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Synopsis

1. Introdu
tion

The free S
hrödinger equation on Rn
is the PDE

i∂tψ(x, t) + ∆ψ(x, t) = 0, x ∈ R
n, t ∈ R

whi
h gives the quantum me
hani
al des
ription of the evolution of a free par-

ti
le in R
n
. If ψ is the solution of the S
hrödinger equation, then |ψ(x, t)|2 is

interpreted as the probability density for �nding the position of the parti
le in

Rn
at a given time t. More generally for any self adjoint di�erential operator L

on Rn
, we 
onsider the initial value problem for the S
hrödinger equation for the

operator L:

i∂tu(x, t)− Lu(x, t) = 0, x ∈ R
n, t ∈ R

u(x, 0) = f(x)

with L now representing the 
orresponding Hamiltonian of the quantum me
han-

i
al system.

The signi�
an
e of this view point is that, most Hamiltonians of interest,

namely the perturbation of the Lapla
ian with a potential V (of the form L =

−∆ + V ) or the magneti
 Lapla
ian 
orresponding to the magneti
 potential

(A1(x), ..., An(x)) (of the form L =
∑n

j=1

(

i∂xj + Aj(x)
)2
) on Rn

, 
an be analysed

with our approa
h, in terms of the spe
tral theory of the Hamiltonian.

In this thesis we 
onsider the twisted Lapla
ian. The twisted lapla
ian on Cn

is given by

L =
n
∑

j=1

[

(

i∂xj +
yj
2

)2

+
(

i∂yj −
xj
2

)2
]

whi
h is of the form

2n
∑

j=1

[

(i∂wj
− Aj(w))

2
]

, hen
e represents a S
hrödinger oper-

ator on Cn
for the magneti
 ve
tor potential A(z) = iz

2
, z ∈ Cn

.

The S
hrödinger equation for the magneti
 potential with magneti
 �eld de-


aying at in�nity has been studied by many authors, see for instan
e Yajima [39℄,
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where author studies the propagator for the linear equation. In 
ontrast, the

nonlinear equation in our situation 
orresponds to a magneti
 equation with a


onstant magneti
 �eld, whi
h has no de
ay. For more details on general mag-

neti
 S
hrödinger equation 
orresponding to magneti
 �eld without de
ay, see

[1℄. In [40℄ Zhang and Zheng proved the lo
al well posedness for the nonlinear

S
hrödinger equation with twisted Lapla
ian and polynomial nonlinearity. The

well posedness result for nonlinear S
hrödinger equation on Rn
has been stud-

ied by many others, see Ginibre Velo [12, 13, 14℄, Cazenave Weissler [6, 7, 8℄,

Tsutsumi [36℄, Kato [16℄, Begout [2℄, Sjögren Torrea [27℄, to mention only a few.

The magneti
 Lapla
ian naturally arises in the study of system in the presen
e

of a magneti
 �eld, hen
e there is an a
tive interest and extensive resear
h is going

on in the study with magneti
 Lapla
ian. In expli
it terms the twisted Lapla
ian

looks like

L = −∆+
1

4
|z|2 − i

n
∑

1

(

xj
∂

∂yj
− yj

∂

∂xj

)

.

In this thesis we will study the well posedness, i.e., lo
al existen
e, uniqueness,

stability and blowup alternative of the initial value problem (see Se
tion 3)

i∂tu(z, t)− Lu(z, t) = G(z, u), z ∈ C
n, t ∈ R

u(z, t0) = f(z)

with f in 
ertain �rst order Sobolev spa
es related to the twisted Lapla
ian and

also in L2(Cn), see Se
tions 4, 6, 7, 8. This work is based on [24℄ (to appear in

J. Fun
t. Anal. 265 (1) (2013) 1-27) and [25, 29℄.

Twisted Lapla
ian and Laguerre operator are 
losely related to ea
h other in

the following sense. If f ∈ S(Cn) is radial then Lf(z) = Ln−1f(r) where Ln−1

is 1-dimensional Laguerre operator of type n− 1 given by (9) and r = |z|. More

generally we 
an 
onsider n-dimensional Laguerre operator Lβ on R
n
+ = (0,∞)n

of type β ∈
(

−1
2
,∞
)n

whi
h has singularity at xj = 0, 1 ≤ j ≤ n. By similar

analysis we also prove the lo
al well posedness of the initial value problem for

S
hrödinger equation with the Laguerre operator and initial value in L2(Rn
+, dν)

where dν =
(

∏n
j=1 x

2βj+1
j

)

dx, see Se
tion 9. This work is based on the Stri
hartz

estimates for the Laguerre operator proved in Sohani [28℄ (to appear in Pro
.

Math. S
i.).
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2. S
hrödinger propagator for the twisted Lapla-


ian

Now we de�ne the S
hrödinger propagator e−itL through the spe
tral theory of

the twisted Lapla
ian L. The twisted Lapla
ian is 
losely related to the sub

Lapla
ian on the Heisenberg group, hen
e the spe
tral theory of this operator is


losely 
onne
ted with the representation theory of the Heisenberg group. Here

we give a brief review of the spe
tral theory of the twisted Lapla
ian L. The

material dis
ussed here is based on the books by Folland [11℄ and Thangavelu

[33, 34℄.

The eigenfun
tions of the operator L are 
alled the spe
ial Hermite fun
tions,

whi
h are de�ned in terms of the Fourier-Wigner transform. For a pair of fun
-

tions f, g ∈ L2(Rn), the Fourier-Wigner transform is de�ned to be

V (f, g)(z) = (2π)−
n
2

∫

Rn

eix·ξf
(

ξ +
y

2

)

g
(

ξ − y

2

)

dξ,

where z = x + iy ∈ Cn. For any two multi-indi
es µ, ν the spe
ial Hermite

fun
tions Φµ ν are given by

Φµ ν(z) = V (hµ, hν)(z)

where hµ and hν are Hermite fun
tions on R
n
. Re
all that for ea
h nonnegative

integer k, the one dimensional Hermite fun
tions hk are de�ned by

hk(x) =
(−1)k

√

2kk!
√
π

(

dk

dxk
e−x

2

)

e
x2

2 .

Now for ea
h multi index ν = (ν1, · · · , νn), the n-dimensional Hermite fun
tions

are de�ned by the tensor produ
t :

hν(x) =

n
∏

i=1

hνi(xi), x = (x1, · · · , xn).

Φµν are eigenfun
tions of L with eigenvalue 2|ν|+n and they also form a 
omplete
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orthonormal system in L2(Cn). Thus every f ∈ L2(Cn) has the expansion

f =
∑

µ, ν

〈f,Φµν〉Φµν

in terms of the eigenfun
tions of L. The above expansion may be written as

f =

∞
∑

k=0

Pkf

where

Pkf =
∑

µ,|ν|=k

〈f,Φµ,ν〉Φµν

is the spe
tral proje
tion 
orresponding to the eigenvalue 2k + n. Now for any

f ∈ L2(Cn) su
h that Lf ∈ L2(Cn), by self adjointness of L, we have Pk(Lf) =
(2k + n)Pkf . It follows that for f ∈ L2(Cn) with Lf ∈ L2(Cn)

Lf =

∞
∑

k=0

(2k + n)Pkf.

Thus, we 
an de�ne S
hrödinger propagator e−itL as

e−itLf =

∞
∑

k=0

e−it(2k+n)Pkf.

Note that Pkf has the 
ompa
t representation

Pkf(z) = (2π)−n(f × ϕk)(z)

in terms of the Laguerre fun
tion ϕk(z) = Ln−1
k (1

2
|z|2)e− 1

4
|z|2

, see [33℄. Hen
e

formally we 
an express e−itL as a twisted 
onvolution operator:

e−itLf = f ×Kit

for f ∈ S(Cn) where Kit(z) =
(4πi)−n

(sin t)n
e

i(cot t)|z|2

4
.
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3. Nonlinear S
hrödinger equation for the twisted

Lapla
ian

We 
onsider the initial value problem for the nonlinear S
hrödinger equation for

the twisted Lapla
ian L:

i∂tu(z, t)− Lu(z, t) = G(z, u), z ∈ Cn, t ∈ R (1)

u(z, t0) = f(z). (2)

Here we 
onsider the nonlinearity G of the form

G(z, w) = ψ(x, y, |w|)w, (x, y, w) ∈ Rn × Rn × C, (3)

where z = x+iy ∈ Cn, w ∈ C and ψ ∈ C(Rn×Rn×[0,∞))∩C1(Rn×Rn×(0,∞))

satisfy the following inequality

|F (x, y, η)| ≤ λ|η|α (4)

for F = ψ, ∂xjψ, ∂yjψ (1 ≤ j ≤ n) and w∂wψ(x, y, w), α ≥ 0 and some 
onstant

λ ≥ 0. The 
lass of nonlinearity given by (3), (4) in
ludes in parti
ular, power

type nonlinearity of the form |u|αu.
When G ≡ 0 and f ∈ L2(Cn) the solution to this initial value problem is

given by the S
hrödinger propagator

u(z, t) = e−i(t−t0)Lf(z).

When G(z, u) = g(z), the solution is given by the Duhamel formula

u(z, t) = e−i(t−t0)Lf(z)− i

∫ t

t0

e−i(t−s)Lg(z)ds.

Thus in the linear 
ase, the solution is determined on
e the fun
tions f and g are

known.

The basi
 idea in nonlinear analysis is the following heuristi
 reasoning based

on the above formula. If the solution u is known, then one would expe
t u to

satisfy the above equation with g(z) repla
ed by G(z, u(z, s)):

u(z, t) = e−i(t−t0)Lf(z)− i
∫ t

t0
e−i(t−s)LG(z, u(z, s))ds. (5)

Indeed one 
an show that u from a reasonable fun
tion spa
e satis�es a PDE
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of the form (1), (2), if and only if u satis�es an integral equation of the form (5).

This redu
es the existen
e theorem for the solution to the nonlinear S
hrödinger

equation to a �xed point theorem for the operator

H(u)(z, t) = e−i(t−t0)Lf(z)− i

∫ t

t0

e−i(t−s)LG(z, u(z, s))ds

in a suitable subset of the relevant fun
tion spa
e.

4. Some auxiliary fun
tion spa
es

The Sobolev spa
e W̃ 1,p(Cn)

Let Lj and Mj be the di�erential operators de�ned by

Lj =

(

∂

∂xj
+ i

yj
2

)

and Mj =

(

∂

∂yj
− i

xj
2

)

, j = 1, 2, ..., n.

We 
onsider the following spa
e

W̃ 1,p(Cn) = {f ∈ Lp(Cn) : Ljf,Mjf ∈ Lp(Cn), 1 ≤ j ≤ n}.

It is easy to see that W̃ 1,p(Cn) is a Bana
h spa
e with respe
t to norm ‖f‖ =

‖f‖Lp(Cn)+
∑n

j=1

(

‖Ljf‖Lp(Cn) + ‖Mjf‖Lp(Cn)

)

. The di�erential operators Lj and

Mj are the natural ones adaptable to the power type nonlinearity G(u) = |u|αu
and the generality that we 
onsider here. The natural 
hoi
e, namely the standard

Sobolev spa
e W 1,p
L (Cn) de�ned using the twisted Lapla
ian L (see [35℄), is not

suitable for treating su
h nonlinearities.

An interesting relation between the Sobolev spa
e W̃ 1,p(Cn) and the ordinary

Sobolev spa
e W 1,p(Cn) is the following: If u ∈ W̃ 1,p(Cn), then |u| ∈ W 1,p(Cn).

We have the 
ontinuous in
lusion

W̃ 1,p1(Cn) →֒ Lp2(Cn) for p1 ≤ p2 ≤ 2np1
2n−p1

if p1 < 2n

for p1 ≤ p2 <∞ if p1 = 2n (6)

for p1 ≤ p2 ≤ ∞ if p1 > 2n.

The di�erential operators Lj and Mj (1 ≤ j ≤ n) have the following 
ommuta-
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tivity properties

Lje
−itLf = e−itLLjf

Mje
−itLf = e−itLMjf

Lj

∫ t

t0

e−i(t−s)Lg(z, s)ds =

∫ t

t0

e−i(t−s)LLjg(z, s)ds

Mj

∫ t

t0

e−i(t−s)Lg(z, s)ds =

∫ t

t0

e−i(t−s)LMjg(z, s)ds

where f ∈ S ′(Cn), t, t0 ∈ R, g ∈ Lq
′

lo


(

I, W̃ 1,p′(Cn)
)

for some admissible pair

(q, p) (see De�nition 5.1) and open interval I 
ontaining t, t0.

The Sobolev spa
e W̃ 1,p
L (Cn)

The lo
al well posedness of the nonlinear S
hrödinger equation for the twisted

Lapla
ian has been studied in [24℄ for initial value in W̃ 1,2(Cn). However this

approa
h does not 
on
lude energy 
onservation.

We over
ome this di�
ulty by introdu
ing the Sobolev spa
e W̃ 1,2
L (Cn) de�ned

using the operators Zj and Zj, whi
h is the natural one in this 
ontext where

Zj =
∂

∂zj
+

1

2
z̄j , Zj = − ∂

∂z̄j
+

1

2
zj

and

∂
∂zj

,

∂
∂z̄j

denote the 
omplex derivatives

∂
∂xj

∓ i ∂
∂yj

respe
tively. Though they

do not 
ommute with e−itL, they have a reasonable 
ommutative relation, suitable

for us. The advantage of working with this Sobolev spa
e is that we get energy


onservation in this 
ase. From this we 
an show that there is no �nite time

blowup, hen
e 
an 
on
lude global existen
e in the Sobolev spa
e W̃ 1,2
L (Cn).

We 
onsider the following Bana
h spa
e

W̃ 1,p
L (Cn) = {f ∈ Lp(Cn) : Zjf, Zjf ∈ Lp(Cn), 1 ≤ j ≤ n}

with norm ‖f‖ = ‖f‖Lp(Cn) +
∑n

j=1

(

‖Zjf‖Lp(Cn) + ‖Zjf‖Lp(Cn)

)

.

The Sobolev spa
e W̃ 1,p
L (Cn) will also satisfy embedding (6) as similar to

spa
e W̃ 1,p(Cn). Operators Zj and Z̄j (1 ≤ j ≤ n) have the following quasi
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ommutativity properties

Zje
−itLf = e−2ite−itLZjf

Zje
−itLf = e2ite−itLZjf

Zj

∫ t

t0

e−i(t−s)Lg(z, s)ds = e−2it

∫ t

t0

e−i(t−s)Le2isZjg(z, s)ds

Zj

∫ t

t0

e−i(t−s)Lg(z, s)ds = e2it
∫ t

t0

e−i(t−s)Le−2isZjg(z, s)ds

where f ∈ S ′(Cn), t, t0 ∈ R, g ∈ Lq
′

lo


(

I, W̃ 1,p′

L (Cn)
)

for some admissible pair

(q, p) and open interval I 
ontaining t, t0.

5. Stri
hartz estimates

Stri
hartz estimate is an important tool in the study of lo
al existen
e of solutions

to dispersive equations, in whi
h no derivatives are present in the nonlinearity.

Stri
hartz estimates were �rst proved by Stri
hartz [30℄ for free S
hrödinger and

wave equations on Rn
. They were generalized to general admissible pairs (q, p)

by Ginibre and Velo [14, 15℄, Lindblad and Sogge [19℄. The end point estimates

were proved by Keel and Tao [17℄. End point estimates were also proved by

D'An
ona, Fanelli, Vega and Vis
igia [9℄ for magneti
 S
hrödinger equation with

some 
onditions on the potential A and V .

The Homogeneous Stri
hartz estimate (7) for twisted Lapla
ian is proved by

Ratnakumar [22℄. We begin with the following de�nition of admissible pair and

dis
uss the Stri
hartz estimates.

De�nition 5.1 Let n ≥ 1. We say that a pair (q, p) is admissible if

1 ≤ q ≤ 2, 0 ≤ n

(

1

2
− 1

p

)

<
1

2
or

2 < q ≤ ∞ and 0 ≤ n

(

1

2
− 1

p

)

≤ 1

q
.

Remark 5.2 The admissibility 
ondition on (q, p) implies that 2 ≤ p < 2n
n−1

.

Sin
e Stri
hartz estimates will be in terms of mixed Lp spa
es, we de�ne spa
e
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Lq((a, b), Lp(Cn)) by the following

Lq((a, b), Lp(Cn)) = {g is measurable on C
n × (a, b) : ‖g‖Lq((a,b),Lp(Cn)) <∞}

where ‖g‖Lq((a,b),Lp(Cn)) =
(

∫ b

a
‖g‖q

Lp(Cn)dt
)

1
q

.

The main Stri
hartz type estimates is 
ompiled in the following theorem.

Theorem 5.3 (Stri
hartz Estimates) Let (q, p), (q1, p1) be two admissible

pairs, (a, b) be a �nite interval with t0 ∈ [a, b], f ∈ L2(Cn) and g ∈ Lq
′
1((a, b), Lp

′
1)

where q′1 and p′1 are 
onjugate exponents of q1 and p1 respe
tively. Then the

following estimates hold over Cn × (a, b):

‖e−itLf‖Lq((a,b),Lp(Cn)) ≤ C‖f‖2 (7)

∥

∥

∥

∫ t

t0
e−i(t−s)Lg(z, s)ds

∥

∥

∥

Lq((a,b),Lp(Cn))
≤ C‖g‖

L
q′
1((a,b),Lp′

1 (Cn)
(8)

where the 
onstant C depends on admissible pairs but independent of t0. Moreover

e−itLf ∈ C(R, L2(Cn)) and
∫ t

t0
e−i(t−s)Lg(z, s)ds ∈ C([a, b], L2).

Remark 5.4 Note that e−itLf(z) is 2π periodi
 in t, hen
e we 
an not expe
t the

above Stri
hartz inequalities for unbounded intervals ex
ept when q = ∞. Sin
e

| sin t| is π periodi
, 
onstant C in the inequalities (7) and (8) 
an be 
hosen

independent of interval (a, b) provided b− a ≤ π.

6. A Lo
al existen
e result

We 
onsider initial value f ∈ W̃ 1,2(Cn). We have proved the lo
al well posedness

of initial value problem (1), (2) in this 
ase, see [24℄. Now we state the main

theorems.

Theorem 6.1 (Lo
al existen
e) Assume that G is as in (3), (4), α ∈ [0, 2
n−1

)

and u(·, t0) = f ∈ W̃ 1,2(Cn). Then there exist a number T = T (‖u(·, t0)‖) su
h

that the initial value problem (1), (2) has a unique solution u ∈ C([t0 − T, t0 +

T ]; W̃ 1,2(Cn)).

Theorem 6.2 Let u(·, t0) = f ∈ W̃ 1,2(Cn), α ∈ [0, 2
n−1

) and G be as in (3), (4).

Initial value problem (1), (2) has unique maximal solution u ∈ C((T∗, T
∗), W̃ 1,2)∩

Lq1
lo


(

(T∗, T
∗), W̃ 1,p1(Cn)

)

, where t0 ∈ (T∗, T
∗) and (q1, p1) be an arbitrary admis-

sible pair. Fix p = 2 + α. Moreover the following properties hold:
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(i)(Uniqueness) Solution is unique in C((T∗, T
∗), W̃ 1,2)∩Lq1

lo


(

(T∗, T
∗), W̃ 1,p

)

for every admissible pair (q1, p) with q1 > 2.

(ii)(Blowup alternative) If T ∗ <∞ (respe
tively, T∗ > −∞), then ‖u(·, t)‖W̃ 1,2

→ ∞ as t→ T ∗ (respe
tively, t→ T∗).

(iii)(Stability) If fj → f in W̃ 1,2(Cn), then uj → u in Lq1(I, W̃ 1,p1(Cn)) for

every admissible pair (q1, p1) and every interval I with Ī ⊂ (T∗, T
∗).

