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Synopsis

1. Introduction

The free Schrédinger equation on R” is the PDE
i0ph(x,t) + Ap(z, t) =0, reR" teR

which gives the quantum mechanical description of the evolution of a free par-
ticle in R™. If ¢ is the solution of the Schridinger equation, then |¢(z,t)[* is
interpreted as the probability density for finding the position of the particle in
R™ at a given time t. More generally for any self adjoint differential operator L
on R", we consider the initial value problem for the Schrédinger equation for the

operator L:

iOu(x,t) — Lu(x,t) = 0, x€R", teR
u(r,0) = f(x)

with L now representing the corresponding Hamiltonian of the quantum mechan-
ical system.

The significance of this view point is that, most Hamiltonians of interest,
namely the perturbation of the Laplacian with a potential V' (of the form L =
—A + V) or the magnetic Laplacian corresponding to the magnetic potential
(A1(x), ..., Ap(2)) (of the form L =377 | (i0,, + A; (x))Q) on R", can be analysed
with our approach, in terms of the spectral theory of the Hamiltonian.

In this thesis we consider the twisted Laplacian. The twisted laplacian on C"

is given by

2n
which is of the form Y [(i0,, — A;(w))?], hence represents a Schrédinger oper-
j=1

ator on C" for the magnetic vector potential A(z) =2,z € C".
The Schrodinger equation for the magnetic potential with magnetic field de-

caying at infinity has been studied by many authors, see for instance Yajima [39],
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where author studies the propagator for the linear equation. In contrast, the
nonlinear equation in our situation corresponds to a magnetic equation with a
constant magnetic field, which has no decay. For more details on general mag-
netic Schrodinger equation corresponding to magnetic field without decay, see
[1]. In [40] Zhang and Zheng proved the local well posedness for the nonlinear
Schrodinger equation with twisted Laplacian and polynomial nonlinearity. The
well posedness result for nonlinear Schrodinger equation on R™ has been stud-
ied by many others, see Ginibre Velo [12] 13, [14], Cazenave Weissler [6, [7, [],
Tsutsumi [36], Kato [16], Begout [2], Sjogren Torrea [27], to mention only a few.

The magnetic Laplacian naturally arises in the study of system in the presence
of a magnetic field, hence there is an active interest and extensive research is going

on in the study with magnetic Laplacian. In explicit terms the twisted Laplacian

looks like
1 u 0 0
= A+ —|z]>—1 E e — i ] .
. +4|Z| ' - (xjayj yjaxj)

In this thesis we will study the well posedness, i.e., local existence, uniqueness,

stability and blowup alternative of the initial value problem (see Section 3)

i0u(z,t) — Lu(z,t) = G(z,u), 2eC" teR
u(z,to) = f(2)

with f in certain first order Sobolev spaces related to the twisted Laplacian and
also in L?(C"), see Sections 4, 6, 7, 8. This work is based on [24] (to appear in
J. Funct. Anal. 265 (1) (2013) 1-27) and [25, 29).

Twisted Laplacian and Laguerre operator are closely related to each other in
the following sense. If f € S(C") is radial then Lf(z) = L,_1f(r) where L,
is 1-dimensional Laguerre operator of type n — 1 given by (9) and r = |z|. More
generally we can consider n-dimensional Laguerre operator Lg on R’ = (0, 00)"
of type § € (—%,oo)n which has singularity at z; = 0, 1 < j < n. By similar
analysis we also prove the local well posedness of the initial value problem for
Schrodinger equation with the Laguerre operator and initial value in L*(R", dv)
where dv = (H?:1 x?Bﬁl) dx, see Section 9. This work is based on the Strichartz
estimates for the Laguerre operator proved in Sohani [28] (to appear in Proc.
Math. Sci.).




2. Schrodinger propagator for the twisted Lapla-

clan

Now we define the Schrédinger propagator e~#** through the spectral theory of
the twisted Laplacian £. The twisted Laplacian is closely related to the sub
Laplacian on the Heisenberg group, hence the spectral theory of this operator is
closely connected with the representation theory of the Heisenberg group. Here
we give a brief review of the spectral theory of the twisted Laplacian £. The

material discussed here is based on the books by Folland [II] and Thangavelu

|33, 34].

The eigenfunctions of the operator L are called the special Hermite functions,
which are defined in terms of the Fourier-Wigner transform. For a pair of func-
tions f,g € L?*(R"), the Fourier-Wigner transform is defined to be

o (e 2)afe-2) e

n

V(f.9)(z) = (2m)3 /

where z = x + iy € C". For any two multi-indices u,r the special Hermite

functions ®,, are given by
®uu(2) = V(hy, hy)(2)

where h, and h, are Hermite functions on R". Recall that for each nonnegative

integer k, the one dimensional Hermite functions hj are defined by

(—1)k dk .2 z2
hi(x) = e eT.
OGN
Now for each multi index v = (v, - , 1), the n-dimensional Hermite functions

are defined by the tensor product :
ho(x) = [ [ w, (1), = (1, ).

®,,, are eigenfunctions of £ with eigenvalue 2|v|+n and they also form a complete
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orthonormal system in L?(C"). Thus every f € L*(C") has the expansion
F= )@
1y v

in terms of the eigenfunctions of £. The above expansion may be written as

F=> Pf
k=0

where

Pkf = Z <f7 (I),u,u>q),uz/

wlv|=k

is the spectral projection corresponding to the eigenvalue 2k + n. Now for any
f € L?(C") such that £f € L?(C"), by self adjointness of £, we have Py(Lf) =
(2k +n)By.f. Tt follows that for f € L*(C") with Lf € L*(C")

Lf=> (2k+n)Pf.

k=0

Thus, we can define Schrédinger propagator e~ as

e—itﬁf _ Z e_it(2k+n)Pkf.
k=0

Note that P, f has the compact representation

Brf(z) = 2m)7"(f x @r)(2)

in terms of the Laguerre function pg(z) = Lz_l(%|z\2)e’i‘z‘2, see [33]. Hence

formally we can express e £ as a twisted convolution operator:

e f =[x Ky

- (47m')—n i(cot t)\z\2
~ (sint)™ :

for f € S(C") where K;(2)
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3. Nonlinear Schrodinger equation for the twisted

Laplacian

We consider the initial value problem for the nonlinear Schrédinger equation for

the twisted Laplacian L:
i0u(z,t) — Lu(z,t) = G(z,u), ze€C" teR (1)

u(z,to) = f(2). (2)
Here we consider the nonlinearity G of the form
G(z,w) =U(x,y, |lw|)w, (z,y,w) € R" x R™ x C, (3)
where z = x+iy € C",w € Cand ¢ € C(R"xR" x [0, 00))NCL(R™ x R" x (0, 00))
satisfy the following inequality
|F'(z,y,m)| < Aln|® (4)

for F' = 4,0, 1, 9,4 (1 < j < n) and wiy,¥(z,y,w), a > 0 and some constant
A > 0. The class of nonlinearity given by (3), (4) includes in particular, power
type nonlinearity of the form |u|*u.

When G = 0 and f € L*(C") the solution to this initial value problem is
given by the Schrédinger propagator

u(z,t) = e L (7).

When G(z,u) = g(z), the solution is given by the Duhamel formula

t
u(z,t) = e L F(5) — z/ e =)L g(2)ds.
to
Thus in the linear case, the solution is determined once the functions f and g are
known.
The basic idea in nonlinear analysis is the following heuristic reasoning based
on the above formula. If the solution u is known, then one would expect u to

satisfy the above equation with ¢(z) replaced by G(z,u(z, s)):
—i(t— St —i(t—s
u(z,t) = e WL f(2) — e E=)LG (2, u(z, 5))ds. (5)

Indeed one can show that u from a reasonable function space satisfies a PDE




viil

of the form (1), (2), if and only if u satisfies an integral equation of the form (5).
This reduces the existence theorem for the solution to the nonlinear Schrodinger

equation to a fixed point theorem for the operator
H(u)(z,t) = e UL f(2) — z/ e LG (2, u(z, 8))ds
to

in a suitable subset of the relevant function space.

4. Some auxiliary function spaces

The Sobolev space W*(C")

Let L; and M; be the differential operators defined by

0 Y 0 T ,
L= — 2L d M, =|— —ix2 =1.2, ...n.
i <8xj+22) an 4 (8% 12), J ,2,...,Mm

We consider the following space
W (C") = {feIP(C"):L;jf,M;f € LF(C"),1<j<n}.

It is easy to see that WW'P?(C") is a Banach space with respect to norm || f|| =
1l oeny + 220y (L5 fllzeeny + [[M; f |l ocny) - The differential operators L; and
M; are the natural ones adaptable to the power type nonlinearity G(u) = |u|*u
and the generality that we consider here. The natural choice, namely the standard
Sobolev space W}*(C") defined using the twisted Laplacian £ (see [33]), is not
suitable for treating such nonlinearities.

An interesting relation between the Sobolev space W'P(C") and the ordinary
Sobolev space W'?(C") is the following: If u € W'?(C"), then |u| € Wh?(C™).

We have the continuous inclusion

WPH(CM) < LP2(C) for py < py < 22 if py < 21

2n—p1
for p; < py < 0 if p1 = 2n (6)
for p; < py < 0 if p1 > 2n.

The differential operators L; and M; (1 < j < n) have the following commuta-
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tivity properties

Ljefitllf — efitl:Ljf
Mje—itﬁf — e—itLMjf
¢ ¢
L, / e =g (2 8)ds = / e IELg(2, 5)ds

to

t t
Mj/ e (2 8)ds = / e IENLg(2, 5)ds

t to
where f € §'(C"), t,tp € R, g € Lf;c (I, lep'(C")) for some admissible pair
(¢,p) (see Definition 5.1) and open interval I containing ¢, to.

The Sobolev space IW,”(C")

The local well posedness of the nonlinear Schrodinger equation for the twisted
Laplacian has been studied in [24] for initial value in W12(C"). However this

approach does not conclude energy conservation.

We overcome this difficulty by introducing the Sobolev space WEZ(C") defined

using the operators Z; and Zj, which is the natural one in this context where

0 j 0 1
g Y s F __ 9 2
T 0z HPEARE 0z; 37
and %, % denote the complex derivatives ai F i% respectively. Though they
J J T3 J

do not commute with e~**, they have a reasonable commutative relation, suitable
for us. The advantage of working with this Sobolev space is that we get energy
conservation in this case. From this we can show that there is no finite time

blowup, hence can conclude global existence in the Sobolev space WEQ(C”)

We consider the following Banach space
WiP(C") = {feIP(C"): Z;f,Z;f € [P(C"),1<j<n}

with norm ||| = | fllzecry + X5y (125 f ooy + 12 fleiem)-
The Sobolev space W, ?(C") will also satisfy embedding (6) as similar to
space WhP(C™). Operators Z; and Z; (1 < j < n) have the following quasi




commutativity properties

Zjefitllf — ef2it€fitllzjf
7je—it£f — 62it6_itL7jf

t t
Zj/ efi(tfs)llg(z7 S)dS — e2@'15/ efi(tfs)l:e%szjg(z’ S)dS

to

t t
Zj / efi(tfs)llg(z’ s)ds _ 622‘2& / efi(tfs)llef%sijg(z’ s)ds
t, t

0

where [ € §'(C"), t,to € R, g € Lf;c (I, VV};’“((C")) for some admissible pair

(¢,p) and open interval I containing ¢, ¢,.

5. Strichartz estimates

Strichartz estimate is an important tool in the study of local existence of solutions
to dispersive equations, in which no derivatives are present in the nonlinearity.
Strichartz estimates were first proved by Strichartz [30] for free Schrodinger and
wave equations on R™. They were generalized to general admissible pairs (g, p)
by Ginibre and Velo [I4] [15], Lindblad and Sogge [19]. The end point estimates
were proved by Keel and Tao [I7]. End point estimates were also proved by
D’Ancona, Fanelli, Vega and Viscigia [9] for magnetic Schrodinger equation with
some conditions on the potential A and V.

The Homogeneous Strichartz estimate (7) for twisted Laplacian is proved by
Ratnakumar [22]. We begin with the following definition of admissible pair and

discuss the Strichartz estimates.

Definition 5.1 Let n > 1. We say that a pair (¢, p) is admissible if

1 1 1
1<¢g<2 0<n|l=-—-) <= or
2 p 2

1 1 1
2<qg<o0 and0<n|=-—-)<-.
2 p q

Remark 5.2 The admissibility condition on (g, p) implies that 2 < p < %

Since Strichartz estimates will be in terms of mixed L? spaces, we define space




xi

Li((a,b), LP(C™)) by the following

L((a,b), LP(C")) = {g is measurable on C" x (a,b) : ||g|Ls((ap),Lr(cm)) < 00}

1

, 1
where [|g|[Lo((ap),Lrc) = <fa HgH(ip(cn)dt) -

The main Strichartz type estimates is compiled in the following theorem.

Theorem 5.3 (Strichartz Estimates) Let (q,p),(q1,p1) be two admissible
pairs, (a,b) be a finite interval with to € [a,b], f € L*(C") and g € L% ((a,b), L)
where ¢ and p| are conjugate erponents of ¢ and py respectively. Then the

following estimates hold over C" x (a,b):

le™™ fllaqapy,Locny < ClIfll2 (7)
fti e =)Ly (2, s)ds)

< / /
La((ab),L7(Cm) ~ Ol st (09,27 o) (8)

where the constant C' depends on admissible pairs but independent of to. Moreover

e f € C(R,L*(C")) and [, e7=9%g(z, s)ds € C([a, ], L?).

Remark 5.4 Note that e~*£ f(z) is 27 periodic in ¢, hence we can not expect the
above Strichartz inequalities for unbounded intervals except when ¢ = co. Since
|sint| is m periodic, constant C' in the inequalities (7) and (8) can be chosen

independent of interval (a,b) provided b —a < 7.

6. A Local existence result

We consider initial value f € WWH2(C"). We have proved the local well posedness
of initial value problem (1), (2) in this case, see [24]. Now we state the main

theorems.

Theorem 6.1 (Local existence) Assume that G is as in (3), (4), o € [0,-25)
and u(-,ty) = f € WY(C"). Then there exist a number T = T(||u(-,to)||) such
that the initial value problem (1), (2) has a unique solution u € C([to — T, to +

T]; Wh2(C).

Theorem 6.2 Let u(-,t,) = f € WY3(C"), a € [0, -%;) and G be as in (3), (4).
Initial value problem (1), (2) has unique mazimal solution v € C((T,, T*), W?)N
L‘;;c ((T*, T*), Wl’pl(Cn)>, where ty € (Ty, T*) and (q1, p1) be an arbitrary admis-
sible pair. Fix p = 2+ a. Moreover the following properties hold:
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(i)(Uniqueness) Solution is unique in C((T,,T*), W) N Ly, ((T*, T*), W17p>
for every admissible pair (q1,p) with ¢ > 2.

ii)(Blowup alternative) If7T™ < oo (respectively, T\, > —o0), then ||u(-,t)|| 1.2
— 00 as t — T* (respectively, t — T.).

(iii) (Stability) If f; — f in WH2(C"), then u; — u in L9(I, W1 (C")) for
every admissible pair (q1,p1) and every interval I with I C (T,,T*).

7. Global well posedness in 1 ,*(C")

In this Section we consider initial value f € WW,?(C"). As similar to Theorem
6.1 and Theorem 6.2, we have the following Theorem (see [25]).

Theorem 7.1 (Local well posedness) Let f = u(-,t,) € Wr*(C"), a € [0, —2-)
and G be as in (3) and (4). Then the Initial value problem (1), (2) has unique
mazimal solution u € C((T,, T*), Wy*(C™)) N Ly, ((T*,T*), W}:’pl), where 1y €
(T., T*) and (q1,p1) be an arbitrary admissible pair. Fiz p = 2+ «. Moreover the

following properties hold:

. . . . . . % 71,2 1 * 7L
(i) (Uniqueness) Solution is unique in C((T%, T*),W") N L7, . ((T*, ™), W, p)
for every admissible pair (q1,p) with ¢ > 2.

ii)(Blowup alternative) IfT™* < oo (respectively, T, > —o0), then ||u(-,t)|/z1.2 —
WC
oo ast — T* (respectively, t — T.).

(iii) (Stability) If f; — f in W2*(C"), then u; — u in W*(C") for each
t € (T, T*) and also in L9 <I, Witpi ((C”)) for every admissible pair (q1,p1)
and every interval I with I C (T,,T*).

Our main result is the following theorem (see [25]).

Theorem 7.2 (Global well posedness) Let f € W(C"), a € [0, -%;) and ¢ :
R™ x R™ x [0,00) — R be real valued as in (3) and (4). Then the solution
u € C((T,, T*), Wy*(C™) N Ly, <(T*,T*),Wﬁl’pl> of the initial value problem

(L113), (I.0-17) as obtained in Theorem 7.1 satisfies the following properties:

(i) (Conservation of charge) |[u(-,?)||r2cny = || fllz2(cn), t € (T3, T).
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(ii) (Conservation of energy) FE(u(-,t)) = E(u(-,t)), t € (T, T*), where

E(u) = i;/cn (|Zju(z,t)|2 + |7ju(z,t)|2) dz + /(Cn é(z, lu|)dz.

(iii) (Global existence) If v > 0 is nonnegative, the solution extends to the
whole of R. For nonpositive ¥, the solution is global if 0 < a < %

Critical Case o = %

Now we consider the critical case o« = % In subcritical case 0 < a0 < % for

each a, we have some ¢ > 2 such that (¢,2 + «) be an admissible pair, which

is not the case when o = % To treat critical case, we adopt the truncation

argument of Cazenave and Weissler [7]. To prove local existence, we truncate the
nonlinearity G and obtain solution for the truncated problem. We obtain solution

u for nonlinearity GG by using Strichartz estimates and by passing to the limit.

Now we state the main theorem, see [29).
Theorem 7.3 Let f € W2*(C") and G be as in (3) and (4) with a = =2
and n > 2. Initial value problem (1), (2) has unique mazimal solution u €

C((T,,T*),W,*)n L% ((T*,T*),Wﬁl’pl(((:")>, where ty € (T, T™) and (q1,p1) be

loc
an arbitrary admissible pair. Moreover the following properties hold:

(i) (Uniqueness) Solution is unique in C((Ty, T*), W2 (C)NLY((T., T*), W,*)

where p = 7n22_’i+1, =2
(ii) (Blowup alternative) If T* < oo then ||u||Lq((lt0 )iy = 0 for every

admissible pair (q,p) with 2 < p and % =n (l — %) Similar conclusion

2
holds if T, > —oc.

(iii) (Stability) If f; — f in Wy*(C") then =1 o 12 ey) — O @5 5 = 00
for every admissible pair (g, p) and every interval I with I C (T, T*), where

w,u; are solutions corresponding to f, f; respectively.
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8. Global well posedness in L?(C")

Now we discuss global well posedness in L?(C") for subcritical case 0 < o < %
(see [25]). However in critical case @ = 2, we can prove global well posedness in

L*(C™) only for sufficiently small intial value, see Remark 8.3.

Subcritical Case 0 < a < %

Theorem 8.1 Let u(-,to) = f € L*(C"), 0 <« < 2 and G be as in (3) and (4).
Initial value problem (1), (2) has unique mazimal solution v € C((T,,T*), L*) N
Ly (1., 1), LP2(C")), where ty € (1%, T*) and (g2, p2) be an arbitrary admissible
pair. Fiz p =24 a. Moreover the following properties hold:

(i) (Uniqueness) Solution is unique in C((T,,T*), L>(C")) N Ly (1., 1), LP)

where ¢ € [q1, q], t =7 <% - ,%) and g = 52— > 1.

(ii) (Blowup alternative) If T* < oo then |[u||La (o, 1%),Lr(cn) = 00 where gy €
[q1,q]. Similar conclusion holds if T, > —o0.

(iii) (Stability) If f; — f in L*(C"), then u; — u in L% (I, LP2(C")) for every
interval I with T C (T, T*) and for every admissible pair (qa, p2), where u;

and u are solutions corresponding to f; and f respectively.

(iv)(Conservation of charge and global existence) If ) is real valued, then

we have conservation of charge |[u(-,t)|r2cry = || fll2@cny for every t €
(T,, T*). Moreover solution is global, i.e., T, = —oo and T* = oc.
2

Critical Case a = =

Theorem 8.2 Let u(-,ty) = f € L*(C"), a = 2 and G be as in (3) and (4). Ini-
tial value problem (1), (2) has unique mazimal solution u € C((T,,T*), L*(C™))N
Ly (T, T), LP(C")), wherety € (1%, T*) and (q1, p1) be an arbitrary admissible
pair. Fiz p =24 a. Moreover the following properties hold:

(i) (Uniqueness) Solution is unique in C'((T,, T*), L*(C"))NLF (T, T*), LP(C")).

(ii) (Blowup alternative) If T* < oo then ||u||rr(to,7+),00) = 00. Similar con-

clusion holds if T, > —oc.
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(iii) (Stability) If f; — f in L*(C"), then u; — u in L9 (I, LP*(C")) for every
interval I with T C (T., T*) and for every admissible pair (q1,p1), where u;

and u are solutions corresponding to f; and f respectively.

(iv)(Conservation of charge) If ) : R" x R" x [0,00) — R is real valued,

then we have conservation of charge ||u(-,t)||L2cny = [|f|lL2@cny for every
te (T,,T%).

Remark 8.3 If || f||.2(cny is sufficiently small, then

le™ % fll Logr,Loy < C| fllp2 < 6

where p = 2("—;1) Since C' will not depend on [ and ¢, as long as |I| < 7 and from
conservation of charge, we get global solution, i.e., =T, = T = oo in Theorem

8.2.

9. The case of the Laguerre operator

As discussed in Section 1, here we consider the Laguerre case. Laguerre operator
Ls on R} = (0,00)" with 8 € (—1,00)" is given by,

Lo=-0- i (B05) + ()

x; Ox;

For each multi index p € Z% and § € (—%, 00)", the n-dimensional Laguerre

functions are defined by the tensor product of 1-dimensional Laguerre functions
i) = [[ vl (), e RY
j=1

2

1
where z/J,fj (y) = (F(i%[;]’in) ’ Lf"(y;)e_y?, y € Ry, k > 0 and Laguerre polyno-

mial Lﬁj (y) is given by the following

k
2T+ DEG+ 5, +1) ]!

Laguerre functions wﬁ (z) form a complete orthonormal family in L*(R",dv)

26141

where dv(z) = zj a2ty - - dx,. Bach f] is an eigenfunction of the
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Laguerre operator Lg with eigenvalue (2|,LL‘ +2 B+ n)

Schrédinger Propagator e /%5

If f e C?NL*RY,dv) such that Lgf € L*(R", dv) then we observe that

(Laf. 0y, = {(f, Lav) = <2|u| +nt Yy @) (f,00) .
j=1

Therefore for f € L*(R",dv), we define e "¢ f as L?*(R",dv) function by the

following

b f = 3 L 8) S (7l gf
k=0

lul=k

—itLg

It is easy to see that e is a unitary operator with adjoint operator e®*s on

LA(R™, dv).

Remark 9.1 ¢ f is periodic in ¢ if and only if 377 | §; is rational whereas

et 2 Bie=ls f and |e~"s f| are always periodic in ¢ with period < 27.

Strichartz estimates

Definition 9.2 Let n > 1 and § € (—%,oo)”. We say that a pair (q,p) is

admissible in the Laguerre case if

- 2
1<g<2, 0§<n+Zﬁj> (1——)<1 or
p

J=0

- 2 2
2<q§ooand0§<n+26j> (1——)§—.
q

=0 b

Remark 9.3




XVii

(i) The admissibility condition on (g, p) implies that

o< (zﬁ) (1-2) 1

(ii) f1<¢<2,n=1,1+p <1, then p € [2,00].

(iii) f 1 <¢<2,n=1,14 =1, then p € [2,00).

: n 2(n+37_ B;)
<qg< ; ; AT =g=00d)
(iv) If1 < ¢ <2, (n + 50 6]) > 1, then p € {2, (n+2?_061)1)'

The main Strichartz type estimates is compiled in following theorem (see [28]).

Theorem 9.4 (Strichartz Estimates) Let (q,p), (q1,p1) be two admissible pairs
according to definition 9.2, (a,b) be a finite interval with ty € [a,b], f € L*(R, dv)
and g € L% ((a,b), LPi(dv)). Then the following estimates hold over R x (a,b):

le™"8 fll La((apy.o@y) < Cllfllzzan) (10)

fti e~ =) Ls g (1, s)ds’
where constant C depends on admissible pairs but independent of to. Moreover
es f e C(R,L*(R%,dv)) and ftz e =9)Ls g(z, s)ds € C([a,b], L*(R™, dv)).

< / /
La((a,b),LP(dv)) — CHgHqu ((a,), LP1(dv)) (11)

Remark 9.5 As similar to Remark 5.4, we can not expect the above Strichartz
inequalities for unbounded intervals except when g = co. Also Since |sint| is 7
periodic, constant C' in the inequalities (10) and (11) can be chosen independent

of interval (a, b) provided b — a < 7.

