a boosted Higgs boson similar analyses yield an efficiency of εh→bb̄ = 0.94
for the bb̄ decay mode [172] which has a branching ratio of about 60%.

As seen from the left panel of Fig. 5.4, for
√
s = 13 TeV with 300 fb−1 integrated lumi-

nosity the detection is unlikely. For the lowest 1/R that we consider, namely 600 GeV, one
has around 30 events. Using the above-mentioned top quark and Higgs boson tagging
efficiencies8 one is left with the signal of ((2/3)εtop)

2(0.6εh→bb̄)
2 × 30 ∼ 1 event only. For

the high luminosity HL-LHC option (
∫
Ldt = 3000 fb−1) this will become a healthy 10-

event signal. However, with 1/R = 800 GeV the signal will fall to around 1 event. On the
other hand, at a HE-LHC with

√
s = 33 TeV (right panel of Fig. 5.4) the signal is enhanced

roughly by two orders of magnitude and could remain viable till 1/R = 1 TeV with
∫
Ldt =

3000 fb−1. We have checked that with a 100 TeV hadron FCC even for 100 fb−1 integrated
luminosity this reach would go up to 1/R = 2.5 TeV for which we find 10 events.

5.4 Conclusion

In this chapter we have calculated the coupling of a 2n-level KK top-quark to a zero-
mode top and a zero-mode Higgs boson in the universal extra-dimensional model. Such
a coupling violates KK-number but respects KK-parity and is induced by loop diagrams.
The dominant contribution comes from n-level quark and gluon mediation. We evaluate
this coupling and show that it is independent of n.

We use this coupling to estimate the branching ratio of a second level KK-top quark
to this mode which has the advantage of a large phase space. Considering the pair pro-
duction of such second level top quarks at the LHC with

√
s = 13 TeV and 33 TeV we

examine the prospects of the detection of both of them in this decay mode. Our results
are encouraging for the higher energy run.

8We conservatively include only the bb̄ decay mode of the Higgs.
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Chapter 6

Summary and conclusions

The physics of electroweak symmetry breaking in the standard model has been consol-
idated by the discovery of Higgs boson. However, various other experimental observa-
tions give rise to a clamant need for going beyond the SM. Among other incarnations of
new physics, the idea of the existence of extra spatial dimensions is a fascinating possibil-
ity in view of conceptual and phenomenological implications. In this thesis we consider
a particular class of theories which is known as the universal extra dimensional model.

Here we have considered this model in its basic as well as in a non-minimal version.
The basic form is actually a higher dimensional version of SM, where all the particles
can propagate in the extra dimension, their Kaluza-Klein excitations have a simple mass
formula, and the couplings of these excitations are similar to the ones of the SM parti-
cles. In the non-minimal avatar additional four-dimensional kinetic terms localized at the
fixed points are incorporated. It has been investigated in this thesis how cosmological
observations and results from LHC can shed light on this model.

In Chapter 1 we briefly reviewed the SM and theoretical as well as experimental mo-
tivations to go beyond this. In the later part of this chapter we introduced the basic fea-
tures of extra dimensional models in the context of particle physics. The minimal and
non-minimal version of the UED model have been discussed in Chapter 2. After this we
describe the new works that constitute the thesis.

• Various astrophysical observations indirectly proved the existence of dark matter
which none of the known particles of SM can account for. One of the nice features
of the UED model is that it predicts a suitable dark matter candidate. In Chapter 3
we reviewed various observations that demand the existence of dark matter and
also the standard methodology of calculating different observables related to dark
matter. Later we examined how the dark matter candidate arising in the model
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fares when subjected to the observational constraints, namely the relic density and
direct detection constraints. It has been shown that while it can satisfy the relic den-
sity data, it requires more sensitive direct detection experiments to consolidate its
candidature.

• The discovery of the Higgs boson at the LHC renews the enthusiasm in the field of
particle physics which was otherwise long been wilted due to the non-observation
of any new particle which was needed to understand the electroweak symmetry
breaking. The data, obtained at LHC, that led to the discovery also serve the pur-
pose of judging many new physics scenarios beyond SM. Chapter 4 concentrates
on these aspects. We showed that the non-minimal version of UED can do a better
job in terms of relaxing the constraint on the compactification radius that is put in
the minimal version of the model from the Higgs data. However a detailed and
rigorous collider study is imperative to assess the scenario in a thorough manner.

• In Chapter 5 we calculated the effective coupling of an even-numbered Kaluza-
Klein top quark excitation to the zero mode top quark and a zero mode Higgs boson
in the UED model. Although such couplings are KK-number violating but they are
KK-parity conserving and are induced by loop diagrams. We used this coupling to
estimate the branching ratio of a second level top quark to a zero mode top and the
Higgs boson. Finally we examined the prospects of verifying the theory through
the detection of the second level top quark decays through this mode at the LHC.

LHC is being prepared for the next phase run with a higher energy. So it is the right
time to get prepared with the possible signals of alternative new physics scenarios. The
exploration of physics at such an unprecedented high scale of energy can very well usher
some major developments in the particle physics world. This thesis is just an humble
effort to look for some of these aspects.
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