7. Global well posedness in W̃ 1,2
L (Cn)

In this Se
tion we 
onsider initial value f ∈ W̃ 1,2
L (Cn). As similar to Theorem

6.1 and Theorem 6.2, we have the following Theorem (see [25℄).

Theorem 7.1 (Lo
al well posedness) Let f = u(·, t0) ∈ W̃ 1,2
L (Cn), α ∈ [0, 2

n−1
)

and G be as in (3) and (4). Then the Initial value problem (1), (2) has unique

maximal solution u ∈ C((T∗, T
∗), W̃ 1,2

L (Cn)) ∩ Lq1
lo


(

(T∗, T
∗), W̃ 1,p1

L

)

, where t0 ∈
(T∗, T

∗) and (q1, p1) be an arbitrary admissible pair. Fix p = 2+α. Moreover the

following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), W̃ 1,2

L )∩Lq1
lo


(

(T∗, T
∗), W̃ 1,p

L

)

for every admissible pair (q1, p) with q1 > 2.

(ii)(Blowup alternative) If T ∗ <∞ (respe
tively, T∗ > −∞), then ‖u(·, t)‖
W̃

1,2
L

→
∞ as t→ T ∗

(respe
tively, t→ T∗).

(iii)(Stability) If fj → f in W̃ 1,2
L (Cn), then uj → u in W̃ 1,2

L (Cn) for ea
h

t ∈ (T∗, T
∗) and also in Lq1

(

I, W̃ 1,p1(Cn)
)

for every admissible pair (q1, p1)

and every interval I with Ī ⊂ (T∗, T
∗).

Our main result is the following theorem (see [25℄).

Theorem 7.2 (Global well posedness) Let f ∈ W̃ 1,2
L (Cn), α ∈ [0, 2

n−1
) and ψ :

Rn × Rn × [0,∞) → R be real valued as in (3) and (4). Then the solution

u ∈ C((T∗, T
∗), W̃ 1,2

L (Cn)) ∩ Lq1
lo


(

(T∗, T
∗), W̃ 1,p1

L

)

of the initial value problem

(1.0.13), (1.0.14) as obtained in Theorem 7.1 satis�es the following properties:

(i)(Conservation of 
harge) ‖u(·, t)‖L2(Cn) = ‖f‖L2(Cn), t ∈ (T∗, T
∗).
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(ii)(Conservation of energy) E(u(·, t)) = E(u(·, t0)), t ∈ (T∗, T
∗), where

E(u) =
1

4

n
∑

j=1

∫

Cn

(

|Zju(z, t)|2 + |Zju(z, t)|2
)

dz +

∫

Cn

G̃(z, |u|)dz.

(iii)(Global existen
e) If ψ ≥ 0 is nonnegative, the solution extends to the

whole of R. For nonpositive ψ, the solution is global if 0 ≤ α < 2
n
.

Criti
al Case α = 2
n−1

Now we 
onsider the 
riti
al 
ase α = 2
n−1

. In sub
riti
al 
ase 0 ≤ α < 2
n−1

for

ea
h α, we have some q > 2 su
h that (q, 2 + α) be an admissible pair, whi
h

is not the 
ase when α = 2
n−1

. To treat 
riti
al 
ase, we adopt the trun
ation

argument of Cazenave and Weissler [7℄. To prove lo
al existen
e, we trun
ate the

nonlinearityG and obtain solution for the trun
ated problem. We obtain solution

u for nonlinearity G by using Stri
hartz estimates and by passing to the limit.

Now we state the main theorem, see [29℄.

Theorem 7.3 Let f ∈ W̃ 1,2
L (Cn) and G be as in (3) and (4) with α = 2

n−1

and n ≥ 2. Initial value problem (1), (2) has unique maximal solution u ∈
C((T∗, T

∗), W̃ 1,2
L )∩Lq1

lo


(

(T∗, T
∗), W̃ 1,p1

L (Cn)
)

, where t0 ∈ (T∗, T
∗) and (q1, p1) be

an arbitrary admissible pair. Moreover the following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), W̃ 1,2

L (Cn))∩Lγ((T∗, T ∗), W̃ 1,ρ
L )

where ρ = 2n2

n2−n+1
, γ = 2n

n−1
.

(ii)(Blowup alternative) If T ∗ < ∞ then ‖u‖
Lq((t0,T ∗),W̃ 1,p

L ) = ∞ for every

admissible pair (q, p) with 2 < p and

1
q
= n

(

1
2
− 1

p

)

. Similar 
on
lusion

holds if T∗ > −∞.

(iii)(Stability) If fj → f in W̃ 1,2
L (Cn) then ‖u− ũj‖Lq(I,W̃ 1,p

L (Cn)) → 0 as j → ∞
for every admissible pair (q, p) and every interval I with I ⊂ (T∗, T

∗), where

u, ũj are solutions 
orresponding to f, fj respe
tively.
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8. Global well posedness in L2(Cn)

Now we dis
uss global well posedness in L2(Cn) for sub
riti
al 
ase 0 ≤ α < 2
n

(see [25℄). However in 
riti
al 
ase α = 2
n
, we 
an prove global well posedness in

L2(Cn) only for su�
iently small intial value, see Remark 8.3.

Sub
riti
al Case 0 ≤ α < 2
n

Theorem 8.1 Let u(·, t0) = f ∈ L2(Cn), 0 ≤ α < 2
n
and G be as in (3) and (4).

Initial value problem (1), (2) has unique maximal solution u ∈ C((T∗, T
∗), L2) ∩

Lq2
lo


((T∗, T
∗), Lp2(Cn)), where t0 ∈ (T∗, T

∗) and (q2, p2) be an arbitrary admissible

pair. Fix p = 2 + α. Moreover the following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), L2(Cn)) ∩ Lq2

lo


((T∗, T
∗), Lp)

where q2 ∈ [q1, q],
1
q
= n

(

1
2
− 1

p

)

and q1 =
2p(p−1)

2p+2n−np
≥ 1.

(ii)(Blowup alternative) If T ∗ < ∞ then ‖u‖Lq2((t0,T ∗),Lp(Cn) = ∞ where q2 ∈
[q1, q]. Similar 
on
lusion holds if T∗ > −∞.

(iii)(Stability) If fj → f in L2(Cn), then uj → u in Lq2 (I, Lp2(Cn)) for every

interval I with I ⊂ (T∗, T
∗) and for every admissible pair (q2, p2), where uj

and u are solutions 
orresponding to fj and f respe
tively.

(iv)(Conservation of 
harge and global existen
e) If ψ is real valued, then

we have 
onservation of 
harge ‖u(·, t)‖L2(Cn) = ‖f‖L2(Cn) for every t ∈
(T∗, T

∗). Moreover solution is global, i.e., T∗ = −∞ and T ∗ = ∞.

Criti
al Case α = 2
n

Theorem 8.2 Let u(·, t0) = f ∈ L2(Cn), α = 2
n
and G be as in (3) and (4). Ini-

tial value problem (1), (2) has unique maximal solution u ∈ C((T∗, T
∗), L2(Cn))∩

Lq1
lo


((T∗, T
∗), Lp1(Cn)), where t0 ∈ (T∗, T

∗) and (q1, p1) be an arbitrary admissible

pair. Fix p = 2 + α. Moreover the following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), L2(Cn))∩Lp((T∗, T ∗), Lp(Cn)).

(ii)(Blowup alternative) If T ∗ < ∞ then ‖u‖Lp((t0,T ∗),Lp) = ∞. Similar 
on-


lusion holds if T∗ > −∞.
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(iii)(Stability) If fj → f in L2(Cn), then uj → u in Lq1 (I, Lp1(Cn)) for every

interval I with I ⊂ (T∗, T
∗) and for every admissible pair (q1, p1), where uj

and u are solutions 
orresponding to fj and f respe
tively.

(iv)(Conservation of 
harge) If ψ : Rn × Rn × [0,∞) → R is real valued,

then we have 
onservation of 
harge ‖u(·, t)‖L2(Cn) = ‖f‖L2(Cn) for every

t ∈ (T∗, T
∗).

Remark 8.3 If ‖f‖L2(Cn) is su�
iently small, then

‖e−i(t−t0)Lf‖Lp(I,Lp) ≤ C‖f‖L2 < δ

where p = 2(n+1)
n

. Sin
e C will not depend on I and t0 as long as |I| ≤ π and from


onservation of 
harge, we get global solution, i.e., −T∗ = T ∗ = ∞ in Theorem

8.2.

9. The 
ase of the Laguerre operator

As dis
ussed in Se
tion 1, here we 
onsider the Laguerre 
ase. Laguerre operator

Lβ on Rn
+ = (0,∞)n with β ∈ (−1

2
,∞)n is given by,

Lβ = −∆−
∑n

j=1

(

2βj+1

xj

∂
∂xj

)

+ |x|2

4
. (9)

For ea
h multi index µ ∈ Zn≥0 and β ∈ (−1
2
,∞)n, the n-dimensional Laguerre

fun
tions are de�ned by the tensor produ
t of 1-dimensional Laguerre fun
tions

ψβµ(x) =

n
∏

j=1

ψβjµj (xj), x ∈ R
n
+

where ψ
βj
k (y) =

(

2−βj k!
Γ(k+βj+1)

)
1
2
L
βj
k (y

2

2
)e−

y2

4
, y ∈ R+, k ≥ 0 and Laguerre polyno-

mial L
βj
k (y) is given by the following

L
βj
k (y) =

k
∑

j=0

Γ(k + βj + 1)

Γ(k − j + 1)Γ(j + βj + 1)

(−y)j
j!

·

Laguerre fun
tions ψβµ(x) form a 
omplete orthonormal family in L2(Rn
+, dν)

where dν(x) = x2β1+1
1 · · ·x2βn+1

n dx1 · · · dxn. Ea
h ψβµ is an eigenfun
tion of the
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Laguerre operator Lβ with eigenvalue

(

2|µ|+∑n
j=1 βj + n

)

.

S
hrödinger Propagator e−itLβ

If f ∈ C2 ∩ L2(Rn
+, dν) su
h that Lβf ∈ L2(Rn

+, dν) then we observe that

〈

Lβf, ψ
β
µ

〉

ν
=
〈

f, Lβψ
β
µ

〉

ν
=

(

2|µ|+ n +

n
∑

j=1

βj

)

〈

f, ψβµ
〉

ν
.

Therefore for f ∈ L2(Rn
+, dν), we de�ne e−itLβf as L2(Rn

+, dν) fun
tion by the

following

e−itLβf =
∞
∑

k=0

e−it(2k+n+
∑n

j=1 βj)
∑

|µ|=k

〈

f, ψβµ
〉

ν
ψβµ .

It is easy to see that e−itLβ
is a unitary operator with adjoint operator eitLβ

on

L2(Rn
+, dν).

Remark 9.1 e−itLβf is periodi
 in t if and only if

∑n

j=1 βj is rational whereas

eit
∑

βje−itLβf and |e−itLβf | are always periodi
 in t with period ≤ 2π.

Stri
hartz estimates

De�nition 9.2 Let n ≥ 1 and β ∈ (−1
2
,∞)n. We say that a pair (q, p) is

admissible in the Laguerre 
ase if

1 ≤ q ≤ 2, 0 ≤
(

n+

n
∑

j=0

βj

)

(

1− 2

p

)

< 1 or

2 < q ≤ ∞ and 0 ≤
(

n+
n
∑

j=0

βj

)

(

1− 2

p

)

≤ 2

q
.

Remark 9.3
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(i) The admissibility 
ondition on (q, p) implies that

0 ≤
(

n+

n
∑

j=0

βj

)

(

1− 2

p

)

< 1.

(ii) If 1 ≤ q ≤ 2, n = 1, 1 + β < 1, then p ∈ [2,∞].

(iii) If 1 ≤ q ≤ 2, n = 1, 1 + β = 1, then p ∈ [2,∞).

(iv) If 1 ≤ q ≤ 2,
(

n+
∑n

j=0 βj

)

> 1, then p ∈
[

2,
2(n+

∑n
j=0 βj)

(n+
∑n

j=0 βj)−1

)

.

The main Stri
hartz type estimates is 
ompiled in following theorem (see [28℄).

Theorem 9.4 (Stri
hartz Estimates) Let (q, p), (q1, p1) be two admissible pairs

a

ording to de�nition 9.2, (a, b) be a �nite interval with t0 ∈ [a, b], f ∈ L2(Rn
+, dν)

and g ∈ Lq
′
1((a, b), Lp

′
1(dν)). Then the following estimates hold over Rn

+ × (a, b):

‖e−itLβf‖Lq((a,b),Lp(dν)) ≤ C‖f‖L2(dν) (10)

∥

∥

∥

∫ t

t0
e−i(t−s)Lβg(x, s)ds

∥

∥

∥

Lq((a,b),Lp(dν))
≤ C‖g‖

L
q′
1((a,b), Lp′

1 (dν))
(11)

where 
onstant C depends on admissible pairs but independent of t0. Moreover

e−itLβf ∈ C(R, L2(Rn
+, dν)) and

∫ t

t0
e−i(t−s)Lβg(x, s)ds ∈ C([a, b], L2(Rn

+, dν)).

Remark 9.5 As similar to Remark 5.4, we 
an not expe
t the above Stri
hartz

inequalities for unbounded intervals ex
ept when q = ∞. Also Sin
e | sin t| is π
periodi
, 
onstant C in the inequalities (10) and (11) 
an be 
hosen independent

of interval (a, b) provided b− a ≤ π.

Lo
al well posedness in L2(Rn
+, dν)

We 
onsider the initial value problem for the nonlinear S
hrödinger equation for

the Laguerre operator Lβ :

i∂tu(x, t)− Lβu(x, t) = G(x, u), x ∈ Rn
+, t ∈ R (12)

u(x, t0) = f(x) (13)

where nonlinearity G is a fun
tion on Rn
+ × C satisfying similar 
onditions as in

(3), (4).
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Sin
e Lβ has no de
omposition in terms of �rst di�erential operators as the

twisted Lapla
ian L has, we only 
onsider the initial value in L2(Rn
+, dν). As

similar to the twisted Lapla
ian 
ase, we 
an prove the lo
al well posedness of

the above IVP.

Now we dis
uss the lo
al well posedness result for the above IVP for sub
riti
al


ase 0 ≤ α < 2
n+

∑n
j=1 βj

and 
riti
al 
ase α = 2
n+

∑n
j=1 βj

.

Sub
riti
al 
ase 0 ≤ α < 2

n+
∑n

j=1 βj

Now we state the main Theorem for the sub
riti
al 
ase 0 ≤ α < 2
n+

∑n
j=1 βj

.

Theorem 9.6 Let u(·, t0) = f ∈ L2(Rn
+, dν), 0 ≤ α < 2

n+
∑n

j=1 βj
and G be a fun
-

tion satisfying similar 
onditions as in (3), (4). Initial value problem (12), (13)

has unique maximal solution u ∈ C((T∗, T
∗), L2(Rn

+, dν))∩Lq2
lo


((T∗, T
∗), Lp2(dν))

for every admissible pair (q2, p2), where t0 ∈ (T∗, T
∗). Fix p = 2 + α. Moreover

the following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), L2(dν))∩Lq2

lo


((T∗, T
∗), Lp(dν))

where q2 ∈ [q1, q] and

1

q
=

(

n +

n
∑

j=1

βj

)

(

1

2
− 1

p

)

, q1 =
2p(p− 1)

2p−
(

n +
∑n

j=1 βj

)

(p− 2)
≥ 1.

(ii)(Blowup alternative) If T ∗ < ∞ (respe
tively, T∗ > −∞), then u /∈
Lq2((t0, T

∗), Lp(Rn
+, dν)) (respe
tively, u /∈ Lq2((T∗, t0), L

p(Rn
+, dν))) where

q2 ∈ [q1, q].

(iii)(Stability) If fj → f in L2(Rn
+, dν), then uj → u in Lq2

(

I, Lp2(Rn
+, dν)

)

for every interval I with I ⊂ (T∗, T
∗) and for every admissible pair (q2, p2),

where uj and u are solutions 
orresponding to fj and f respe
tively.

Criti
al 
ase α = 2

n+
∑n

j=1
βj

Now we state the main theorem for the 
riti
al 
ase α = 2
n+

∑n
j=1 βj

.

Theorem 9.7 Let u(·, t0) = f ∈ L2(Rn
+, dν), α = 2

n+
∑n

j=1 βj
and G be a fun
tion

satisfying similar 
onditions as in (3), (4). Initial value problem (12), (13) has

unique maximal solution u ∈ C((T∗, T
∗), L2(Rn

+, dν))∩Lq1
lo


(

(T∗, T
∗), Lp1(Rn

+, dν)
)
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for every admissible pair (q1, p1), where t0 ∈ (T∗, T
∗). Fix p = 2 + α. Moreover

the following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), L2(dν))∩Lp((T∗, T ∗), Lp(dν)).

(ii)(Blowup alternative) If T ∗ < ∞ then ‖u‖Lp((t0,T ∗),Lp(dν)) = ∞. Similar


on
lusion holds if T∗ > −∞.

(iii)(Stability) If fj → f in L2(Cn), then uj → u in Lq1
(

I, Lp1(Rn
+, dν)

)

for

every interval I with I ⊂ (T∗, T
∗) and for every admissible pair (q1, p1),

where uj and u are solutions 
orresponding to fj and f respe
tively.
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Chapter 1

Introdu
tion

In this thesis we will study the well posedness problem for the nonlinear S
hrödinger

equation for the magneti
 Lapla
ian on R2n
, 
orresponding to 
onstant magneti


�eld. The magneti
 Lapla
ian in this 
ase 
orresponds to the so 
alled �twisted

Lapla
ian" on Cn
. We establish the well posednes in 
ertain �rst order Sobolev

spa
es asso
iated to the twisted Lapla
ian, and also in L2(Cn). In this 
onne
tion,

we also study S
hrödinger equation for the (n-dimensional) Laguerre di�erential

operator.

S
hrödinger equations, arise in quantum me
hani
s as evolution equations

des
ribing the dynami
s of the quantum parti
les. Hen
e the natural problem to

study is the Cau
hy problem: Find u(·, t) for any time t, for a given initial data

u(t0) = f at time t = t0.

A Cau
hy problem is said to be lo
ally well posed in a Bana
h spa
e B, if

for any given initial data f = u(·, t0) ∈ B, for t = t0, there exists an interval I


ontaining t0 and a unique solution u ∈ C(I, B) to the Cau
hy problem whi
h is

stable, i.e., depends 
ontinuously on the initial data. If I = R, we say that the

problem is globally well posed.

The S
hrödinger equation is also an example of a dispersive equation, in the

sense that the solutions spread out in spa
e as time t→ ∞. This feature usually

translates into a suitable de
ay estimate for the solution with respe
t to time t

as t → ∞. For free S
hrödinger equation on Rn
, this is given by the L1 → L∞

estimate of the form

‖u(·, t)‖L∞(Rn) ≤ |2t|−n
2 ‖f‖L1(Rn) (1.0.1)

1



2

where u(x, t) is given by (1.0.4). Su
h de
ay estimates are useful in the analysis of

dispersive equations, espe
ially in establishing Stri
hartz estimates, a very 
ru
ial

tool in modern approa
h to dispersive equations, see [12℄.