Local well posedness in L*(R", dv)
We consider the initial value problem for the nonlinear Schrédinger equation for
the Laguerre operator Lg:
i0wu(x,t) — Lgu(z,t) = G(z,u), xR}, teR (12)
u(z,to) = f(x) (13)

where nonlinearity G is a function on R’} x C satisfying similar conditions as in

(3), (4).
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Since Lg has no decomposition in terms of first differential operators as the
twisted Laplacian £ has, we only consider the initial value in L*(R",dv). As
similar to the twisted Laplacian case, we can prove the local well posedness of
the above TVP.

Now we discuss the local well posedness result for the above IVP for subcritical

2 and critical case a = 2

< T o nty B
case 0 < a < L B n+3 51 Bj

Subcritical case 0 < o < —2—
SOSETLA
Now we state the main Theorem for the subcritical case 0 < o < ﬁ
j=1F7
n 2
Theorem 9.6 Let u(-,tg) = f € L*(R},dv), 0 < a < S Sy and G be a func-

tion satisfying similar conditions as in (3), (4). Initial value problem (12), (13)
has unique mazimal solution v € C'((T,, T*), L*(R%, dv))NL7 (1., T7), LP*(dv))
for every admissible pair (q2,p2), where ty € (Ty,T*). Fiz p = 2+ a. Moreover
the following properties hold:

(i) (Uniqueness) Solution is unique in C((T., T*), L2(d1/))ﬂLCl’Zc((T*, T*), LP(dv))
where ¢ € [q1,q] and

1:<n—l—iﬁj> (%_1)7(]1_ 2p(p ~ 1) > 1.
q = p

- (X B) (0 -2)

(ii) (Blowup alternative) If T* < oo (respectively, T. > —oc), then u ¢
L% ((ty, T*), LP(RY, dv)) (respectively, u ¢ L= ((T,to), LP(R%, dv))) where
@ € [1,q]-

iii)(Stability) If f; — f in L*(R",dv), then u; — w in L% (I, LP*(R",dv
J + J +
for every interval I with I C (T,,T*) and for every admissible pair (qz, ps),

where u; and u are solutions corresponding to f; and f respectively.

Critical case @« = ——2——
n+ 51 B

2

""'Z?:l B

Theorem 9.7 Let u(-,ty) = f € L*(R},dv), a = ﬁ and G be a function
J=1rJ

satisfying similar conditions as in (3), (4). Initial value problem (12), (13) has
unique mazimal solution uw € C((Ty, T*), L*(R%, dv))NLj, . (T, T*), L (R, dv))

Now we state the main theorem for the critical case o« =
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for every admissible pair (q1,p1), where ty € (Ty,T*). Fiz p = 2+ o. Moreover

the following properties hold:

(i) (Uniqueness) Solution is unique in C'((T,, T*), L*(dv))NLP((T,, T*), LP(dv)).

(ii) (Blowup alternative) If T* < oo then ||u|/e(to,1%),Lr(av)) = 00. Similar

conclusion holds if T, > —o0.

(iii) (Stability) If f; — f in L*(C"), then u; — w in L? (I, LP*(R%, dv)) for

10.

every interval I with T C (T,,T*) and for every admissible pair (qi,p1),

where u; and u are solutions corresponding to f; and f respectively.
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Chapter 1
Introduction

In this thesis we will study the well posedness problem for the nonlinear Schrédinger
equation for the magnetic Laplacian on R?", corresponding to constant magnetic
field. The magnetic Laplacian in this case corresponds to the so called “twisted
Laplacian" on C". We establish the well posednes in certain first order Sobolev
spaces associated to the twisted Laplacian, and also in L?(C™). In this connection,
we also study Schrodinger equation for the (n-dimensional) Laguerre differential

operator.

Schrodinger equations, arise in quantum mechanics as evolution equations
describing the dynamics of the quantum particles. Hence the natural problem to
study is the Cauchy problem: Find w(-,¢) for any time ¢, for a given initial data
u(ty) = f at time t = t,.

A Cauchy problem is said to be locally well posed in a Banach space B, if
for any given initial data f = u(-,tg) € B, for t = t,, there exists an interval [
containing ty and a unique solution u € C'(I, B) to the Cauchy problem which is
stable, i.e., depends continuously on the initial data. If [ = R, we say that the
problem is globally well posed.

The Schrodinger equation is also an example of a dispersive equation, in the
sense that the solutions spread out in space as time ¢t — co. This feature usually
translates into a suitable decay estimate for the solution with respect to time ¢
as t — oo. For free Schrédinger equation on R”, this is given by the L' — L

estimate of the form

Ol ey < 12672 [ fllageny (1.0.1)

1



where u(z,t) is given by (L0O.4). Such decay estimates are useful in the analysis of
dispersive equations, especially in establishing Strichartz estimates, a very crucial

tool in modern approach to dispersive equations, see [12].

The Schrodinger equation

The free Schrédinger equation on R” is the PDE
10 (z,t) + A(x,t) =0, reR" teR

which gives the quantum mechanical description of the evolution of a free particle
in R™. If ¢ is the solution of the Schrodinger equation, then |¢)(z,t)|? is inter-
preted as the probability density for finding the position of the particle in R" at

a given time ¢. Let us consider the initial value problem

iu(z,t) + Au(z,t) = 0, reR" teR (1.0.2)
u(z,0) = f(z). (1.0.3)

For f € L*(R™), the solution is given by the Fourier transform:
u(z,t) = / e~ MER F(€) e de. (1.0.4)

This may be written as a convolution operator

il |2

u(z,t) = (20t)"2 (f*e T ) (z) (1.0.5)

which leads to the dispersive estimate mentioned in (LO.T]).
In view of (LO4) we write

u(z,t) = eimf(x)

interpreting the Fourier inversion formula as the spectral decomposition in terms

of the eigenfunctions of the Laplacian, see [30], [3I]. Using Plancheral theorem

in (LO4), we see that

(-, B)ll2 = 1€ fll2 = 1 £]12 (1.0.6)




which physically represents the charge conservation.

Now let us consider the inhomogeneous Schrédinger equation

iOu(x,t) + Au(z,t) = g(z,t), reR" teR (1.0.7)
u(z,ty) = f(x). (1.0.8)

The solution in this case is given by the Duhamel’s formua:

t
u(x,t) = A f 2/ =% g(z, 5)ds. (1.0.9)

to

This can be seen as follows. Taking Fourier transform in the z-variable, we

have

D€, 1) — [E[Pae,t) = g(&t)
0" a(e, ) = Fg(e, ),

Now integrate with respect to the ¢-variable on the interval (to, ), we have

i a(g, 1) — e™a(e, 1)) = / O (e, 5)ds

to

aEt) = e*i(t*to)\i\Qf(é) _ i/t efi(tfs)|£|2g<§7 s)ds.

to

By taking inverse Fourier transform in the ¢-variable, this yields (L0.9).

This formal computation suggests that u given by the above equation should
be a solution to the initial value problem (L0.7), (L0.8). This equivalence is
crucial in local existence theory. In fact, we prove such equivalence for the twisted
Laplacian £ in Lemma 5.0.21]

More generally for any self adjoint differential operator L on R", having the
spectral representation L = fE A dPy, we can associate the Schrodinger propaga-
tor {e"":t € R} given by

et f = / e AdPy(f) (1.0.10)

for f € L?(R™). Here dP, denote the spectral projection for L, i.e., a projection
valued measure supported on the spectrum F of L, see [26].




In this case, the function u(x,t) = e~*L f(x) solves the initial value problem

for the Schrodinger equation for the operator L:

iOu(x,t) — Lu(x,t) = 0, x€R" teR (1.0.11)
u(z,0) = f(z) (1.0.12)

with L now representing the corresponding Hamiltonian of the quantum mechan-
ical system.

The significance of this view point is that, most Hamiltonians of interest,
namely the perturbation of the Laplacian with a potential V' (of the form L =
—A + V) or the magnetic Laplacian corresponding to the magnetic potential
(Ai(z), ..., An(z)) (of the form L = 7| (i0,, + Aj(IL'))2) on R", can be analysed,
in terms of the spectral theory of the Hamiltonian, see [24] and [20), 21].

In this thesis, we concentrate on Schrodinger equation for an interesting mag-
2n

netic Laplacian on C" of the form Y [(id,, — A;j(w))?], corresponding to the
j=1

magnetic vector potential A(z) = %Z,z € C™. This happens to be the twisted

Laplacian on C".

Twisted Laplacian

The twisted Laplacian £ on C" is given by
I, =
j=1
where Z; = a%j + %Ej, 7j = _a%j + %zj, 7 = 1,2,...,n. Here a%j and a%j
denote the complex derivatives ai F i% respectively. The operator £ may be
wj i

viewed as the complex analogue of the quantum harmonic oscillator Hamiltonian
H = —A + |z|? on R", which has the representation

n

1

H = 3 E (AjA; + A;Aj)
j=1
in terms of the creation operators A; = —% + 2; and the annihilation operators
J

A% 9 +x;, j =1,2,...,n. The operator £ was introduced by R. S. Strichartz

jzaxj




[31], and called the special Hermite operator and it looks quite similar to the

Hermite operator on C". In explicit terms the twisted Laplacian looks like

B L n v 0 0
E——A+4|z| —zZ(xjayj—yjaxj).

1

This may be re written as

n

-2 [(o )"+ (- 9]

j=1

2n

which is of the form Y~ [(i0,, — A;(w))?] hence represents a Schrodinger operator
j=1

on C" for the magnetic vector potential A(z) = £,z € C™.

Nonlinear Schrodinger equation for the twisted Lapla-
cian

We consider the initial value problem for the nonlinear Schrédinger equation for

the twisted Laplacian L:

i0pu(z,t) — Lu(z,t) = G(z,u), zeC" teR (1.0.13)
u(z,to) = f(2) (1.0.14)

for f € L?>(C"). Here we consider the nonlinearity G of the form
G(z,w) = w(l‘aya |w|) w, (l‘, Y, U}) € R" x R" x Cv (1015)

where z = x+iy € C",w € Cand ¢ € C(R"xR" x [0, 00))NCL(R™ x R" x (0, 00))
satisfy the following inequality

|F(z,y,m)] < Clnl* (1.0.16)

with F' = v,0,,, 9,4 (1 < j < n) and nd,¥(z,y,n), a > 0 and for some

constant C'. By mean value theorem, we see that

|G(2z,u) — G(2,v)| < |u—v|¥(u,v) (1.0.17)




where W(u,v) = (Indyv(z,y,n)| + [(z, y,m)]) [h=6ju+ o) for some 0 < 6 < 1.
Notice that in view of the condition (LO.IG) on ¢, we have

|G(z,u) — G(z,v)| < C(|ul]* + |v]|*)|u — v| (1.0.18)
for some constant C, where u,v € C and z € C".

When G = 0 and f € L?*(C") the solution to this initial value problem is
given by the Schrédinger propagator

u(z,t) = e UL F (),

When G(z,u) = g(z), the solution is given by the Duhamel’s formula (see equa-

tion (L0.J)

t

u(z,t) = e L F(5) — Z/ e =)L g (2)ds. (1.0.19)
to

Thus in the linear case, the solution is determined once the functions f and g are

known.

The basic idea in nonlinear analysis is the following heuristic reasoning based
on the above formula. If the solution u is known, then one would expect u to

satisfy the above equation with g(z) replaced by G(z,u(z,s)):

u(z,t) = e L F(Z) — /t e LG (2, u(z, 5))ds. (1.0.20)

to

Indeed one can show that u from a reasonable function space satisfies a PDE
of the form (LO.I3), (LOI4), if and only if u satisfies an integral equation of the
form (L0O.20), see Lemma B.0.27]

This reduces the existence theorem for the solution to the nonlinear Schrodinger

equation to a fixed point theorem for the operator

H(u)(z,t) = e EIEf(2) — 4 /t e LG (2, u(z, 5))ds (1.0.21)

to

in a suitable subset of the relevant function space.




Conservation laws

Now we discuss the conservation of mass and energy for the magnetic Schrodinger
equation (LOT3). For proving mass conservation, we assume that v is real valued.
Taking L?(C") inner product with u on both sides of Schrédinger equation (LOI3)

and taking imaginary part, we get the mass conservation

L (1) = 0. (1.0.22)

Taking L*(C™) inner product with respect to dyu on both sides and taking real

part, we get the energy conservation

d (1 2 Zulz 2 Hz,u)dz | =
4 (ZZ<||Zju<z,t>||2+HZ] ol + [ éc, >d)

J=1

where G : C" x [0,00) — C is given by the following

G(z,7) :/ P(z,s)sds. (1.0.23)
0
This leads to the conservation of the energy E:

1 — — 2 ~
E(u(-,1)) = > (1 Zu(- )5+ HZju(nt)HQ)Jr/C G(z |ul)dz.  (1.0.24)
j=1 "
In Theorem in chapter [6] we prove that these formal identities are valid
in the space of existence of the solution. If G(z,u) = Au|®u, then G(z,|u|) =
o%{2|u|°‘+2. Note that for each z € C", G(z,-) : [0,00) — R?is a C' map and
oa

Se(2,0) = G(z,0). Also note that by mean value theorem

1G(2,00) — G(2,00)] = |01 — 09| |G(2,00, + (1 — 0)ay)| where 6 € (0,1)
< C|0’1 _0_2|(|0_1|1+a+|0_2|1+a). (1025)

In this thesis we will study the well posedness, i.e., local existence, uniqueness,
stability and blowup alternative of the initial value problem (LO.I3), (L0.I4)
with f in certain first order Sobolev spaces related to the twisted Laplacian and
also in L*(C"), see chapters @ [, B, [ This work is based on [24] (published in




J. Funct. Anal. 265 (1) (2013) 1-27) and [25, 29].

The Schrodinger equation for the magnetic potential with magnetic field de-
caying at infinity has been studied by many authors, see for instance Yajima [39],
where author studies the propagator for the linear equation. In contrast, the
nonlinear equation in our situation corresponds to a magnetic equation with a
constant magnetic field, which has no decay. For more details on general mag-
netic Schrodinger equation corresponding to magnetic field without decay, see
[1]. In [40] Zhang and Zheng also consider the nonlinear Schrédinger equation
for the twisted Laplacian and with polynomial nonlinearity. They obtain product
rule for fractional derivatives using Littlewood Paley theory and as a consequence
prove the local well posedness result. There is a vast literature available for the
well posedness results for nonlinear Schrodinger equation on R”. See for instance
the papers by Ginibre and Velo [12] 13| 14], Kato [16], Cazenave and Weisler
[6, 7, 8], Tsutsumi [36], Begout [2], Sjogren Torrea [27], the books by Cazenave
[4] and Tao[32] and the extensive references there in. Some of the references that
we came across dealing with magnetic Schrodinger equation are [39], [I] and [5]
as mentioned before. In fact, the stability result discussed in [5], is actually the
stability problem for the nonlinear Schrédinger equation for the twisted Laplacian

in the plane.

The class of nonlinearity given by (LO.I3), (LOI6) includes in particular,
power type nonlinearity of the form |u|*u and is also adaptable to the Schrédinger
equation for the twisted Laplacian, for local existence via Kato’s method [I6].

The main difficulty in this approach is caused by the noncommutativity of £ with
o 0
9z 7 By;
in [5]. We are able to overcome this difficulty by introducing the appropriate set

and the noncompatibility of £ with the powertype nonlinearty as observed

of differential operators L;, M; and operators Zj,Zj (1 < j < n) and working
with suitable Sobolev spaces defined using these operators (see chapter [ for
definition).

We follow Kato’s method [16] to prove the local existence in first order Sobolev
spaces related to operators L;j, M; and operators Z;, Z; (1 < j < n). Conser-
vation laws have been an important tool for proving the existence of solutions
of nonlinear Schrédinger equations, which is available for a large class of nonlin-
earities, see Ginibre and Velo [12]. In [12] Ginibre and Velo studied the Cauchy
problem in the energy space for power type nonlinearities. T. Kato ([16]), intro-

duced a method using Strichartz estimates which was applicable even for those




nonlinear problems, where conservation laws are not available. In chapter 4 we

observe that the operators

9 : 9 ]
Lj = (— ~|»'L&) , and Mj = (@ —Z%) ;o J=12..,n
J

t
commute with both the operators e™* and / e =L, for j = 1,2,...,n.
0
These operators are also compatible with the nonlinearity G considered in (LO.T5),
(COT6). Therefore we consider the following Banach space

WIACT) = {f € IAC"): Lif, M;f € AT, 1< j <n)

with norm || f{lyr2cny = [ fllz2em + 22721 (1L f llz2eny + 1M fllz2(eny) - In chap-
ter B we prove the local well posedness for initial value f in W12(C").

Observe that in view of (LI24), W13(C") is not the energy space, therefore
energy conservation is not possible in the above case. We overcome this situation
by introducing the Sobolev space W*(C") (see chapter H) defined using the

operators Z; and 7,

j, which is the energy space and natural one in this context.

Though they do not commute with e~*#, they have a reasonable commutation
relation, suitable for our purpose. The advantage of working with this Sobolev
space is that we get energy conservation in this case, see Theorem [6.0.33]in chapter
From this we can show that there is no finite time blow up in defocussing case
(when 1 is nonnegative) and also in focusing case (when v is nonpositive) with
0 < ac< %, hence in Theorem we conclude the global existence in the
Sobolev space TW,?(C").

In chapter [6l we also consider the critical case o = % In subcritical case

0 < o < =25 for each v, we have some ¢ > 2 such that (¢, 2+ «a) be an admissible
pair, which may not be the case when a = % To treat the critical case, we
adopt truncation argument of Cazenave and Weissler [7]. To prove local existence,
we truncate the nonlinearity G' and obtain solution for the truncated problem.
We obtain solution u for the nonlinearity G by using Strichartz estimates and by
passing to the limit.

In chapter [ we prove the global well posedness in L?(C") for subcritical case
0<a< % using mass conservation. However in critical case o = %, we can prove
global well posedness in L?(C") for intial value with sufficiently small norm in

L?*(C™). Our approach is based on Cazenave and Weissler [7].
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Twisted Laplacian and Laguerre operator are closely related to each other in
the following sense. If f € S(C") is radial then Lf(z) = L,_1f(r) where L,
is 1-dimensional Laguerre operator of type n — 1 given by (8O and r = |z|.
More generally we can consider n-dimensional Laguerre operator Lg on R’ =
(0,00)™ of type 5 € (—%,oo)n which has singularity at z; = 0, 1 < j < n.
Moreover special Hermite functions @, 7 ., ®,, .15 on C" with i € ZZ are related
with n-dimensional Laguerre functions wﬁ, see Theorem 1.3.4 and Theorem 1.3.5,
page 19-20 in [33], where ¢ are given by (80.2). By similar analysis we also
prove the local well posedness of the initial value problem for the Schrédinger
equation with the Laguerre operator and initial value in L*(R", dv) where dv =
(H;;l x?Bﬁl) dz, see chapter 8 This work is based on the Strichartz estimates
for the Laguerre operator proved in Sohani [28] (to appear in Proc. Math. Sci.).




Chapter 2

Schrodinger propagator for the

twisted Laplacian

Now we define the Schrédinger propagator e~#* through the spectral theory of the
twisted Laplacian. The twisted Laplacian is closely related to the sub Laplacian
on the Heisenberg group, hence the spectral theory of this operator is closely
connected with the representation theory of the Heisenberg group. Here we give
a brief review of the spectral theory of the twisted Laplacian £. The materials
discussed here is based on the the following books: Folland [11], and Thangavelu
133, 541

The eigenfunctions of the operator £ are called the special Hermite functions,
which are defined in terms of the Fourier-Wigner transform. For a pair of func-
tions f, g € L?*(R"), the Fourier-Wigner transform is defined to be

V(o)) = 2m) 3 [ enr (e B)g (- B) e

where z = x + iy € C". For any two multi-indices p,r the special Hermite

functions ®,, are given by
®uu(2) = V(hy, hy)(2)

where h, and h, are Hermite functions on R". Recall that for each nonnegative

integer k, the one dimensional Hermite functions h; are defined by

hi(x) = \/% (dd;ke_x2> 7.

11
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Now for each multi index v = (v, -+ ,1,), the n-dimensional Hermite functions

are defined by the tensor product :

n

ho () = T [ v, (), x= (1, ).

i=1

Since the Hermit functions satisfy the recursion relations

(—%er) hi(@) = (2k +2)2 i (2),

( %er) hi(z) = (2k)3 (),

it follows that the special Hermit functions satisfy the relations

1

Z;®,, = i(20;)7® Zi®,, = —i(20 +2)7® 4o, (2.0.1)

V=€)

Since L = % 2?21 (ijj +7J-Zj) , it follows that ®,, are eigenfunctions of L
with eigenvalue 2|v| +n and moreover, they form a complete orthonormal system
in L?(C"). Thus every f € L*(C") has the expansion

=Y (f,0.)0,, (2.0.2)

in terms of the eigenfunctions of £. The above expansion may be written as

f=Y_Pf (2.0.3)
k=0
where
Pof = > (fi ®pa) P (2.0.4)
slv|=k

is the spectral projection corresponding to the eigenvalue 2k + n. We also have

the Plancheral theorem for the special Hermit expansion

1715 =D IPef 13- (2.0.5)
k=0
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Now for any f € L*(C") such that £Lf € L?(C"), by self adjointness of L, we
have P,(Lf) = (2k + n) P f. Tt follows that for f € L*(C") with £f € L?(C")

Lf=> (2k+n)Pf. (2.0.6)
k=0
Thus, we can define e~** as
e f = e ORI (2.0.7)
k=0

Note that Py f has the compact representation

i

Bif(z) = 2m)"(f x ¢i)(2) = 2m)7" on f(z = w)pr(w)er ™D dw (2.0.8)

in terms of the Laguerre function ¢y (z) = Lz_l(%|z\2)e’i‘z‘2, see |22} [33]. For
f € L*(C"), we have compact form e~ "TDEf = f x K, ;4(2) (see [22]) where
r >0 and

1+872(7‘+it) \z\2

Koiu(z) = (Qﬁ)*nefn(rﬂt)(l _ 672(r+it))fne*m- T

Let us consider sequence {r,,} of positive real numbers converging to zero. We
observe that e=(m*Lf — e=#Lf a5y — 0 in L*(C") and therefore upto a

subsequence e~ ("m L f(2) 5 e7E£(2) for a.e. z as r,, — 0. Since
[ Kt (2)] < 2] sint ],
for f € L' N L*(C"),
fx Ky +it(2) = fx Ky(z) as r, —0
—itL

for a.e. z. Hence we can express e as a twisted convolution operator:

e_iwf =[x Ky

N—n i(cot t)]z]?
for f € L' N L2(C") where Kj(z) = Gm) " "=

- (sint)™







Chapter 3
Strichartz estimates

Strichartz estimates are useful for establishing existence of solution for semilinear
Schrodinger and wave equations, in which no derivatives are present in the non-
linearity. Strichartz estimates were first proved by Strichartz [30] for solutions of
Schrodinger and wave equations on R™. They were generalized by Ginibre and
Velo [14], 15], Lindblad and Sogge [19]. In [I7] Keel and Tao proved Strichartz
estimates including endpoint for the wave and the Schrédinger equations.

Homogeneous Strichartz estimates for twisted Laplacian is proved by Rat-
nakumar in [22]. We begin with the following definitions of mixed LP space
Li((a,b), LP(C™)), admissible pair and prove the Strichartz estimates. For mixed
LP spaces we would like to refer to section 8.18 in Edwards [10].

Definition 3.0.1 Let n > 1 and 1 < p,q < co. We define L%((a,b), LP(C")) by
the following
L%((a,b), LP(C")) = {g is measurable on C" x (a,b) : ||g|Ls((ap),Lr(cn)) < 00}

1

where ||g|| £a((a,0), 27 () (f 19117 (cn) )

Definition 3.0.2 Let n > 1. We say that a pair (¢, p) is admissible if

1 1
1<q<2, Ogn(———)<
2 p

1
= or
2

1

1
2<q§ooand0§n(———)§
2 p

11
qg 2

15



16

Remark 3.0.3 The admissibility condition on (¢, p) implies that 2 < p < %

Admissible condition is basically coming from the following Lemma and
Remark B.05 which are useful in proving Strichartz estimate (8:0.3). This Lemma
was proved in [22] (see Lemma 2, p. 293-294) for compact interval [—m, 7|, we
state here for arbitrary compact interval [a,b]. Same proof will work here, so we

skip the proof.

Lemma 3.0.4 Let (a,b) be a bounded interval and T be the operator given by

b
Tf(t) :/ K(t—s)f(s)ds.
Then the following inequality

1Tl < Ckllflly

holds for ¢ = oo if K € L>®(a—b,b—a), forq € (2,00) if K € weak Lz (a—b,b—a)
and also for 1 < ¢ <2 if K € L*(a — b,b —a). The constant Ck is independent
of f but depends on K and interval (a,b).

Remark 3.0.5 Let p € [2,00],a,0 € R and a < b. |sint|_2"(%—%) c weak
Li(a—b,b—a) with g € (2,00) if 2 < ¢ < ﬁ or n(%—%) <
2 p

) € L'(a —b,b —a) if 2n <% - 1—1)> < 1. If we consider p = 2 then
|sint|72"(%7%) =1eL*a—0bb—a).

B =

|sint|72"(%

Now we state a Lemma which is helpful in proving Strichartz estimates (The-
orem B.0.7). For proof we refer to Lemma 3 in [22].

Lemma 3.0.6 Let [a,b] be a bounded interval containing to. Let hj(z,t) €
Lqé'((a, b), L*(C")), where q; s conjugate exponent of q; with 1 < ¢q; < oo for
3 =1,2. Then the functions

efi(t*to)llhl (z’ ig)efi(sfto)llh2 (Z, 3)’ hy (Z, t)ei(tfs)llh2 (Z, 8)

belong to L*(C™ x (a,b) x (a,b)).

The main Strichartz type estimates in this chapter is compiled in the following

theorem. Homogeneous Strichartz estimate ([B.0.I]) is proved in [22]. For com-
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pleteness, we also give the proof of the estimate (B.0.I]). Our approach is similar

to the Euclidean case discussed in Cazenave [4].

Theorem 3.0.7 (Strichartz Estimates) Let (q,p), (q1,p1) be two admissible
pairs, (a,b) a finite interval with ty € [a,b], f € L>(C") and g € L%((a,b), LP1(C"))
where ¢; and p| are conjugate exponents of ¢, and py respectively. Then the fol-

lowing estimates hold over C" x (a,b):

IN

lle™™ || Lag(a,p),Le(cm) C|l fll2 (3.0.1)

t
/ e =g (2, 5)ds

to

< (g (3.0.2)

L% ((a,b),LP1 (CM)

La((a,b),Lr(C™))

where the constant C' depends on admissible pairs and independent of toy. Moreover
—1 n t —i(t—s n
e " f e C(R,L*(C)) and [, e """ g(z,s)ds € C([a,b], L*(C")).

Remark 3.0.8 Note that e *"%)£f(2) is 27 periodic in ¢, hence we can not
expect the above Strichartz inequalities for unbounded intervals except when
q = oo. Also Since |sint| is 7 periodic, in view of Remark B.0.5 constant C
in the inequalities ([B.0.1) and (3.0.2)) can be chosen independent of the interval
(a,b) provided b — a < .

Proof. We prove the Theorem in the following steps. In step 2 we prove estimate
B0d) and e £ f € C(R, L*(C")), whereas in step 6 we prove estimate (F.0.2).

Step 1: We will prove estimate (3.0.2)) when (¢,p) = (¢1,p1). Using Minkowski’s

inequality for integrals and from Proposition 1 in [22], we get

1

p b
/ eIy (z 5)ds| < C / [sin(t — ) 72"GD g, ) | o ds.
Lp((cn) a

to

Now taking L?-norm with respect to the ¢-variable on the interval (a, b) and using
Lemma [B.0.4] with Remark B.0.5 we get the estimate ([B.0.2) for (¢,p) = (q1,p1),

ie.,

< CHg”qu((a7b);Ll7,(Cn)) (303)
La((a,b),LP(C™))

t
/ e =g (2, 5)ds

to
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Step 2: To prove estimate ([B.0.1]), we first prove the following estimate

By density argument it is enough to prove estimate (B.00.4) for g € L% ((a,b), L* N
LP(C™)). Since e £ is the adjoint of e* on L?(C"), from Lemma B.0.6, the
Holder’s inequality for the mixed LP spaces and the estimate (B.0.3), we get

estimate (3.0.4):
b
‘ / i(t—to)ﬁ (" t)dt
12(C)
b b
z(t to)L )dt / ez(s_to)ﬁg(',S)d8>

b
/ <e” to)£ (-, 1), ei(S*tO)Eg(-, s)>dsdt

b
/ ez(tftowg(za t)dt < CHg”Lq'((mb),LIJ' (cny)- (3.0.4)

L2(C)

2

b b

< g(-, 1), et > dsdt

<g e~ =Ly (. )ds>dt

b
S ||g||qu((a,b),Lp,((C")) H/ 6_Z(t_8)£g(2, S)dS

-
[
/

La((a,b),LP(C™))

< C”gHLq ((a,b),L¥ (Cn))*

Since e~ is unitary operator on L?(C"), the estimate [B.0.I)) follows if (q,p) =
(00,2). For ¢ < oo, estimate ([B.0J) follows from a duality argument, using
estimate (3.0.4), Lemma B.0.6 and the fact that e~* is adjoint operator of e**
on L*(C"). Since |e”#Fm) — 1] < 2 and ||Pef||r2cny) € P(Zso), e ™ f(z) €

C(R, L*(C™)) follows from the dominated convergence theorem.

Step 3: Now we will prove estimate (B.0.2]) by using a duality argument in the
z-variable when (q,p) = (00, 2). By a density argument it is enough to prove the
estimate (B.0.2) for g € L%((a,b), L*NLP1(C")). Let h € S(C") with ||h|p2(cn) =
1. By Hélder’s inequality, Lemma B.0.6] estimate (B.0.1) and the fact that e~¥¢
is the adjoint of e** on L?(C"), we get

’</tt e 9L g(. 5)ds, h>'
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sl itL
< ||g||L‘11 ((a,b), P (dv)) He ( h HL‘II((a,b)(ds),Lpl (Cn))

= CHg”LQi ((a,b),Lp/l (cny) ||h||L2((C")

Taking supremum over all h with ||A||2cny = 1 and then supremum over ¢ €

(a,b), we get the estimate

Step 4: Now we will prove estimate (8.0.2) when (q1,p1) = (00,2). Estimate

B.0.2) follows from estimate (B.0.5) if (¢, p) = (00,2). So we assume that (g, p) #
(00,2). To prove estimate [B0.2), take h € LY ((a,b), L* N L¥'(C")). Now from
Lemma B.0.6 and the fact that e~ is the adjoint of e** on L?(C"), we observe

the following
b t
/</ —it=)Lg (.. s)ds, h(-, )> dt
a (cn
to to b t
= (/ / + /)<g(~,s) W=DER(- 1)), ds di
t=a J s=t t=to
b
- (/ - /)(g eI 1)) ., dt ds
s=a Jt=a s=tg Jt=s
= / <g(-,5),/ Z(S“:h( )dt> ds
a a Cn
b b
+/ <g(-,3),/ el(St)Eh(-,t)dt> ds.
to s Ccn

In view of estimate (B.0.5]) and Holder’s inequality, we get the estimate

Step 5: Now we assume that ¢,q; > 2 and

< Cllgll 4
L ((a,b).L2(C™)

t
/ e 9L g(2, 5)ds (3.0.5)

to

L9 ((a,b); LP1(Cn))”

< Cllgllzr((ab).c2cn- (3.0.6)
La((a,b),LP(C™))

¢
/ e =g (2, 5)ds

to
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In this case estimate ([B.0.2]) follows from bilinear Riesz-Thorin interpolation the-
orem and estimates (B.0.3), (B.0.5), (B:0.0)) (see step 4 at page no. 36 in Cazenave
[41)-

Step 6: To prove estimate (B.0.2), let us define ¢, ¢; by the following

(1 1) 1 (1 1)
=n|lz——-), ==n|z——].
2 p) @ 2 m

Then 1 < ¢ <q 1 < ¢ < ¢ and 2 < ¢,q;. By Holder’s inequality in the
t-variable and step 4 we obtain estimate (B.0.2)):

| =

. t
’/ e,i(t,s)ggds < (b— a)m / e*i(tfs)l:gds
to La((a,b),LP(C")) to Li((a,b),LP(C"))
< C(b_ ) ! ”gHqu(ab) Lpl((C"))
< C(b — (l)m—f—m ||g||Lq1( ab), P (cny)
< Clgll,«

L9 ((a,b),LP1 (CM))

where

Step 7: Now we prove JZ) e t=9)Lg(2,5)ds € C([a,b], L*(C")). Let t, — t.
Consider h € S(C") and we see that

t t
</ ei(tms)ﬁg(-,s)ds—/ —it=s) Lg(-,s)ds, h>
to to (Cn)
t
= / (e7 =g (- 5) — e g (-, 5), ) o0 ds
i(tm—s)L _ ,ilt—s)L
<9 s), (¢ )h>(<Cn) ds

/llg ) v omlle 7105 (Xm0 — TR || o ey dis

—i(s— to)l:( i(tm—to) Eh

e OCR) || La((abds) Lo (cn)

< 19l e ((apy,Lo (cny) ll€
< CHgHLq'((a,b),LP'((Cn))|| (ei(tm—to)ﬁ — ei(t—to)ﬁ) h||L2(C")-
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By density of S(C") in L?(C"), this shows that

t t
/ e’i(tm’s)‘:g(-, s)ds — / e’i(t’s)ﬁg(-, s)ds
to to

weakly in L?(C™). Also note that L?*(C") norm of this sequence is constant and

equal to:

t t
/ e—i(tm—s)ﬁg("s)ds e—i(tm—t)L/ e—i(t—s)ﬁg(.’s)ds

to £2(Cn) to £2(Cn)
¢
= ’ / e t=9Lg(. 5)ds :
to L2(Cn)

Therefore we have the convergence in L*(C"):

‘ t
/ 67@'(15,,173)[39(_7 S)dS N / efi(tfs)llg(.’ s)dS.
to to

Also since Hfttm e~ tm=9)eg (-, 5)ds paiemy = Gl @y rreny = 0 a8 tm > 1,

we conclude that ftz e =)L g (2, 5)ds € O([a,b], L*(C™)).







Chapter 4

Some auxiliary function spaces

The Sobolev space W'?(C")

Let L; and M; be the differential operators defined by

L - (i H%) and M; = (8% —z%) L j=12..n (40.1)
J

We consider the space
WhP(C") = {f e L’(C"): Lif, M;f € LP(C"),1 < j <n}

with norm || = 1/ llsen + Spms (1 Fllnen + 1M flunen). 16 {fi} is o
Cauchy sequence in W'?(C™) then there exists f, g;, h; € LP(C") such that f, —
foLife = g5, M;fi, = hj in LP(C") as k — oo for 1 < j < n. Since L;, M, are
skew adjoint operators, it is easy to see that L;f = g;, M,;f = h; in S'(C") for
1 < j < n. This shows that f € W' (C") and f, — f in W'?(C"). Hence
WhP(C") is a Banach space.

An interesting relation between the Sobolev space W'P(C") and the ordinary
Sobolev space W?(C") is the following: If u € W?(C"), then |u| € WhP(C™).

Lemma 4.0.9 /[Sobolev Embedding Theorem| We have the continuous inclusion

Wl,pl (Cn) oy [p2 ((Cn> fOT‘ p < po < 2np1 ifpl < 2n

2n—p1
forpy <py <0 if pr =2n
Jor pp <py < o0 if p1 > 2n

23
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where 1 < pp < o00.

Proof. Let f € W' (C") and ¢ > 0. Consider u, = e~ f. Note that (ILG)
is also valid for f € LP*(C"). Since K. given by (L0.1) is in S(C") and from
Lemma 0TI u, = f x K. € W'"1(C*) N C>®(C") and we have

2|ue|axj|ue| = D (Ueue) = 2% (ue 8l‘jue> = 2R (ug(al‘j + 9 )ue) .
Hence on the set A, = {z € C"|u.(2) # 0}, we have
’8@'“6' ’% (|ug|(axj T )“f) = it

Similarly )%|u5| < |Mju| on A.. Note that ||u||rr2cry = |[texa.||Lrz@cny. By
the usual Sobolev embedding on C™ and above observations, we have inequality
tellrr2ieny < Cllluexalllwion < C lluel|jjim . Since Se™€f = e=£Sf for S =
Lj, M;(1 < j <n) (see LemmalL0.10), therfore by Lemmall0ITu, = e “f — f
in W' (C") and also in LP?(C") as ¢ — 0. Therefore we have ||f]|pr2cny <

Cllf|lyir1p1 (cn)- Hence Lemma is proved.

Lemma 4.0.10 Let f € §'(C"). Then for every t,ty € R, we have the following
equalities in S'(C")

Ljefi(tfto)l:f — e*i(tfto)l:Ljf
Mjefi(tfto)l:f — e*i(tfto)l:Mjf.

Proof. Since f € &'(C"), Lje "t-0Lf M {t—t)Lf ¢ S'(C™). In view of
(1.3.17), (1.3.18), (1.3.21) and (1.3.22) in [33], we have
1 1 1
Li®u, = B ((2%)2@#7617” + (25 + 2>2q>u+6jﬂ/>
1

1 1
M;®,, = ) ((QMJ')QCI)M—EN - (2:uj + 2)2(I>;H—ej,l/) .

Since L;, M; are skew adjoint operators and finite linear combination of special

Hermite functions are dense in S(C") (Theorem 1.4.4 in [34]), Lemma follows
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from the following observations

(L L ) = (L )
(M 0 2,,) = (R )

for every u,v € (Zso)".

Lemma 4.0.11 Let ty € R and I an open interval containing ty. Let g €
L(;/oc <~I, Wl’p'(C”)> , where (q,p) be an admissible pair. Then ftl; e t=9)Lg (2, 5)ds €
C(I,W12(C™)). Moreover for each t € I, we have the following equalities in
L*(Cm)

t t
L-/ e =gz 8)ds = /e‘i(t_s)Lng(z,s)ds

to

j
to

Mj/ e =g (2, 8)ds = /ez(ts)LMjg(z,s)ds.
to

to

Proof. Since g € L‘f(l)c (I, Wl’p'(C")>, by Strichartz estimates (Theorem [B.0.7))

fti e~ =L G g(z, s)ds € C(I, L*(C")), where S = L;, M;, 1 < j < n. In view of

Theorem 1.4.4 in [34], Lemma follows from the following observations

t t
<Lj / e =L g( 2, 5)ds, (IDW,> = </ e =L g(2, 5)ds, <I>W>
to to
t t
<Mj / e—z(tfs)llg@;’ s)ds, (I)ﬂ,,/> = </ eiz(tis)LMjg(Z, s)ds, (I),u,z/>
to to

for every u,v € (Zso)".

The Sobolev space W,*(C")

The local well posedness of the nonlinear Schrodinger equation for the twisted

Laplacian is discussed in chapter [ for initial values in W'2(C"). However this

approach does not give the energy conservation. We overcome this difficulty by

introducing the Sobolev space TW,?(C") defined using the operators Z; and Z;
0 1. = 0 1

g - 45 Z.o—___ 4
J azj+22” J 85j+22”
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which is the natural one in this context. Here ai’ o5 denote the complex deriva-

tives fj F z@ respectively.

Definition 4.0.12 Let m be a nonnegative integer and 1 < p < oco. We define
space W/"P(C™) by the following

WEP(C") = {f € LP(C") : 8°f € LP(C"), |a| < m}

where S denotes monomialin 7y, ..., Z,, Z1, ..., Z, of degree |a| = ay+- - -+,

W/"P(C") is a Banach space with norm given by

I llge = > 1% fllze.

laj<m

Lemma 4.0.13 Let f € W2*(C"). Then we have

Il = D (IZifllee + 11 Z5f1122)-

1<j<n

Proof. Clearly
1lhre = S (1Zflle + 125 £ 122).

1<j<n

Now we show that

1llre <2 57 (125 llee + 12, 112e).

1<j<n

Enough to show that ||Z; f|l2 > || f|l2, 1 < j < n. This follows from the Plancheral

theorem for the special Hermite expansion

A3 =1 duad

for f € L*(C"). In view of (ZOI)) and Z;, Z; are adjoint of each other, we have

Zif = Y AZif )P == Y 20 (f, P} By (4.0.2)

v yv;>1

Thus in view of equation (L0.2), we have
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1Zi 5= 2051 Quwe) P =D (205 + 2)1(F, @) P 2 I3,

M?ijl w,v

which completes the proof.

Though the operators Z; and Zj (1 < j < n) do not commute with e "L they
have a reasonable commutation relation, suitable for our purpose, see Lemma
The advantage of working with this Sobolev space is that we get energy
conservation in this case. Using this we can show that there is no finite time blow
up in the defocussing case and also in the focusing case with 0 < o < %, which
yields the global existence in the Sobolev space W, ?(C™).

We have the following embedding theorem for the Sobolev space W}:’p((C").

Lemma 4.0.14 ( Sobolev Embedding Theorem ) We have the continuous inclu-

sion

WEPH(C") o L(CY)  forpi < p < 220 if py < 2n

2n—p
for p1 < py < o0 if pr =2n
for p1 < py < o0 if pr > 2n

where 1 < p; < o0.

Proof. Let f € W/ " (C") and ¢ > 0. Consider u, = ¢ “f. Then u, €
W, PH(C") N C*>(C") and we have

) o 9 0 iy,
2l -l = - ) = 28 (T 50, ) = 2 (W — 2y ).
J J J J

Note that

(i
(Zj+Zj)——’L(8yj+ 2)7

Hence on the set A, = {z € C"|u.(z) # 0}, we have

DO | —

U

0
8.’L'j

U , 0 1Y 1 _
=R (5~ D) | < 500 1250,

Similarly ’aiyj|ue| < (| Zjue|+|Zjuc]) on Ac. Note that ||uel|rrz(cny = [|uexa, | Lr2cn)-

By the usual Sobolev embedding on C" and above observations, we have in-
wie < CHueHWé,pl. By Lemma 017 u, =

equality [[uc|[re2cn) < Cflfuexa,
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e “f — fin WHP(C") and also in LP*(C") as ¢ — 0. Therefore we have
| fllze2(cny < C’||f||V~V1,p1(Cn), where constant C' is a generic constant independent
L

of f. Hence Lemma is proved.

Lemma 4.0.15 (Quasi commutativity) Let f € S'(C™). Then for everyt,t, € R,
we have the following equalities in S'(C™)

Zje—i(t—to)ﬁf _ 6—2i(t—t0)6—i(t—t0)£ij

Zjef’i(tfto)l:f — e?i(tfto)efi(tfto)l:?jf.

Proof. Note that both Zje !0 f and Z,e =)L f are in §'(C") for f €
S'(C™). Since every tempered distribution has a special Hermite expansion,

enough to show the identities

<Zj6—i(t—to)£f’ (I)u,v> — e 2ilt=to) <6—i(t—to)£ij’ q)wj>
<7je_i(t_t°)£f, (I)W> —  p2ilt=to) <6—i(t—to)£7j f, (I)W/>

for every u,v € (Zso)".

Since Z; and ij are adjoint of each other, both identities in the Lemma can

be easily verified using the relations

efi(tfto)ﬁqu)%u — €2i(t*to)Zje*i(t*to)ﬁq)my (4.0.4)
e_i(t_tO)LZj(I)my _ e—Qi(t—tO)Zje_i(t_tO)L(I)%V (405)

which follows from the relations (Z.0.1) and the fact that e=7£®,,, = e~ "Gkt

Lemma 4.0.16 (Quasi commutativity) Let to € R and I an open interval such
thatto € I. Let g € L% ([, Wé’p/(Cn)>, where (q,p) be an admissible pair. Then

loc

[Lemit=9)Lg(2 5)ds € C(I,W*(C")). Moreover for each t € I, we have the

to
following equalities in L*(C™)

t t
Zj/ e’i(t’s)ﬁg(z, s)ds = 62“/ e’i(t’s)ﬁe%stg(z, s)ds
t t

0 0

¢ ¢
7j/ e =9Ly(2, 5)ds = 62it/ e L2957 g(2, 5)ds.

to to
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Proof. Since g € Li]é)c (I, W}:’p/(Cn)>, by Strichartz estimates (Theorem [B0.7))
[l e t=9L8g(z, s)ds € O(I, L*(C")), where S = Z;, Z;, 1 < j < n. As discussed

to
in Lemma [A0.15 Lemma follows from the following observations

t t
<Zj/ e 9L g( 2 5)ds, <I>W> = 2t </ e_i(t_S)EGZisng(z,s)ds,(IDW,>
to to

t t
<Zj/ e =9 g (2, 5)ds, cI>“7,,> = et </ e L2 N g (2, s)ds,CI>ﬂ,,,>
to to

for every p, v € (Z()™. These identities can be easily verified using the relations

E04), @05).

Now we discuss the heat operator associated with the twisted Laplacian. For

e > 0, consider the heat operator for the twisted Laplacian given by
efel:f — Z efe(2k+n)Pkf
k=0

for f € L?*(C"). By orthogonality of the special Hermit functions ®
eL

uw> Pif are

orthogonal projections. Hence it is clear that e~ is contraction on L?(C").

oo
le=“fl5 =D e || Pf3.
k=1

The heat operator e~¢* has the following integral representation as a twisted

convolution operator
e L f = fx K., (4.0.6)
where
) _ (1_’_6726) ﬂ
K (z)=(2m) e ™ (1—e ) "e -9 1 (4.0.7)
see (2.10), (2.11) in [22]. Note that ||K(|[,1cn) = 2"e ™ (1 + e %)™ < 1 and

limﬁﬁo ”Ke”Ll((C") =1.

Lemma 4.0.17 For e > 0, e~ : LP(C") — W/"P(C") defines a bounded oper-

ator for each nonnegative integer m and 1 < p < oo. In particular we have the




30

following inequalities:

le™ fllzoeny < Cllflliven (4.0.8)
||€_€£f||Wé»P(<cn) < C”f”vi/évp((cn) (4.0.9)
le™“ flimreny < Cellflliaien) (4.0.10)

with constant C' in (£.0-8) and ({{-0-9) is independent of € € (0, 1]. Moreover, for
fEWSI(C), e Ef = f in W(C"), 1< p < oo.

Proof. In view of ([L0.6) and the fact that |f x g| <|f] * |g|, we see that
e “f < |f| * K, (4.0.11)
where K, is given by ({0.7). Since
[Kellpreny = 2" (1 +e72) " < 1,

estimate (L0.8) follows from Young’s inequality, see Folland [I1] with C' = 1.
As in Lemma [E0.T5 we see that e ¢ f, Z;e=¢ f, Z,e £ f € S'(C"), for € > 0,
for f € S'(C™), and the following equalities hold:

Zie Cf =e*e 7 f, ZieFf=e*e kL f, (4.0.12)

hence the estimate ([L09) follows from the estimate (L0.8). To prove (L0,

enough to prove
1Se™ Fllzreny < Cell fllzriemy

for any monomial S in (Zy,..., Zn, Zy, ..., 2Zy) of degree at most m. In view of
([A0.6) and equation (1.3.10) in Thangavelu [33], we have

Se~“f=S(f x K) = f x SK..

Since K, € S(C"), SK, € L'(C"), hence [EXLIN) follows by Young’s inequality.
To prove the convergence in WZ” P(C™), we first observe that for f € L2,
e “f — fin L*(C") as € — 0. This follows from the identity

€7 = FlEaeny = D2 11— e IR P ffaen
k=0
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by an application of the dominated convergence theorem applied to the sum.
First we consider the simple case m = 0. In view of the uniform estimate
([L0.8), enough to prove the convergence on a dense set in LF. For 2 < p < oo,
B

writing % = g + % = 5 and an application of Holder’s inequality using the

estimate (L0.8), we see that

le™“F = Fllriomy < Nle™f = Fllfaemlle™“F = Fllion
< e f = FllTaom @l i)™

which goes to zero as ¢ — 0, for f € L> N L>°(C"). Similarly we can prove
convergence in LP(C") for 1 < p < 2.
For m # 0, we need to show S(e=“f — f) — 0 in L?(C") as ¢ — 0. But in

view of ([4.0.12)), we have

S(Z, Z)(e*d:f) = 5(626,6726) e*d:(g(Z, Z)f).

Hence applying the previous argument to the LP function g = g(Z, Z)f, and
observing that S(e, e2) — 1, the result follows.







Chapter 5
A local existence result

In this chapter we prove the local well posedness of the initial value problem

[LO0I3), COTd):

i0pu(z,t) — Lu(z,t) = G(z,u), 2eC" teR
u(z,to) = f(2).

in the first order Sobolev space W12(C"). The differential operators L; and M,
are the natural ones adaptable to the power type nonlinearity G(u) = |u|*u and
the generality that we consider here. Moreover we have the embedding theorem
(Lemma [L0.9) and the operators L;, M; commute with e*!=%)% and fti e it=s)L
see Lemma [A.0.10 Theorem [(.0.23 and Theorem are main results of this

chapter, see [24]. Now we prove some auxilliary estimates.

Lemma 5.0.18 Let f € W'*(C") and to € R. Then for every bounded in-
terval I and every admissible pair (q1,p1), t — e "¢"0Lf ¢ C(R, W2(C")) N

L%C(R, I;[/lvpl(C")) and the following estimates hold :
H€_i(t_t0)£f”LDO<R7W1,2(Cn)) = Hf”WLQ(C") (501)
I (o) < Clllnzen (50.2)

where the constant C' is independent of f and tq.

i(t—to)L

Proof. Since both L; and M; commute with the isometry e~ , we have

SemiE f — TG S0 | 1oy = S]] za(e

33
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for every t € R with S = L;, or M;, 7 = 1,2,...,n from which (Z.0.1) follows.
Estimate (5.0.2) follows from the Strichartz type estimate (B.0.2) for e—*(—t0)~

using the above commutativity.