The S
hrödinger equation

The free S
hrödinger equation on R
n
is the PDE

i∂tψ(x, t) + ∆ψ(x, t) = 0, x ∈ R
n, t ∈ R

whi
h gives the quantum me
hani
al des
ription of the evolution of a free parti
le

in Rn
. If ψ is the solution of the S
hrödinger equation, then |ψ(x, t)|2 is inter-

preted as the probability density for �nding the position of the parti
le in Rn
at

a given time t. Let us 
onsider the initial value problem

i∂tu(x, t) + ∆u(x, t) = 0, x ∈ R
n, t ∈ R (1.0.2)

u(x, 0) = f(x). (1.0.3)

For f ∈ L2(Rn), the solution is given by the Fourier transform:

u(x, t) =

∫

Rn

e−it|ξ|
2

f̂(ξ) eixξ dξ. (1.0.4)

This may be written as a 
onvolution operator

u(x, t) = (2it)−
n
2

(

f ∗ e
i|x|2

4t

)

(x) (1.0.5)

whi
h leads to the dispersive estimate mentioned in (1.0.1).

In view of (1.0.4) we write

u(x, t) = eit∆f(x)

interpreting the Fourier inversion formula as the spe
tral de
omposition in terms

of the eigenfun
tions of the Lapla
ian, see [30℄, [31℄. Using Plan
heral theorem

in (1.0.4), we see that

‖u(·, t)‖2 = ‖eit∆f‖2 = ‖f‖2 (1.0.6)
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whi
h physi
ally represents the 
harge 
onservation.

Now let us 
onsider the inhomogeneous S
hrödinger equation

i∂tu(x, t) + ∆u(x, t) = g(x, t), x ∈ R
n, t ∈ R (1.0.7)

u(x, t0) = f(x). (1.0.8)

The solution in this 
ase is given by the Duhamel's formua:

u(x, t) = ei(t−t0)∆f − i

∫ t

t0

ei(t−s)∆g(x, s)ds. (1.0.9)

This 
an be seen as follows. Taking Fourier transform in the x-variable, we

have

i∂tû(ξ, t)− |ξ|2û(ξ, t) = ĝ(ξ, t)

i∂t(e
it|ξ|2û(ξ, t)) = eit|ξ|

2

ĝ(ξ, t).

Now integrate with respe
t to the t-variable on the interval (t0, t), we have

i(eit|ξ|
2

û(ξ, t)− eit0|ξ|
2

û(ξ, t0)) =

∫ t

t0

eis|ξ|
2

ĝ(ξ, s)ds

û(ξ, t) = e−i(t−t0)|ξ|
2

f̂(ξ)− i

∫ t

t0

e−i(t−s)|ξ|
2

ĝ(ξ, s)ds.

By taking inverse Fourier transform in the ξ-variable, this yields (1.0.9).

This formal 
omputation suggests that u given by the above equation should

be a solution to the initial value problem (1.0.7), (1.0.8). This equivalen
e is


ru
ial in lo
al existen
e theory. In fa
t, we prove su
h equivalen
e for the twisted

Lapla
ian L in Lemma 5.0.21.

More generally for any self adjoint di�erential operator L on Rn
, having the

spe
tral representation L =
∫

E
λ dPλ, we 
an asso
iate the S
hrödinger propaga-

tor {e−itL : t ∈ R} given by

e−itLf =

∫

E

e−itλdPλ(f) (1.0.10)

for f ∈ L2(Rn). Here dPλ denote the spe
tral proje
tion for L, i.e., a proje
tion

valued measure supported on the spe
trum E of L, see [26℄.
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In this 
ase, the fun
tion u(x, t) = e−itLf(x) solves the initial value problem

for the S
hrödinger equation for the operator L:

i∂tu(x, t)− Lu(x, t) = 0, x ∈ R
n, t ∈ R (1.0.11)

u(x, 0) = f(x) (1.0.12)

with L now representing the 
orresponding Hamiltonian of the quantum me
han-

i
al system.

The signi�
an
e of this view point is that, most Hamiltonians of interest,

namely the perturbation of the Lapla
ian with a potential V (of the form L =

−∆ + V ) or the magneti
 Lapla
ian 
orresponding to the magneti
 potential

(A1(x), ..., An(x)) (of the form L =
∑n

j=1

(

i∂xj + Aj(x)
)2
) on Rn

, 
an be analysed,

in terms of the spe
tral theory of the Hamiltonian, see [24℄ and [20, 21℄.

In this thesis, we 
on
entrate on S
hrödinger equation for an interesting mag-

neti
 Lapla
ian on C
n
of the form

2n
∑

j=1

[

(i∂wj
− Aj(w))

2
]

, 
orresponding to the

magneti
 ve
tor potential A(z) = iz
2
, z ∈ Cn

. This happens to be the twisted

Lapla
ian on C
n
.

Twisted Lapla
ian

The twisted Lapla
ian L on Cn
is given by

L =
1

2

n
∑

j=1

(

ZjZj + ZjZj
)

where Zj = ∂
∂zj

+ 1
2
z̄j , Zj = − ∂

∂z̄j
+ 1

2
zj , j = 1, 2, . . . , n. Here ∂

∂zj
and

∂
∂z̄j

denote the 
omplex derivatives

∂
∂xj

∓ i ∂
∂yj

respe
tively. The operator L may be

viewed as the 
omplex analogue of the quantum harmoni
 os
illator Hamiltonian

H = −∆+ |x|2 on Rn
, whi
h has the representation

H =
1

2

n
∑

j=1

(

AjA
∗
j + A∗

jAj
)

in terms of the 
reation operators Aj = − ∂
∂xj

+ xj and the annihilation operators

A∗
j =

∂
∂xj

+xj , j = 1, 2, . . . , n. The operator L was introdu
ed by R. S. Stri
hartz
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[31℄, and 
alled the spe
ial Hermite operator and it looks quite similar to the

Hermite operator on Cn
. In expli
it terms the twisted Lapla
ian looks like

L = −∆+
1

4
|z|2 − i

n
∑

1

(

xj
∂

∂yj
− yj

∂

∂xj

)

.

This may be re written as

L =

n
∑

j=1

[

(

i∂xj +
yj
2

)2

+
(

i∂yj −
xj
2

)2
]

whi
h is of the form

2n
∑

j=1

[

(i∂wj
−Aj(w))

2
]

hen
e represents a S
hrödinger operator

on Cn
for the magneti
 ve
tor potential A(z) = iz

2
, z ∈ Cn

.

Nonlinear S
hrödinger equation for the twisted Lapla-


ian

We 
onsider the initial value problem for the nonlinear S
hrödinger equation for

the twisted Lapla
ian L:

i∂tu(z, t)− Lu(z, t) = G(z, u), z ∈ C
n, t ∈ R (1.0.13)

u(z, t0) = f(z) (1.0.14)

for f ∈ L2(Cn). Here we 
onsider the nonlinearity G of the form

G(z, w) = ψ(x, y, |w|)w, (x, y, w) ∈ R
n × R

n × C, (1.0.15)

where z = x+iy ∈ Cn, w ∈ C and ψ ∈ C(Rn×Rn×[0,∞))∩C1(Rn×Rn×(0,∞))

satisfy the following inequality

|F (x, y, η)| ≤ C|η|α (1.0.16)

with F = ψ, ∂xjψ, ∂yjψ (1 ≤ j ≤ n) and η∂ηψ(x, y, η), α ≥ 0 and for some


onstant C. By mean value theorem, we see that

|G(z, u)−G(z, v)| ≤ |u− v|Ψ(u, v) (1.0.17)
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where Ψ(u, v) = (|η∂ηψ(x, y, η)|+ |ψ(x, y, η)|) |η=θ|u|+(1−θ)|v| for some 0 < θ < 1.

Noti
e that in view of the 
ondition (1.0.16) on ψ, we have

|G(z, u)−G(z, v)| ≤ C(|u|α + |v|α)|u− v| (1.0.18)

for some 
onstant C, where u, v ∈ C and z ∈ Cn
.

When G ≡ 0 and f ∈ L2(Cn) the solution to this initial value problem is

given by the S
hrödinger propagator

u(z, t) = e−i(t−t0)Lf(z).

When G(z, u) = g(z), the solution is given by the Duhamel's formula (see equa-

tion (1.0.9))

u(z, t) = e−i(t−t0)Lf(z)− i

∫ t

t0

e−i(t−s)Lg(z)ds. (1.0.19)

Thus in the linear 
ase, the solution is determined on
e the fun
tions f and g are

known.

The basi
 idea in nonlinear analysis is the following heuristi
 reasoning based

on the above formula. If the solution u is known, then one would expe
t u to

satisfy the above equation with g(z) repla
ed by G(z, u(z, s)):

u(z, t) = e−i(t−t0)Lf(z)− i

∫ t

t0

e−i(t−s)LG(z, u(z, s))ds. (1.0.20)

Indeed one 
an show that u from a reasonable fun
tion spa
e satis�es a PDE

of the form (1.0.13), (1.0.14), if and only if u satis�es an integral equation of the

form (1.0.20), see Lemma 5.0.21.

This redu
es the existen
e theorem for the solution to the nonlinear S
hrödinger

equation to a �xed point theorem for the operator

H(u)(z, t) = e−i(t−t0)Lf(z)− i

∫ t

t0

e−i(t−s)LG(z, u(z, s))ds (1.0.21)

in a suitable subset of the relevant fun
tion spa
e.
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Conservation laws

Now we dis
uss the 
onservation of mass and energy for the magneti
 S
hrödinger

equation (1.0.13). For proving mass 
onservation, we assume that ψ is real valued.

Taking L2(Cn) inner produ
t with u on both sides of S
hrödinger equation (1.0.13)

and taking imaginary part, we get the mass 
onservation

d

dt
‖u(·, t)‖22 = 0. (1.0.22)

Taking L2(Cn) inner produ
t with respe
t to ∂tu on both sides and taking real

part, we get the energy 
onservation

d

dt

(

1

4

n
∑

j=1

(‖Zju(z, t)‖22 +
∥

∥Zju(z, t)
∥

∥

2

2
) +

∫

Cn

G̃(z, u)dz

)

= 0

where G̃ : Cn × [0,∞) → C is given by the following

G̃(z, τ) =

∫ τ

0

ψ(z, s)s ds. (1.0.23)

This leads to the 
onservation of the energy E:

E(u(·, t)) = 1

4

n
∑

j=1

(‖Zju(·, t)‖22 +
∥

∥Zju(·, t)
∥

∥

2

2
) +

∫

Cn

G̃(z, |u|)dz. (1.0.24)

In Theorem 6.0.33 in 
hapter 6 we prove that these formal identities are valid

in the spa
e of existen
e of the solution. If G(z, u) = λ|u|αu, then G̃(z, |u|) =
λ

α+2
|u|α+2

. Note that for ea
h z ∈ Cn
, G̃(z, ·) : [0,∞) → R2

is a C1
map and

∂G̃
∂σ

(z, σ) = G(z, σ). Also note that by mean value theorem

|G̃(z, σ1)− G̃(z, σ2)| = |σ1 − σ2| |G(z, θσ1 + (1− θ)σ2)| where θ ∈ (0, 1)

≤ C|σ1 − σ2|(|σ1|1+α + |σ2|1+α). (1.0.25)

In this thesis we will study the well posedness, i.e., lo
al existen
e, uniqueness,

stability and blowup alternative of the initial value problem (1.0.13), (1.0.14)

with f in 
ertain �rst order Sobolev spa
es related to the twisted Lapla
ian and

also in L2(Cn), see 
hapters 4, 5, 6, 7. This work is based on [24℄ (published in
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J. Fun
t. Anal. 265 (1) (2013) 1-27) and [25, 29℄.

The S
hrödinger equation for the magneti
 potential with magneti
 �eld de-


aying at in�nity has been studied by many authors, see for instan
e Yajima [39℄,

where author studies the propagator for the linear equation. In 
ontrast, the

nonlinear equation in our situation 
orresponds to a magneti
 equation with a


onstant magneti
 �eld, whi
h has no de
ay. For more details on general mag-

neti
 S
hrödinger equation 
orresponding to magneti
 �eld without de
ay, see

[1℄. In [40℄ Zhang and Zheng also 
onsider the nonlinear S
hrödinger equation

for the twisted Lapla
ian and with polynomial nonlinearity. They obtain produ
t

rule for fra
tional derivatives using Littlewood Paley theory and as a 
onsequen
e

prove the lo
al well posedness result. There is a vast literature available for the

well posedness results for nonlinear S
hrödinger equation on Rn
. See for instan
e

the papers by Ginibre and Velo [12, 13, 14℄, Kato [16℄, Cazenave and Weisler

[6, 7, 8℄, Tsutsumi [36℄, Begout [2℄, Sjögren Torrea [27℄, the books by Cazenave

[4℄ and Tao[32℄ and the extensive referen
es there in. Some of the referen
es that

we 
ame a
ross dealing with magneti
 S
hrödinger equation are [39℄, [1℄ and [5℄

as mentioned before. In fa
t, the stability result dis
ussed in [5℄, is a
tually the

stability problem for the nonlinear S
hrödinger equation for the twisted Lapla
ian

in the plane.

The 
lass of nonlinearity given by (1.0.15), (1.0.16) in
ludes in parti
ular,

power type nonlinearity of the form |u|αu and is also adaptable to the S
hrödinger
equation for the twisted Lapla
ian, for lo
al existen
e via Kato's method [16℄.

The main di�
ulty in this approa
h is 
aused by the non
ommutativity of L with

∂
∂xj
, ∂
∂yj

and the non
ompatibility of L with the powertype nonlinearty as observed

in [5℄. We are able to over
ome this di�
ulty by introdu
ing the appropriate set

of di�erential operators Lj ,Mj and operators Zj, Zj (1 ≤ j ≤ n) and working

with suitable Sobolev spa
es de�ned using these operators (see 
hapter 4 for

de�nition).

We follow Kato's method [16℄ to prove the lo
al existen
e in �rst order Sobolev

spa
es related to operators Lj,Mj and operators Zj, Zj (1 ≤ j ≤ n). Conser-

vation laws have been an important tool for proving the existen
e of solutions

of nonlinear S
hrödinger equations, whi
h is available for a large 
lass of nonlin-

earities, see Ginibre and Velo [12℄. In [12℄ Ginibre and Velo studied the Cau
hy

problem in the energy spa
e for power type nonlinearities. T. Kato ([16℄), intro-

du
ed a method using Stri
hartz estimates whi
h was appli
able even for those
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nonlinear problems, where 
onservation laws are not available. In 
hapter 4 we

observe that the operators

Lj =

(

∂

∂xj
+ i

yj
2

)

, and Mj =

(

∂

∂yj
− i

xj
2

)

, j = 1, 2, ..., n


ommute with both the operators e−itL and

∫ t

0

e−i(t−s)Lds, for j = 1, 2, . . . , n.

These operators are also 
ompatible with the nonlinearityG 
onsidered in (1.0.15),

(1.0.16). Therefore we 
onsider the following Bana
h spa
e

W̃ 1,2(Cn) = {f ∈ L2(Cn) : Ljf,Mjf ∈ L2(Cn), 1 ≤ j ≤ n}

with norm ‖f‖W̃ 1,2(Cn) = ‖f‖L2(Cn)+
∑n

j=1

(

‖Ljf‖L2(Cn) + ‖Mjf‖L2(Cn)

)

. In 
hap-

ter 5 we prove the lo
al well posedness for initial value f in W̃ 1,2(Cn).

Observe that in view of (1.0.24), W̃ 1,2(Cn) is not the energy spa
e, therefore

energy 
onservation is not possible in the above 
ase. We over
ome this situation

by introdu
ing the Sobolev spa
e W̃ 1,2
L (Cn) (see 
hapter 4) de�ned using the

operators Zj and Zj, whi
h is the energy spa
e and natural one in this 
ontext.

Though they do not 
ommute with e−itL, they have a reasonable 
ommutation

relation, suitable for our purpose. The advantage of working with this Sobolev

spa
e is that we get energy 
onservation in this 
ase, see Theorem 6.0.33 in 
hapter

6. From this we 
an show that there is no �nite time blow up in defo
ussing 
ase

(when ψ is nonnegative) and also in fo
using 
ase (when ψ is nonpositive) with

0 ≤ α < 2
n
, hen
e in Theorem 6.0.33 we 
on
lude the global existen
e in the

Sobolev spa
e W̃ 1,2
L (Cn).

In 
hapter 6 we also 
onsider the 
riti
al 
ase α = 2
n−1

. In sub
riti
al 
ase

0 ≤ α < 2
n−1

for ea
h α, we have some q > 2 su
h that (q, 2+α) be an admissible

pair, whi
h may not be the 
ase when α = 2
n−1

. To treat the 
riti
al 
ase, we

adopt trun
ation argument of Cazenave and Weissler [7℄. To prove lo
al existen
e,

we trun
ate the nonlinearity G and obtain solution for the trun
ated problem.

We obtain solution u for the nonlinearity G by using Stri
hartz estimates and by

passing to the limit.

In 
hapter 7 we prove the global well posedness in L2(Cn) for sub
riti
al 
ase

0 ≤ α < 2
n
using mass 
onservation. However in 
riti
al 
ase α = 2

n
, we 
an prove

global well posedness in L2(Cn) for intial value with su�
iently small norm in

L2(Cn). Our approa
h is based on Cazenave and Weissler [7℄.
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Twisted Lapla
ian and Laguerre operator are 
losely related to ea
h other in

the following sense. If f ∈ S(Cn) is radial then Lf(z) = Ln−1f(r) where Ln−1

is 1-dimensional Laguerre operator of type n − 1 given by (8.0.1) and r = |z|.
More generally we 
an 
onsider n-dimensional Laguerre operator Lβ on R

n
+ =

(0,∞)n of type β ∈
(

−1
2
,∞
)n

whi
h has singularity at xj = 0, 1 ≤ j ≤ n.

Moreover spe
ial Hermite fun
tions Φµ+µ̃,µ,Φµ,µ+µ̃ on Cn
with µ̃ ∈ Zn≥0 are related

with n-dimensional Laguerre fun
tions ψµ̃µ , see Theorem 1.3.4 and Theorem 1.3.5,

page 19-20 in [33℄, where ψµ̃µ are given by (8.0.2). By similar analysis we also

prove the lo
al well posedness of the initial value problem for the S
hrödinger

equation with the Laguerre operator and initial value in L2(Rn
+, dν) where dν =

(

∏n
j=1 x

2βj+1
j

)

dx, see 
hapter 8. This work is based on the Stri
hartz estimates

for the Laguerre operator proved in Sohani [28℄ (to appear in Pro
. Math. S
i.).



Chapter 2

S
hrödinger propagator for the

twisted Lapla
ian

Now we de�ne the S
hrödinger propagator e−itL through the spe
tral theory of the

twisted Lapla
ian. The twisted Lapla
ian is 
losely related to the sub Lapla
ian

on the Heisenberg group, hen
e the spe
tral theory of this operator is 
losely


onne
ted with the representation theory of the Heisenberg group. Here we give

a brief review of the spe
tral theory of the twisted Lapla
ian L. The materials

dis
ussed here is based on the the following books: Folland [11℄, and Thangavelu

[33, 34℄.

The eigenfun
tions of the operator L are 
alled the spe
ial Hermite fun
tions,

whi
h are de�ned in terms of the Fourier-Wigner transform. For a pair of fun
-

tions f, g ∈ L2(Rn), the Fourier-Wigner transform is de�ned to be

V (f, g)(z) = (2π)−
n
2

∫

Rn

eix·ξf
(

ξ +
y

2

)

g
(

ξ − y

2

)

dξ,

where z = x + iy ∈ Cn. For any two multi-indi
es µ, ν the spe
ial Hermite

fun
tions Φµ ν are given by

Φµ ν(z) = V (hµ, hν)(z)

where hµ and hν are Hermite fun
tions on Rn
. Re
all that for ea
h nonnegative

integer k, the one dimensional Hermite fun
tions hk are de�ned by

hk(x) =
(−1)k

√

2kk!
√
π

(

dk

dxk
e−x

2

)

e
x2

2 .