Lemma 5.0.19 Let I be a bounded interval and (q,p) an admissible pair with
p=2+aand g > 2. Let G be as in (LOIH), (LII0), o € [0,-%) and
w,v € L®(I,W"(C"). Then u,v € LI(I,LP(C")) and the following estimate
holds

q

L
|G (2, u) — G(27U>HLQ/(I,L1"((C”)) < CHJ 9w [ju— UHL‘Z(I,LP(C”))

(g + 105y 1y ) (503

Proof. Since [ is a bounded interval, in view of embedding theorem (Lemma

E09), u,v € LI(I, LP(C")). By estimate (LOIR),

z% =3+ %, Holder’s inequality
in the z-variable and Sobolev embedding theorem (Lemma[£0.9)), we observe that

G0 = Gl o)y < Cllle = wl(ul® + 012 e
< Cll(w=0)( oy ([ullfoeny + 0 Teny) (5.0.4)
< COll(uw—=v) (- )llzreny (Jul )% + o )lI5:)
< Cll(u—=v)(,)[[prcn) (Hunzw(z,ﬁ/lﬂ) + ||v||zoo(IW1,2)>

where t € I. Now by taking L¢ norm in the t-variable on the interval I in the

above inequality, we get the required estimate (G.0.3).

Proposition 5.0.20 Let to € R and I an open interval containing to. Let G

be as in (LO15), (LIIB), o € [0,-257) and (q,p) an admissible pair with p =
a+2,q>2 Ifue Ly (I, Wwh2(C") N Ly (1, Whr(C)), then G(z,u(z,t)) €
L‘;/OC(I, W) and fti e =9LG (2, u(z, 8))ds € C(I, W'?). Moreover, for every

bounded interval J with J C I, to € J and every admissible pair (q1,p1), the

following inequalities hold:

q—q’ a
”SG(Zau(zat))HLQ’(J,LP'((C”)) < CY|‘]| aa! ||u||L°°(J,V~V172((C”)) (505)
X ([Jul| La(s,rcnyy + [1Sull Las,Lrcny))
q—q’ a
1G(z ulz, ) o ey < ClIT O [l Fo g2 (cny) (5.0.6)

X HUHLq(J,WIm(Cn))
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a—q’

< O|J|

/t e UILG (2, u(z, 5))ds (5.0.7)

to

~ HuH%OO(J7W1,2)
L1 (J,WLP1(Cn))

X HUHLq(J,WIm(Cn))

where S = Id, L;, M; (1 < j <n) and the constant C is independent of u and t,.
Proof. To prove the inequality (5:0.0), we first observe that

Lyl el = (e, ful) Liu+ u @uts) (3 Jul) R (iLju)

m
+ w(0u,9) (2, y, |ul) (5.0.8)
MGy fulyul = (g, ful) My + u (D) . v, fu) R (%Mju)
+ u(0y,¥)(z, y, [ul). (5.0.9)

Thus we see that for S = L; and M;, |SG| satisfies an inequality of the form
[SGI < [, y, [ul) Sul + [ (x, y, u]) Sul + [da(z,y, [ul)ul — (5.0.10)

where ¥y (z,y, [u]) = ud, ¥ and Uo(z,y, |ul) = udy;9 or ud,; 1 depending on
S = L; or M;. Moreover, by assumption (LII6) on v, we have |¢;(z,y, [u])] <
Clul®, i = 1,2. Therefore

1SG| < Clul*(|u] + |Su]) (5.0.11)

for S =1d,L;, M;;1 < j < n. Since % + quq/ = 1, an application of the Holder’s
inequality in the t-variable shows that for ¢ > 2

”SG<27u('Z7t))”[,q’(];[,p’((cn)) < ‘J| q_q’ HSG(Z’,U(Z,f,‘))HLq(J;Lp/((Cn))
ClIFw [[[ul*(Jul + [Sul)l| sz - (5.0.12)

IN

A further application of Holder’s inequality in the z-variable, using % + O‘Tpl =1
and Lemma [4.0.9, we see that for a.e. t € J

el Cfuul + [Sul)l[zoremy - < Nl O Togeny (lul Dllzeeny + (156l )l zeen))
< Clluls Oleen Nul Ollzeen) + [15ul Dl Lrcn)
< Cllullze gyrey (Ml Dllee + [Sul B)llz). (5.0.13)
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Now taking L? norm with respect to the t-variable on both sides, and substituting
in the RHS of inequality (L.0.12]) gives the estimate (5.0.5).

Estimate (5.0.6) follows from the estimate (5.0.0). Estimate (L.0.7) follows
from Strichartz estimates (Theorem B.0.7) and the estimate (E0.06). The fact
that JZ) e~ =9LG (2, u(z,8)) ds € C(I,W"?) follows from Lemma and
G(z,u) € LY

loc (1, lep/). Hence we have proved the Proposition.

Equivalence of IVP and integral equation

In this section we will show the equivalence of the differential equations (LOI3)),

(COT4) and the integral equation (LO.20).

Lemma 5.0.21 Let I be an open interval containing to and G as in (LII3),
(I01d). Let o € [0, %] forn >2 and a € [0,00) forn=1. Let u € X, where

X ={ue C(I, L*(C") : G(z,ulz,1)) € LT (I,17(C"))}

for some admissible pair (q1,p1). Then u satisfies the nonlinear Schrodinger equa-
tion (LII3), with initial data (1.0.13)) if and only if u satisfies the integral equa-
tion (L20).

Proof. First observe that the following equalities

g(e“”@‘:f) = —iLe 0Ly (5.0.14)
a t ) ' t )
5/ e LG (2, 8)ds = —iﬁ/ e UDLG (2, 5)ds + G(z, 1) (5.0.15)
t to to

are valid in the distribution sense for f € L?*(C"), G € Li]éc(l, LPi(C™)). Using
these we now show the equivalence of the initial value problem (L.0.13]), (L.0.14)
and the integral equations (LLO.20).

If u satisfies (LO.20) then using (B.0.I14) and (B.0.I5), we conclude that u

satisfies (LOI3) and (LO.I4).
On the otherhand, if u satisfies (LO.I3) and (LO.I4) then the function v given

by

¢
v(z,t) = u(z,t) — e 0L +i/ e ILG (2, 5)ds,

to
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satisfies

i0pw(z,t) — Lo(z,t) =0,
v(z,t9) = 0.

In view of Theorem B.0.7 and given hypothesis, we have v € C'(I, L?>(C")). There-
fore iL7 0w (z,t) — v(z,t) = 0 and L7'0w(z,t) € C(I, L*(C")). Now for each
p,v € (Zso)", and ¢ € CX(I), we observe that

(L70w( 1), @) = 2] +n)" (Q(,t),P,,) € C(I) and
<i£’18tv(~,t), <I>W,¢> = (2| +n)? <% (W, 1), @), q§> )

Therefore we take inner product of the equation i£™*d;v(z,t) — v(z,t) = 0 with

®,,, and observe that

(L Ow(-,t) —v(-,1),®,,) = 0

I+ ) 0, D) — (00, D) = O
%(ei@”'”‘)t(v(-,t) P >) = 0.

) X v

Since t — GV (y(. ¢), @, ,) is continuous and its distributional derivative is

zero, this function must be constant. This shows that
(0(-,1),®,,,) = o1 2lv]+n) (t—to) (W(-t0), @) =0

for every u,v € (Z>g)". Therefore v(-,t) = 0 in L?(C") for each ¢t € I and hence

u satisfies (LO20).

Now we prove (.0.14) and (L.OIH). Let ¢ € C° (C™ x I). Since [ is an open
interval, supp ¢ C A x B, for some compact set A C C" and some compact
interval B C I. Clearly,

g(e—i(t—to)ﬁé) _ e—i(t—to)ﬁgé o e—i(t—to)ﬁicqg'

815 at

Also since ¢(z,-) has compact support in I for each z, [, %(e‘i<t—t0)£¢)dt =0,

hence
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/ e =t0L 96 dt = / e L Lh dt =i / elt=t)LLe dt.  (5.0.16)

1 1 1

Using this and the pairing (f, p) = [ f@, we see that
[ et gat s = (e e Do) = (fewido)
CrxI O O O
— <f’ _,L'ei(t—to)££¢> — <Z~£6—i(t—to)ﬁf’ ¢> )

This proves (0.0.I4) in the distribution sense.

To prove (L.0.IH), choose a sequence {G,,} in C>° (A x B) such that G, — G
in L% (B, LP1(A)). Note that G,,, LG,, € L*(A x B) hence,

1 . . A
—i(t+h—s)L _ _—i(t—s)L — —i(t—s)L
}lllirtl) . e e | Gu(z, s) iLe Gm(z,s)

and lim e LG, (2,5) = Ghn(2,t) where both the limits are taken in L?*(C")
s5—

sense. Thus as an L?*(C") valued integral on I, we have

o [t
—/ e LG, (2, 5)ds
8t tO
1 t+h ] t )
= lim— (/ e =L (2, s)ds—/ e LG, (2, s)ds)
h—0h to

t+h )
— lim= / —z (t+h—s)L —e Z(t_S)L)Gm<Z, S)dS

h—0h
—z(t s)L
+i111£(1)h Gm(z,s)ds
¢
= —iﬁ/ e U=IEG (2, 8)ds + (2, 1). (5.0.17)
to

t t

Observe that / e IEG (2, 5)ds — | e TIEG (2, 8)ds in L9 (B; LP(A))
to to

as m — oo. This follows from Strichartz estimates (Theorem B0, since B is a

bounded interval. Thus using (0.0.17)), we see that

b 0 b 0
—i(t—s)L _ . —i(t—s)L
</t0 e G(z, s)ds, —at¢> 7711_{%0 </0 e Gm(z, s)ds, 8tgz5>
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<—g /Ot e’i(t’s)ﬁGm(z, s)ds, ¢>
= lim <i£ /t e’i(t’s)ﬁGm(z, s)ds — Gm(z,t),¢>
0
= lim </ e LG (2, 5)ds, —i£¢> — (G(z,t), 9)
0
= — </ e ILG 2, 5)ds,i£¢> — (G(z,t), ).

0

This shows that (B.0.I5]) holds in the distribution sense.

Local existence

In this section we prove local existence of solutions in the first order Sobolev
space W1H2(C™). We follow Kato’s approach [I6] using Strichartz estimates. The
key step is to identify some complete metric space that lie in L>®((ty — T, to +
T); Wh2(C™)), for a suitable T, where the operator H given by (LO2I) is a
contraction. We proceed as follows:

For given positive numbers 7" and M, consider the set £ = Er ) given by

<M,
<M

”u”Loo([Tﬁ/lﬂ)

E={duer® (IT; W1’2> N LY (IT, W“’)

ull o 1 1.0

where I = (to — Tty + T'). Introduce a metric on E, by setting
d(u, U) = ||’LL — UHLoo([T,LQ((Cn)) —+ ||’LL — UHLq(]T’Lp((Cn)).

Proposition 5.0.22 (FE,d) is a complete metric space.

Proof. Let {u,} be a Cauchy sequence in (E,d). Then {u,} be a Cauchy
sequence in L> (I, L*(C")) and L4 (I7, L*(C™)). Since these spaces are complete
(see section 8.18.1 in [I0]), there exists u € L> (Iy, L*(C™))N L% (Ip, LP(C™)) and
Uy, — w in L (Ip, L*(C™)) and also in L4 (I, LP(C")).

We need to show that u € L®(Ip; W 2(C")) N LI(Ip; WP(C™)) with

max{||u||L°°(IT,W172((Cn))’ ||U||Lq(1T,W1»P(<Cn))} < M.

Let S =1d, L; or M; with 1 < j < mn and ¢ € C®(C" x Ir). Then for fixed
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t € Iy, using the pairing (, ), in the z-variable, we see that

[(u(, 1), S"p( )] < [{(w = um) (- 8), S*o( ) + [(Sum (-, ), (-5 1)
< ulst) = wm (s Dllzeien an 1570 ¢ Ol o o az
+ [Stum (s Ol o an 1 C Ol L 0 az)-

Integrating with respect to ¢ and applying the Hélder’s inequality in the ¢-variable,
this yields

[(Su, @)zt < Nlu—tim| arr,Lo(cny) ”S*SOHLC/(IT,LP’ @yt [Stml|La(rz,0(cn)) ”(AOHL‘!'(IT,LP/)'

Since wu,, — u € LY(Ir, LP(C™)), letting m — oo, we get
(S, @)l < o infl| St ooy ey s 1,10
Taking supremum over all ¢ € C2°(C" x Ir) with ||¢[| o (7, 10 (cny) < 1, this gives
1Swll arrszey < Hminf[LSwm, | agrr, Loen)- (5.0.18)

Therefore
||u||Lq(IT;V~V1,p) < héri}géf”um||Lq([T7W1,p((Cn)) < M.

To get estimate for the pair (0o, 2), take ¢ € C°(C"), and by the same arguments

as before

(S 1), )] < liminf St (-, £) 22 el e

for almost every ¢t € Ip. Taking supremum over all ¢ € C°(C") with |||z <1

this gives
S, H)llz2(en) < Hm ]| Seu| e gy 2o (5.0.19)
Taking the essential supremum over ¢ € I, we get
1Sl oo r7:22) < T inf[| Stugn| Lo (17, £2(cm))-

Therefore

||U||Loo(1T;W1,2) < linrgiogf||um||L<><>(IT,V~V172(C")) < M.
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Now we prove the following theorem in which we give the existence of soultion of

the initial value problem (LO.I3), (LO.I4).

Theorem 5.0.23 (Local existence) Assume that G is as in (L0T14), (I0.10)
with o € [0, -%7) and u(z,ty) = f(z) € WYA(C"). Then there exist a number
T = T(|luol|) such that the initial value problem (L0.13), (I.0.14) has a unique
solution u € C([ty — T, to + T); WH2(C™) N LI((ty — T, to + T), W'P(C")), where

(q,p) be an admissible pair with p =2 + o, q > 2.

Proof. In view of Lemma (E.0.2T] we show existence of solution by showing that
operator H given by ([L0.21)) has fixed point in the complete metric space F for
suitable T > 0 and M > 0. Let v € E. In view of equation (LO2T)) and from
estimates in Lemma [5.0.18 and Proposition B.0.20, we see that

maX{HHu”Loo(]T,Wlﬂ)a ||Hu||Lq(]T,W1,p)}

9—q

< C|fllgre + CT e ”u”%oo([T;VVlﬂ)”u”Lq(IT,VVLP(C"))
< C|lfllre + C T M, (5.0.20)

For u,v € E, using Strichartz estimate ([B.0.2) and Lemma (5.0.19), we get

d(Hu, Hv) = |Hu — Hollpeo(rpr2) + | Hu — Hollpar, 1)
< ClG(z,u) — G(z, v)”Lq’(]T,Lp’)
< CTw (el oo (1 girn2) + 100 e (1 iy Ml = Vo oy
< OT'@ M®d(u,v). (5.0.21)
Choose
1 if f=0
M= : / (5.0.22)
200 fllgroeny Hf#0
and
min{r, (20) -7 if f=0
I= {(11(L ) q>¢J' }—oz 4, (5.0.23)
min{r, (20) N laony s S #0

where C' is the same constant that appears in the inequalities (50.20), (50.2T))
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and is independent of T', see Remark [3.0.8

For these choices of M and T, operator H maps E to E and also is a contac-
tion on E. Therefore H has unique fixed point in E. From Lemma and
Proposition B020, we conclude that w € C(Ip, WH(C")) N La (Ip, W (C™))
for every admissible pair (¢i,p1). In view of Lemma [5.0.2T] and estimate L.0.6, u
is solution of the initial value problem (LO.I3), (LO.14).

Blowup alternative, uniqueness and stability

In Theorem [(£.0.26] we will prove blowup alternative, uniqueness and stability. We

first prove the following two Propositions which are useful in proving Theorem

.0.26

Proposition 5.0.24 Let ® be a continuous complex valued function on C such
that |®(w)| < Clw|® for 0 < a < 2. Let a,b € R. Suppose {u,,} be a sequence
in L9 <(a, b), lep((C")) N L>®((a,b), WH2(C")) with p =2+ «, q > 2, such that

:}é}é ||um||Loo((a7b),V~V1,2((Cn)) < M < oo.

If Uy, — u in L9((a,b), LP(C™)) and u € LI((a,b), W) 0 L>®((a,b), W'?) then
[®(uy) — ®(u)]Su — 0 in LY ((a,b), LP(C™), for S =1d,L;, M;;1 < j <n.

Proof. Since u,, — u in L9((a,b), LP(C")), we can extract a subsequence still
denoted by wu; such that
1

ltrr = k]| oy reny < o

for all & > 1 and wu(z,t) — u(z,t) a.e. (z,t), see Theorem 4.9 in Brezis [3].
Hence by continuity of @,

[@(ug) — P(u)]Su— 0 for a.e. (z,t) € C" x (a,b). (5.0.24)

We establish the norm convergence by appealing to a dominated convergence
argument in the z and ¢ variables successively.

Consider the function H(z,t) = > 72| lugs1(2,t) — uk(z,t)|. Clearly H €
L ((a,b), LP(C™)), since the above series converges absolutely in that space. Also
for I > k, |(w — ug)(z,t)| < |wp — w—q| + -+ + |ugs1 — ug| < H(z,t) hence
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up — u| < H. This leads to the pointwise almost everywhere inequality
(2, 8)] < Ju(z, )] + H(z,t) = ().

Hence
| [@(ur) — ()] Su(z, O < [o* + [u]*]Su(z, 1)

Since u,v € L7((a,b), L’(C")) and p = 2 + «, using Holder’s inequality with
p +°‘p =1, we get

|(v™ + |u|®)Su(z,t)[P'dz (5.0.25)
C?’L

< (oD g+ DS IS, 8) [
Thus using dominated convergence theorem in the z-variable, we see that

@ (ur) — S(w)] Sul-, )| L ey = 0 (5.0.26)

as k — oo, for a.e. t.

Again, in view of Lemma [£.0.9] and Holder’s inequality as above, we get

I[®(ur) = P(u)] Sul D)Ly cn)

C (00 10y + 1812y ) 150 B2
< OO + e o aeny) IS0 Oll sy

IN

Since ||Su(:,t)||recy € L7 ((a,b)) and ¢ > 2, an application of the Holder’s

inequality in the t-variable shows that

q—q’ /
/ [Suf:, HLp cr) dt <[b—a] < ”SU<'7t)H%fl((a,b),LP((C”))'

Hence a further application of dominated convergence theorem in the ¢-variable
shows that || (®(uy) — P(u)) Sull e (4p),0) — 0, as k — oc.

Thus we have shown that [®(u,,, ) — ®(u)] Su — 0in L7 ((a, b), L” (C")) when-
ever u,, — u in L9((a,b), L*(C")). But the above arguments are also valid if we
had started with any subsequence of wu,,. It follows that any subsequence of
[®(ty,) — ®(u)] Su has a subsequence that converges to 0 in L ((a,b), LP (C")).

From this we conclude that the original sequence [®(u,,) — ®(u)] Su converges to
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zero in L ((a,b), L” (C™)), hence the Proposition.

Proposition 5.0.25 Let {f,,}m>1 be a sequence in WY(C") such that f,, — f
in WY2(C") as m — oco. Let un, and u be the solutions corresponding to the
nitial data f,, and f respectively, at time t = to. Then there exists T, depending
on || e such that |[(wy — w) (-, ) |lyir2cny — O for each t € [to — 7,0 + 7] and
||t — uHqu([tofT,tOJﬁLWl,pl(Cn)) — 0 as m — oo for every admissible pair (qi,p1)-

Moreover [|G(z,um(2,t)) — G(z,u(z, )| 1’ (197,101,771 4 (cnyy —> O as m — 00,

Proof. Since || fullyr2cny = 1f ey, by G022), (B0.23) and by taking m
large if necessary, we can assume that solutions w,, are defined on [ty — 7, ¢y + 7]

for 7 < T'. Setting G,,(2,t) = G(z,upm(z, 1)), we have

(tm = u)(2,t) = €O (fr — f)(2) — i / e TIEG — G) (2, 5)ds

to

forallt € I, = [to — 7, to + 7]
First we consider the case f = 0. Since H(0) = 0 and the fixed point of H in

E is unique, in this case the solution © = 0. Thus by Lemma [5.0.I8, Proposition
£.0.201 and Strichartz estimates (Theorem B.0.7)), we see that

a=q" o
[l Lo, ey < Cllfmlline +CT 9 umllTe ;1 lltmll o, iy (5.0.27)

Note that [[tm/| oo (s, virr2y < M. My is given by the following

M 1 %f fn =0
20”me@-1,2 lf fm 7A O

and || fimllyi12 = || fllir2 = 0, therefore we have M,, < 1 for large m. Now we
choose 7 sufficiently small so that Cria < $ and from ([G0.27) we see that

etonll oz, iy < 2C funllyirrz = 0 as m — oo, (5.0.28)

Therefore by estimate (G.0.6])

/

a=d
”Gm”Lq’(IT,VVl»P’) <Ot o ||um||%oo(1ﬁv”v1,2)”um”Lq(IT,VVl»P) —0
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as m — oo and by Strichartz estimates

[l or 1, 000y < CllFmllvirse + CllGmll L1, sy = 0

as m — oo for every admissible pair (qq,p1)-

Now we consider the case f # 0. We choose m sufficiently large such that
1 = Flira < [ fllgre. Therefore we have || fullirz < 20fllyrz and M, =
2C|| fullyre < 2M = 4C| f||ji12- By Lemma (019 equation (5.0.22), Lemma
B.0.I8 Proposition £.0.20l and the fact that M,, < 2M we get

g

=4\ e
“ ”.f”WlQHum — || La(r,,Lr(cry) (5.0.29)

|G = Gllpw g, v cny < CT

/
9—4q
@\ llm = wllpag, ooemyy.

[wm = ullzogr, poenyy < Cllfm = fllez +C7

Now we choose 7 small so that Cr a0 (¥l < %, we see that

%/1,2
Hum — uHLq(IT,LP((C”)) S QCHfm — f”L2((Cn) — 0 (5030)

as m — oo. From estimate £.0.29, we see that |G, — G||Lq/(IT7Lp/(Cn)) — 0 as
m — oo and from Strichartz estimates ||, — w||La (1, Lr1(cny) — 0 as m — oo for
every admissible pair (g1, p1).

For S = L;, M; (1 < j < n) and by using (0.0.8), (£.0.9) with the notation
U = U (2, |um(2,1)]), we have

S<Gm - G) = wms(um - u) + (wm - WSU + (@wm)(um - u)

+ (aﬂpm - ﬂp)u + (82n+1wm)um%(|z—m|5<um — u)) (5.0.31)

+ O U R S) = (Do) R (- S)

|t Jul

where 0; = &Cj for S =L; and 0; = 8yj for S=M;, 1 <j<n.
Using the assumption (LO.I6) on ¢, Lemma 0.9, and the fact that M, <
2M, similar computations as in Proposition [£.0.200 shows that

-
[0S (U — u)”m’([ﬁm’(cn)) <Ot w Hf”vi/lz((cn)HS(um - u)HLq(IT,L"(C”))

/
4—aq
W\ FGellwm = ull L, oem)

105%m) (o = W)l (1, 1t oy < CT
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Um

||(82n+1¢m)um%(m5(um - u))HL‘I'(IT,Li’/(C”))

q_ql
@ || fl52 1S (Um — )| Loz, Lo cny)-

<Cr

Since [|tup, — u||racr, r@cnyy — 0, by second inequality in the above estimates,
(0jm) (Um — u) — 0 as m — oo. Now G is C', so in view of the condition
(LOI6) on ¢ and Proposition 5.0.24] the sequences (¢, — ) Su, , (0j1m — 0;1)u
and (841pm)um§)?(%5u) — (641/1)U§R(%Su) converges to zero in L7 (1., LP' (C"))

as m — o0o. Using these observations and from (5.0.31]), we get

/
9—4q

[15(G — G)HL‘I/(IT,LP/) < Ot | I 1S (wm — Wl Lagr, Locny) + am

q—

q/ a
|G — GHLQ/(IT,VVLP') < Ot || [l llum — uHLq(IT,WLP(C”)) + am (5.0.32)

where a,, — 0 as m — oo and S = L;, M;; 1 < j < n. By Lemma B.0.I§ and
estimate (0.0.32)), we see that

q—q,
[um = ullpacr, ey < Cllfm = Flline + O | f[frellum = ll g, sy + am.

Now choose 7 sufficiently small so that

]

'\ cla
qq ”fHVVL? <

Cr

N —

and we see that [[uy, — ull o jiney < 2C|fo = fllgne + 20, — 0 as m — oo.
Now from (B.0.32), [|Gyn — Gllpe s, sinwy — 0 as m — oo and from Strichartz
estimates [|wn, — ul|pa (7, yi1ey — 0 as m — oo for every admissible pair (¢1,p1).
Since u,,, u € C(I,, W"2(C™)) for each m, therefore ||(ty, —u)(-, )]sz < |[tim —
Ul ooz, yir12) for each ¢ € I,. Since (00, 2) is an admissible pair, therefore || (u,, —

u)(+,t)||ji1.2 — 0 as m — oo for each t € I,. Hence the proposition.