11
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Now for ea
h multi index ν = (ν1, · · · , νn), the n-dimensional Hermite fun
tions

are de�ned by the tensor produ
t :

hν(x) =
n
∏

i=1

hνi(xi), x = (x1, · · · , xn).

Sin
e the Hermit fun
tions satisfy the re
ursion relations

(

− d

dx
+ x

)

hk(x) = (2k + 2)
1
2hk+1(x),

(

d

dx
+ x

)

hk(x) = (2k)
1
2hk−1(x),

it follows that the spe
ial Hermit fun
tions satisfy the relations

ZjΦµ,ν = i(2νj)
1
2Φµ,ν−ej , ZjΦµ,ν = −i(2νj + 2)

1
2Φµ,ν+ej . (2.0.1)

Sin
e L = 1
2

∑n
j=1

(

ZjZj + ZjZj
)

, it follows that Φµν are eigenfun
tions of L
with eigenvalue 2|ν|+n and moreover, they form a 
omplete orthonormal system

in L2(Cn). Thus every f ∈ L2(Cn) has the expansion

f =
∑

µ, ν

〈f,Φµν〉Φµν (2.0.2)

in terms of the eigenfun
tions of L. The above expansion may be written as

f =

∞
∑

k=0

Pkf (2.0.3)

where

Pkf =
∑

µ,|ν|=k

〈f,Φµ,ν〉Φµν (2.0.4)

is the spe
tral proje
tion 
orresponding to the eigenvalue 2k + n. We also have

the Plan
heral theorem for the spe
ial Hermit expansion

‖f‖22 =
∞
∑

k=0

‖Pkf‖22. (2.0.5)
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Now for any f ∈ L2(Cn) su
h that Lf ∈ L2(Cn), by self adjointness of L, we
have Pk(Lf) = (2k + n)Pkf . It follows that for f ∈ L2(Cn) with Lf ∈ L2(Cn)

Lf =

∞
∑

k=0

(2k + n)Pkf. (2.0.6)

Thus, we 
an de�ne e−itL as

e−itLf =
∞
∑

k=0

e−it(2k+n)Pkf. (2.0.7)

Note that Pkf has the 
ompa
t representation

Pkf(z) = (2π)−n(f × ϕk)(z) = (2π)−n
∫

Cn

f(z − w)ϕk(w)e
i
2
Im(z.w)dw (2.0.8)

in terms of the Laguerre fun
tion ϕk(z) = Ln−1
k (1

2
|z|2)e− 1

4
|z|2

, see [22, 33℄. For

f ∈ L2(Cn), we have 
ompa
t form e−(r+it)Lf = f × Kr+it(z) (see [22℄) where

r > 0 and

Kr+it(z) = (2π)−ne−n(r+it)(1− e−2(r+it))−ne
− 1+e−2(r+it)

1−e−2(r+it)
· |z|

2

4 .

Let us 
onsider sequen
e {rm} of positive real numbers 
onverging to zero. We

observe that e−(rm+it)Lf → e−itLf as rm → 0 in L2(Cn) and therefore upto a

subsequen
e e−(rm+it)Lf(z) → e−itLf(z) for a.e. z as rm → 0. Sin
e

|Krm+it(z)| ≤ 2| sin t|−n,

for f ∈ L1 ∩ L2(Cn),

f ×Krm+it(z) → f ×Kit(z) as rm → 0

for a.e. z. Hen
e we 
an express e−itL as a twisted 
onvolution operator:

e−itLf = f ×Kit

for f ∈ L1 ∩ L2(Cn) where Kit(z) =
(4πi)−n

(sin t)n
e

i(cot t)|z|2

4
.





Chapter 3

Stri
hartz estimates

Stri
hartz estimates are useful for establishing existen
e of solution for semilinear

S
hrödinger and wave equations, in whi
h no derivatives are present in the non-

linearity. Stri
hartz estimates were �rst proved by Stri
hartz [30℄ for solutions of

S
hrödinger and wave equations on Rn
. They were generalized by Ginibre and

Velo [14, 15℄, Lindblad and Sogge [19℄. In [17℄ Keel and Tao proved Stri
hartz

estimates in
luding endpoint for the wave and the S
hrödinger equations.

Homogeneous Stri
hartz estimates for twisted Lapla
ian is proved by Rat-

nakumar in [22℄. We begin with the following de�nitions of mixed Lp spa
e

Lq((a, b), Lp(Cn)), admissible pair and prove the Stri
hartz estimates. For mixed

Lp spa
es we would like to refer to se
tion 8.18 in Edwards [10℄.

De�nition 3.0.1 Let n ≥ 1 and 1 ≤ p, q ≤ ∞. We de�ne Lq((a, b), Lp(Cn)) by

the following

Lq((a, b), Lp(Cn)) = {g is measurable on C
n × (a, b) : ‖g‖Lq((a,b),Lp(Cn)) <∞}

where ‖g‖Lq((a,b),Lp(Cn)) =
(

∫ b

a
‖g‖q

Lp(Cn)dt
)

1
q

.

De�nition 3.0.2 Let n ≥ 1. We say that a pair (q, p) is admissible if

1 ≤ q ≤ 2, 0 ≤ n

(

1

2
− 1

p

)

<
1

2
or

2 < q ≤ ∞ and 0 ≤ n

(

1

2
− 1

p

)

≤ 1

q
<

1

2
.

15
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Remark 3.0.3 The admissibility 
ondition on (q, p) implies that 2 ≤ p < 2n
n−1

.

Admissible 
ondition is basi
ally 
oming from the following Lemma 3.0.4 and

Remark 3.0.5 whi
h are useful in proving Stri
hartz estimate (3.0.3). This Lemma

was proved in [22℄ (see Lemma 2, p. 293-294) for 
ompa
t interval [−π, π], we
state here for arbitrary 
ompa
t interval [a, b]. Same proof will work here, so we

skip the proof.

Lemma 3.0.4 Let (a, b) be a bounded interval and T be the operator given by

Tf(t) =

∫ b

a

K(t− s)f(s)ds.

Then the following inequality

‖Tf‖q ≤ CK‖f‖q′

holds for q = ∞ if K ∈ L∞(a−b, b−a), for q ∈ (2,∞) if K ∈ weak L
q
2 (a−b, b−a)

and also for 1 ≤ q ≤ 2 if K ∈ L1(a− b, b − a). The 
onstant CK is independent

of f but depends on K and interval (a, b).

Remark 3.0.5 Let p ∈ [2,∞], a, b ∈ R and a < b. | sin t|−2n( 1
2
− 1

p) ∈ weak

L
q
2 (a − b, b − a) with q ∈ (2,∞) if 2 < q ≤ 1

n( 1
2
− 1

p
)
or n(1

2
− 1

p
) ≤ 1

q
< 1

2
. Also

| sin t|−2n( 1
2
− 1

p) ∈ L1(a − b, b − a) if 2n
(

1
2
− 1

p

)

< 1. If we 
onsider p = 2 then

| sin t|−2n( 1
2
− 1

p) = 1 ∈ L∞(a− b, b− a).

Now we state a Lemma whi
h is helpful in proving Stri
hartz estimates (The-

orem 3.0.7). For proof we refer to Lemma 3 in [22℄.

Lemma 3.0.6 Let [a, b] be a bounded interval 
ontaining t0. Let hj(z, t) ∈
Lq

′
j((a, b), L2(Cn)), where q′j is 
onjugate exponent of qj with 1 ≤ qj ≤ ∞ for

j = 1, 2. Then the fun
tions

e−i(t−t0)Lh1(z, t)e
−i(s−t0)Lh2(z, s), h1(z, t)e

i(t−s)Lh2(z, s)

belong to L1(Cn × (a, b)× (a, b)).

The main Stri
hartz type estimates in this 
hapter is 
ompiled in the following

theorem. Homogeneous Stri
hartz estimate (3.0.1) is proved in [22℄. For 
om-
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pleteness, we also give the proof of the estimate (3.0.1). Our approa
h is similar

to the Eu
lidean 
ase dis
ussed in Cazenave [4℄.

Theorem 3.0.7 (Stri
hartz Estimates) Let (q, p), (q1, p1) be two admissible

pairs, (a, b) a �nite interval with t0 ∈ [a, b], f ∈ L2(Cn) and g ∈ Lq
′
1((a, b), Lp

′
1(Cn))

where q′1 and p′1 are 
onjugate exponents of q1 and p1 respe
tively. Then the fol-

lowing estimates hold over Cn × (a, b):

‖e−itLf‖Lq((a,b),Lp(Cn)) ≤ C‖f‖2 (3.0.1)

∥

∥

∥

∥

∫ t

t0

e−i(t−s)Lg(z, s)ds

∥

∥

∥

∥

Lq((a,b),Lp(Cn))

≤ C‖g‖
L
q′
1((a,b),Lp′

1 (Cn)
(3.0.2)

where the 
onstant C depends on admissible pairs and independent of t0. Moreover

e−itLf ∈ C(R, L2(Cn)) and
∫ t

t0
e−i(t−s)Lg(z, s)ds ∈ C([a, b], L2(Cn)).

Remark 3.0.8 Note that e−i(t−t0)Lf(z) is 2π periodi
 in t, hen
e we 
an not

expe
t the above Stri
hartz inequalities for unbounded intervals ex
ept when

q = ∞. Also Sin
e | sin t| is π periodi
, in view of Remark 3.0.5, 
onstant C

in the inequalities (3.0.1) and (3.0.2) 
an be 
hosen independent of the interval

(a, b) provided b− a ≤ π.

Proof. We prove the Theorem in the following steps. In step 2 we prove estimate

(3.0.1) and e−itLf ∈ C(R, L2(Cn)), whereas in step 6 we prove estimate (3.0.2).

Step 1: We will prove estimate (3.0.2) when (q, p) = (q1, p1). Using Minkowski's

inequality for integrals and from Proposition 1 in [22℄, we get

∥

∥

∥

∥

∫ t

t0

e−i(t−s)Lg(z, s)ds

∥

∥

∥

∥

Lp(Cn)

≤ C

∫ b

a

| sin(t− s)|−2n( 1
2
− 1

p
)‖g(·, s)‖Lp′(Cn)ds.

Now taking Lq-norm with respe
t to the t-variable on the interval (a, b) and using

Lemma 3.0.4 with Remark 3.0.5 we get the estimate (3.0.2) for (q, p) = (q1, p1),

i.e.,

∥

∥

∥

∥

∫ t

t0

e−i(t−s)Lg(z, s)ds

∥

∥

∥

∥

Lq((a,b),Lp(Cn))

≤ C‖g‖Lq′((a,b);Lp′(Cn)) (3.0.3)
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Step 2: To prove estimate (3.0.1), we �rst prove the following estimate

∥

∥

∥

∥

∫ b

a

ei(t−t0)Lg(z, t)dt

∥

∥

∥

∥

L2(Cn)

≤ C‖g‖Lq′((a,b),Lp′ (Cn)). (3.0.4)

By density argument it is enough to prove estimate (3.0.4) for g ∈ Lq
′
((a, b), L2∩

Lp
′
(Cn)). Sin
e e−itL is the adjoint of eitL on L2(Cn), from Lemma 3.0.6, the

Hölder's inequality for the mixed Lp spa
es and the estimate (3.0.3), we get

estimate (3.0.4):

∥

∥

∥

∥

∫ b

a

ei(t−t0)Lg(·, t)dt
∥

∥

∥

∥

2

L2(Cn)

=

〈
∫ b

a

ei(t−t0)Lg(·, t)dt,
∫ b

a

ei(s−t0)Lg(·, s)ds
〉

=

∫ b

a

∫ b

a

〈

ei(t−t0)Lg(·, t), ei(s−t0)Lg(·, s)
〉

dsdt

=

∫ b

a

∫ b

a

〈

g(·, t), e−i(t−s)Lg(·, s)
〉

dsdt

=

∫ b

a

〈

g(·, t),
∫ b

a

e−i(t−s)Lg(·, s)ds
〉

dt

≤ ‖g‖Lq′((a,b),Lp′ (Cn))

∥

∥

∥

∥

∫ b

a

e−i(t−s)Lg(z, s)ds

∥

∥

∥

∥

Lq((a,b),Lp(Cn))

≤ C‖g‖2
Lq′((a,b),Lp′ (Cn))

.

Sin
e e−itL is unitary operator on L2(Cn), the estimate (3.0.1) follows if (q, p) =

(∞, 2). For q < ∞, estimate (3.0.1) follows from a duality argument, using

estimate (3.0.4), Lemma 3.0.6 and the fa
t that e−itL is adjoint operator of eitL

on L2(Cn). Sin
e |e−it(2k+n) − 1| ≤ 2 and ‖Pkf‖L2(Cn) ∈ l2(Z≥0), e
−itLf(z) ∈

C(R, L2(Cn)) follows from the dominated 
onvergen
e theorem.

Step 3: Now we will prove estimate (3.0.2) by using a duality argument in the

z-variable when (q, p) = (∞, 2). By a density argument it is enough to prove the

estimate (3.0.2) for g ∈ Lq
′
1((a, b), L2∩Lp′1(Cn)). Let h ∈ S(Cn) with ‖h‖L2(Cn) =

1. By Hölder's inequality, Lemma 3.0.6, estimate (3.0.1) and the fa
t that e−itL

is the adjoint of eitL on L2(Cn), we get

∣

∣

∣

∣

〈
∫ t

t0

e−i(t−s)Lg(·, s)ds, h
〉
∣

∣

∣

∣
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=

∣

∣

∣

∣

∫ t

t0

〈

g(·, s), ei(t−s)Lh
〉

ds

∣

∣

∣

∣

≤
∫ b

a

∣

∣

〈

g(·, s), ei(t−s)Lh
〉
∣

∣ ds

≤ ‖g‖
L
q′
1((a,b),Lp′

1 (dν))

∥

∥e−isL(eitLh)
∥

∥

Lq1 ((a,b)(ds),Lp1 (Cn))

≤ C‖g‖
L
q′1((a,b),Lp′1 (Cn))

‖eitLh‖L2(Cn)

= C‖g‖
L
q′
1((a,b),Lp′

1 (Cn))
‖h‖L2(Cn).

Taking supremum over all h with ‖h‖L2(Cn) = 1 and then supremum over t ∈
(a, b), we get the estimate

∥

∥

∥

∥

∫ t

t0

e−i(t−s)Lg(z, s)ds

∥

∥

∥

∥

L∞((a,b),L2(Cn))

≤ C ‖g‖
L
q′1((a,b);Lp′1 (Cn))

. (3.0.5)

Step 4: Now we will prove estimate (3.0.2) when (q1, p1) = (∞, 2). Estimate

(3.0.2) follows from estimate (3.0.5) if (q, p) = (∞, 2). So we assume that (q, p) 6=
(∞, 2). To prove estimate (3.0.2), take h ∈ Lq

′ (

(a, b), L2 ∩ Lp′(Cn)
)

. Now from

Lemma 3.0.6 and the fa
t that e−itL is the adjoint of eitL on L2(Cn), we observe

the following

∫ b

a

〈
∫ t

t0

e−i(t−s)Lg(·, s)ds, h(·, t)
〉

Cn

dt

=

(
∫ t0

t=a

∫ t0

s=t

+

∫ b

t=t0

∫ t

s=t0

)

〈

g(·, s), ei(t−s)Lh(·, t)
〉

Cn ds dt

=

(
∫ t0

s=a

∫ s

t=a

+

∫ b

s=t0

∫ b

t=s

)

〈

g(·, s), ei(t−s)Lh(·, t)
〉

Cn dt ds

=

∫ t0

a

〈

g(·, s),
∫ s

a

e−i(s−t)Lh(·, t)dt
〉

Cn

ds

+

∫ b

t0

〈

g(·, s),
∫ b

s

e−i(s−t)Lh(·, t)dt
〉

Cn

ds.

In view of estimate (3.0.5) and Hölder's inequality, we get the estimate

∥

∥

∥

∥

∫ t

t0

e−i(t−s)Lg(z, s)ds

∥

∥

∥

∥

Lq((a,b),Lp(Cn))

≤ C‖g‖L1((a,b),L2(Cn). (3.0.6)

Step 5: Now we assume that q, q1 > 2 and
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1

q
= n

(

1

2
− 1

p

)

,
1

q1
= n

(

1

2
− 1

p1

)

.

In this 
ase estimate (3.0.2) follows from bilinear Riesz-Thorin interpolation the-

orem and estimates (3.0.3), (3.0.5), (3.0.6) (see step 4 at page no. 36 in Cazenave

[4℄).

Step 6: To prove estimate (3.0.2), let us de�ne q̃, q̃1 by the following

1

q̃
= n

(

1

2
− 1

p

)

,
1

q̃1
= n

(

1

2
− 1

p1

)

.

Then 1 ≤ q ≤ q̃, 1 ≤ q1 ≤ q̃1 and 2 < q̃, q̃1. By Hölder's inequality in the

t-variable and step 4 we obtain estimate (3.0.2):

∥

∥

∥

∥

∫ t

t0

e−i(t−s)Lgds

∥

∥

∥

∥

Lq((a,b),Lp(Cn))

≤ (b− a)κ1
∥

∥

∥

∥

∫ t

t0

e−i(t−s)Lgds

∥

∥

∥

∥

Lq̃((a,b),Lp(Cn))

≤ C(b− a)κ1 ‖g‖
L
q̃′1 ((a,b),Lp′1 (Cn))

≤ C(b− a)κ1+κ2 ‖g‖
L
q′
1 ((a,b),Lp′

1 (Cn))

≤ C ‖g‖
L
q′
1 ((a,b),Lp′

1 (Cn))

where

κ1 =
1

q
− n

(

1

2
− 1

p

)

, κ2 =
1

q1
− n

(

1

2
− 1

p1

)

.

Step 7: Now we prove

∫ t

t0
e−i(t−s)Lg(z, s)ds ∈ C([a, b], L2(Cn)). Let tm → t.

Consider h ∈ S(Cn) and we see that

∣

∣

∣

∣

∣

〈
∫ t

t0

e−i(tm−s)Lg(·, s)ds−
∫ t

t0

e−i(t−s)Lg(·, s)ds, h
〉

(Cn)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

t0

〈

e−i(tm−s)Lg(·, s)− e−i(t−s)Lg(·, s), h
〉

(Cn)
ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

t0

〈

g(·, s),
(

ei(tm−s)L − ei(t−s)L
)

h
〉

(Cn)
ds

∣

∣

∣

∣

≤
∫ b

a

‖g(·, s)‖Lp′(Cn)‖e−i(s−t0)L
(

ei(tm−t0)Lh− ei(t−t0)Lh
)

‖Lp(Cn)ds

≤ ‖g‖Lq′((a,b),Lp′ (Cn))‖e−i(s−t0)L
(

ei(tm−t0)Lh− ei(t−t0)Lh
)

‖Lq((a,b)(ds),Lp(Cn))

≤ C‖g‖Lq′((a,b),Lp′ (Cn))‖
(

ei(tm−t0)L − ei(t−t0)L
)

h‖L2(Cn).
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By density of S(Cn) in L2(Cn), this shows that

∫ t

t0

e−i(tm−s)Lg(·, s)ds→
∫ t

t0

e−i(t−s)Lg(·, s)ds

weakly in L2(Cn). Also note that L2(Cn) norm of this sequen
e is 
onstant and

equal to:

∥

∥

∥

∥

∫ t

t0

e−i(tm−s)Lg(·, s)ds
∥

∥

∥

∥

L2(Cn)

=

∥

∥

∥

∥

e−i(tm−t)L

∫ t

t0

e−i(t−s)Lg(·, s)ds
∥

∥

∥

∥

L2(Cn)

=

∥

∥

∥

∥

∫ t

t0

e−i(t−s)Lg(·, s)ds
∥

∥

∥

∥

L2(Cn)

.