Theorem 5.0.26 Let u(-,ty) = f € WH(C"), a € [0,-%) and G be as in

(L0.13), (L01d). Then the initial value problem (L0.13), (1.0.13) has unique
mazimal solution v € C((T,, T*), W1?(C")) N L% ((T*,T*), Wl’pl((C")>, where

loc

to € (T, T*) and (g1, p1) be an arbitrary admissible pair. Fizp = 2+«. Moreover
the following properties hold:

(i) (Uniqueness) Solution is unique in C((T,, T*), WH?) N Ly, ((T*, T*), W17p>
for every admissible pair (q1,p) with ¢ > 2.
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(ii) (Blowup alternative) If T* < oo (respectively, T, > —00), then ||u(-,t)]| 1.2
— 00 as t — T* (respectively, t — T.).

(iii) (Stability) If f; — f in WY3(C"), then u;(-,t) — u(-,t) in W“2(C™) for
each t € (T, T*) and also uj — w in LU (I, WIP1(C™)) for every admissible
pair (q1,p1) and every interval I with I C (T, T*), where u; is the solution

of equation (L013) with initial value u;(-,to) = f;.

Proof. By local existence (Theorem F.0.23), the solution exists in C'(I7 : W2(C"))
where I = (to — T, to + T). Since [lu(-,to + T)|i1.2cny < 00, the argument in
the proof of Theorem [5.0.23] can be carried out with tq+ 7T as the initial time, to
extend the solution to the interval [to + T, T1]. This procedure can be continued
and we can get a sequence {T,,} such that toc + 7T < Ty < Ty < --- < Tp, < - -+
as long as |[u(-, T),)[[yi1.2(cny < 00. Let T = sup T}, so that the solution extends

m
to [to, T*). In the same way we can extend the solution to the left side to the

interval (T, o] to get a solution in C'((T,,T*), W"2(C")). Now we prove blowup
alternative, uniqueness and stability.

Blowup alternative: Suppose T* < oo and  sup |lu(z, )| = My < co. If
tefto,T*)

f =0, then H(0) = 0 and since H has unique fixed point in F, u(-,t) = 0 for
t € [to—T,to + T] where T'" = min{m, (26’)7%;’}, see (0.0.23). By considering
to — T and ty + T as a initial time, by the same reasoning solution u(-,t) = 0
for t € [to — 2Tty + 2T). By continuing this process, solution u is global and
u(+,t) = 0 for t € R. This contradicts the fact that 7* < oco. Therefore f # 0.
Now we choose a sequence t; T T*. From local existence (see (L.0.23])) we can

choose T; = min{C|Ju(.,t )|| *iy ,m} such that u € C([t; — Tj,t; + Tj), W'?)

W12
— qq/
where ¢} = (20)" "7 7. Hence by assumption T; > min{C1M, ", r},

a constant independent of tj, for ¢ > 2. Thus we can choose j so large that

t; +T; > T*, which contradicts maximality of 7™. Hence if 7" < oo then

tgr%l*]\u(z,t)]\wl,g = oo. Similarly, we can show that tll)%”u(-,t)”WLQ = oo, if
T, > —o0.
Uniqueness: Suppose that u,v € C((T%,T*), W"?) N Li (T, T*),W'P) are

two solutions of the equations (LOI3]) and (L.O.I4) where (¢, p) be an admissible
pair with p = 2+ o and ¢ > 2. Then w and v will satisfy integral equation
(CO20), see Lemma B0.2T1 Since u(-,ty) = v(+,t9) = f and the solution given
by the contraction mapping is unique on [tg — T,tq + T, u(-,t) = v(-,t) for
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t€[to—T,to+T]. Let t € (T, T*) be such that u(-,#) = v(-,t). For 7 € (£,T™),

we have

u(z,7) = ei(Tt)‘:u(z,f)—i/ e LG (2, u(z, 5))ds,
t

v(z,T) = e_i(T_E)ﬁv(Zat)—i/ e TG (2, 0(z, 8))ds.
t

By Strichartz estimate ([B.0.2)) and Lemma (.0.19, we have

|u— U||Lq((£,7),m(<cn))

/ET e—it=s)L (G(u) o G(U)) (Z, S)ds

La((E7),LP(C))

q—

~ q/ o
< Ol =1 M [t =0l ga( 1.0 Locmy)

for all 7 € (I,7%) where M;, = maX{”“”Loo((E,T),WM)’||”||Loo((£,7),vi/1»2)}a see
(5:0.22). Since u,v € C ([to,T*),W1’2), we have M; . < oco. Choose T € [t,T7)

sufficiently close to £ such that C|7 — t~|% M7 = c <1, so that
0 <1 —o)lu—vlLazrLeeny <0

Hence u = v on the larger interval [, 7].

Now let 6 —sup{T : to, < T < T* : ||u — Ollpoqeo, 70y = 0F- IO < T,
then for sufficiently small € > 0, choose t = 6 —¢,7 = 6 + € and by the above
observation, ||u—v||Ls((9—co+e),r») = 0, which contradicts the definition of . Thus
we conclude that § = T, proving the uniqueness on [to, 7*). Similarly one can

show uniqueness on (7, to].

Stability: Let {f,,}m>1 be a sequence in W12(C") such that f,, — f in W2
as m — oo. Let u, and u be the solutions corresponding to the initial values
fm and f respectively. Let (7,7*) and (T ,,,T;,) be maximal intervals for the

solutions u and w,, respectively and I C (7,,7*) be a compact interval.

The key idea is to extend the stability result proved in Proposition to
the interval I by covering it with finitely many intervals obtained by successive
application of Proposition This is possible provided u,, is defined on I,
for all but finitely many m. In fact, we prove I C (T, T,;) for all but finitely

many m.
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We can assume that ¢ € I = [a,b], and give a proof by the method of
contradiction. Suppose there exist infinitely many 77, - < band let ¢ = liminf 77/, .
Then for e > 0, [to, c—¢] C [to, T}, ) for all m; sufficiently large and u,,; are defined
on [tg, c — €.

By compactness, the stability result proved in Proposition can be ex-
tended to the interval [to, c—e| by covering it with finitely many intervals obtained
by successive application of Proposition £.0.251 Hence

U, (-, ¢ = €)[ls12 = |lu(-;c =€)l as j — oo.
Also by continuity we have
lu(-, e —€)llirz = llul-, )|l as e — 0.

Thus, for any 6 > 0, we have

qq, _ 1111/

[ty (o = )l s © > 0 whenever [[u(-,c)]| 15" >4, (5.0.33)

for sufficiently small € and for all 7 > jo(e). Therefore by applying the local

existence theorem (see equation .0.23]), with ¢ — e as the initial time, without loss

_oad
of generality we can assume that u,,, extends to [ty, c—e+Cy ||t (-, c—e)||chl?2’q ]
qq/

for large j where C; = (2C)™"**37 . Now choosing e < <t 8, we have by (5.0.33)

/
99

—a-L; C
¢ = et Cullum, (e = 5" > et 0 forall j = jo(e).

i

It follows that 777 > ¢+ %5 , hence contradicts the fact that liminf 77 = c.
Similarly we can show that [a, to] C (T, to] for all but finitely many m which
completes the proof of stability.







Chapter 6

Global well posedness in VNVE’Q(C”)

In chapter Bl we proved the local well posedness of the initial value problem
(COI3), (LOId) in WH3(C"). The reason for considering this space was that
the operators L;, M; (1 < j < n) commute with e~ and fti e~(=)£ and also
compatible with the nonlinearity G. From (LO0.24), we see that W12(C") is not
the energy space and therefore energy conservation is not possible in this case.
Thus this approach does not conclude global existence.

Hence in this chapter we consider initial value in the space W,;*(C"). This
space has the advantage of being the energy space, see (L024]). For proving mass
conservation we assume that 1 is real valued. Using these conservation laws, we
can show that there is no finite time blow up in defocussing case (when v is
nonnegative) with 0 < a < —%: and also in focusing case (when 1 is nonpositive)
with 0 < a < %, hence in Theorem we conclude global existence for initial
value in the Sobolev space W,?(C™).

In this chapter we consider both subcritical 0 < o < =2 (see [25]) and critical
case a = 2= (see [29]). Theorem and Theorem are main results of

1
this chapter.

Subcritical case 0 < a < %

In this section, first we prove some auxilliary estimates.

Lemma 6.0.27 Let f € W}*(C") and ty € R. Then for every bounded in-
terval I and every admissible pair (qu,p1), t — e "¢=0Ef ¢ O(R, W*(C™) N
L% (R, WP (C™)) and the following estimates hold :

loc

o1
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I e o) = I higeny (6:0.1)
[ (o) < ClMllwgaen: (6.02)

where the constant C' is independent of f and ty.

Proof. From Lemma we see that |Zje 0L f| = |e7it=10)L 7, #| and
|Z e~ t=t)L f| = |e~ =)L 7, £|. Hence the proof follows from Theorem B.0.71

Lemma 6.0.28 Let I be a finite interval and (q,p) an admissible pair with p =
24+ a and q > 2. Let G be as in (L013), (.016) with o € [0, -2=) and u,v €

n—1

L®(I,W*(C™). Then u,v € Li(I, LP(C")) and the following estimate holds

q

Ly
|G(z,u) — G(27U>HLQ/(I,L1"((C”)) < O} 9 [lu =L 2o

x (IIuH%MLW&a) + ||“||aoo(17v”vz’2>) (6.0.3)

Proof. Since I is a finite interval, in view of embedding theorem (Lemma [L0.T4)),
n : 1 _ a1 ) o
u,v € LI, LP(C")). By estimate (LOI8), ; = > + -, Holder’s inequality in the

7p/

z-variable and Lemma [£.0.14] we observe that

IGC 1) = G 0)llpreny < Cllle = ol(jul® + [0l oy
< Cllw =)Dl (lulfoen + 01Esen)
< =)Dl (s Oz + 00,152
< Cllw=o)CDllasen (Il + 1015w

where t € I. Now by taking L¢ norm in the ¢-variable on the interval I in the

above inequality, we get the required estimate (G.0.3)).

Proposition 6.0.29 Let to € R and I an open interval containing to. Let G be
as in (LO13), (LI108) with o € [0,-25). Let (q,p) be an admissible pair with
p=a+2,q>2.

If u € Ly (1, W_EQ((C")) nLy (1, W,P(C™)), then for every bounded interval
J with J C I, tyg € J and every admissible pair (q1,p1), the following inequalities

hold:
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”SG(’Zvu<z7t))”LQ’(J,LP’((Cn)) S C‘J| qq/ HUHLOO JWlQ(C")) (604)
><||u||Lq leﬂ(cn))
1G Gz int gy S OV Nl ooy, (6:05)
X ||u||LlI(J,Wé’P((Cn))
t
—i(t—s a—a’ o
‘ /t e IEG G uz )| < Ol ey, (606)
0 Lo (J, WP

x HU”Lq(J,WgP(Cn))

for S=1d,7Z;,Z; (1 <j <n) and for some constant C independent of u and ty.
Moreover ft'; e LG (2, u(z, 8))ds € C(I, W2 (C)).

Proof. To prove the inequality (6.0.4), we first observe that

(@, = L)ty lulul = 9wy, lul) (Or, = L+ u(@a, ),
| * ue ) R 0n, = D) 601

(0, + S,y ub] = (. ul) (0, + FHu+u(0,,%)(w,y, ul)
w(Ou) e i) R (150, + Fu) . (603

Thus we see that for S; = (0., —

of the form

W) and (9, + 2, |S;G| satisfies an inequality

Tj

where ¥ (2, y, |u|) = u0, ;1) or udy, Y depending on S; = (0, — Zyj) or (9, + m])
and o (7,y, |u|) = udub. Moreover, by assumption (LILIG) on <, we have
li(z,y, [u)| < Clul®, i = 1,2. Therefore

195Gl < Clu|®(Ju] + | Sul)

for S; = 1d, (0, — %), (0, + % 22); 1 < j < n. From the observations 1(Z; — Z;) =
(0w, — 2y;) and £(Z; + Z;) = (0, + ;) (see E03), we get the inequality
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1SG| < Clu|® [|u] + | Zju| + | Z;ul] (6.0.9)

for S=1d,Z;, Z; (1 < j <n) and for some constant C.

An application of the Holder’s inequality in the z-variable, using % + an' =1
and Lemma [L0.14] we see that for a.e. t € J and S =1d, Z;, Z;

|SG(-, ul(-, )| e

IN

Clllul*(Jul + 1Zjul + 1 Zjul) || 2o

IA

Cllulzseny (lellzoen) + 1 Ziulleery + 1 Zjull o))

IA

Ol O 0l D e

VAN

C||U||aoo(J7Wé,2) [Ju(, t)”ﬁ/gvp((cn)-

Now taking L? norm with respect to the ¢-variable on both sides and an applica-
tion of the Holder’s inequality in the t-variable with % + q_qu =1, for ¢ > 2 gives
the estimate (6.0.4]).

Estimate ([60.0) follows from the estimate (6.0.4). Estimate (60.6) follows
from Strichartz estimates (Theorem B.0.7) and the estimate (6.0.3). The fact
that ftz e LG (2, u(z,8)) ds € C(I,W,?) follows from Lemma and
G(z,u) € Li{)c (1, W}:’p/). Hence the Proposition.

Proposition 6.0.30 Let I be an open interval in R, G be as in (I.0.23) with

0<ac< % Let p = 24 a and {€,,} a sequence of nonnegative real numbers

converging to 0. Then

lim G(z, e Ly (2,1)])dz = / G(z, |v(z,t)])dz.

m—0o0 Cn n

whenever v, — v in C N L>(I, LP(C")).

Proof. Since v,v,, € C'N L>(I, LP(C")), for each t € I,

|(vm — )5 )| zreny < |lvm — V|| Loz ze(cny) — 0

as m — o0o. By adding and subtracting appropriate terms we have
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)
Cn
S/

In view of (L0235 and Lemma [L0.17 an application of Holder’s inequality with
(14 «)p’ = p shows that

I

G(z, e v,]) — Gz, |e” " v])| dz

S C |6—emﬁ(vm _ U)| (|6—emﬁvm|1+a + |6—5m£v|1+a)dz
(cn
< Clle™ (v — ) [[oeny (le” " Eomll 35y + e 0l ny)

< Cll(vm = ) )l zoem (v, O ey + IO Eeny)-

Since {v,,} is a Cauchy sequence in L>(1, LP(C")), |[vn(-,t)||rr(cny is bounded
for ¢ fixed. Hence

as m — OQ.

A similar argument shows that [, (G(z, e~ Lo (2, 1)) —G(2, [v(2,t)]))dz tends

to zero as m — 00, hence the Lemma.

G(z, e “u,|) — Gz, |e v|)| dz — 0

Local wellposednes in WLI’Q((CT‘)

Theorem 6.0.31 (Local well posedness) Let f = u(-,t) € W,*(C"), and G be
as in (LII3) and (LOIB) with o € [0,-27). Then the initial value problem
(LI13), (T.013) has a unique mazimal solution u € C((Ty, T*), W;*(C")) N
Ly, ((T*,T*), Wﬁl’m), where ty € (T, T*) and (q1,p1) be an arbitrary admissible

pair. Fiz p =24 a. Moreover the following properties hold:

(i) (Uniqueness) Solution is unique in C((T., T*), W) N Ly ((T*, T*), W}:’p>
for every admissible pair (qi,p) with ¢ > 2.
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(ii) (Blowup alternative) IfT* < oo (respectively, T, > —oc), then ||u(-,t)||Wé,z —
oo ast — T* (respectively, t — T.).

(iii) (Stability) If f; — f in Wy*(C"), then u;(-,t) — u(-,t) in Wr*(C") for
eacht € (T, T*) and also u; — w in LT (I, W““((C")) for every admissible
pair (q1,p1) and every interval I with I C (T,,T*).

Proof. Proof follows by similar arguments as in Theorem [5.0.23] and Theorem
5.0.26l For completeness we give the proof.

Local existence: We establish the local existence of solution for the problem
(COI3), (COI4) by establishing the existence of solution in the space X (see
Lemma [B.027]) for the equivalent integeral equation

u(z,t) = e UL F(5) — /t e LG (2, u(z, 5))ds. (6.0.10)

to

For given positive numbers 7" and M, consider the set £ = Er ) given by

<M,
<M

4 ~ U 7 oo 51,2
||u||Lq([T7W11:7p)

where Iy = (to — Tty + T) and (q,p) be an admissible pair with p = 2 + «a and
q > 2. Then E with the metric given by

d(u,v) = |[u = || g1y, L2(cry) + || — V|| Lo,z (cny)

is a complete metric space. This can be verified by similar arguments as in
Proposition £.0.22]

First we verify that H given by (LO2I) maps Er s to Eq s for small 7. If
u € Ep ), using the estimates from Lemma and Proposition [6.0.29] in

(CO20), we see that,

max { HHuHLoo(ITWéz(Cn))’ HHUHLQ<IT7W2”’((C”))}
q

o
<C ||f||vi/év2((cn) +CT o ||u||Loo([T;V~Vé72((Cn))||u||L‘Z(IT7WZ’p((Cn))

< CHfHVVé’Q(C") + O T w M. (6.0.11)
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This quantity is at most M provided we choose

/
99

M—Cf 51,2 a—q'
T§T0:< I HW£> |

CMe

Thus for a given M > C’||f||v~[,é,z, H maps Er to Eq g for all T < T,

For u,v € E, using Strichartz estimate ([B.0.2) and the estimate (G.0.3), we
get

d(Hu, Hv) = |[Hu — Hol| (g r2(cny) + || Hu — Hol| agrp o))
< C|G(z,u) — G<zvv)”L¢J’(IT,LP'((C"))
< CTw ||U||aoo(IT7Wé»2) + ||U||aoo(1T7wgv2) lu = vl Lremy)
< OT'@ M®d(u,v) (6.0.12)
Now we choose
1 if f=0
M = . / (6.0.13)
200 fllwpzeny TS #0

and
min{r, (2C) -7} if f=0

99

min{, (20)—(1+a)rq/ Hf”vifé?;((qc”)} if f#£0

T = (6.0.14)

where C'is the same constant that appears in the inequalities (E0.11]), (6-0.12)
and is independent of T". For these choices of M and T, the operator H maps E to
E and also is a contaction on E. Therefore H has unique fixed point in £. From
Lemma and Proposition B.29, we conclude that u € C(Ip, Wy*(C")) N
L (Ip, WP (C™)) for every admissible pair (g, p1).

Now we consider inital time ty — 7" and ty + 1. By the above argument
we get open intervals containing ¢y — 7" and ¢y + 7" on which solution exists to
the initial value problem (LL0O.13)), (I.0O.14). By continuing this process, we get
maximal interval (7, 7™) containing ¢, and solution u of the initial value problem
(COI3), (COI4) lies in C((T%, T7), Wé’2((C"))ﬂLi’é)C((T*, T*), W (C™)) for every
admissible pair (g1, p1).




o8

Blowup alternative: Suppose 7" < oo and sup ||u(z,t)||Wé,z = My < 0.
te[to,T*)
Clearly f # 0, see blowup alternative in Theorem B.0.261 Now we choose a

sequence t; T 7™. From local existence we can choose

qq’

. 7aj
Ty = min{Cy[u(., ;)| g5 7}

such that u € C([t; — T}, t; + T;], Wx?) where ¢y = (2C)~ ) 7 | see (GLIH).
qq’

Hence by assumption 7, > min{ClM;aq’q’,w}, a constant independent of ¢;,

for ¢ > 2. Thus we can choose j so large that t; + 7; > T, which contradicts
maximality of 7. Hence if 7% < oo then tlil%l ||u(z,t)||Wé,2 = oo. Similarly, we
*) *
can show that lim |lu(.,t)||12 = oo, if T, > —o0.
t—Tk L

Uniqueness: Suppose that u,v € C((T,,T*), Wy*) N L ((T., T*), W) are

loc

two solutions of the equations (LOI3]) and (LOI4) where (¢, p) be an admissible
pair with p = 2+ « and ¢ > 2. Then u and v will satisfy integral equation
(L020), see Lemma B.0.2T1 Since u(-,ty) = v(-,t9) = f and the solution given
by the contraction mapping is unique on [tg — T,tq + T, u(-,t) = v(-,t) for
t€[to—T,to+T]. Let t € (T, T*) be such that u(-, ) = v(-,t). For 7 € (£, T*),

we have
u(z,7) = e TTDEY(2,1) —i/ e LG (2, u(z, 5))ds,
t
v(z7) = e T(z, 1) —i/ e TIEG (2, 0(z, 5))ds.
t

By Strichartz estimate ([B.0.2) and Lemma [6.0.28] we have

||u - U”Lq(({,T),Lp((cn))

/gr e—i(t=s)L (G(u) o G(U)) (Z, S)ds

La((E7),LP(C))

!
9—q
W M N[w =0l o) ()

< Clr -t

for all 7 € ({,T*) where M;, = maX{HuHLm((ﬂT)’Wé,z),HUHLOO((EJ)’WE,Q)}, see
[E0I3). Since u,v € C ([to,T*),WéQ), we have M;, < oco. Choose 7 € [t, T*)

/

sufficiently close to ¢ such that C|r — t~|% Mg = c <1, so that

0 < (1 —c)llu—vlpairLeeny <0
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Hence u = v on the larger interval [t, 7).

Now let 0 =sup{T : t, < T < T* : ||u — Ollpaqeo, 7,0y = 0F I 6 < T,
then for sufficiently small € > 0, choose t = 6 — ¢,7 = 6 + € and by the above
observation, ||u—v||fa(@—co+e),r) = 0, which contradicts the definition of 6. Thus
we conclude that § = T*, proving the uniqueness on [to, T*). Similarly one can

show uniqueness on (77, to).

Stability: Stability follows by similar arguments as in Theorem [(.0.26l

Blowup analysis in VVEQ(C”)

In this section we show that the maximal solution established in Theorem [6.0.31]
is actually a global one. This is established by showing that there is no finite
time blow up. We use a blow up analysis as in [12] using the conservation laws,

to conclude that there is no finite time blow up.

The mass conservation (LO.22) formally derived in chapter [ is valid for
u € C((T,, T*), W>*(C™)) but the formal computation for the energy conservation
law (ICO24) given there is valid only for u(-,t) € W2?(C") for each t in the interval
of existence. However, since the Schrodinger equation does not have regularizing
property, we can not expect u to be in the second order Sobolev space WZ’Q(C"),
for the initial data f € W,;?(C"). So we need some alternate argument, to prove

the energy conservation in W, (C").

We deduce the energy conservation for u € WEQ(C") from the equation
(CO24) valid for u(-,t) € WZ*(C") by an approximation argument, using the
stability result obtained for the maximal solution, and a regularization argument

on the nonlinearity.

Let {fm}nen be a sequence of functions in W2*(C") such that f,, — f in
W, (C™) and for € > 0, set G.(z,u) = e “G(z, e “u).

In view of estimates ([L0.8), (£0.9) in Lemma [L0.I7 and estimate (6.0.3)) in
Lemma G028, for vy, v, € L®(I,W,*(C™)), we observe that
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VAN

|Ge(z,01) = Ge(z,9) | ot 1 1) C||G(z, e Fv1) = Gz, e “va)|l ot (1.1 ()
CI| %" ||e“ (01 — vo) || pacr, Loy

x (e o5 g ypnay + e Cealay ey )

IN

IN

a—q’/
C|f| aa’ ||U1 - U2||Lq (I,Lr(Cn))

(Hvll\aw iy T vl IWIQ)) (6.0.15)

where constant C' is independent of € for € € (0, 1].

Using estimates (L0.8]), (£.0.9) in Lemma[L.0.T7and estimate (6.0.5]) in Propo-
sition B0.29, for v € L(1, W»*(C™)) N LI(I, W, P(C™)), we observe that

|Ge(z,0(z,1))| CllG(z, e *v

(Z’ t)) ”Lq’([ lep,(((:n))

ClI| " e~ o]l

Le (I, WY (Cm)

IN

) IWI )2 (cn )||6 UHLQ([’WE”’(C”))

< O ollge, w2 1Vl agr ke oy (6.0-16)

where constant C' is independent of € for € € (0, 1].

Now we consider the initial value problem

i0u(z,t) — Lu(z,t) = Ge(z,u), zeC" teR (6.0.17)
u(-,t0) = fn- (6.0.18)

Observe that, in view of the estimates (6.0.15]) and (E.0.I6), the arguments used
in the proof of Theorem [6.0.31]is valid for the above problem and we get a unique
solution u¢, € C(I,W*(C")) that satisfies the integral equation (see Lemma

B.0.2T)

t

ul (z,t) = e L f(2) — z/ e VLG (2,0l (2, 5))ds. (6.0.19)

to

Moreover since || fo|[j12 — || f]li1.2, in view of (6.0.14)), we can choose interval [
L L

containing ¢, small and assume that u;, are defined on I for every m and € > 0.

For the same reason, in view of (E.0.13]), we can also find an M such that

sup Hu;nHWLl:Q((Cn) <M (6.0.20)
tel
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valid for all 0 < e <1 and m € N.
The following convergence result is crucial in the proof of conservation of

energy in WE’Q.

Proposition 6.0.32 Let ¢ > 0 and f € W *(C"). Let u¢ and u be the solu-
tions of the equations (LOI13), and (6017) respectively with same initial value
u(-,to) = u(-,to) = f. Then there exists T > 0 such that

u—u, as €—0

in LI, LP1(C™)) for all 2 < py < 22 where [ = (to — T, to +T).

n—1

Proof. By local existence argument, the solution u and u€ exists on an interval

(to—T,to+T), where T' depends only on || f||;12, see [G.0.Id). In view of (LO2T)
and Lemma [5:0.2T] we have

u(z,t) —u(z,t) = —i/ e LG (2, 1) — G(z,u)]ds.

to

Hence by estimate ([B.0.2]), we see that
[t = ull Lo 1,01 )y < ClGe = Gll Lo (1, ey (6.0.21)

for every admissible pair (g1, p1). Since G.(z,u) = e “G(z,e u), by adding

and subtracting appropriate terms, we see that

[Ge(zu) - G(Zvu)”Lq'(I,LP'((C”)) (6.0.22)
< Gz u) - G€<z7u)HLq/(I,LP/((C”))
+ e 4G (2, e %) — Gz )]l o (1,00 (e
+ (€746 (z,u) = Gz, )l o (1,00 00y

We first estimate the last two terms. In view of Lemma [L0.17 we have

le™G (- ul, 1) = GG uC ) | eny = o)
le™ u(,t) = u(- Ollzeeny = ole)

as € — 0, for each t € I. Hence an application of the dominated convergence
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theorem in the ¢t-variable shows that as e — 0

Hefel:G(ZaU)—G<27U)HLQ/(1,LP’(CR)) = o(¢) (6.0.23)

le™“u — ul|pagr,recry = ofe). (6.0.24)

Equation (G023]) gives the required estimate for the third term in the RHS of

([E0.22). By estimate (£0.8) and estimate (6.0.3), we see that

le=“[G (2, e=“u) = G(z, )|l o (1.1 (e (6.0.25)

< T ||u] “

%oo([,ifvé?((cn))”e_ U= UHL‘I(IT,L”(‘C")) = o(e)

as € — 0 by (6.0.24), which gives the estimate for the second term on the RHS
of (6.0.22). Again estimate (G.0.15) gives the inequality

g

,q/
”GE(Z,UE) — GE(Z, u)HL‘I'(I,LP'(C")) S CT ad ]\40{”uE — U||Lq([7LP(Cn)).(6.O.26)

Now from the estimate (6.0.21]), (60.22)) and in view of (6.0.20]), (€.0.25]) and
([E0.23) we see that

/

a=q

”u6 — U”L‘II(I,LPI (cny) S CT ad MO‘HuE - 'LL”Lq(LLp((Cn)) —+ 0(6) (6027)
‘1_‘1/

||u€ — u||Lq(17Lp(<cn)) < COT ad ]WOé”’uE — u”Lq([,Lp((cn)) + 0(6). (6.0.28)

/
9=q

Let us choose T sufficiently small so that C'T" e« M* < % with constant C' in the
inequality (6.0.28). This gives

[u® = wllLaz,ocmy) = o(€)
as € — 0. From estimate ([60.27) with pair (oo, 2), we have
[[u — || poo(r,22(cnyy = o(e). (6.0.29)
Now we prove
|u® = w|| oo (1,001 (cny) = 0(€) (6.0.30)

ase—>0f0rall2§p1<%.
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Now we choose r € (p;, 2%) and X € (0,1) such that pil = 2 + 122, Thus by

n—1 r

Holders inequality with indices m and /\ipl, we get

|u® — ul| Loy cny < JJu — UHE(/\@L)HU6 - u|‘22(<0")'

Recall that by local existence theorem u,u® € C(1, Wﬁlz) and there exist M such
that

sup ||ul|pre < M,  sup||ul|jre < M
tel “ tel £

by (€0.20). Thus by Lemma E0.14] we have ||u® —ul[rcn) < ||u—u€||v~[,é,z <2M
for2<r< % Thus we see that

[0 = ull oo rzercny) < (2M)" [t — UH%%(I,L?(@))- (6.0.31)

This proves (6.0.30) in view of (G.0.29).

Our main result in this section is the following Theorem.

Theorem 6.0.33 (Global well posedness) Let f € Wy*(C") and 4 be real valued
function as in (LIIH) and (I1I6) with o € [0,-25). Then the solution u €
C((T., T%), WZ’Q(C"))HL%C ((T*, "), Wﬁl’m) of the initial value problem (LII13),
(I-0.17) as obtained in Theorem [GI.F1 satisfies the following properties:

(i) (Conservation of charge) |u(:,t)|[z2cn) = || fllr2@cny, t € (T3, T7).

(ii) (Conservation of energy) F(u(-,t)) = E(u(-,to)), t € (Ti,T*), where

E(u) = iz /Cn (|Zju(z,t)|2 + |7ju(z,t)|2) dz + - é(z, lu|)dz. (6.0.32)

(iii) (Global existence) If v > 0 is nonnegative, the solution extends to the

whole of R. For nonpositive ¥, the solution is global if 0 < a < %

Proof. The proof of conservation of charge (LO22) given in chapter [ is valid
for u € ((T%,T*),W,;*(C")) as observed before. Thus we need to prove en-
ergy conservation. Let u, (z,t) denote the solution to the regularized problem
[EOI7), EOI8). Then u, € C(I,Wy*(C™)) N L (1, WP (C™)) for every ad-
missible pair (qi,p1) and is given by the integral equation (G019, where I =
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(to— T, to +T). Since f,, € W2*(C"), therefore from equation (EI.I2) and The-
orem BT e t-10E f, e C(I,W2*(C™)). From estimate (G.016), G.(z,us,) €
L9(I, W}z’pl(C")) and from estimate (LOI0) G.(z,uS,) € L7 (I, Wz’p/(C")). From
these observations, equation (6.0.19) and equation (AL0.I2), we conclude that
us, € C(I,W2*(C")) for each m € N and € > 0 .

Since (G(z,u,), Owus,) = (G(z, e Fus,), e Cous,), taking L?(C") inner prod-

uct with dyug, on both sides of the equation (6.0.17) with u replaced by ug, and a
computation similar to the one that led to (L0.24) yields the energy conservation:

1 - € = e |? ~ —eL, €
7 2 1Z5us (05 + [ Zgus ||, + /c Gz, e~ ui,|)dz = E(fm). (6.0.33)
=1 !

By stability u¢, (-, 1) — uc(-,t) in W,;*(C") for each t € I and also u, — u in
Lo (I; WPH(C)) for every admissible pair (¢, p1) as m — oo. By Lemma E0.14]
CNL®(I, LP(C")) € CNL®(1, W) and u, — u€ in L=(I, LP(C")) as m — oco.
From estimate [L08), e~“us, — e~ “uc in L°(I, LP(C")) as m — oo.

Thus letting m — oo in (6.0.33) and using Proposition E.0.30, we get the

energy conservation for u¢:

n

B = 3 02l + [ Z o)+ A [ GeleEul)az (6034

j=1

for each € > 0. From Proposition [60.32) u¢ — w in L>(I, L?(C")) and therefore
from Proposition [6.0.30, we see that

lim [ G(z,|e “us|)dz = / G(z, |u|)dz. (6.0.35)

e—0 Ccn

n

From Proposition [6.0.32 u(-, t) — u(-,t) in L*(C") for each t € I. Therefore for

any sequence {¢,,} of positive real numbers converging to 0, we see

[Su(, )ll2eny = sup — |(Su(-, 1), 9)
$ES(C),0ll 2 <1

= sup |<U(,t),5*¢>|
$eS(C™),[|8] L2 <1
= sup lm [(u™ (-, 1), S"¢)]

BES(CM), |||l L2 <1
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= sup lim [(Su‘(-,t), )|

PES(C), ||| 2 <1 ™70

< sup  liminf [|Su (-, )| 2| (-, )| 2
PES(C), |4l 2 <1 M
m—00

for S = Zj, Zj.

Taking limit as €,, — 0 in ([6.0.34)), in view of the inequality (6.0.30) and the
identity (G.0.33]), we see that E(u(-,t)) < E(f) = E(u(-,tg)) for each t € [ =
[to—T, to+T]. This shows that E(u(-,t)) has local maximum at ¢y. This argument
can be repeated for any point in (7}, 7T*) instead of t,. Since t — F(u(-,t))
is continuous and it has local maximum at every point, therefore E(u(-,t)) is

constant on (7, 7*). This proves the energy conservation.

Global existence: Now we will prove global existence. Let us assume that
¢ is nonnegative. Then G : C" x [0,00) — [0,00) is also nonnegative and by

conservation of energy

E(f) = E(u(z,1t))
= T0Zue 0l + Bt + [ G lubez (0037

1o —
1 2 (1Z5ut 0l + [[Zju(z, 1)) - 00

j=1

v

as t — T, or t — T*. By blowup alternative and Lemma 013 we have global
existence, i.e., =T, =T = oo.

To deal with nonpositive ¥ with 0 < a < %, we first get an estimate for
Jen G(z,u(z,t))dz comparing with [|u(-, )”VVE’Q((C")' In view of (LUO.25) and the
fact that a + 2 = p, we see that

G(z,u)dz < C | |u(z,t)Pdz.

cn cn
Since p = 2 + a, aE[O )Wehave2<p<—<—Slncep<—wecan
choose py such that ;= < p; < 2. Let 6 € (0,1] such that - + =%, Then

pl = 2;”11 2’3 (1— Q)p = p(l(p An apphcatmn of Holder’s 1nequal1ty W1th indices
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6 and p1 g in the above shows that

Glz,u)dz < C | |u(z,t)|% |u(z,t)|2P dz
cr ol

po (1-0)p
< 0< |u(z,t)|2dz) ( / |u(z,t)|p1dz)
(Cn n
<l B - DG
< C”f”L?(cn [Ju(-, )H(IIZCTL (6.0.38)

In the third inequality, we use embedding theorem (Lemma [£.0.14) and fourth in-
equality follows from conservation of charge. Since 1) is nonpositive, from ([L0.23))
G is also nonpositive. Hence from E031), by Lemma 013 and in view of the
estimate ([6.0.38), we see that for all ¢t € (T, T*)

E(f) 2 Cullu( ) [ = C IS Iaqemy l1u, 8)155:%" (6.0.39)

Note that for o« < 2, (1—6)p = p(;(p 2)) < 2. Thus the above inequality shows that
||w(-, t>HW2‘:’2’ can not blowup as t — T, or t — T*. Hence by blow up alternative,

the maximal interval is R and proves the global existence.

2

Critical Case a = —=

In Theorem [6.0.3T] we proved the local well posedness in WEM(C") for subcritical
case a € [0, %) In this section we will consider critical case o = % with n > 2.
In Theorem [6.0.31], for critical case a = L the main difficulty is that we don’t
have any ¢ > 2 so that (¢,2+ =5 ) becomes an admissible pair. We overcome this

difficulty by considering admlssnble pair (7, p) and by using embedding theorem

(Lemma [L.0.14)), where

2n? B 2n
nZ—n+1’ v

p= n—1

To treat the critical case, we adopt truncation argument of Cazenave and Weissler
[7]. To prove local existence, we truncate the nonlinearity G and obtain solution
for the truncated problem. We obtain solution u for the nonlinearity G by using

Strichartz estimates and by passing to the limit.
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For m > 1, consider G,,(z,u) = (2, |u|)u : C* x C — C, where

¥(z,0) if0<o=<m
m\Z,0) = 2.0 zZ.m zZ,m :
Ym(z0) =9, (w(oé>_w(o,2 ) 4 72>) if o > m.

m

For m = 0, we define Go(z,u) = G(z,u) and ¢y(z, |u|) = (2, |u|). Note that i,
is differentiable at 0 = m with respect to o and also note that G,, will satisfy
(COIE) and (LOI6) with o« = 2 as wellas @ = 0. Form > 1, Gp(z,+) : C = C

is globally Lipschitz from mean value theorem and
|G (2, u) — G(z,0)| < Cp|lu —v] for m >1 (6.0.40)

where constant C,, depends on m € N but independent of z € C" and u,v € C.

Moreover by mean value theorem we also see that
|Gm(z,u) — G (2,0)] < C(Ju| + |v|)%|u —v| for m>0 (6.0.41)

where constant C'is independent of m € Z>(,z € C" and u,v € C.

Since [ satisfies estimate (LOI6) with o = —2=, we conclude that
|Fy(z,0)| < Conr, (6.0.42)

where F, = Y, Oz tm,y Oy, ¥m, 0050m(2,y,0) with 1 < j <n and constant C' is

independent of m.

In view of Duhamel’s formula (see, Lemmal[5.0.2T)) and in order to find solution
for given IVP (LOI3), (COI4) with initial value f € W;?(C") and nonlinearity

G, it is sufficient to find the solution of the following equation
u(z,t) = e L F(5) — z/ e ILG (2, U (2, 5) ) ds.
to

This reduces the existence theorem for the solution to the nonlinear Schrodinger

equation to a fixed point theorem for the operator with m > 0

Hon (0)(2,1) = e L F(2) — /t e UILG (2, u(z, 5))ds. (6.0.43)

to
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Some auxilliary estimates

Lemma 6.0.34 Let u,v € L (I, Wﬁl’p(C”)) for some interval I, then the fol-

lowing estimate holds for each m € Z>g

||Gm(27u) - Gm('z?v)HL”//([,LP’((Cn)) < CHU - UHLV(I,LP(C"))X
) (6.0.44)

==
(Nl o riteqemy) + 10l (ritoceny))
where the constant C' s independent of u,v,m,ty and I.

Proof. Since é = % + 25t = % + 2 %, by using Holder’s inequality in the

z-variable in (6.0.47]) and by embedding theorem (Lemma [L.0.14]), we get
||Gm(’ u(" t)) - Gm(? 'U(" t)) HLP/((C”)
< Clu= ) Dl (D, 2z gy + 1G22y )

x
n

< mm—w«wmmn@wwwmmm+w@mmymﬂ (6.0.45)

3R

for each t € I. Since % = % + %, by taking LY norm in the ¢-variable in this

inequality and then by using the Hoder’s inequality we get the desired estimate

GId).

Lemma 6.0.35 Let I be a bounded interval and v € L®(I,W*(C") N LY
(I, WxP(C™)), then following estimate holds

HGm('Zv u<zvt)) - G(Zv u<z7t))”Lv/<[ Lﬂ’((cn))

n2—n+1

< O||5 ot W) ]| n(n( 0 12(@)” || E viecm)

for all m > 1, where the constant C' is independent of m,u and I.
Proof. Note that

Gm(z,u(z,1)) = G(z,u(z, 1)) = (UXju(z0)>m (2, 1) (Ym (2, [ul) — ¥ (2, [u])).

Therefore |G,(2,u(z,t)) — G(z,u(2,1))| < CluXjuep>m(2, )] \u\% By Taking
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/ . .
LP -norm in the z-variable, we have

J
[Gm(z0) = Gz W)lpreny < CllwxiusmC Dllzeen w2
a
< Clluxiusm(, Olleen a5, (6.0.46)
Now we observe the following
It Xlu\>m("t)||zﬂ(tcn) = /C" |u|pX|u‘>m(z,t)dz
< m” D \u\%dz
(Cn
(n2—n+1)p
< R lll
n=I(C)
L, (nn(—nwrl;)p
S m b HU| 12((Cn)
B 1 (n —n-lk)l)
e Xpusm (5 )llze - < m 72070 Jlufl @i
By taking L7-norm in the t-variable we have
1 (n 7n~1r1)
luXjulsmllorrpomy < |20 m” T | D (6.0.47)

Leo(L,W2(Cm))’
By taking L”'-norm in the ¢-variable in the estimate (61.46) and using Holder’s
inequality, we get

2

|G (2, u) — G(z,u)Hm/(LL,}/) < Clluxju/smllr (.00 ||U||m([ Wie):

By using inequality (620.47) in the above inequality, we get the desired estimate.

Lemma 6.0.36 Let u € LY <I, Wﬁl’p(C”)) for some interval I. Then for each
m € Zso, Gm(z,u(z,t)) € LY (I, Wﬁl’pl(@”)) and the following estimates hold:

n41

||SGm(Z’ u(za t))HL”//(I,LP/((C")) < CHUHLV(L ”éw(cn)) (6'0'48)
n+1
n—1

Gz w2 O () S CIUIS o) (6.0.49)

where S = Id, Zj,Zj, 1 < j <n and the constant C' is independent of u and I.
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Proof. Since ¥y, Oy, ¥m, Oy, ¥m, [t|0)ythm satisfy estimate (6.0.42)), we have
1SG (2, u)| < Clul+=1(|ul + | Zju| + | Zjul)

where S = Id, Z;,Z; (1 < j < n), see estimate F.0.O. Now estimate (G.0.4%)
follows from Holder’s inequality and embedding theorem (Lemma E0.14) as we
used in the proof of Lemma[6.0.34 Estimate ([6.0.49) is a consequence of estimate

(6.0.48).
Proposition 6.0.37 Let I be a bounded interval such that ty € 1.

(i) If u,v € L7 (I, W}:”’(C")) then Hpu — Hyv € L9 (1, LPY(C™)) for every
admissible pair (q1,p1), for every m > 0 and the following estimate holds:

||’Hmu - HmUHL‘Il(I,LPl(C")) (6050)

2

n—1
< Cllu =g, <Hu|\m(1,wgﬂ(m) + |\U|lm(1wy((¢n))) :

(i) Ifu e L® (I, Wgﬂ(cn)) nL (I, ng”(@")), then Hyu—Hu € Lo (I, L (C™))

for every admissible pair (q1,p1), for everym > 1 and the following estimate

holds
HHmu — ”HuHqu (I,LP1(Cn)) (6051)
n27n+1
< C[I's m” 7o |l 200D [[ul 7 o

L°°<I W2 (cn) )

L(Lwyr(em)
where the constant C' is independent of u,v,m and tg.

Proof. Estimate (6.0.50) follows from Strichartz estimates (Theorem B.0.7) and
Lemma[6.0.34] whereas estimate (6.0.51]) follows from Theorem B.0.7 and Lemma
6.0.50)

Now we state the following Proposition, which is useful in proving continuous
dependence. Proof is similar to Proposition 5.0.24l But for completeness, we give
the proof.

Proposition 6.0.38 Let ® be a continuous complex valued function on C such
that |®(w)| < C’|w|% withn > 2. Let {u,,} be a bounded sequence in LY (I, Wﬁl’p)




71

for some interval I. If w,, — w in L7(I, L*(C")) then u € L" (I, Wé’%@”)) and
[®(uy) — ®(u)]Su — 0 in L7 (I, LF(C™)), for S =1d,Z;,Z;;1 < j < n.

Proof. First we will prove v € L7 (I, W}:”’(C”)) By a duality argument (also
see Lemma A.2.1 in [12]), we have

||Su||LW(I,LP((C")) = Sup
peCee ((C"XI),”(?”L,Y/(I’LP/ ((C"))Sl

= s ’(u, S*$)..

<Sua gb)z,t

= sup lim )<um75*¢>z,t

¢ m—r00

= sup lim <Sum7¢>z,t

) m—o0

IA

sup i inf {| S| v(1,o @ 101 v 1,007 oy

< hmrrigoréf ”SumHLw([’LP(Cn)) (6052)
for S = Zj,Zj; 1 < 5 < n. Therefore

HuHL'Y(LWZ‘:’p(C")) < lié{}o%f HumHm(z,Wﬁl’P(cn)) < 0.

Since u,, — w in LY(I, LP(C")), we can extract a subsequence still denoted by

such that .

ok
for all £ > 1 and ug(z,t) — u(z,t) a.e. Hence by continuity of &,

|p41 — UkHLW(LLP(C”)) <

[@(ug) — P(u)]Su— 0 fora.e (z,t) € C" x I. (6.0.53)

We establish the norm convergence by appealing to a dominated convergence

argument in z and ¢ variables successively.

Consider the function H(z,t) = > 07, |ugs1(2,t) — ug(z,t)]. Clearly H €
LY(I, LP(C™)). Also for | > k,

(= we) (2, 1)) < Jw = waa| + - 4w — wi| < H(z,0),

hence |uy — u| < H. This leads to the pointwise almost everywhere inequality
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(2, O] < [u(z, O] + H(z, ) = v(z,1).
Hence

| [®(uy) — ®(w)] Su(z, )" < Clomt + [u[+1])" |Su(z,8)”.  (6.0.54)

Since u,v € L7(I, LP(C™)), using Holder’s inequality with % = % + "n—El = % +
2 n—1
e iy and Lemma [£.0.174] we get
/ W [l | Su(z, )] de (6.0.55)

< (oG Ol e gy + 10O iy )% S 7o (cny-
< (HM'J)HW&W(@) + HU("t)”VVgP((Cn))THSU( )”LP((C”

for a.e. t € I. Thus in view of (6.0.54), (6.0.55]) and using dominated convergence

theorem in the z-variable, we see that
1@ (ur) = @(w)] Sul-, )| L (cny = 0 (6.0.56)
as k — oo, for a.e. t.
Again, in view of (G.054) and (E0.50), we get

I[P (ur) = D(w)] Sul-, )]l Lo (cn)
< C(H”('J)HW}P(@) + Hu('vt)”VVé’p((C”))%”SU<'7t)HL”((C”)'

Since % = %+ %, an application of the Holder’s inequality in the t-variable shows
that

I[®(ur) — ()] Sull 1 1, Lo (cny)
X
< C(||U||m(1,v~[/é’ﬂ(c”)) + ||u||m(17ﬁ/évp(<cn)))" 15Ul (1, Le(cny)-

Hence a further application of dominated convergence theorem with (E.0.50)
shows that || (®(uy) — ®(u)) Sull v (7 1) — 0, as k — occ.

Thus we have shown that [®(u,,, ) — ®(u)]Su — 0 in LY(I, L7 (C")) for
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some subsequence u,,, whenever u,, — w in LY(/, L?(C")). But the above ar-
guments are also valid if we had started with any subsequence of w,,. It fol-
lows that any subsequence of [®(u,,) — ®(u)] Su has a subsequence that con-
verges to 0 in LY (I, L” (C")). From this we conclude that the original sequence
[®(up,) — ®(u)] Su converges to zero in L7 (I, L# (C")), hence the proposition.

Local well posedness for critical case o = %

Now we state the main theorem of this section.

Theorem 6.0.39 Let f € W*(C") and G be as in (LI13) and (LI18) with
o= % andn > 2. Initial value problem (L13), (1.0.13) has mazimal solution
we OUT, T%), WLy, (T, T, WA (C)), where ty € (T,,T°) and (a1, p)

be an arbitrary admissible pair. Moreover the following properties hold:

(i) (Uniqueness) Solution is unique in C((Ty, T*), W2*(C"))NLY((T., T*), W,*).

(ii) (Blowup alternative) If T* < oo then |ul|, = oo for every

((to, 1), W)
admissible pair (¢,p) with 2 < p and % =n (% — = ). Similar conclusion

holds if T, > —oc.

1
P

(iii) (Stability) If fr — f in W;*(C") then |ju — |, (1ivhn ) = 0 05 k=

oo for every admissible pair (q1,p1) and every interval I with T C (T,,T*),

where u, Uy, are solutions corresponding to f, fr respectively.

Proof. Local existence: Since G,,(z,-) : C — C is globally Lipschitz for each
m > 1, see estimate (6.0.40), from Theorem [(.0.37] it follows that there exists a
unique global solution wu,, € C(R,W,*(C")) of the initial value problem

0w (z,t) — Lu(z,t) = Gu(z,0), zeC", teR (6.0.57)
v(te) = F. (6.0.58)

Furthermore Huy = uy, (see BOA3) and u, € L (R, W,PH(C™)) for every
admissible pair (g1, p;). We deduce from Lemma [6:0.36 and Strichartz estimates
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(Theorem B.0.7)) that

”um”Lrn( (to,to+T),W Pl((cn))

(6.0.59)

t t l:
< ”6 0) fHqu((tO to+T),W 11’1(((:71 ) + C”U‘m” zt ot T), lp((Cn)>

Let [ > m, we see that
U = U = (Hom(Um) = H (W) + (Hm(w) = H(w)) + (H(w) — Hi(w)).