Therefore we have the 
onvergen
e in L2(Cn):

∫ t

t0

e−i(tm−s)Lg(·, s)ds→
∫ t

t0

e−i(t−s)Lg(·, s)ds.

Also sin
e

∥

∥

∥

∫ tm

t
e−i(tm−s)Lg(·, s)ds

∥

∥

∥

L2(Cn)
≤ C‖g‖Lq′([t,tm],Lp′(Cn)) → 0 as tm → t,

we 
on
lude that

∫ t

t0
e−i(t−s)Lg(z, s)ds ∈ C([a, b], L2(Cn)).





Chapter 4

Some auxiliary fun
tion spa
es

The Sobolev spa
e W̃ 1,p(Cn)

Let Lj and Mj be the di�erential operators de�ned by

Lj =

(

∂

∂xj
+ i

yj
2

)

and Mj =

(

∂

∂yj
− i

xj
2

)

, j = 1, 2, ..., n. (4.0.1)

We 
onsider the spa
e

W̃ 1,p(Cn) = {f ∈ Lp(Cn) : Ljf,Mjf ∈ Lp(Cn), 1 ≤ j ≤ n}

with norm ‖f‖ = ‖f‖Lp(Cn) +
∑n

j=1

(

‖Ljf‖Lp(Cn) + ‖Mjf‖Lp(Cn)

)

. If {fk} is a

Cau
hy sequen
e in W̃ 1,p(Cn) then there exists f, gj , hj ∈ Lp(Cn) su
h that fk →
f, Ljfk → gj,Mjfk → hj in L

p(Cn) as k → ∞ for 1 ≤ j ≤ n. Sin
e Lj ,Mj are

skew adjoint operators, it is easy to see that Ljf = gj,Mjf = hj in S ′(Cn) for

1 ≤ j ≤ n. This shows that f ∈ W̃ 1,p(Cn) and fk → f in W̃ 1,p(Cn). Hen
e

W̃ 1,p(Cn) is a Bana
h spa
e.

An interesting relation between the Sobolev spa
e W̃ 1,p(Cn) and the ordinary

Sobolev spa
e W 1,p(Cn) is the following: If u ∈ W̃ 1,p(Cn), then |u| ∈ W 1,p(Cn).

Lemma 4.0.9 [Sobolev Embedding Theorem℄ We have the 
ontinuous in
lusion

W̃ 1,p1(Cn) →֒ Lp2(Cn) for p1 ≤ p2 ≤ 2np1
2n−p1

if p1 < 2n

for p1 ≤ p2 <∞ if p1 = 2n

for p1 ≤ p2 ≤ ∞ if p1 > 2n

23
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where 1 < p1 <∞.

Proof. Let f ∈ W̃ 1,p1(Cn) and ǫ > 0. Consider uǫ = e−ǫLf . Note that (4.0.6)

is also valid for f ∈ Lp1(Cn). Sin
e Kǫ given by (4.0.7) is in S(Cn) and from

Lemma 4.0.17 uǫ = f ×Kǫ ∈ W̃ 1,p1(Cn) ∩ C∞(Cn) and we have

2|uǫ|
∂

∂xj
|uǫ| =

∂

∂xj
(uǫuǫ) = 2ℜ

(

uǫ
∂

∂xj
uǫ

)

= 2ℜ
(

uǫ(
∂

∂xj
+
iyj
2
) uǫ

)

.

Hen
e on the set Aǫ = {z ∈ Cn | uǫ(z) 6= 0} , we have
∣

∣

∣

∣

∂

∂xj
|uǫ|
∣

∣

∣

∣

=

∣

∣

∣

∣

ℜ
(

uǫ
|uǫ|

(
∂

∂xj
+
iyj
2
) uǫ

)
∣

∣

∣

∣

≤ |Lj(uǫ)| .

Similarly

∣

∣

∣

∂
∂yj

|uǫ|
∣

∣

∣
≤ |Mjuǫ| on Aǫ. Note that ‖uǫ‖Lp2 (Cn) = ‖uǫχAǫ

‖Lp2 (Cn). By

the usual Sobolev embedding on Cn
and above observations, we have inequality

‖uǫ‖Lp2(Cn) ≤ C‖|uǫχAǫ
|‖W 1,p1 ≤ C ‖uǫ‖W̃ 1,p1 . Sin
e Se−ǫLf = e−ǫLSf for S =

Lj ,Mj(1 ≤ j ≤ n) (see Lemma 4.0.10), therfore by Lemma 4.0.17 uǫ = e−ǫLf → f

in W̃ 1,p1(Cn) and also in Lp2(Cn) as ǫ → 0. Therefore we have ‖f‖Lp2(Cn) ≤
C‖f‖W̃ 1,p1(Cn). Hen
e Lemma is proved.

Lemma 4.0.10 Let f ∈ S ′(Cn). Then for every t, t0 ∈ R, we have the following

equalities in S ′(Cn)

Lje
−i(t−t0)Lf = e−i(t−t0)LLjf

Mje
−i(t−t0)Lf = e−i(t−t0)LMjf.

Proof. Sin
e f ∈ S ′(Cn), Lje
−i(t−t0)Lf, Mje

−i(t−t0)Lf ∈ S ′(Cn). In view of

(1.3.17), (1.3.18), (1.3.21) and (1.3.22) in [33℄, we have

LjΦµ,ν =
i

2

(

(2µj)
1
2Φµ−ej ,ν + (2µj + 2)

1
2Φµ+ej ,ν

)

MjΦµ,ν =
1

2

(

(2µj)
1
2Φµ−ej ,ν − (2µj + 2)

1
2Φµ+ej ,ν

)

.

Sin
e Lj ,Mj are skew adjoint operators and �nite linear 
ombination of spe
ial

Hermite fun
tions are dense in S(Cn) (Theorem 1.4.4 in [34℄), Lemma follows
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from the following observations

〈

Lje
−i(t−t0)Lf,Φµ,ν

〉

=
〈

e−i(t−t0)LLjf,Φµ,ν
〉

〈

Mje
−i(t−t0)Lf,Φµ,ν

〉

=
〈

e−i(t−t0)LMjf,Φµ,ν
〉

for every µ, ν ∈ (Z≥0)
n
.

Lemma 4.0.11 Let t0 ∈ R and I an open interval 
ontaining t0. Let g ∈
Lq

′

lo


(

I, W̃ 1,p′(Cn)
)

, where (q, p) be an admissible pair. Then

∫ t

t0
e−i(t−s)Lg(z, s)ds ∈

C(I, W̃ 1,2(Cn)). Moreover for ea
h t ∈ I, we have the following equalities in

L2(Cn)

Lj

∫ t

t0

e−i(t−s)Lg(z, s)ds =

∫ t

t0

e−i(t−s)LLjg(z, s)ds

Mj

∫ t

t0

e−i(t−s)Lg(z, s)ds =

∫ t

t0

e−i(t−s)LMjg(z, s)ds.

Proof. Sin
e g ∈ Lq
′

lo


(

I, W̃ 1,p′(Cn)
)

, by Stri
hartz estimates (Theorem 3.0.7)

∫ t

t0
e−i(t−s)LSg(z, s)ds ∈ C(I, L2(Cn)), where S = Lj ,Mj , 1 ≤ j ≤ n. In view of

Theorem 1.4.4 in [34℄, Lemma follows from the following observations

〈

Lj

∫ t

t0

e−i(t−s)Lg(z, s)ds,Φµ,ν

〉

=

〈
∫ t

t0

e−i(t−s)LLjg(z, s)ds,Φµ,ν

〉

〈

Mj

∫ t

t0

e−i(t−s)Lg(z, s)ds,Φµ,ν

〉

=

〈
∫ t

t0

e−i(t−s)LMjg(z, s)ds,Φµ,ν

〉

for every µ, ν ∈ (Z≥0)
n
.

The Sobolev spa
e W̃ 1,p
L (Cn)

The lo
al well posedness of the nonlinear S
hrödinger equation for the twisted

Lapla
ian is dis
ussed in 
hapter 5 for initial values in W̃ 1,2(Cn). However this

approa
h does not give the energy 
onservation. We over
ome this di�
ulty by

introdu
ing the Sobolev spa
e W̃ 1,2
L (Cn) de�ned using the operators Zj and Zj

Zj =
∂

∂zj
+

1

2
z̄j, Zj = − ∂

∂z̄j
+

1

2
zj ,
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whi
h is the natural one in this 
ontext. Here

∂
∂zj

,

∂
∂z̄j

denote the 
omplex deriva-

tives

∂
∂xj

∓ i ∂
∂yj

respe
tively.

De�nition 4.0.12 Let m be a nonnegative integer and 1 ≤ p < ∞. We de�ne

spa
e W̃m,p
L (Cn) by the following

W̃m,p
L (Cn) = {f ∈ Lp(Cn) : Sαf ∈ Lp(Cn), |α| ≤ m}

where Sα denotes monomial in Z1, . . . , Zn, Z̄1, . . . , Z̄n of degree |α| = α1+· · ·+α2n.

W̃m,p
L (Cn) is a Bana
h spa
e with norm given by

‖f‖W̃m,p
L

=
∑

|α|≤m

‖Sαf‖Lp.

Lemma 4.0.13 Let f ∈ W̃ 1,2
L (Cn). Then we have

‖f‖W̃ 1,2
L

≈
∑

1≤j≤n

(‖Zjf‖L2 + ‖Z̄jf‖L2).

Proof. Clearly

‖f‖W̃ 1,2
L

≥
∑

1≤j≤n

(‖Zjf‖L2 + ‖Z̄jf‖L2).

Now we show that

‖f‖W̃ 1,2
L

≤ 2
∑

1≤j≤n

(‖Zjf‖L2 + ‖Z̄jf‖L2).

Enough to show that ‖Z̄jf‖2 ≥ ‖f‖2, 1 ≤ j ≤ n. This follows from the Plan
heral

theorem for the spe
ial Hermite expansion

‖f‖22 =
∑

µ,ν

|〈f, φµ,ν〉|2,

for f ∈ L2(Cn). In view of (2.0.1) and Zj, Z̄j are adjoint of ea
h other, we have

Z̄jf =
∑

µ, ν

〈Z̄jf,Φµν〉Φµ ν = −
∑

µ, νj≥1

i(2νj)
1
2 〈f,Φµ ν−ej〉Φµν . (4.0.2)

Thus in view of equation (4.0.2), we have
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‖Z̄jf‖22 =
∑

µ, νj≥1

2νj|〈f,Φµν−ej〉|2 =
∑

µ,ν

(2νj + 2)|〈f,Φµ,ν〉|2 ≥ ‖f‖22,

whi
h 
ompletes the proof.

Though the operators Zj and Z̄j (1 ≤ j ≤ n) do not 
ommute with e−itL, they

have a reasonable 
ommutation relation, suitable for our purpose, see Lemma

4.0.15. The advantage of working with this Sobolev spa
e is that we get energy


onservation in this 
ase. Using this we 
an show that there is no �nite time blow

up in the defo
ussing 
ase and also in the fo
using 
ase with 0 ≤ α < 2
n
, whi
h

yields the global existen
e in the Sobolev spa
e W̃ 1,2
L (Cn).

We have the following embedding theorem for the Sobolev spa
e W̃ 1,p
L (Cn).

Lemma 4.0.14 ( Sobolev Embedding Theorem ) We have the 
ontinuous in
lu-

sion

W̃ 1,p1
L (Cn) →֒ Lp2(Cn) for p1 ≤ p2 ≤ 2np1

2n−p
if p1 < 2n

for p1 ≤ p2 <∞ if p1 = 2n

for p1 ≤ p2 ≤ ∞ if p1 > 2n

where 1 < p1 <∞.

Proof. Let f ∈ W̃ 1,p1
L (Cn) and ǫ > 0. Consider uǫ = e−ǫLf . Then uǫ ∈

W̃ 1,p1
L (Cn) ∩ C∞(Cn) and we have

2|uǫ|
∂

∂xj
|uǫ| =

∂

∂xj
(uǫuǫ) = 2ℜ

(

uǫ
∂

∂xj
uǫ

)

= 2ℜ
(

uǫ(
∂

∂xj
− iyj

2
) uǫ

)

.

Note that

1

2

(

Zj + Z̄j
)

= −i
(

∂

∂yj
+
ixj
2

)

,
1

2

(

Zj − Z̄j
)

=

(

∂

∂xj
− iyj

2

)

. (4.0.3)

Hen
e on the set Aǫ = {z ∈ Cn | uǫ(z) 6= 0}, we have
∣

∣

∣

∣

∂

∂xj
|uǫ|
∣

∣

∣

∣

=

∣

∣

∣

∣

ℜ
(

uǫ
|uǫ|

(
∂

∂xj
− iyj

2
) uǫ

)
∣

∣

∣

∣

≤ 1

2
(|Zjuǫ|+ |Z̄juǫ|).

Similarly

∣

∣

∣

∂
∂yj

|uǫ|
∣

∣

∣
≤ 1

2
(|Zjuǫ|+|Z̄juǫ|) on Aǫ. Note that ‖uǫ‖Lp2 (Cn) = ‖uǫχAǫ

‖Lp2 (Cn).

By the usual Sobolev embedding on C
n
and above observations, we have in-

equality ‖uǫ‖Lp2(Cn) ≤ C‖|uǫχAǫ
|‖W 1,p1 ≤ C ‖uǫ‖W̃ 1,p1

L
. By Lemma 4.0.17 uǫ =
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e−ǫLf → f in W̃ 1,p1
L (Cn) and also in Lp2(Cn) as ǫ → 0. Therefore we have

‖f‖Lp2(Cn) ≤ C‖f‖
W̃

1,p1
L (Cn)

, where 
onstant C is a generi
 
onstant independent

of f . Hen
e Lemma is proved.

Lemma 4.0.15 (Quasi 
ommutativity) Let f ∈ S ′(Cn). Then for every t, t0 ∈ R,

we have the following equalities in S ′(Cn)

Zje
−i(t−t0)Lf = e−2i(t−t0)e−i(t−t0)LZjf

Zje
−i(t−t0)Lf = e2i(t−t0)e−i(t−t0)LZjf.

Proof. Note that both Zje
−i(t−t0)Lf and Z̄je

−i(t−t0)Lf are in S ′(Cn) for f ∈
S ′(Cn). Sin
e every tempered distribution has a spe
ial Hermite expansion,

enough to show the identities

〈

Zje
−i(t−t0)Lf,Φµ,ν

〉

= e−2i(t−t0)
〈

e−i(t−t0)LZjf,Φµ,ν
〉

〈

Zje
−i(t−t0)Lf,Φµ,ν

〉

= e2i(t−t0)
〈

e−i(t−t0)LZjf,Φµ,ν
〉

for every µ, ν ∈ (Z≥0)
n
.

Sin
e Zj and Z̄j are adjoint of ea
h other, both identities in the Lemma 
an

be easily veri�ed using the relations

e−i(t−t0)LZjΦµ,ν = e2i(t−t0) Zje
−i(t−t0)LΦµ,ν (4.0.4)

e−i(t−t0)LZjΦµ,ν = e−2i(t−t0) Zje
−i(t−t0)LΦµ,ν (4.0.5)

whi
h follows from the relations (2.0.1) and the fa
t that e−iτLΦµ,ν = e−iτ(2k+n)Φµ,ν .

Lemma 4.0.16 (Quasi 
ommutativity) Let t0 ∈ R and I an open interval su
h

that t0 ∈ I. Let g ∈ Lq
′

lo


(

I, W̃ 1,p′

L (Cn)
)

, where (q, p) be an admissible pair. Then

∫ t

t0
e−i(t−s)Lg(z, s)ds ∈ C(I, W̃ 1,2

L (Cn)). Moreover for ea
h t ∈ I, we have the

following equalities in L2(Cn)

Zj

∫ t

t0

e−i(t−s)Lg(z, s)ds = e−2it

∫ t

t0

e−i(t−s)Le2isZjg(z, s)ds

Zj

∫ t

t0

e−i(t−s)Lg(z, s)ds = e2it
∫ t

t0

e−i(t−s)Le−2isZjg(z, s)ds.
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Proof. Sin
e g ∈ Lq
′

lo


(

I, W̃ 1,p′

L (Cn)
)

, by Stri
hartz estimates (Theorem 3.0.7)

∫ t

t0
e−i(t−s)LSg(z, s)ds ∈ C(I, L2(Cn)), where S = Zj, Z̄j, 1 ≤ j ≤ n. As dis
ussed

in Lemma 4.0.15, Lemma follows from the following observations

〈

Zj

∫ t

t0

e−i(t−s)Lg(z, s)ds,Φµ,ν

〉

= e−2it

〈
∫ t

t0

e−i(t−s)Le2isLjg(z, s)ds,Φµ,ν

〉

〈

Z̄j

∫ t

t0

e−i(t−s)Lg(z, s)ds,Φµ,ν

〉

= e2it
〈
∫ t

t0

e−i(t−s)Le−2isMjg(z, s)ds,Φµ,ν

〉

for every µ, ν ∈ (Z≥0)
n
. These identities 
an be easily veri�ed using the relations

(4.0.4), (4.0.5).

Now we dis
uss the heat operator asso
iated with the twisted Lapla
ian. For

ǫ > 0, 
onsider the heat operator for the twisted Lapla
ian given by

e−ǫLf =
∞
∑

k=0

e−ǫ(2k+n)Pkf

for f ∈ L2(Cn). By orthogonality of the spe
ial Hermit fun
tions Φµ,ν , Pkf are

orthogonal proje
tions. Hen
e it is 
lear that e−ǫL is 
ontra
tion on L2(Cn).

‖e−ǫLf‖22 =
∞
∑

k=1

e−2ǫ(2k+n)‖Pkf‖22.

The heat operator e−ǫL has the following integral representation as a twisted


onvolution operator

e−ǫLf = f ×Kǫ, (4.0.6)

where

Kǫ(z) = (2π)−ne−nǫ(1− e−2ǫ)−ne
−

(1+e−2ǫ)

(1−e−2ǫ)

|z|2

4
(4.0.7)

see (2.10), (2.11) in [22℄. Note that ‖Kǫ‖L1(Cn) = 2ne−nǫ(1 + e−2ǫ)−n < 1 and

limǫ→0 ‖Kǫ‖L1(Cn) = 1.

Lemma 4.0.17 For ǫ > 0, e−ǫL : Lp(Cn) → W̃m,p
L (Cn) de�nes a bounded oper-

ator for ea
h nonnegative integer m and 1 ≤ p ≤ ∞. In parti
ular we have the
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following inequalities:

‖e−ǫLf‖Lp(Cn) ≤ C‖f‖Lp(Cn) (4.0.8)

‖e−ǫLf‖W̃ 1,p
L (Cn) ≤ C‖f‖W̃ 1,p

L (Cn) (4.0.9)

‖e−ǫLf‖W̃m,p
L (Cn) ≤ Cǫ‖f‖Lp(Cn) (4.0.10)

with 
onstant C in (4.0.8) and (4.0.9) is independent of ǫ ∈ (0, 1]. Moreover, for

f ∈ W̃m,p
L (Cn), e−ǫLf → f in W̃m,p

L (Cn), 1 < p <∞.

Proof. In view of (4.0.6) and the fa
t that |f × g| ≤ |f | ∗ |g|, we see that

|e−ǫLf | ≤ |f | ∗Kǫ, (4.0.11)

where Kǫ is given by (4.0.7). Sin
e

‖Kǫ‖L1(Cn) = 2ne−nǫ(1 + e−2ǫ)−n ≤ 1,

estimate (4.0.8) follows from Young's inequality, see Folland [11℄ with C = 1.