From Proposition (.0.37, we deduce that

2

n—1

Hum - ulHqu ((to,to+T),LP1(C")) <C <HumHLw ((to,to+T),W 1” + Hul”Lw ((to,to+T), Wé P)) X

n—n+1
(lm = wlrniosmnan + T80 T [l T ) (6000

L ((to,to+T

We choose T' < m, therefore we can take constant C' to be independent of T
Let C' be larger than the constant C' that appear in (6059), (6.0.60), (E050),
(E0.51) and in Strichartz estimates (Theorem B.0.7) for the particular choice of
the admissible pairs (¢,p) = (v, p) and (¢1,p1) = (7, p). Fixed § small enough so
that

~ 1
C(48)71 5 (6.0.61)
We claim that if 0 < 7" < 7 is such that
||€_i(t_m)£f||Lv((t0,to+T),WZ’p(<C”)) <4 (6.0.62)
then
sup [l o (o o4y Wi (emyy S 20 (6.0.63)
fntlzg||um||Lq1((m,tﬁTWE,m(Cn)) < o0 (6.0.64)
for every admissible pair (g1, p1). Let 0,,(t) = ||um||L7((t0,to+t),Wé’p(C"))‘ From

([60.59), we see that

1

O(t) < 6+ CO, ()5
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If 0,,,(t) = 20 for some ¢ € (tg,to + T, then
26 < 5+ C(26)701 < 26

which is a contradiction. Since 6,, is a continuous function with 6,,(¢y) = 0, we
conclude that 6,,(t) < 260 for all ¢t € (ty,ty + T, which proves ([E.0.63). From

([60.59), we see that

n+1
n—1

IA

||e_i(t_t0)£f||[}11((to,t0+T)7W27p1 ((C”)) + 0(25)
< C<q17p17 n, 57 f) < o0.

Slrip |t ||Lq1 ((to,t0+T),WZ’p1 (cm))

This proves (6.0.64). By taking (q1,p1) = (7, p) in (E060), we see that

1 ey
5 (”Um - ulHL’Y((t07tO+T),Lp((cn)) +CT 2nm n(nf_l))

n—1 _ 1
< 20T 2 m »t»-0 — 0 as m — oo.

IN

[t — will 2 ((to to+7), Lo (Cr))

This shows that w,, is a Cauchy sequence in L7 ((tg,to +1'), L?(C")) and from
([E060) it is also Cauchy sequence in L9 ((ty,ty + 1), LP*(C")) for every admis-
sible pair (qi,p1). Let u be its limit, then u,, — w in L ((to,to + T), LP*(C"))
for every admissible pair (¢1,p1). By a duality argument (see (6.0.52)) and from

estimates (6.0.63), (6.0.64), we have

< 26 (6.0.65)
< . (6.0.66)

”u”LW((to,t0+T),VT/é’P((Cn))

HuHUn ((to,toth),VVé’pl (C"))

From Lemma BI36, Gyo(z, u(z,t)) € L ((to, to +T), V’“ngp/(cn)) for each m >
0. From Strichartz estimates (Theorem B0.7) and (6043) with m = 0, Hu €
L% ((tg, to + T), WP (C™)) for every admissible pair (g, p1).

From Lemma 6034 |G, (2, upm) — Gm(2, u)||m,((t07t0+T)7Lp,(Cn)> — 0 and from

Lemmal6.0.33] |G, (z,u)—G(z, u)||m/( — 0 as m — oo. Therefore

(to,to+T), L' (C™))

HGm(’Z7 U‘m) - G(Za u)”L"//((t07t0+T)7Lp/) —0 as m — OQ.
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Since u,, = Hu,, for each m > 1, from Strichartz estimates we deduce that

|t — Hu| s (10 t0+1),200 @)y = || HmUm — Huu|| Lar ((to,t0+1), 171 (C)

< ClGn(z,um) — G(27U)HL’Y'((to,tOJrT),LP/) —0

as m — 0o. Therefore for t € (to,to+ T

u=Hu=e OLF(H) — /t e LG (2, u(z, 8))ds. (6.0.67)
to

From Strichartz estimates and estimate (B066), u € C([to,to + T, W% N
L% ((to, to + T), WP (C™)) for every admissible pair (¢, p1). In view of Lemma
£.02T] w is also a solution to the initial value problem (LO.I3), (L0OI4). Sim-
ilarly solution exists on the interval [ty — T”,ty] for some 7" > 0. Now we
continue this process with initial time ¢y + 7" and ¢ty — 7’. By continuing this
process, we get maximal interval (T,,T*) and solution u € C((T,,T*),W,;*) N
Lt ((T*, T*), Wé’pl ((C”)) for every admissible pair (¢, p1).

loc

Blowup alternative: We prove blowup alternative by method of contradiction.
Let us assume that 7% < oo and u € LI((ty, T*), ") for some admissible pair
(@@“mh2<ﬁmmé:n<;—g.&me2<ﬁ<2”7zzzﬁ<2m\%

n—1"

q
choose admissible pair (g, p;) as follows

L1, 2 (1 1) 11, 21
i pon—=1\p )" ¢ @ n-1g
Let us choose s and t such that ) < s < t < T*. Since [5,G(z,u(z,t))] <

C’|u|ﬁ(|u| + | Zju| + |Zul) for S; = 1d, Z;, Z; (1 < j < n) (see estimate B.0.9),
by Lemma [L.0.14] and Holder’s inequality we see that

i

_2
T .. (6.0.68)

La((s,t),W;P)

1G (2, u(z 7)) < Cllull

.
L9 ((s,1), W) o]

Since (to, T*) is a bounded interval, so we can choose constant C' to be indepen-

dent of s and ¢, where ty < s <t < T*. Now we see that

u(z,7) = e TNy 5)(2) — i / e TG (2, 51, u(z, 1) )dsy.
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Therefore from Strichartz estimates (Theorem B.0.7) and estimate (G.0.68), we
deduce that

1

o ooy <l )l + Clll g (iravam 1l e

where constant C' is independent of s and t. Since p # 2, so ¢ < oo and u €
L1 <(t0, T*), W}:’ﬁ(C")), we choose s sufficiently close to T such that

—_

n—1
CHUHL ((s T*), 1P((Cn)) S 5

Therefore we get

Hu”m((s,t),wg’pl (cm) < 2C|uf, 5)||Wé»2-

Since RHS is independent of ¢ € (s,T*), we have u € L% <(5,T*), WP (C")).

Therefore u € L% <(t0,T*),W2”’1) and G(z,u(z,7)) € L% ((tO,T*),W’I) fol-
lows from (6.0.68). Now from Strichartz estimates and ([60.67), u € L% ((ty, T*),
W2 (C™) N C([to, T*], W, ?(C™)) for every admissible pair (g2, p2). Now by con-
sidering 7™ as a initial time and by local existence argument, we get contradiction

to maximality of T,

Uniqueness: Suppose u,v € C((T,,T*), W) N L?OC((T*,T*),WE"’) are two
solutions of the equations (LOI3) and (LO.I4). Then in view of Lemma (.0.2T]
u and v will satisfy integral equation (LO.20). From estimate with m =
0, G(z,u) € L?OC((T*,T*),WE’pI). Since u(-,tg) = v(-,tg) = f, from estimate
([E050) with m = 0 and (q1,p1) = (7, p), there exists sufficiently small 7" such
that u(-,t) = v(-,t) for t € [tg — T,to + T). Let t € (T.,T*) be such that
u(-,t) = v(-,1). For 7 € (t,T*), we have

u(zr) = e (2 0) — i / e TG (2, u(z, 5))ds,
i

v(z,7) = ei(Tt)EU(Zaf)—i/ e TIEG (2, 0(z, 5))ds.
i

By Strichartz estimate (B.0.2]) and estimate (E.0.50) with m = 0 and (g1, p1) =
(7, p), we have
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Ju — U”m((i;),m(@n)) -

/t~ "I (G — G()) (2, 5)ds

Ly ((&7),Le(C))
2

n—1
< Cllu-— U||L7((£’T),Lp) <||U||m((£,7),vi/é’ﬂ) + ||v||Lv((5,T)7Wé’p)>

for all 7 € (£, 7*). Choose T € (£, T*) sufficiently close to t such that

2

2
C (IIUHLV(@,T),WEW) + ||v||m((£,r>Wé”’)> =5

Therefore ||u — va((E’T)’LThO(Cn)) < Hu- UHLW((E,T),LP(@))- Hence u = v on the
larger interval [t, 7].

Now let § —sup{T : to, < T < T* : ||u — Ol o iyrey = 03 IO < 17,
then for sufficiently small € > 0, choose t = 6 — ¢,7 = 6 + € and by the above
observation, ||u—v||Lv((9—e,0+¢),z,) = 0, which contradicts the definition of 6. Thus
we conclude that § = T*, proving the uniqueness on [to, 7*). Similarly one can

show uniqueness on (7%, to].
Stability: We prove stability in the following two steps.
Step 1: Let fy — f in W*(C"). Then for each T > 0,

He—i(t—to)ﬁ(f . fk)”L“/(IT,Wé’p(C")) <C|f - kaWé,g(Cn) —0 as k— o©

where Iy = (to — T,ty + T). Therefore for given § > 0 in (G.0.61]), choose T'(9)
sufficiently small such that

i 0
e~ to)z:f|’m(IT7Wé,p) <3 (6.0.69)
and choose £ sufficiently large so that
it 0
||€ (t t())‘c(f - fk)||Lﬂ/([T7WLI:aP(Cn)) S CHf - fk”Wll:y?((Cn) S 5
Therefore choose ko(T") so large such that
||e_i(t_t0)£fk||L”/(IT,W2‘:”)(C")) < ) (6070)

for k > ko(T).
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Let u and uy are solutions corresponding to initial values f and f; at time
to respectively for k& > 1. In view of estimates (G.0.63) and (G.0.66), w,u will

satisfy following estimates

HUHL"/(IT,WE”J(C")) < 2 (6071)
HuHqu((t07t0+T)7WZ’p1(Cn)) < (6072)
sup ||u Sy < 20 6.0.73

k>ko(T) el o i 2 o) ( )
sup ”ak”L“(IT,Wé’pl((C")) < 0 (6074)

k>ko(T)

where (g1, p1) be any admissible pair. Now from Strichartz estimates and Lemma

6.0.34

lu = dillrrrey = [ Hu — Hadgl| (1,10
Cllf - fk”v”vé’?((cn) + C||G(z,u) — G(z, dk‘)”L’Y'(IT,LP/)
ClI.f = fellyyr2iony + Cllw = till Lo izr,zeqemy) X

2

. T
(Il 1y sty + el o)

From (6.0.61) and (6.0.65),

IA

IN

2

O (Il iy w20y + 1l (o) <5

Therefore ||u — 1| L7 (1p,00) < 2C||f — fk”VVé’Q((C") — 0 as k — oo. Since {uy}

is a bounded sequence in L7 (IT, Wﬁl’p((}”)), therefore from Lemma with
m =0, ||G(z,u(zt)) — G(z,dk(z,t))||m/(IT,Lp,((Cn)) — 0 as j — oo. Since Hu =
u, Hy, = 1y, therefore from Theorem B.0.7]

lw = @illzo rr, 200y < CILf = fillez + CllG (2 0) = Gz @) | v (17,07 cny) = 0

as k — oo for every admissible pair (qi,p1). Note that (0., — %) =1(Z; - Z;)

and (9, + %) = L(Zj+Z;). For S = (0, — %), (0, +%) and using the notation

Yy = U (2, |ug(2,t)]) (see equation (G.0.31))), we have
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S(Gy — G) = St — u) + (V) — ¥)Su+ ( ﬂb(k ) (g, — u)
+ (0% w) — 0 u + (32n+1¢(k))uk%(@5(ﬂk —u)) (6.0.75)

T (B )R S) — (Do R

|| Jul

where 9; = 0,, for S = (9,, — %) and 9; = 9,, for S = (9,, + =), 1 < j < n.

2
Using the assumption (COJ6) on ¢, Lemma 014l and by similar computations

as used in Lemma [6.0.34] and Proposition [(6.0.38] we have

Su)

[y S (@ =l L (17, 0y < CNS (@ = W) 22 (2,20 k][] (1 10y
105 (e = W)l o (1, 20y < Clltw = wllar, ooy [l E 10y
U
[[(Dan19 k))uk%(ﬁS( e WO g (17.07)

2
< C||S(t — W)l v (rp,10) || k| ZV%I W)

Since ||ty — u||£v(1p,L0(cry) — 0 and {t;} is a bounded sequence in L(Ip, WP,
therefore by second inequality in the above estimates, (0;¢u)(t, — u) — 0 as
k — oo in L7 (Ir, L (C")). Since G is C', so in view of the condition (L.IG)
on ¢ and Proposition (.0.38 the sequences (1) — ¥)Su,, (0;1x) — 0;1)u and
(82n+1¢(k))ﬁk§)%(é—’;|5u) - (82n+1w)u%(‘u|5u) converges to zero in LV (I, L") a
k — oo. Using these observations in ([6.0.75), we get
_2
15(Gwy — G)”L“/'(IT,LP') Sc”ﬁk”;@wﬁ) 15 (e — u)l| o (17 ocmy) + @

n) and ay — 0 as k — oo. Since

+ %) 1(Z; + Z;), therefore we have

G — G < Cl\ukl\“ s =l 1y i) + 026.0.76)

L (1 ) (b e
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Now from Strichartz estimates and above estimate, we have

2

[k — uHLW(IT,WZ”’) <C|fv— fHWZQ + C”ﬂk”z;éhwzp)”ﬁk - u”Lw(IT,VVé’P) + a.

(6.0.77)

Now we choose ¢ > 0 sufficiently small such that it satisfies condition (G.0.61])

and

C(20)71 <

DO | —

where constant C' is appearing in the inequality (G0.77). Note that 7' depends

on ¢ through (B.0.69). Therefore from estimates (6.0.73) and (6.0.77), we have

itk — ull oy gty < 200 fi — Fllyae +2ai = 0

as k — oo. Now from estimates (6.0.76) and (G.0.73)

G =Gl =0

LY (Ip, W)

as k — oo. From Strichartz estimates,

||ak - u”Lm(]T,VVé’Pl) < Cka - J[.HI/T/}:2 + CHG(k) - G”L’Y'(IT,VVé’p/) — 0

as k — oo for every admissible pair (g1, p1).

Step 2: Let (7.4, 1)) be the maximal interval for the solutions @ and I C
(T,, T*) be a compact interval. As discussed in Theorem [5.0.26] in order to prove
stability for interval I, it is enough to prove that 1, is defined on I, for all but

finitely many k. In fact, we prove I C (7}, T)) for all but finitely many k.

Without loss of generality, we assume that tq € I = [a,b], and give a proof by
the method of contradiction. Suppose there exist infinitely many 7)) < b and let
c = liminf T} . Then for € > 0, [to,c — €] C [to, T} ) for all k,, sufficiently large

and 1y, are defined on [ty c — €.

By compactness and step 1, the stability result proved above can be extended

to the interval [to, c — €.
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For given § > 0, choose € > 0 sufficiently small such that

e (e=NEy (.. ¢ — ) — milt=e=DEy (. o)

1

D~

”L”/((cfe,cqte), i

< Cllu e — &) = ul-, )z

IN

”efi(tf(cfe))llu(,’ c) — e*i(tfc)llu(, c) ”L“/<(c—5,c+e),V~Vé’

R}
~—

< CHe_ietEu(') C) - U(-, C)H

IA

71,2
c

—i(t—c)L

IA
SRS o,

||e U('a C) ||Lv((cfe,c+€)7wé’p)

Now we choose kq(¢€) such that following estimate holds for all & > kq
L O R [ s

< Cl|ag,, (e —€) —u(-,c— e)||v~[,é,2 < %.

Therefore [|e={t=(=Ng, (- ¢ — e)Hm((c_E’che)’Wé,p) < ¢ for all k,, > ko. Now by
local existence argument (see ([6.0.62)), wy,, is defined on (to, ¢+ €) and therefore
Ty > c+ e for all k,, > ko, hence contradicts the fact that liminf 7)) = c.

Similarly we can show that [a, ty] C (7., to] for all but finitely many & which
completes the proof of stability.




Chapter 7

Global well posedness in L*(C")

In this chapter we will prove global well posedness in L*(C") for the subcritical
case 0 < a < % However in the critical case a = %, we can prove the global well
posedness in L?(C") only for sufficiently small intial value, see Remark [.0.42
We follow method of Cazenave and Weissler [7]. Theorem and Theorem
[C.0.47] are main results of this chapter.

Subcritical Case 0 < a < %

Theorem 7.0.40 Let u(-,tg) = f € L*(C") and G be as in (I.10.13) and (L1I10)
with 0 < a < % Initial value problem (L013), (I-0-1}) has unique mazimal
solution v € C((T.,T*), L*(C")) N Ly  ((T%,T*), LP*(C")), where ty € (T.,T")
and (qa, p2) be an arbitrary admissible pair. Fizp = 2+«. Moreover the following

properties hold:

(i) (Uniqueness) Solution is unique in C((T., T*), L*(C")) N LY ((T.,T*), L?)

where g, gl 2= (1) and gy = 200 > 1

(ii) (Blowup alternative) If T* < oo (respectively, T, > —o), then
|[w|| Loz (o, 1), 2p(cny) = 00 (respectively, ||u||pe((z, to),00@cr)) = 00), where

¢ € a1, ql.

(iii) (Stability) If f; — f in L*(C"), then u; — w in L9 (I, LP*(C")) for every
interval I with T C (T, T*) and for every admissible pair (qi,p1), where u;

and u are solutions corresponding to f; and f respectively.
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(iv)(Conservation of charge and global existence) If ) is real valued, then
we have conservation of charge |u(-,t)|r2cry = || fll2@cny for every t €

(T., T*). Moreover solution is global, i.e., T, = —o0 and T* = oco.

Proof. The key point is that we prove local existence without using embedding
theorems (Lemma [£.0.9] Lemma [£.0.14)). For given positive real numbers 7" and

M with T' < 7, consider the metric space
Ery = {u e LI, LP(C")) : ||u||po(r,zecnyy < M}

with metric d(u,v) = ||u — v||Lez,Lr(cn)), Where I = (to — Tty + T). We show
existence of solution to the initail value problem (LO.I3)), (LO.I4) by showing
that operator H given by (LL0.2])) is contraction on complete metric spce Ep
for suitable 7" and M.

Let ¢; %- Since 0 < a < %,p = 2 + «, therefore 1 < ¢; < ¢ and
1 _ «
—,—q—1+

. - Let w,v € LY, LP(C")). By taking LY norm with respect to the
t-variable in the inequality (5.0.4) and using the Holder’s inequality, we get

=]

1G(z,w) = Gz, V)l iy < CUlSar gy + 10150 (1.00))

X[lu = vl[a1,20) (7.0.1)
929 (14 o a

OT ) ()| 3010y + 101 3acr.20)

XHU — UHLq(LLp). (702)

IN

From Strichartz estimates (Theorem B.0.7), above estimate and for u € Ep 5/, we

observe that

IN

[Hullpaaory < Clifllzzem + ClG Gz u(z )| e 1,00

“an 1+« o
Cllflzz@ny + CT 0 Nl Sar oo el pacr, ooy

VAN

q—

< C|fllzaen + CT - O+ ppite. (7.0.3)

From Theorem B.0.7] estimate (Z0.2) and for u,v € E, we observe that

[Hu = Hollpagreny < CllG(z,u) — G@v”)”m’([,m’)
< OT @ ) prey, — 7.0.4
1 lu —=vllrapeny-  (7.0.4)
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Choose
1 if f=0
M = ity (7.0.5)
20| fllzzemy i f#0
and
min{r, (2C (e if f=0
T = {m, (20) aq;l ! (7.0.6)

min{r, (2C) @ || f| o 7Y i £ #£0

where C'is the same constant that appears in the inequalities (Z.0.3)), (Z.0.4)) and
is independent of T'. For this choice of M and T', operator H is contaction on E.
Therefore H has unique fixed point in E. From estimate with v = 0,
G(z,u(z,t)) € LI(I,L”(C")), from Strichartz estimates v € C(I,L*(C")) N
Li(I, LP(C™)) for every admissible pair (¢,p). In view of Lemma BE.02T] u is
also a solution of the initial value problem (LO.I3), (LO.I4).

Now we consider inital time to — 7" and ty + 1. Then by the above argument,
solution u is defined on the interval [T"_q, T}] for some T 1 < to—T and T} > to+7T.
By continuing this process, we get maximal interval (7%, 7™) and solution u is de-

fined on this interval. Moreover u € C((T,,T*), L*(C™")) N L‘ljoc((T*, T*), LP(C"))

for every admissible pair (g,p). In view of estimates (ZO), (Z.0.2), (Z0.4)
uniqueness follows by similar arguments as in Theorem [5.0.26l

Stability: We prove stability in the following two steps.

Step 1: Let {fn}m>1 be a sequence in L*(C") such that f,, — f in L*(C") as
m — oo. Let u,, and u be the solutions corresponding to the initial data f,, and

f respectively, at time t = t;.

Since f,, — f in L*(C"), in view of (Z.0.6) we can choose 7 < T' sufficiently
small so that w,, are defined on I. = (ty — 7, tg + 7) for sufficiently large m. Also
note that

U —u = e CE(f — f) — i/t e I G (2, w2, 5)) = G2, u(2, 5)))ds.

to

By Theorem B.0.7 and estimate (Z.0.2),

~an (6% « (e%
[t = wlla(rr,20) < Cll frn = fllzz + C7 7 5 (M 4 M) et = ] 01,10)
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where M, is given by (Z0.5) with f replaced by f,,. Since f,, — f in L*(C"),

{M,,} is a bounded sequence. We choose 7 sufficiently small so that

q—

Cr'm (M ME) <

DO | —

for m > 1. Thus |um, — ullzer, 0y < 2C||fr — fllz2 = 0 as m — oco. From
estimate (LO2) |G (2, un) — G(z,u)| 1oz, 1) = 0 as m — oco. From Theorem
2.0.7

tm — ullzar(£,,01) < C|l fin = fllez + Cl|G(2, um) — G<zvu)HLq/(IT,L1") — 0

as m — oo for every admissible pair (qq,p1)-

Step 2: Let (7%,,, 7)) be the maximal interval for the solutions u,, and I C
(T,, T*) be a compact interval. As discussed in Theorem [5.0.26] in order to prove
stability for interval I, it is enough to prove that u,, is defined on I, for all but

finitely many m. In fact, we prove I C (T}, 1)) for all but finitely many m.

Without loss of generality, we assume that tq € I = [a, b], and give a proof by
the method of contradiction. Suppose there exist infinitely many 7 ;;j < b and let
¢ = liminf T} . Then for € >0, [to,c — €| C [to, T};,)) for all m; sufficiently large

and u,y,; are defined on [ty, c — €].

By compactness, the stability result proved in step 1 can be extended to the

interval [to, c — €]. Hence
|, (- ¢ = €)l[z2 = [Ju(-,c —€)||z2 as j — oo.
Also by continuity we have
[u(-;c = €)ll2 = flul- 0)l[r2 as e = 0.
Thus, for any 6 > 0, we have
aqay aqa)

”Umj(',c _ E)H;Q(qﬂn)(ua)) > § whenever |‘u(,7c>|‘;2(Q*QI)(l+a) > 5’ (7_0_7)

for sufficiently small € and for all j > jo(e). Therefore by applying the local
existence argument (see equation [[0.6]), with ¢ — € as the initial time, without

loss of generality we can assume that u,,, extends to [to,c — € + Clﬂumj(-,c —
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~ (e ‘ —ad, :
e)|| 2] for large j where C = (2C)" a7 Now choosing € < &L 4, we have

by (ZO.1)

@q9]

RG] C
¢ — e+ Cillum,; (- e = )| 2 > e+ ?15 for all j > jo(e).

It follows that T,;ibj >+ %5 , hence contradicts the fact that lim inf T;;Lj =c.
Similarly we can show that [a, to] C (T, to] for all but finitely many m which
completes the proof of stability.
Blowup alternative: We prove blowup alternative by method of contradiction.
Suppose T* < oo and u € Li((ty,T*), LP(C")) for some G € [q1,q]. Then by
estimates (ZO1), G(z,u) € L7 ((to,T*), L” (C")) and by Strichartz estimates
u € C([to, T*], L*(C™)) N L% ((ty, T*), LP2(C™)) for every admissible pair (qa, ps).
By taking 7™ as initial time and by local existence argument, solution exists on
the interval [to, T 4 ¢€) for some € > 0, which is a contradiction for maximality of
T*.
Conservation of charge and global existence: Let {f,,} be a sequence in
W}:’Q((C”) converging to f in L*(C"). By stability u,, — w in L>(I, L*(C"))
for every interval I with I C (T.,T*). By conservation of charge (see Theorem
B.033), [|um(-,t)|[r2@ny = || finll2@cny for each t € I. Therefore by taking limit
m — 0o, we get |[u(-,t)||z2cn) = || f||z2(cn) for each t € I. Hence |[u(-, )| r2cn) =
| fl|2cny for each t € (T, T*). From conservation of charge and local existence
argument (([CL0.1H), (C0.6)), we will get global solution, i.e., =T, = T* = oc.

Critical case a = %

Theorem 7.0.41 Let u(-,ty) = f € L*(C"), a = 2 and G be as in (LII3) and

(L0.16). Initial value problem (LO13), (I-014) has unique mazimal solution
u€ O((T.. T%), LAC) N L, (T T, P (C), where to € (T..T%) and (g1, p)
be an arbitrary admissible pair. Fiz p = 2+ a. Moreover the following properties

hold:

(i) (Uniqueness) Solution is unique in C'((T,, T*), L*(C"))NLF (T, T*), LP(C")).

(ii) (Blowup alternative) If T* < oo (respectively, T, > —o0), then

|l Lo((to, 1), Lo (cny) = 00 (respectively, ||ul|Lr((1, t0),Lr(cny) = 00).
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(iii) (Stability) If f; — f in L*(C"), then u; — u in L9 (I, LP*(C™)) for every
interval I with T C (T,, T*) and for every admissible pair (qi,p1), where u;

and u are solutions corresponding to f; and f respectively.

(iv)(Conservation of charge) If v : R" x R" x [0,00) — R is real valued,

then we have conservation of charge ||u(-,t)||z2@cry = ||f|lL2@cny for every
t € (T,,T).

Proof. First we prove local existence. For given positive real numbers 7" and ¢

with 7" < 7, consider the metric space

Ers = {u € LP(I, I (C") : ||ullo(r.oicny < 0}

2(n+1)

with metric d(u, v) = ||u—v||Lr(1,10(cny), Where I = (to—T,to+T) and p =

Since % = n(% — %), (p,p) be an admissible pair. We show existence of solution

to the initail value problem (LOI3), (IO.I4) by showing that operator H given
by (L0.2I)) is contraction on complete metric spce Er s for suitable T and 0.

Let u,v € LP(I,LP(C")). By taking L” norm with respect to the t-variable
in the inequality (.0.4) and using the Holder’s inequality, we get

1G(2,w) = Gz )l iy < CUlllTo o) + 001200, 20))
X[lu = vl|Le(r,r)- (7.0.8)

From Strichartz estimates (Theorem B.0.7), above estimate and for u,v € Erg,

we observe that

IHullporeny < Nle”™ % fllioi,oy + Cllull o, el zoer,20)
< ||€_i(t_t0)£f||LP(1,Lp) + Ot (7.0.9)

[Hu — Hol| oz roem)y < C(”u”%P(I,LP) + ”UH%P(I,LP))Hu — 0| Le(z,zo(eny)
< C6%u = v Ler,Lecry)- (7.0.10)

Choose

§=(4C) " (7.0.11)
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and T < 7 sufficiently small such that

(7.0.12)

| Sn

e ¢ Fl| oz oenyy <

where C' is the same constant that appears in the inequalities (T.0.8), (Z.0.9),
((COI0) and is independent of T". For this choice of § and T, operator H is a con-
taction on E7s. Therefore 7 has unique fixed point in E74. Since G(z,u(z,t)) €
LP'(I, LP(C™)), from Strichartz estimates v € C(I, L*(C")) N Li(I, LP(C")) for
every admissible pair (g,p). In view of Lemma [L.0.21], u is also a solution of the

initial value problem (LO.I3), (LO.I4).

By succesive application of local existence argument, solution can be extended

to maximal interval (T}, T*) and u € C((T., T*), L*(C")) ﬂL‘liOC((T*, T*), LP(C"))

for every admissible pair (¢,p). In view of (Z0.8)), (Z.0.I0) and (Z0.I1]), unique-

ness follows by similar arguments as in Theorem [(.0.26]
Stability: We prove stability in the following two steps.

Step 1: Let {fn}m>1 be a sequence in L*(C") such that f,, — f in L*(C") as
m — oo. Let u,, and u be the solutions corresponding to the initial data f,, and
f respectively, at time ¢t = to. Since f,, — f in L?*(C"), by Theorem B.0.7],

e~ L fo = F)llzotr,zoeny < Cllfin = Fllzaieny = 0

as m — oo. Choose 7 < T, then by (ZOI2), ||e "L f|l 1o, oy < 3,
e~ =)L £l ot 1o (eny) < g and u,, are defined on I, for sufficiently large m,
where I, = (to — 7,to + 7). Setting G,,(2,t) = G(z, u;n(z, 1)), we have

(g — ) (2, 1) = e EIE(F— ) (2) — z/ e =G, — G) (2, 5)ds(7.0.13)

to

for all t € I.. From estimate (T.0.8)), we see that

1G (2, um) = GGl 1y emyy < CUlullZogery + 1010 20 1w = vl Lo )

< Co%lu = vl e, ). (7.0.14)

Now from equation (ZO.I3), Theorem B.0.7 and above estimate, we have

|tum — ullzor, o@ryy < Cllfn = fllze + CO¥|thn — vl Loz, Lo (cny)-
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Note that constant C' in the second term of RHS of the above inequality is same
constant that appears in the inequality (Z0I0). Now from (ZOII), Cé* = ; and
[th —u| o r, o)) < %€ fin— fllz2 — 0 as m — co. Now from estimate (Z014)
1G(z, um) — G(2,u)|| 1w (1, 147 (cnyy — 0 as m — oo. Now from equation (Z.0.13)
and theorem B.O.7) u,, — w in L9 (I, L**(C")) for every admissible pair (g1, p1).
Since u,, u € C (I, L*(C")) for every m, therefore ||(wy —w)(-, )| 2cny < [[ttm —

|| ooz, ,2(cny) — 0 as m — oo for each t € I;.

Step 2: Let (7%, 7)) be the maximal interval for the solutions u,, and I C
(T, T*) be a compact interval. The key idea is to extend the local stability
result proved above to the interval I by covering it with finitely many intervals
obtained by successive application of the above local stability argument. This
is possible provided u,, is defined on I, for all but finitely many m. In fact, we

prove I C (T, m, 1)) for all but finitely many m.

Without loss of generality, we assume that tq € I = [a, b], and give a proof by
the method of contradiction. Suppose there exist infinitely many 7 ;;j < b and let
¢ = liminf T} . Then for € > 0, [to,c — €| C [to, T};,) for all m; sufficiently large

and u,y,; are defined on [ty, c — €].

By compactness, the stability result proved in step 1 can be extended to the

interval [to, c — €]. Hence for any interval J with |J| < 7, we have
le™" = DE (g, — ) (2, ¢ = €) || o(aian,oieryy < Ol (tm, —u)(- ¢ = €)ll2 = 0
as j — o0o. Also by continuity we have
le™ " DE (u(z, ¢ — ) — ulz, )l nizreny < Cllul e =€) —ul-e)r2 = 0
as € — 0. We also observe that

e~ =~ (e~ Loz, ¢) — ulz, ))erecry < Clle™ " u(-, ¢) —u(-,¢)||2 — 0

as € = 0. Now choose 1 > 0 sufficiently small such that

| Sn

e 2u(z, &), reny <




91

where J, = (¢ —1n,c¢+n) and ¢ is given by (ZILII). By the above observations,

we can choose € < Z sufficiently small such that

—i(t—(c—e))L

| n

|le U, (2, ¢ — €)||Lr (1,20 (cn)) <
for sufficiently large j > jo(€). Therefore by applying the local existence argument
(see equation [LO.I2), with c — € as a initial time, w,,; extends to [ty,c—e+n] for
large j. It follows that T;;j >c—e+n>c+ g, hence contradicts the fact that
liminf 77, = c.

Similarly we can show that [a, to] C (T, to] for all but finitely many m which
completes the proof of stability.

Conservation of charge follows exactly as in Theorem [Z.0.40]
Blowup alternative: We prove blowup alternative by method of contradic-
tion. Suppose T* < oo and u € LP((ty, T*), LP(C™)). Then by estimates (.0.8)),
G(z,u) € L” ((to, T*), L”(C™)) and by Strichartz estimates u € C([to, T*], L?) N
L1 ((T.,T*),LP(C™)) for every admissible pair (7,p). By taking 7* as a initial
time and by local existence argument, solution exists on the interval [to, T + ¢)

for some € > 0, which is a contradiction for maximality of 7.

Remark 7.0.42 If || f||;2(cn) is sufficiently small, then [|e= 0L f|| 1, 10y <
Cllfllzz < § where p = @ Since C' is independent of ¢, and interval
I = (to — T,to + T) provided 27 < 7, from conservation of charge and (Z.0.12)

we get global solution, i.e., =T, = T = oo in Theorem [.0.41]







Chapter 8

The case of the Laguerre operator

As discussed in chapter [T, in this chapter we consider the Laguerre case. Laguerre
operator Lg on Ry = (0,00) with g € (—1, 00) is given by,
> 28+1d 22

Lyg=——8 — —_—+ —. 8.0.1
p dx? T dx+4 ( )

The one dimensional Laguerre polynomials Lf(x) of type B > —1 are defined by

the generating function identity
> xt
S L)t = (1 -t e e < 1L
k=0

Here x > 0 and k € Zso. FEach Lf is a polynomial of degree k£ and explicitly
given by

ir /<;+/5’+1) (~a)

k= +D)IG+E+1) !

1
_ 2 a?
7F(i+‘;’il)) ’ Lf(g—Q)e_T form a complete orthonor-

mal family in L?(R,,2z**'dz). Each v, is an eigenfunction of the Laguerre
operator Lg given by (80.I)) with eigenvalue (2k + 5+ 1), i.e

Laguerre functions 1! (z) = (

Lol = (2k + B+ 1)y
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If f,g € L*(Ry, z* " dx) with Lg f, Lgg € L*(Ry, 2** T dx), then (Lgf, 9) ap41y, =

.Lsq) 24,1, where inner product is with respect to the measure z2°*'dx. There-
BY) x26+1 4z

fore we say that Laguerre operator Lg is self adjoint with repect to the measure

2%+ 1dz. Thus for every f € L*(R,,2?’*dz) has the Laguerre expansion

/= <f’ w£>x25+1dx Ui

k=0
We call <f, 1/15> spingy O the k-th Fourier-Laguerre coefficient of f. Now for each
multi index g = (1, -+, ftn) € (Zo)" and = (1, -+, Bn) € (—1,00)", the n-
dimensional Laguerre functions are defined by the tensor product of 1-dimensional

Laguerre functions

i) = [[vl(x), = € R} = (R)™ (8.0.2)
j=1
The n-dimensional Laguerre operator Lg for = (81, ,5,) € (—1,00)", is

defined as the sum of 1-dimensional Laguerre operators Ly,

& "L (28, +1 0 |z)?
L — L :—A— J R -
7 Z Pi ( x; 8@) * 4

j=1 j=1 J

Therefore L] = <2|u| + 201 B +n> ¢, where |u| = Y77 p;. Hence, ¢
are eigenfunctions of L with eigenvalue 2[u| + 7, 8 +n and they also form a

complete orthonormal system in L*(R"}, dv(z)) where
dv(z) = a7 a2 gy d,

Also note that Laguerre operator Lg is self adjoint with repect to measure dv.

Thus for every f € L*(R, dv(x)) has the Laguerre expansion

F=Y (500,00 => P,
“w k=0

where inner product is with respect to measure v and P, denotes the Laguerre

projection operator corresponding to the eigenvalue 2k + Z;;l Bj + n given by
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Pof =30 (f.00), 0

lul=k

The material discussed here is based on the books by Thangavelu [33] and Lebedev
[18].

Remark 8.0.43 In view of estimate (1) in Watson [38] (see section 3.31, page

49), in this chapter we only consider f € (—%, oo)n.
Remark 8.0.44 Note that L®(R",dx) = L*(R",dv) with equality of norms
| fllr®n azy = | fll=®n av), where dz denote the usual Lebesgue measure on

R,

Schrédinger Propagator e~/

If f e C*NL*R",dv) such that Lgf € L*(R", dv) then we observe that

<L5fa 77Z)5>u - <f7 Lﬁ¢5>y = <2|M| +n+ Zﬁ]) <fa ,l7Z)5>1/ ’
j=1

Therefore for f € L*(R%,dv), we define e " f as L?(R",dv) function by the

following

et f i o~ it(2ktn+ 37, B;) Z <f, w5>y @/)5-
k=0

|ul=Fk

—itLg

It is easy to see that e is unitary operator with adjoint e”“s on L2(R",dv).

Remark 8.0.45 e~/ f is periodic in ¢ if and only if i1 B is rational whereas

e*2Bie=s f and |e~"Ls f| are always periodic in .

Now we state the following Lemma. This Lemma is proved in Sohani [28].
Proof relies on regularization argument introduced in [20] (also see [22], [23]) and
Mehler’s formula for Laguerre functions (see, (4.17.6) in [I8]), so we skip the
proof.




96

Lemma 8.0.46 Letr > 0,03 € (—%, oo)n Then e~"+Ls s an integral operator
on L*(R", dv). Moreover

e*(TJrit)LBf(x) = /Rn f)K(x,y,rt, B)dv(y)

14 e—2(rit)

K(l‘, y,rt, 5) _ e—nre—it(n-l—Zﬁj) (1 _ 6—2(r+it))_n 67(‘30‘21“”2) (1_6—2(r+it))

n

—r(,—2it\3
—Bj [ —2it B TjY;e (6 )2
X | | ((xjyj) (em™) 2 I, ( 1 — e—2(r+it)

j=1

where I3, is the modified Bessel function of first kind and | arg(e™>")| < .

Lemma 8.0.47 Let K(z,y,r,t,[3) be the kernel as in Lemma [8:0.46, Then we

have uniform estimate for K in r € (0, 1].

C

< .0.
|K(fL‘,y,T,t,B)| = |Sint|n+2?:161 (803)
where C only depends on n and .
Proof. Let arg(e ") = —2f with |I| < T, then e 2! = ¢~ (¢7%4)3 = ¢~ and

cos 2t = cos 2t. Now we observe the following

}1 — e’2<r+it)’ = (1 + e —2e7% cos 2t)%

o (rit) 1 — —2r if_ i(1 =27\ o f
Tyje = e (( e *)cost —i(l+e )sm)

1 — e—2(r+it) 1+ e 4 —2e2rcos 2t

Re (xjyje(r+if) ) ‘ _ :L,jyjefr (1 o 6727’)

1 — e—2(r+it) 14 e 4 — 2e=27 cos 2t

14 e—2r+it) (1 —e™) — 2ie™>r sin 2t
1 —e20m+it) 44 — Q=2 cog 2

Now we observe that
|2]°

1
< gy P Re), for o> —5 (8.0.4)

|15(2)

which follows from inequality (1) in section 3.31, page 49 in Watson [38] and
equalities (5.7.4) and (5.7.6) in Lebedev [I8]. We also observe that
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(L4 e7?) (Jz]* + |y*) — 4e™" ijyj
=L —e )2 (z*+ [yl*) +2e7 30 (25 —yy)? = (L= e (|2 + [y]?).

Using the above observations, we see that

|K('Z‘7 y? T’ t? 6)|
(4 85)  _ (1—e?")(1—e"") 2 (ju)? +1y[?)
< Qe Tt s) (1 +e ¥ — 27 cos 275)7 = e 1 4(1“_1“26_% COSE’;
_(n+X )
< C(l+e ™ —2ecos2t) 2 | (8.0.5)

Now for r € (0,1] we have
1+e ™ —2e 2 cos2t = (1 —e )+ 4e ¥ sin’t > de ?sin’t.

Therefore using this estimate in (8.0.5]) we get the desired estimate.

Lemma 8.0.48 Lett ¢ 77,2 <p < oo andp = p%l. Then

— 3 —(1-2)(n .
€75 flzsan < Clsint] (R0 1)y,

where constant C' depends only on n,p, (.

Proof. For f € L*(R",dv) we have

le™™ 5 1172y = Z |2 P f 1 22y = 1172000 (8.0.6)
k=0

For f € L' N L*(R", dv) we observe from Lemma B0.47 and Remark B0.44] that
||6—(r+it)L,8f||Loo(Ri7dy) < C| Smt|—(n+2ﬁj) ||6_(7"+“)L6f||L1(R1,du)-

Since e~ (rm+ills f s =il f in L2(dv) as ry, — 0, e "™ 088 (1) = e~tls f (1)

a.e. x for some subsequence {r,,,}. Also observe that

. FW)K(x,y, rm,, t, B)dv(y) — . f(y)K(x,y,0,t, B)dv(y)
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for a.e. x € R’}. Therefore for f € L' N L*(R"}, dv) we get
(@) = [ 0K 0.8 5)dv(y) (507
&
From Remark and Lemma we observe that
le™"% fll Looqn vy < C|sint| " 2ED £l 1 gy (8.0.8)

This inequality can be proved for f € L'(R',dv) by density argument. Us-
ing Riesz-Thorin interpolation theorem (see Folland [II]) and in view of (80.6)),
(B0.8) Lemma follows.

Strichartz estimates

Definition 8.0.49 Let n > 1 and 8 € (—3,00)". We say that a pair (g, p) is

admissible in the Laguerre case if

- 2
1<g<2, 0§<n+§:@>(1——><1 or
p

=0
= 2 2
2<qg<ooand0< n+26j 1—— 1 <-<1
—~ r) ~q
]_
Remark 8.0.50 (i) The admissibility condition on (g, p) implies that

0< (zﬁ) (1-2) <1

=0
(ii) f 1 <¢<2,n=1,14 < 1, then p € [2,0].

(iii) f 1 <¢<2,n=1,14 8 =1, then p € [2,00).

. " 2(n+27}:051’)
<q< o B [CTSST =
(IV) If1 Sq s 2, (TL —+ Z]:O ﬁ]> > ]-, then pE [27 (n‘f'zy—oﬁj)_l) .

Admissible condition is basically coming from the Lemma B.0.4 and Remark
8.0.01]
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Remark 8.0.51 Let p € [2,00],a,b € R. |sint|_<1_%)(n+2ﬁj) € weak L%(a —
— i i 4 < 1 < n ) — 2\ <«
b,b—a) with ¢ € (2,00)if 1 < £ < ()02 or (n+3 0 oB;)(1—2)<
= (1-2) (3 8 : n
2 < 1. Also [sint| (1)) ¢ L*(a—0b,b—a) if (n-l— ZjZO/Bj> <1 a %> =L
If we consider p = 2 then \sint\_(l_%>("+26j) =1eL>®a—0bb—a).

Now we prove a Lemma which is helpful in proving Strichartz estimates.

Lemma 8.0.52 Let [a,b] be a bounded interval containing to. Let h;(z,t) €
Lq9((a, b), L* (R, dv(x))), where q; is conjugate exponent of q; with 1 < g; < 0o
for 7 =1,2. Then the functions

et Lo (. t)e Lo hy(x,5), hy(x, )98 hy(z, 5)
belong to L'(R". x (a,b) X (a,b),dv(x) x dt x ds).

Proof. For simplicity we are considering hy = ho = h and ¢; = ¢u = q. Since h €
LY ((a,b), L*(dv)), h(-,t) € L*(R",dv) for a.e. t € (a,b). Therefore e~*(=t)lsp,
(-,t) € L*(R",dv) for a.e. ¢t € (a,b). Then by Holder’s inequality e "(t=%0)Lsp
(-, t)e - Lap(. s) € LYR", dv) for a.e. t,s € (a,b) and

/ ‘e_i(t_tO)Lﬁh(x,t)e_i(s_tO)LBh(a:, 5)‘ dv(z) < [[h(, )| L2 [P (-, $) || L2 (a)-
R

n
+

Integrating with respect to t and s over (a,b) X (a, b) and using Holder’s inequality

in the t-variable, we get

b b
/ / / |e’i(t’t°)Lﬂ h(z, t)e’i(s’tO)Lﬂ h(z, s)|dv(x)dtds
a a Z’r

b 2
2
S (/ ||h('7t)||L2(dv)dt) S (b - a)q ||h||iq/((a,b),L2(du))'

Similarly hy (z, )’ hy(2, ) € LY (R x (a,b) x (a,b), dv(z) x dt x ds) can be
proved.
The main Strichartz type estimates in this chapter is compiled in following

theorem which is proved in [28]. Proof follows by similar arguments as in Theorem

B.04
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Theorem 8.0.53 (Strichartz Estimates) Let (¢, p), (g1, p1) be two admissible
pairs according to definition [8.:0.49 Let (a,b) be a finite interval with toy € [a,b],
f e L*R2,dv) and g € L% ((a,b), LP1(R", dv)) where ¢, and p}| are conjugate
exponents of qi and p, respectively. Then the following estimates hold over R’} x
(a,b):

le™ fllcaqamy.Lr@yn < ClFllr2wan) (8.0.9)
t
/e_i(t_s)Lﬁg(:p,s)ds

to

< Cll (8.0.10)

L ((a,b), L1 (dv)

La((a,b),LP(dv))

where the constant C' depends on admissible pairs but independent of to. Moreover

e~itls f ¢ C(R, Lz(dl/)) and L‘; e_i(t—S)Lﬂg(l‘, s)ds € C([a, ], LQ(dy)).

Remark 8.0.54 Note that e=%Ls f(x) is 27 periodic in ¢, hence we can not expect
the above Strichartz inequalities for unbounded intervals except when ¢ = oo.
Also Since [sint| is 7 periodic, in view of Remark and Remark [3.0.8]
constant C' in the inequalities (80.9) and (80.I0) can be chosen independent of

interval (a,b) provided b —a < 7.

Local well posedness in L*(R", dv)

We consider the initial value problem for the nonlinear Schrédinger equation for

the Laguerre operator Lg:

i0pu(x,t) — Lgu(z,t) = G(x,u), reR}, teR (8.0.11)
u(z,ty) = f(x) (8.0.12)

where G is a function on R’} x C satisfying similar conditions as in (LOIH),
(LOI6). Here we consider the nonlinearity G of the form

G(z,w) = Y(z, |w]) w, (z,w) e R} xC, (8.0.13)
where ¢ € C(R" x [0,00)) N CY(R? x (0, 00)) satisfy the following inequality

|F(z,n)] < Clnl* (8.0.14)
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with F' =, 0,,¢ (1 < j < n) and n9,(x,n), @ > 0 and for some constant C.
By mean value theorem and estimate B.0.14 on v, we have

|G(z,u) — G(z,v)| < C(Ju]*+ |[v]*)|u— v (8.0.15)

where C'is independent of u,v € C and x € R’}

Since Lg has no decomposition in terms of first differential operators as the
twisted Laplacian £ has, therefore we only consider the initial value in L*(R", dv).
As similar to the twisted Laplacian case, we can prove the local well posedness
of the initial value problem (80.IT]), (B.0.12).

Now we discuss the local well posedness result for the above IVP for subcritical

case 0 < a < 2

—=—— and critical case o =
"+2j:1 B;

-2

n+2?:1 B
oy < zn

Subcritical case 0 < a < T S

Now we state the following Theorem for the subcritical case 0 < a <

-2
”+Z?:1 B’
Proof follows by similar arguments as in Theorem [.0.40L

Theorem 8.0.55 Let u(-,ty) = f € L*(R},dv), 0 < o < ﬁ and G
J=1~]

be as in (8013), (8-0-13). Initial value problem (81.11), (8112) has unique
magzimal solutionu € C((T%, T*), L*(R%, dv))NLP ((T.,T*), LP*(R", dv)), where

loc
to € (T, T*) and (g2, p2) be an arbitrary admissible pair. Fizp = 2+a. Moreover

the following properties hold:

(i) (Uniqueness) Solution is unique in C'((Ty, T"), LQ(dV))ﬂL(;ZC((T*, T*), LP(dv))
where ¢ € [q1,q] and

1 - AVAER! B 2p(p — 1)
5_<n+;@> <2 p)’Q1_2p—(n+p£?1ﬁj)(p—2>21'

(ii) (Blowup alternative) If T* < oo (respectively, T. > —oc), then u ¢
L% ((ty, T*), LP(RY, dv)) (respectively, u ¢ L9=((T,to), LP(R",dv))) where
g2 € g1, q]-

iii)(Stability) If f; — f in L*(R7%,dv), then u; — w in L% (I, LP*(R",dv
j + j +
for every interval I with I C (T,,T*) and for every admissible pair (qz, ps),

where u; and w are solutions corresponding to f; and f respectively.
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Critical case @« = ——2——
”+Zj:1 Bj

Now we state the following theorem for the critical case a@ = n+2+6 Proof
j=1Pj
follows by similar arguments as in Theorem [.0.4T]

Theorem 8.0.56 Let u(-,ty) = f € L*(R},dv), a = MZZW and G be as in

(8013), (8-0-13). Initial value problem (80.11), (80.12) has unique mazimal
solution v € C((T.,T*), L*(R",dv)) N Ly, ((T.,T), L (R, dv)), where ty €
(T., T*) and (q1,p1) be an arbitrary admissible pair. Fiz p = 2+ «. Moreover the

following properties hold:
(i) (Uniqueness) Solution is unique in C((T,, T*), L*(dv))NLP((T\, T*), LP(dv)).

(ii) (Blowup alternative) If T* < oo then |[u|| oo, r+),Lo@av)) = 00. Similar

conclusion holds if T, > —o0.

(iii) (Stability) If f; — f in L*(C"), then u; — w in L? (I, LP*(R",dv)) for
every interval I with T C (T,,T*) and for every admissible pair (qi,p1),

where u; and w are solutions corresponding to f; and f respectively.
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