As in Lemma 4.0.15 we see that e−ǫLf, Zje
−ǫLf, Zje

−ǫLf ∈ S ′(Cn), for ǫ > 0,

for f ∈ S ′(Cn), and the following equalities hold:

Zje
−ǫLf = e2ǫe−ǫLZjf, Zje

−ǫLf = e−2ǫe−ǫLZjf, (4.0.12)

hen
e the estimate (4.0.9) follows from the estimate (4.0.8). To prove (4.0.10),

enough to prove

‖S̃e−ǫLf‖Lp(Cn) ≤ Cǫ‖f‖Lp(Cn)

for any monomial S̃ in (Z1, . . . , Zn, Z̄1, . . . , Z̄n) of degree at most m. In view of

(4.0.6) and equation (1.3.10) in Thangavelu [33℄, we have

S̃e−ǫLf = S̃(f ×Kǫ) = f × S̃Kǫ.

Sin
e Kǫ ∈ S(Cn), S̃Kǫ ∈ L1(Cn), hen
e (4.0.10) follows by Young's inequality.

To prove the 
onvergen
e in W̃m,p
L (Cn), we �rst observe that for f ∈ L2

,

e−ǫLf → f in L2(Cn) as ǫ→ 0. This follows from the identity

‖e−ǫLf − f‖2L2(Cn) =
∞
∑

k=0

|1− e−ǫ(2k+n)|2‖Pkf‖2L2(Cn)
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by an appli
ation of the dominated 
onvergen
e theorem applied to the sum.

First we 
onsider the simple 
ase m = 0. In view of the uniform estimate

(4.0.8), enough to prove the 
onvergen
e on a dense set in Lp. For 2 < p < ∞,

writing

1
p
= β

2
+ 1−β

∞
= β

2
and an appli
ation of Hölder's inequality using the

estimate (4.0.8), we see that

‖e−ǫLf − f‖Lp(Cn) ≤ ‖e−ǫLf − f‖β
L2(Cn)‖e−ǫLf − f‖1−β

L∞(Cn)

≤ ‖e−ǫLf − f‖β
L2(Cn)(2‖f‖L∞(Cn))

1−β

whi
h goes to zero as ǫ → 0, for f ∈ L2 ∩ L∞(Cn). Similarly we 
an prove


onvergen
e in Lp(Cn) for 1 < p < 2.

For m 6= 0, we need to show S̃(e−ǫLf − f) → 0 in Lp(Cn) as ǫ → 0. But in

view of (4.0.12), we have

S̃(Z, Z̄)(e−ǫLf) = S̃(e2ǫ, e−2ǫ) e−ǫL(S̃(Z, Z̄)f).

Hen
e applying the previous argument to the Lp fun
tion g = S̃(Z, Z̄)f , and

observing that S̃(e2ǫ, e−2ǫ) → 1, the result follows.





Chapter 5

A lo
al existen
e result

In this 
hapter we prove the lo
al well posedness of the initial value problem

(1.0.13), (1.0.14):

i∂tu(z, t)− Lu(z, t) = G(z, u), z ∈ C
n, t ∈ R

u(z, t0) = f(z).

in the �rst order Sobolev spa
e W̃ 1,2(Cn). The di�erential operators Lj and Mj

are the natural ones adaptable to the power type nonlinearity G(u) = |u|αu and

the generality that we 
onsider here. Moreover we have the embedding theorem

(Lemma 4.0.9) and the operators Lj ,Mj 
ommute with e−i(t−t0)L and

∫ t

t0
e−i(t−s)L,

see Lemma 4.0.10. Theorem 5.0.23 and Theorem 5.0.26 are main results of this


hapter, see [24℄. Now we prove some auxilliary estimates.

Lemma 5.0.18 Let f ∈ W̃ 1,2(Cn) and t0 ∈ R. Then for every bounded in-

terval I and every admissible pair (q1, p1), t → e−i(t−t0)Lf ∈ C(R, W̃ 1,2(Cn)) ∩
Lq1
lo


(R, W̃ 1,p1(Cn)) and the following estimates hold :

‖e−i(t−t0)Lf‖
L∞(R,W̃ 1,2(Cn)) = ‖f‖W̃ 1,2(Cn) (5.0.1)

‖e−i(t−t0)Lf‖
Lq1(I,W̃ 1,p1(Cn)) ≤ C‖f‖W̃ 1,2(Cn) (5.0.2)

where the 
onstant C is independent of f and t0.

Proof. Sin
e both Lj and Mj 
ommute with the isometry e−i(t−t0)L, we have

Se−i(t−t0)Lf = e−i(t−t0)LSf, ‖Se−i(t−t0)Lf‖L2(Cn) = ‖Sf‖L2(Cn)

33
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for every t ∈ R with S = Lj , or Mj , j = 1, 2, ..., n from whi
h (5.0.1) follows.

Estimate (5.0.2) follows from the Stri
hartz type estimate (3.0.2) for e−i(t−t0)L

using the above 
ommutativity.

Lemma 5.0.19 Let I be a bounded interval and (q, p) an admissible pair with

p = 2 + α and q > 2. Let G be as in (1.0.15), (1.0.16), α ∈ [0, 2
n−1

) and

u, v ∈ L∞(I, W̃ 1,2(Cn)). Then u, v ∈ Lq(I, Lp(Cn)) and the following estimate

holds

‖G(z, u)−G(z, v)‖Lq′(I,Lp′ (Cn)) ≤ C|I|
q−q′
qq′ ‖u− v‖Lq(I,Lp(Cn))

×
(

‖u‖α
L∞(I,W̃ 1,2)

+ ‖u‖α
L∞(I,W̃ 1,2)

)

.(5.0.3)

Proof. Sin
e I is a bounded interval, in view of embedding theorem (Lemma

4.0.9), u, v ∈ Lq(I, Lp(Cn)). By estimate (1.0.18),

1
p′
= α

p
+ 1

p
, Holder's inequality

in the z-variable and Sobolev embedding theorem (Lemma 4.0.9), we observe that

‖G(·, u)−G(·, v)‖Lp′(Cn) ≤ C‖|u− v|(|u|α + |v|α)‖Lp′ (Cn)

≤ C‖(u− v)(·, t)‖Lp(Cn)

(

‖u‖αLp(Cn) + ‖v‖αLp(Cn)

)

(5.0.4)

≤ C‖(u− v)(·, t)‖Lp(Cn)

(

‖u(·, t)‖α
W̃ 1,2 + ‖v(·, t)‖α

W̃ 1,2

)

≤ C‖(u− v)(·, t)‖Lp(Cn)

(

‖u‖α
L∞(I,W̃ 1,2)

+ ‖v‖α
L∞(I,W̃ 1,2)

)

where t ∈ I. Now by taking Lq
′
norm in the t-variable on the interval I in the

above inequality, we get the required estimate (5.0.3).

Proposition 5.0.20 Let t0 ∈ R and I an open interval 
ontaining t0. Let G

be as in (1.0.15), (1.0.16), α ∈ [0, 2
n−1

) and (q, p) an admissible pair with p =

α + 2, q > 2. If u ∈ L∞
lo


(I, W̃ 1,2(Cn)) ∩ Lq
lo


(I, W̃ 1,p(Cn)), then G(z, u(z, t)) ∈
Lq

′

lo


(I, W̃ 1,p′) and

∫ t

t0
e−i(t−s)LG(z, u(z, s))ds ∈ C(I, W̃ 1,2). Moreover, for every

bounded interval J with J ⊂ I, t0 ∈ J and every admissible pair (q1, p1), the

following inequalities hold:

‖SG(z, u(z, t))‖Lq′ (J,Lp′ (Cn)) ≤ C|J |
q−q′
qq′ ‖u‖α

L∞(J,W̃ 1,2(Cn))
(5.0.5)

×(‖u‖Lq(J,Lp(Cn)) + ‖Su‖Lq(J,Lp(Cn)))

‖G(z, u(z, t))‖Lq′(J,W̃ 1,p′ (Cn)) ≤ C|J |
q−q′
qq′ ‖u‖α

L∞(J,W̃ 1,2(Cn))
(5.0.6)

×‖u‖Lq(J,W̃ 1,p(Cn))
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∥

∥

∥

∥

∫ t

t0

e−i(t−s)LG(z, u(z, s))ds

∥

∥

∥

∥

Lq1 (J,W̃ 1,p1 (Cn))

≤ C|J |
q−q′
qq′ ‖u‖α

L∞(J,W̃ 1,2)
(5.0.7)

×‖u‖Lq(J,W̃ 1,p(Cn))

where S = Id, Lj ,Mj (1 ≤ j ≤ n) and the 
onstant C is independent of u and t0.

Proof. To prove the inequality (5.0.5), we �rst observe that

Lj [ψ(x, y, |u|)u] = ψ(x, y, |u|)Lju+ u (∂|u|ψ)(x, y, |u|)ℜ
(

ū

|u|Lju
)

+ u(∂xjψ)(x, y, |u|) (5.0.8)

Mj [ψ(x, y, |u|)u] = ψ(x, y, |u|)Mju+ u (∂|u|ψ)(x, y, |u|)ℜ
(

ū

|u|Mju

)

+ u(∂yjψ)(x, y, |u|). (5.0.9)

Thus we see that for S = Lj and Mj , |SG| satis�es an inequality of the form

|SG| ≤ |ψ(x, y, |u|)Su|+ |ψ̃1(x, y, |u|)Su|+ |ψ̃2(x, y, |u|) u| (5.0.10)

where ψ̃1(x, y, |u|) = u∂|u|ψ and ψ̃2(x, y, |u|) = u∂xjψ or u∂yjψ depending on

S = Lj or Mj . Moreover, by assumption (1.0.16) on ψ, we have |ψ̃i(x, y, |u|)| ≤
C|u|α, i = 1, 2. Therefore

|SG| ≤ C|u|α(|u|+ |Su|) (5.0.11)

for S = Id, Lj ,Mj; 1 ≤ j ≤ n. Sin
e q′

q
+ q−q′

q
= 1, an appli
ation of the Hölder's

inequality in the t-variable shows that for q > 2

‖SG(z, u(z, t))‖
Lq′(J ;Lp′(Cn)) ≤ |J |

q−q′
qq′ ‖SG(z, u(z, t))‖Lq(J ;Lp′(Cn))

≤ C|J |
q−q′
qq′ ‖|u|α(|u|+ |Su|)‖Lq(J ;Lp′) . (5.0.12)

A further appli
ation of Hölder's inequality in the z-variable, using p′

p
+ αp′

p
= 1

and Lemma 4.0.9, we see that for a.e. t ∈ J

‖|u|α(|u|+ |Su|)‖Lp′(Cn) ≤ ‖u(·, t)‖αLp(Cn) (‖u(·, t)‖Lp(Cn) + ‖Su(·, t)‖Lp(Cn))

≤ C‖u(·, t)‖α
W̃ 1,2(Cn)

(‖u(·, t)‖Lp(Cn) + ‖Su(·, t)‖Lp(Cn))

≤ C‖u‖α
L∞(J,W̃ 1,2)(‖u(·, t)‖Lp + ‖Su(·, t)‖Lp). (5.0.13)
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Now taking Lq norm with respe
t to the t-variable on both sides, and substituting

in the RHS of inequality (5.0.12) gives the estimate (5.0.5).

Estimate (5.0.6) follows from the estimate (5.0.5). Estimate (5.0.7) follows

from Stri
hartz estimates (Theorem 3.0.7) and the estimate (5.0.6). The fa
t

that

∫ t

t0
e−i(t−s)LG(z, u(z, s)) ds ∈ C(I, W̃ 1,2) follows from Lemma 4.0.11 and

G(z, u) ∈ Lq
′

lo


(I, W̃ 1,p′). Hen
e we have proved the Proposition.

Equivalen
e of IVP and integral equation

In this se
tion we will show the equivalen
e of the di�erential equations (1.0.13),

(1.0.14) and the integral equation (1.0.20).

Lemma 5.0.21 Let I be an open interval 
ontaining t0 and G as in (1.0.15),

(1.0.16). Let α ∈ [0, 2
n−1

] for n ≥ 2 and α ∈ [0,∞) for n = 1. Let u ∈ X, where

X = {u ∈ C(I, L2(Cn)) : G(z, u(z, t)) ∈ L
q′1

lo


(I, Lp
′
1(Cn))}

for some admissible pair (q1, p1). Then u satis�es the nonlinear S
hrödinger equa-

tion (1.0.13), with initial data (1.0.14) if and only if u satis�es the integral equa-

tion (1.0.20).

Proof. First observe that the following equalities

∂

∂t
(e−i(t−t0)Lf) = −iLe−i(t−t0)Lf (5.0.14)

∂

∂t

∫ t

t0

e−i(t−s)LG(z, s)ds = −iL
∫ t

t0

e−i(t−s)LG(z, s)ds+G(z, t) (5.0.15)

are valid in the distribution sense for f ∈ L2(Cn), G ∈ L
q′1

lo


(I, Lp
′
1(Cn)). Using

these we now show the equivalen
e of the initial value problem (1.0.13), (1.0.14)

and the integral equations (1.0.20).

If u satis�es (1.0.20) then using (5.0.14) and (5.0.15), we 
on
lude that u

satis�es (1.0.13) and (1.0.14).

On the otherhand, if u satis�es (1.0.13) and (1.0.14) then the fun
tion v given

by

v(z, t) = u(z, t)− e−i(t−t0)Lf + i

∫ t

t0

e−i(t−s)LG(z, s)ds,
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satis�es

i∂tv(z, t)−Lv(z, t) = 0,

v(z, t0) = 0.

In view of Theorem 3.0.7 and given hypothesis, we have v ∈ C(I, L2(Cn)). There-

fore iL−1∂tv(z, t) − v(z, t) = 0 and L−1∂tv(z, t) ∈ C(I, L2(Cn)). Now for ea
h

µ, ν ∈ (Z≥0)
n
, and φ ∈ C∞

c (I), we observe that

〈

L−1∂tv(·, t),Φµ,ν
〉

= (2|ν|+ n)−1 〈∂tv(·, t),Φµ,ν〉 ∈ C(I) and

〈

iL−1∂tv(·, t),Φµ,νφ
〉

= i(2|ν|+ n)−1

〈

d

dt
〈v(·, t),Φµ,ν〉 , φ

〉

.

Therefore we take inner produ
t of the equation iL−1∂tv(z, t) − v(z, t) = 0 with

Φµ,ν and observe that

〈

iL−1∂tv(·, t)− v(·, t),Φµ,ν
〉

= 0

i(2|ν|+ n)−1 d

dt
〈v(·, t),Φµ,ν〉 − 〈v(·, t),Φµ,ν〉 = 0

d

dt

(

ei(2|ν|+n)t 〈v(·, t),Φµ,ν〉
)

= 0.

Sin
e t→ ei(2|ν|+n)t 〈v(·, t),Φµ,ν〉 is 
ontinuous and its distributional derivative is

zero, this fun
tion must be 
onstant. This shows that

〈v(·, t),Φµ,ν〉 = e−i(2|ν|+n)(t−t0) 〈v(·, t0),Φµ,ν〉 = 0

for every µ, ν ∈ (Z≥0)
n
. Therefore v(·, t) = 0 in L2(Cn) for ea
h t ∈ I and hen
e

u satis�es (1.0.20).

Now we prove (5.0.14) and (5.0.15). Let φ ∈ C∞
c (Cn × I). Sin
e I is an open

interval, supp φ ⊂ A × B, for some 
ompa
t set A ⊂ Cn
and some 
ompa
t

interval B ⊂ I. Clearly,

∂

∂t
(e−i(t−t0)Lφ̄) = e−i(t−t0)L

∂

∂t
φ̄− e−i(t−t0)LiLφ̄.

Also sin
e φ(z, ·) has 
ompa
t support in I for ea
h z,
∫

I
∂
∂t
(e−i(t−t0)Lφ)dt = 0,

hen
e



38

∫

I

e−i(t−t0)L ∂tφ dt =

∫

I

e−i(t−t0)LiLφ dt = i

∫

I

ei(t−t0)LLφ dt. (5.0.16)

Using this and the pairing 〈f, ϕ〉 =
∫

fϕ̄, we see that

∫

Cn×I

e−i(t−t0)Lf(z)
∂

∂t
φ(z, t) dzdt =

〈

e−i(t−t0)Lf,
∂

∂t
φ

〉

=

〈

f, ei(t−t0)L
∂

∂t
φ

〉

=
〈

f,−iei(t−t0)LLφ
〉

=
〈

iLe−i(t−t0)Lf, φ
〉

.

This proves (5.0.14) in the distribution sense.

To prove (5.0.15), 
hoose a sequen
e {Gm} in C∞
c (A× B) su
h that Gm → G

in Lq
′
1(B,Lp

′
1(A)). Note that Gm,LGm ∈ L2(A× B) hen
e,

lim
h→0

1

h

[

e−i(t+h−s)L − e−i(t−s)L
]

Gm(z, s) = −iL e−i(t−s)LGm(z, s)

and lim
s→t

e−i(t−s)LGm(z, s) = Gm(z, t) where both the limits are taken in L2(Cn)

sense. Thus as an L2(Cn) valued integral on I, we have

∂

∂t

∫ t

t0

e−i(t−s)LGm(z, s)ds

= lim
h→0

1

h

(
∫ t+h

t0

e−i(t+h−s)LGm(z, s)ds−
∫ t

t0

e−i(t−s)LGm(z, s)ds

)

= lim
h→0

1

h

∫ t+h

t0

(e−i(t+h−s)L − e−i(t−s)L)Gm(z, s)ds

+lim
h→0

1

h

∫ t+h

t

e−i(t−s)LGm(z, s)ds

= −iL
∫ t

t0

e−i(t−s)LGm(z, s)ds+Gm(z, t). (5.0.17)

Observe that

∫ t

t0

e−i(t−s)LGm(z, s)ds →
∫ t

t0

e−i(t−s)LG(z, s)ds in Lq1 (B;Lp1(A))

as m→ ∞. This follows from Stri
hartz estimates (Theorem 3.0.7), sin
e B is a

bounded interval. Thus using (5.0.17), we see that

〈
∫ t

t0

e−i(t−s)LG(z, s)ds,
∂

∂t
φ

〉

= lim
m→∞

〈
∫ t

0

e−i(t−s)LGm(z, s)ds,
∂

∂t
φ

〉
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= lim
m→∞

〈

− ∂

∂t

∫ t

0

e−i(t−s)LGm(z, s)ds, φ

〉

= lim
m→∞

〈

iL
∫ t

0

e−i(t−s)LGm(z, s)ds−Gm(z, t), φ

〉

= lim
m→∞

〈
∫ t

0

e−i(t−s)LGm(z, s)ds,−iLφ
〉

− 〈G(z, t), φ〉

= −
〈
∫ t

0

e−i(t−s)LG(z, s)ds, iLφ
〉

− 〈G(z, t), φ〉.

This shows that (5.0.15) holds in the distribution sense.

Lo
al existen
e

In this se
tion we prove lo
al existen
e of solutions in the �rst order Sobolev

spa
e W̃ 1,2(Cn). We follow Kato's approa
h [16℄ using Stri
hartz estimates. The

key step is to identify some 
omplete metri
 spa
e that lie in L∞((t0 − T, t0 +

T ); W̃ 1,2(Cn)), for a suitable T , where the operator H given by (1.0.21) is a


ontra
tion. We pro
eed as follows:

For given positive numbers T and M , 
onsider the set E = ET,M given by

E =







u ∈ L∞
(

IT ; W̃
1,2
)

∩ Lq
(

IT , W̃
1,p
)

∣

∣

∣

∣

∣

∣

‖u‖
L∞(IT ,W̃ 1,2) ≤M,

‖u‖
Lq(IT ,W̃ 1,p) ≤M







where IT = (t0 − T, t0 + T ). Introdu
e a metri
 on E, by setting

d(u, v) = ‖u− v‖L∞(IT ,L2(Cn)) + ‖u− v‖Lq(IT ,Lp(Cn)).

Proposition 5.0.22 (E, d) is a 
omplete metri
 spa
e.

Proof. Let {um} be a Cau
hy sequen
e in (E, d). Then {um} be a Cau
hy

sequen
e in L∞ (IT , L
2(Cn)) and Lq (IT , L

p(Cn)). Sin
e these spa
es are 
omplete

(see se
tion 8.18.1 in [10℄), there exists u ∈ L∞ (IT , L
2(Cn))∩Lq (IT , Lp(Cn)) and

um → u in L∞ (IT , L
2(Cn)) and also in Lq (IT , L

p(Cn)).

We need to show that u ∈ L∞(IT ; W̃
1,2(Cn)) ∩ Lq(IT ; W̃ 1,p(Cn)) with

max{‖u‖L∞(IT ,W̃ 1,2(Cn)), ‖u‖Lq(IT ,W̃ 1,p(Cn))} ≤M.

Let S = Id, Lj or Mj with 1 ≤ j ≤ n and ϕ ∈ C∞
c (Cn × IT ). Then for �xed
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t ∈ IT , using the pairing 〈, 〉z in the z-variable, we see that

|〈u(·, t), S∗ϕ(·, t)〉z| ≤ |〈(u− um)(·, t), S∗ϕ(·, t)〉|+ |〈Sum(·, t), ϕ(·, t)〉|
≤ ‖u(·, t)− um(·, t)‖Lp(Cn,dz)‖S∗ϕ(·, t)‖Lp′(Cn,dz)

+ ‖Sum(·, t)‖Lp(Cn,dz)‖ϕ(·, t)‖Lp′(Cn,dz).

Integrating with respe
t to t and applying the Hölder's inequality in the t-variable,

this yields

|〈Su, ϕ〉z,t| ≤ ‖u−um‖Lq(IT ,Lp(Cn))‖S∗ϕ‖Lq′(IT ,Lp′(Cn))+‖Sum‖Lq(IT ,Lp(Cn))‖ϕ‖Lq′(IT ,Lp′).

Sin
e um → u ∈ Lq(IT , L
p(Cn)), letting m→ ∞, we get

|〈Su, ϕ〉z,t| ≤ lim inf
m→∞

‖Sum‖Lq(IT ,Lp(Cn))‖ϕ‖Lq′(IT ,Lp′(Cn)).

Taking supremum over all ϕ ∈ C∞
c (Cn× IT ) with ‖ϕ‖Lq′ (IT ,Lp′(Cn)) ≤ 1, this gives

‖Su‖Lq(IT ;Lp) ≤ lim inf
m→∞

‖Sum‖Lq(IT ,Lp(Cn)). (5.0.18)

Therefore

‖u‖
Lq(IT ;W̃ 1,p) ≤ lim inf

m→∞
‖um‖Lq(IT ,W̃ 1,p(Cn)) ≤ M.

To get estimate for the pair (∞, 2), take ϕ ∈ C∞
c (Cn), and by the same arguments

as before

|〈Su(·, t), ϕ〉z| ≤ lim inf
m→∞

‖Sum(·, t)‖L2(Cn)‖ϕ‖L2(Cn)

for almost every t ∈ IT . Taking supremum over all ϕ ∈ C∞
c (Cn) with ‖ϕ‖L2 ≤ 1

this gives

‖Su(·, t)‖L2(Cn) ≤ lim inf
m→∞

‖Sum‖L∞(IT ,L2(Cn)). (5.0.19)

Taking the essential supremum over t ∈ IT , we get

‖Su‖L∞(IT ;L2) ≤ lim inf
m→∞

‖Sum‖L∞(IT ,L2(Cn)).

Therefore

‖u‖
L∞(IT ;W̃ 1,2) ≤ lim inf

m→∞
‖um‖L∞(IT ,W̃ 1,2(Cn)) ≤M.
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Now we prove the following theorem in whi
h we give the existen
e of soultion of

the initial value problem (1.0.13), (1.0.14).

Theorem 5.0.23 (Lo
al existen
e) Assume that G is as in (1.0.15), (1.0.16)

with α ∈ [0, 2
n−1

) and u(z, t0) = f(z) ∈ W̃ 1,2(Cn). Then there exist a number

T = T (‖u0‖) su
h that the initial value problem (1.0.13), (1.0.14) has a unique

solution u ∈ C([t0 − T, t0 + T ]; W̃ 1,2(Cn)) ∩ Lq((t0 − T, t0 + T ), W̃ 1,p(Cn)), where

(q, p) be an admissible pair with p = 2 + α, q > 2.

Proof. In view of Lemma 5.0.21, we show existen
e of solution by showing that

operator H given by (1.0.21) has �xed point in the 
omplete metri
 spa
e E for

suitable T > 0 and M > 0. Let u ∈ E. In view of equation (1.0.21) and from

estimates in Lemma 5.0.18 and Proposition 5.0.20, we see that

max{‖Hu‖
L∞(IT ,W̃ 1,2), ‖Hu‖Lq(IT ,W̃ 1,p)}

≤ C ‖f‖W̃ 1,2 + C T
q−q′
qq′ ‖u‖α

L∞(IT ;W̃ 1,2)
‖u‖Lq(IT ,W̃ 1,p(Cn))

≤ C ‖f‖W̃ 1,2 + C T
q−q′
qq′ M1+α. (5.0.20)

For u, v ∈ E, using Stri
hartz estimate (3.0.2) and Lemma (5.0.19), we get

d(Hu,Hv) = ‖Hu−Hv‖L∞(IT ,L2) + ‖Hu−Hv‖Lq(IT ,Lp)

≤ C‖G(z, u)−G(z, v)‖
Lq′(IT ,Lp′)

≤ CT
q−q′
qq′ (‖u‖α

L∞(IT ,W̃ 1,2) + ‖v‖α
L∞(IT ,W̃ 1,2))‖u− v‖Lq(IT ,Lp)

≤ CT
q−q′
qq′ Mαd(u, v). (5.0.21)

Choose

M =

{

1 if f = 0

2C‖f‖W̃ 1,2(Cn) if f 6= 0
(5.0.22)

and

T =







min{π, (2C)−
qq′

q−q′ } if f = 0

min{π, (2C)−(1+α) qq′

q−q′ ‖f‖−α
qq′

q−q′

W̃ 1,2(Cn)
} if f 6= 0

(5.0.23)

where C is the same 
onstant that appears in the inequalities (5.0.20), (5.0.21)
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and is independent of T , see Remark 3.0.8.

For these 
hoi
es of M and T , operator H maps E to E and also is a 
onta
-

tion on E. Therefore H has unique �xed point in E. From Lemma 5.0.18 and

Proposition 5.0.20, we 
on
lude that u ∈ C(ĪT , W̃
1,2(Cn)) ∩ Lq1(IT , W̃

1,p1(Cn))

for every admissible pair (q1, p1). In view of Lemma 5.0.21 and estimate 5.0.6, u

is solution of the initial value problem (1.0.13), (1.0.14).

Blowup alternative, uniqueness and stability

In Theorem 5.0.26, we will prove blowup alternative, uniqueness and stability. We

�rst prove the following two Propositions whi
h are useful in proving Theorem

5.0.26.

Proposition 5.0.24 Let Φ be a 
ontinuous 
omplex valued fun
tion on C su
h

that |Φ(w)| ≤ C|w|α for 0 ≤ α < 2
n−1

. Let a, b ∈ R. Suppose {um} be a sequen
e

in Lq
(

(a, b), W̃ 1,p(Cn)
)

∩ L∞((a, b), W̃ 1,2(Cn)) with p = 2 + α, q ≥ 2, su
h that

sup
m∈N

‖um‖L∞((a,b),W̃ 1,2(Cn)) ≤M <∞.

If um → u in Lq((a, b), Lp(Cn)) and u ∈ Lq((a, b), W̃ 1,p) ∩ L∞((a, b), W̃ 1,2) then

[Φ(um)− Φ(u)]Su→ 0 in Lq
′ (

(a, b), Lp
′
(Cn)

)

, for S = Id, Lj,Mj ; 1 ≤ j ≤ n.

Proof. Sin
e um → u in Lq((a, b), Lp(Cn)), we 
an extra
t a subsequen
e still

denoted by uk su
h that

‖uk+1 − uk‖Lq((a,b),Lp(Cn)) ≤
1

2k

for all k ≥ 1 and uk(z, t) → u(z, t) a.e. (z, t), see Theorem 4.9 in Brezis [3℄.

Hen
e by 
ontinuity of Φ,

[Φ(uk)− Φ(u)]Su→ 0 for a.e. (z, t) ∈ C
n × (a, b). (5.0.24)

We establish the norm 
onvergen
e by appealing to a dominated 
onvergen
e

argument in the z and t variables su

essively.

Consider the fun
tion H(z, t) =
∑∞

k=1 |uk+1(z, t) − uk(z, t)|. Clearly H ∈
Lq ((a, b), Lp(Cn)), sin
e the above series 
onverges absolutely in that spa
e. Also

for l > k, |(ul − uk)(z, t)| ≤ |ul − ul−1| + · · · + |uk+1 − uk| ≤ H(z, t) hen
e
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|uk − u| ≤ H. This leads to the pointwise almost everywhere inequality

|uk(z, t)| ≤ |u(z, t)|+H(z, t) = v(z, t).

Hen
e

| [Φ(uk)− Φ(u)]Su(z, t)|p′ ≤ |[vα + |u|α]Su(z, t)|p′.

Sin
e u, v ∈ Lq ((a, b), Lp(Cn)) and p = 2 + α, using Hölder's inequality with

p′

p
+ αp′

p
= 1, we get

∫

Cn

|(vα + |u|α)Su(z, t)|p′dz (5.0.25)

≤ (‖v(·, t)‖αp′
Lp(Cn)+ ‖u(·, t)‖αp′

Lp(Cn))‖Su(·, t)‖
p′

Lp(Cn).

Thus using dominated 
onvergen
e theorem in the z-variable, we see that

‖ [Φ(uk)− Φ(u)]Su(·, t)‖Lp′(Cn) → 0 (5.0.26)

as k → ∞, for a.e. t.

Again, in view of Lemma 4.0.9 and Hölder's inequality as above, we get

‖[Φ(uk) − Φ(u)]Su(·, t)‖Lp′(Cn)

≤ C
(

‖uk‖αL∞([a,b],W̃ 1,2(Cn)) + ‖u‖α
L∞([a,b],W̃ 1,2(Cn))

)

‖Su(·, t)‖Lp

≤ C(Mα + ‖u‖α
L∞([a,b],W̃ 1,2(Cn)))‖Su(·, t)‖Lp(Cn).

Sin
e ‖Su(·, t)‖Lp(Cn) ∈ Lq
′
((a, b)) and q ≥ 2, an appli
ation of the Hölder's

inequality in the t-variable shows that

∫ b

a

‖Su(·, t)‖q′
Lp(Cn)dt ≤ [b− a]

q−q′

q ‖Su(·, t)‖q′
Lq((a,b),Lp(Cn)).

Hen
e a further appli
ation of dominated 
onvergen
e theorem in the t-variable

shows that ‖ (Φ(uk)− Φ(u))Su‖Lq′((a,b),Lp′ ) → 0, as k → ∞.

Thus we have shown that [Φ(umk
)− Φ(u)]Su→ 0 in Lq

′
((a, b), Lp

′
(Cn)) when-

ever um → u in Lq((a, b), Lp(Cn)). But the above arguments are also valid if we

had started with any subsequen
e of um. It follows that any subsequen
e of

[Φ(um)− Φ(u)]Su has a subsequen
e that 
onverges to 0 in Lq
′
((a, b), Lp

′
(Cn)).

From this we 
on
lude that the original sequen
e [Φ(um)− Φ(u)]Su 
onverges to
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zero in Lq
′
((a, b), Lp

′
(Cn)), hen
e the Proposition.

Proposition 5.0.25 Let {fm}m≥1 be a sequen
e in W̃ 1,2(Cn) su
h that fm → f

in W̃ 1,2(Cn) as m → ∞. Let um and u be the solutions 
orresponding to the

initial data fm and f respe
tively, at time t = t0. Then there exists τ , depending

on ‖f‖W̃ 1,2 su
h that ‖(um − u)(·, t)‖W̃ 1,2(Cn) → 0 for ea
h t ∈ [t0 − τ, t0 + τ ] and

‖um− u‖Lq1 ([t0−τ,t0+τ ],W̃ 1,p1(Cn)) → 0 as m→ ∞ for every admissible pair (q1, p1).

Moreover ‖G(z, um(z, t))−G(z, u(z, t))‖Lq′ ([t0−τ,t0+τ ],W̃ 1,p′(Cn)) → 0 as m→ ∞.

Proof. Sin
e ‖fm‖W̃ 1,2(Cn) → ‖f‖W̃ 1,2(Cn), by (5.0.22), (5.0.23) and by taking m

large if ne
essary, we 
an assume that solutions um are de�ned on [t0 − τ, t0 + τ ]

for τ < T . Setting Gm(z, t) = G(z, um(z, t)), we have

(um − u)(z, t) = e−i(t−t0)L(fm − f)(z)− i

∫ t

t0

e−i(t−s)L(Gm −G)(z, s)ds

for all t ∈ Iτ = [t0 − τ, t0 + τ ].

First we 
onsider the 
ase f ≡ 0. Sin
e H(0) = 0 and the �xed point of H in

E is unique, in this 
ase the solution u ≡ 0. Thus by Lemma 5.0.18, Proposition

5.0.20 and Stri
hartz estimates (Theorem 3.0.7), we see that

‖um‖Lq(Iτ ,W̃ 1,p) ≤ C‖fm‖W̃ 1,2 + Cτ
q−q′

qq′ ‖um‖αL∞(Iτ ,W̃ 1,2)
‖um‖Lq(Iτ ,W̃ 1,p).(5.0.27)

Note that ‖um‖L∞(Iτ ,W̃ 1,2) ≤Mm. Mm is given by the following

Mm =

{

1 if fm = 0

2C‖fm‖W̃ 1,2 if fm 6= 0

and ‖fm‖W̃ 1,2 → ‖f‖W̃ 1,2 = 0, therefore we have Mm ≤ 1 for large m. Now we


hoose τ su�
iently small so that Cτ
q−q′

qq′ < 1
2
and from (5.0.27) we see that

‖um‖Lq(Iτ ,W̃ 1,p) ≤ 2C‖fm‖W̃ 1,2 → 0 as m→ ∞. (5.0.28)

Therefore by estimate (5.0.6)

‖Gm‖Lq′(Iτ ,W̃ 1,p′) ≤ Cτ
q−q′

qq′ ‖um‖αL∞(Iτ ,W̃ 1,2)
‖um‖Lq(Iτ ,W̃ 1,p) → 0
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as m→ ∞ and by Stri
hartz estimates

‖um‖Lq1 (Iτ ,W̃ 1,p1) ≤ C‖fm‖W̃ 1,2 + C‖Gm‖Lq′ (Iτ ,W̃ 1,p′) → 0

as m→ ∞ for every admissible pair (q1, p1).

Now we 
onsider the 
ase f 6= 0. We 
hoose m su�
iently large su
h that

‖fm − f‖W̃ 1,2 < ‖f‖W̃ 1,2. Therefore we have ‖fm‖W̃ 1,2 ≤ 2‖f‖W̃ 1,2 and Mm :=

2C‖fm‖W̃ 1,2 ≤ 2M := 4C‖f‖W̃ 1,2. By Lemma 5.0.19, equation (5.0.22), Lemma

5.0.18, Proposition 5.0.20 and the fa
t that Mm ≤ 2M we get

‖Gm −G‖Lq′(Iτ ,Lp′(Cn)) ≤ Cτ
q−q′

qq′ ‖f‖α
W̃ 1,2‖um − u‖Lq(Iτ ,Lp(Cn)) (5.0.29)

‖um − u‖Lq(Iτ ,Lp(Cn)) ≤ C‖fm − f‖L2 + Cτ
q−q′

qq′ ‖f‖α
W̃ 1,2‖um − u‖Lq(Iτ ,Lp(Cn)).

Now we 
hoose τ small so that Cτ
q−q′

qq′ ‖f‖α
W̃ 1,2 <

1
2
, we see that

‖um − u‖Lq(Iτ ,Lp(Cn)) ≤ 2C‖fm − f‖L2(Cn) → 0 (5.0.30)

as m → ∞. From estimate 5.0.29, we see that ‖Gm − G‖Lq′ (Iτ ,Lp′(Cn)) → 0 as

m→ ∞ and from Stri
hartz estimates ‖um− u‖Lq1 (Iτ ,Lp1(Cn)) → 0 as m→ ∞ for

every admissible pair (q1, p1).

For S = Lj ,Mj (1 ≤ j ≤ n) and by using (5.0.8), (5.0.9) with the notation

ψm = ψ (z, |um(z, t)|), we have

S(Gm −G) = ψmS(um − u) + (ψm − ψ)Su+ (∂jψm)(um − u)

+ (∂jψm − ∂jψ)u+ (∂2n+1ψm)umℜ(
um
|um|

S(um − u))

+ (∂2n+1ψm)umℜ(
um
|um|

Su)− (∂2n+1ψ)uℜ(
u

|u|Su)

(5.0.31)

where ∂j = ∂xj for S = Lj and ∂j = ∂yj for S =Mj , 1 ≤ j ≤ n.

Using the assumption (1.0.16) on ψ, Lemma 4.0.9, and the fa
t that Mm ≤
2M , similar 
omputations as in Proposition 5.0.20 shows that

‖ψmS(um − u)‖
Lq′(Iτ ,Lp′(Cn)) ≤ Cτ

q−q′

qq′ ‖f‖α
W̃ 1,2(Cn)

‖S(um − u)‖Lq(Iτ ,Lp(Cn))

‖(∂jψm)(um − u)‖
Lq′(Iτ ,Lp′(Cn)) ≤ Cτ

q−q′

qq′ ‖f‖α
W̃ 1,2‖um − u‖Lq(Iτ ,Lp(Cn))
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‖(∂2n+1ψm)umℜ(
um
|um|

S(um − u))‖
Lq′(Iτ ,Lp′(Cn))

≤ Cτ
q−q′

qq′ ‖f‖α
W̃ 1,2‖S(um − u)‖Lq(Iτ ,Lp(Cn)).

Sin
e ‖um − u‖Lq(Iτ ,Lp(Cn)) → 0, by se
ond inequality in the above estimates,

(∂jψm)(um − u) → 0 as m → ∞. Now G is C1
, so in view of the 
ondition

(1.0.16) on ψ and Proposition 5.0.24, the sequen
es (ψm−ψ)Su, , (∂jψm − ∂jψ)u

and (∂4ψm)umℜ( um|um|
Su) − (∂4ψ)uℜ( u|u|Su) 
onverges to zero in Lq

′
(Iτ , L

p′(Cn))

as m→ ∞. Using these observations and from (5.0.31), we get

‖S(Gm −G)‖Lq′(Iτ ,Lp′) ≤ Cτ
q−q′

qq′ ‖f‖α
W̃ 1,2‖S(um − u)‖Lq(Iτ ,Lp(Cn)) + am

‖Gm −G‖Lq′(Iτ ,W̃ 1,p′) ≤ Cτ
q−q′

qq′ ‖f‖α
W̃ 1,2‖um − u‖Lq(Iτ ,W̃ 1,p(Cn)) + am(5.0.32)

where am → 0 as m → ∞ and S = Lj ,Mj; 1 ≤ j ≤ n. By Lemma 5.0.18 and

estimate (5.0.32), we see that

‖um − u‖Lq(Iτ ,W̃ 1,p) ≤ C‖fm − f‖W̃ 1,2 + Cτ
q−q′

qq′ ‖f‖α
W̃ 1,2‖um − u‖Lq(Iτ ,W̃ 1,p) + am.

Now 
hoose τ su�
iently small so that

Cτ
q−q′

qq′ ‖f‖α
W̃ 1,2 ≤

1

2

and we see that ‖um − u‖Lq(Iτ ,W̃ 1,p) ≤ 2C‖fm − f‖W̃ 1,2 + 2am → 0 as m → ∞.

Now from (5.0.32), ‖Gm − G‖Lq′ (Iτ ,W̃ 1,p′) → 0 as m → ∞ and from Stri
hartz

estimates ‖um − u‖Lq1 (Iτ ,W̃ 1,p1) → 0 as m → ∞ for every admissible pair (q1, p1).

Sin
e um, u ∈ C(Iτ , W̃
1,2(Cn)) for ea
h m, therefore ‖(um−u)(·, t)‖W̃ 1,2 ≤ ‖um−

u‖L∞(Iτ ,W̃ 1,2) for ea
h t ∈ Iτ . Sin
e (∞, 2) is an admissible pair, therefore ‖(um−
u)(·, t)‖W̃ 1,2 → 0 as m→ ∞ for ea
h t ∈ Iτ . Hen
e the proposition.

Theorem 5.0.26 Let u(·, t0) = f ∈ W̃ 1,2(Cn), α ∈ [0, 2
n−1

) and G be as in

(1.0.15), (1.0.16). Then the initial value problem (1.0.13), (1.0.14) has unique

maximal solution u ∈ C((T∗, T
∗), W̃ 1,2(Cn)) ∩ Lq1

lo


(

(T∗, T
∗), W̃ 1,p1(Cn)

)

, where

t0 ∈ (T∗, T
∗) and (q1, p1) be an arbitrary admissible pair. Fix p = 2+α. Moreover

the following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), W̃ 1,2)∩Lq1

lo


(

(T∗, T
∗), W̃ 1,p

)

for every admissible pair (q1, p) with q1 > 2.
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(ii)(Blowup alternative) If T ∗ <∞ (respe
tively, T∗ > −∞), then ‖u(·, t)‖W̃ 1,2

→ ∞ as t→ T ∗ (respe
tively, t→ T∗).

(iii)(Stability) If fj → f in W̃ 1,2(Cn), then uj(·, t) → u(·, t) in W̃ 1,2(Cn) for

ea
h t ∈ (T∗, T
∗) and also uj → u in Lq1(I, W̃ 1,p1(Cn)) for every admissible

pair (q1, p1) and every interval I with Ī ⊂ (T∗, T
∗), where uj is the solution

of equation (1.0.13) with initial value uj(·, t0) = fj.

Proof. By lo
al existen
e (Theorem 5.0.23), the solution exists in C(IT : W̃ 1,2(Cn))

where IT = (t0 − T, t0 + T ). Sin
e ‖u(·, t0 + T )‖W̃ 1,2(Cn) < ∞, the argument in

the proof of Theorem 5.0.23 
an be 
arried out with t0 + T as the initial time, to

extend the solution to the interval [t0 + T, T1]. This pro
edure 
an be 
ontinued

and we 
an get a sequen
e {Tm} su
h that t0 + T < T1 < T2 < · · · < Tm < · · ·
as long as ‖u(·, Tm)‖W̃ 1,2(Cn) <∞. Let T ∗ = sup

m

Tm so that the solution extends

to [t0, T
∗). In the same way we 
an extend the solution to the left side to the

interval (T∗, t0] to get a solution in C((T∗, T
∗), W̃ 1,2(Cn)). Now we prove blowup

alternative, uniqueness and stability.

Blowup alternative: Suppose T ∗ < ∞ and sup
t∈[t0,T ∗)

‖u(z, t)‖W̃ 1,2 = M0 < ∞. If

f = 0, then H(0) = 0 and sin
e H has unique �xed point in E, u(·, t) = 0 for

t ∈ [t0 − T, t0 + T ] where T = min{π, (2C)−
qq′

q−q′ }, see (5.0.23). By 
onsidering

t0 − T and t0 + T as a initial time, by the same reasoning solution u(·, t) = 0

for t ∈ [t0 − 2T, t0 + 2T ]. By 
ontinuing this pro
ess, solution u is global and

u(·, t) = 0 for t ∈ R. This 
ontradi
ts the fa
t that T ∗ <∞. Therefore f 6= 0.

Now we 
hoose a sequen
e tj ↑ T ∗
. From lo
al existen
e (see (5.0.23)) we 
an


hoose Tj = min{C1‖u(., tj)‖
−α qq′

q−q′

W̃ 1,2 , π} su
h that u ∈ C([tj − Tj , tj + Tj], W̃
1,2)

where C1 = (2C)
−(1+α) qq′

q−q′
. Hen
e by assumption Tj ≥ min{C1M

−α qq′
q−q′

0 , π},
a 
onstant independent of tj , for q > 2. Thus we 
an 
hoose j so large that

tj + Tj > T ∗
, whi
h 
ontradi
ts maximality of T ∗

. Hen
e if T ∗ < ∞ then

lim
t→T ∗

‖u(z, t)‖W̃ 1,2 = ∞. Similarly, we 
an show that lim
t→T∗

‖u(., t)‖W̃ 1,2 = ∞, if

T∗ > −∞.

Uniqueness: Suppose that u, v ∈ C((T∗, T
∗), W̃ 1,2) ∩ Lq

lo


((T∗, T
∗), W̃ 1,p) are

two solutions of the equations (1.0.13) and (1.0.14) where (q, p) be an admissible

pair with p = 2 + α and q > 2. Then u and v will satisfy integral equation

(1.0.20), see Lemma 5.0.21. Sin
e u(·, t0) = v(·, t0) = f and the solution given

by the 
ontra
tion mapping is unique on [t0 − T, t0 + T ], u(·, t) = v(·, t) for
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t ∈ [t0 − T, t0 + T ]. Let t̃ ∈ (T∗, T
∗) be su
h that u(·, t̃) = v(·, t̃). For τ ∈ (t̃, T ∗),

we have

u(z, τ) = e−i(τ−t̃)Lu(z, t̃)− i

∫ τ

t̃

e−i(τ−s)LG(z, u(z, s))ds,

v(z, τ) = e−i(τ−t̃)Lv(z, t̃)− i

∫ τ

t̃

e−i(τ−s)LG(z, v(z, s))ds.

By Stri
hartz estimate (3.0.2) and Lemma 5.0.19, we have

‖u− v‖
Lq((t̃,τ),Lp(Cn)) =

∥

∥

∥

∥

∫ τ

t̃

e−i(t−s)L (G(u)−G(v)) (z, s)ds

∥

∥

∥

∥

Lq((t̃,τ),Lp(Cn))

≤ C|τ − t̃|
q−q′

qq′ Mα
t̃,τ
‖u− v‖

Lq((t̃,τ),Lp(Cn))

for all τ ∈ (t̃, T ∗) where Mt̃,τ = max{‖u‖
L∞((t̃,τ),W̃ 1,2), ‖v‖L∞((t̃,τ),W̃ 1,2)}, see

(5.0.22). Sin
e u, v ∈ C
(

[t0, T
∗), W̃ 1,2

)

, we have Mt̃,τ < ∞. Choose τ ∈ [t̃, T ∗)

su�
iently 
lose to t̃ su
h that C|τ − t̃|
q−q′

qq′ Mα
t̃,τ

= c < 1, so that

0 ≤ (1− c)‖u− v‖Lq((t̃,τ):Lp(Cn)) ≤ 0.

Hen
e u = v on the larger interval [t̃, τ ].

Now let θ =sup{T̃ : t0 < T̃ < T ∗ : ‖u − v‖Lq([t0,T̃ ],Lp) = 0}. If θ < T ∗
,

then for su�
iently small ǫ > 0, 
hoose t̃ = θ − ǫ, τ = θ + ǫ and by the above

observation, ‖u−v‖Lq((θ−ǫ,θ+ǫ),Lp) = 0, whi
h 
ontradi
ts the de�nition of θ. Thus

we 
on
lude that θ = T ∗
, proving the uniqueness on [t0, T

∗). Similarly one 
an

show uniqueness on (T∗, t0].

Stability: Let {fm}m≥1 be a sequen
e in W̃ 1,2(Cn) su
h that fm → f in W̃ 1,2

as m → ∞. Let um and u be the solutions 
orresponding to the initial values

fm and f respe
tively. Let (T∗, T
∗) and (T∗,m, T

∗
m) be maximal intervals for the

solutions u and um respe
tively and I ⊂ (T∗, T
∗) be a 
ompa
t interval.

The key idea is to extend the stability result proved in Proposition 5.0.25 to

the interval I by 
overing it with �nitely many intervals obtained by su

essive

appli
ation of Proposition 5.0.25. This is possible provided um is de�ned on I,

for all but �nitely many m. In fa
t, we prove I ⊂ (T∗,m, T
∗
m) for all but �nitely

many m.
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We 
an assume that t0 ∈ I = [a, b], and give a proof by the method of


ontradi
tion. Suppose there exist in�nitely many T ∗
mj

≤ b and let c = lim inf T ∗
mj
.

Then for ǫ > 0, [t0, c−ǫ] ⊂ [t0, T
∗
mj
) for allmj su�
iently large and umj

are de�ned

on [t0, c− ǫ].

By 
ompa
tness, the stability result proved in Proposition 5.0.25 
an be ex-

tended to the interval [t0, c−ǫ] by 
overing it with �nitely many intervals obtained

by su

essive appli
ation of Proposition 5.0.25. Hen
e

‖umj
(·, c− ǫ)‖W̃ 1,2 → ‖u(·, c− ǫ)‖W̃ 1,2 as j → ∞.

Also by 
ontinuity we have

‖u(·, c− ǫ)‖W̃ 1,2 → ‖u(·, c)‖W̃ 1,2 as ǫ→ 0.

Thus, for any δ > 0, we have

‖umj
(·, c− ǫ)‖−α

qq′

q−q′

W̃ 1,2 > δ whenever ‖u(·, c)‖−α
qq′

q−q′

W̃ 1,2 > δ, (5.0.33)

for su�
iently small ǫ and for all j ≥ j0(ǫ). Therefore by applying the lo
al

existen
e theorem (see equation 5.0.23), with c−ǫ as the initial time, without loss

of generality we 
an assume that umj
extends to [t0, c−ǫ+C1‖umj

(·, c−ǫ)‖−α
qq′

q−q′

W̃ 1,2 ]

for large j where C1 = (2C)
−(1+α) qq′

q−q′
. Now 
hoosing ǫ < C1

2
δ, we have by (5.0.33)

c− ǫ+ C1‖umj
(·, c− ǫ)‖−α

qq′

q−q′

W̃ 1,2 > c+
C1

2
δ for all j ≥ j0(ǫ).

It follows that T ∗
mj

≥ c+ C1

2
δ, hen
e 
ontradi
ts the fa
t that lim inf T ∗

mj
= c.

Similarly we 
an show that [a, t0] ⊂ (T∗,m, t0] for all but �nitely many m whi
h


ompletes the proof of stability.





Chapter 6

Global well posedness in W̃
1,2
L (Cn)

In 
hapter 5, we proved the lo
al well posedness of the initial value problem

(1.0.13), (1.0.14) in W̃ 1,2(Cn). The reason for 
onsidering this spa
e was that

the operators Lj,Mj (1 ≤ j ≤ n) 
ommute with e−itL and

∫ t

t0
e−(t−s)L

and also


ompatible with the nonlinearity G. From (1.0.24), we see that W̃ 1,2(Cn) is not

the energy spa
e and therefore energy 
onservation is not possible in this 
ase.

Thus this approa
h does not 
on
lude global existen
e.

Hen
e in this 
hapter we 
onsider initial value in the spa
e W̃ 1,2
L (Cn). This

spa
e has the advantage of being the energy spa
e, see (1.0.24). For proving mass


onservation we assume that ψ is real valued. Using these 
onservation laws, we


an show that there is no �nite time blow up in defo
ussing 
ase (when ψ is

nonnegative) with 0 ≤ α < 2
n−1

and also in fo
using 
ase (when ψ is nonpositive)

with 0 ≤ α < 2
n
, hen
e in Theorem 6.0.33 we 
on
lude global existen
e for initial

value in the Sobolev spa
e W̃ 1,2
L (Cn).

In this 
hapter we 
onsider both sub
riti
al 0 ≤ α < 2
n−1

(see [25℄) and 
riti
al


ase α = 2
n−1

(see [29℄). Theorem 6.0.33 and Theorem 6.0.39 are main results of

this 
hapter.

Sub
riti
al 
ase 0 ≤ α < 2
n−1

In this se
tion, �rst we prove some auxilliary estimates.

Lemma 6.0.27 Let f ∈ W̃ 1,2
L (Cn) and t0 ∈ R. Then for every bounded in-

terval I and every admissible pair (q1, p1), t → e−i(t−t0)Lf ∈ C(R, W̃ 1,2
L (Cn)) ∩

Lq1
lo


(R, W̃ 1,p1
L (Cn)) and the following estimates hold :
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‖e−i(t−t0)Lf‖
L∞(R,W̃ 1,2

L (Cn)) = ‖f‖
W̃

1,2
L (Cn), (6.0.1)

‖e−i(t−t0)Lf‖
Lq1(I,W̃ 1,p1

L (Cn)) ≤ C‖f‖W̃ 1,2
L (Cn), (6.0.2)

where the 
onstant C is independent of f and t0.

Proof. From Lemma 4.0.15 we see that |Zje−i(t−t0)Lf | = |e−i(t−t0)LZjf | and
|Zje−i(t−t0)Lf | = |e−i(t−t0)LZjf |. Hen
e the proof follows from Theorem 3.0.7.

Lemma 6.0.28 Let I be a �nite interval and (q, p) an admissible pair with p =

2 + α and q > 2. Let G be as in (1.0.15), (1.0.16) with α ∈ [0, 2
n−1

) and u, v ∈
L∞(I, W̃ 1,2

L (Cn)). Then u, v ∈ Lq(I, Lp(Cn)) and the following estimate holds

‖G(z, u)−G(z, v)‖Lq′(I,Lp′ (Cn)) ≤ C|I|
q−q′
qq′ ‖u− v‖Lq(I,Lp(Cn))

×
(

‖u‖α
L∞(I,W̃ 1,2

L )
+ ‖u‖α

L∞(I,W̃ 1,2
L )

)

.(6.0.3)

Proof. Sin
e I is a �nite interval, in view of embedding theorem (Lemma 4.0.14),

u, v ∈ Lq(I, Lp(Cn)). By estimate (1.0.18),

1
p′
= α

p
+ 1

p
, Holder's inequality in the

z-variable and Lemma 4.0.14, we observe that

‖G(·, u)−G(·, v)‖Lp′(Cn) ≤ C‖|u− v|(|u|α + |v|α)‖Lp′ (Cn)

≤ C‖(u− v)(·, t)‖Lp(Cn)

(

‖u‖αLp(Cn) + ‖v‖αLp(Cn)

)

≤ C‖(u− v)(·, t)‖Lp(Cn)

(

‖u(·, t)‖α
W̃

1,2
L

+ ‖v(·, t)‖α
W̃

1,2
L

)

≤ C‖(u− v)(·, t)‖Lp(Cn)

(

‖u‖α
L∞(I,W̃ 1,2

L )
+ ‖v‖α

L∞(I,W̃ 1,2
L )

)

where t ∈ I. Now by taking Lq
′
norm in the t-variable on the interval I in the

above inequality, we get the required estimate (6.0.3).

Proposition 6.0.29 Let t0 ∈ R and I an open interval 
ontaining t0. Let G be

as in (1.0.15), (1.0.16) with α ∈ [0, 2
n−1

). Let (q, p) be an admissible pair with

p = α + 2, q > 2.

If u ∈ L∞
lo


(I, W̃ 1,2
L (Cn)) ∩ Lq

lo


(I, W̃ 1,p
L (Cn)), then for every bounded interval

J with J ⊂ I, t0 ∈ J and every admissible pair (q1, p1), the following inequalities

hold:



53

‖SG(z, u(z, t))‖Lq′(J,Lp′ (Cn)) ≤ C|J |
q−q′
qq′ ‖u‖α

L∞(J,W̃ 1,2
L (Cn))

(6.0.4)

×‖u‖Lq(J,W̃ 1,p
L (Cn))

‖G(z, u(z, t))‖
Lq′ (J,W̃ 1,p′

L (Cn))
≤ C|J |

q−q′
qq′ ‖u‖α

L∞(J,W̃ 1,2
L (Cn))

(6.0.5)

×‖u‖Lq(J,W̃ 1,p
L (Cn))

∥

∥

∥

∥

∫ t

t0

e−i(t−s)LG(z, u(z, s))ds

∥

∥

∥

∥

Lq1 (J,W̃
1,p1
L )

≤ C|J |
q−q′
qq′ ‖u‖α

L∞(J,W̃ 1,2
L (Cn))

(6.0.6)

×‖u‖Lq(J,W̃ 1,p
L (Cn))

for S = Id, Zj, Zj (1 ≤ j ≤ n) and for some 
onstant C independent of u and t0.

Moreover

∫ t

t0
e−i(t−s)LG(z, u(z, s))ds ∈ C(I, W̃ 1,2

L (Cn)).

Proof. To prove the inequality (6.0.4), we �rst observe that

(∂xj −
iyj
2
)[ψ(x, y, |u|)u] = ψ(x, y, |u|) (∂xj −

iyj
2
)u+ u(∂xjψ)(x, y, |u|)

+ u (∂|u|ψ)(x, y, |u|)ℜ
(

ū

|u|(∂xj −
iyj
2
yj)u

)

(6.0.7)

(∂yj +
ixj
2
)[ψ(x, y, |u|)u] = ψ(x, y, |u|) (∂yj +

ixj
2
)u+ u(∂yjψ)(x, y, |u|)

+ u (∂|u|ψ)(x, y, |u|)ℜ
(

ū

|u|(∂yj +
ixj
2
)u

)

. (6.0.8)

Thus we see that for Sj = (∂xj −
iyj
2
) and (∂yj +

ixj
2
), |SjG| satis�es an inequality

of the form

|SjG| ≤ |ψ(x, y, |u|) u|+ |ψ̃1(x, y, |u|) u|+ |ψ̃2(x, y, |u|)Su|

where ψ̃1(x, y, |u|) = u∂xjψ or u∂yjψ depending on Sj = (∂xj −
iyj
2
) or (∂yj +

ixj
2
)

and ψ̃2(x, y, |u|) = u∂|u|ψ. Moreover, by assumption (1.0.16) on ψ, we have

|ψ̃i(x, y, |u|)| ≤ C|u|α, i = 1, 2. Therefore

|SjG| ≤ C|u|α(|u|+ |Su|)

for Sj = Id, (∂xj −
iyj
2
), (∂yj +

ixj
2
); 1 ≤ j ≤ n. From the observations

1
2
(Zj− Z̄j) =

(∂xj − i
2
yj) and

i
2
(Zj + Z̄j) = (∂yj +

i
2
xj) (see 4.0.3), we get the inequality
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|SG| ≤ C|u|α
[

|u|+ |Zju|+ |Z̄ju|
]

(6.0.9)

for S = Id, Zj, Z̄j (1 ≤ j ≤ n) and for some 
onstant C.

An appli
ation of the Hölder's inequality in the z-variable, using p′

p
+ αp′

p
= 1

and Lemma 4.0.14, we see that for a.e. t ∈ J and S = Id, Zj, Z̄j

‖SG(·, u(·, t))‖Lp′(Cn) ≤ C‖|u|α(|u|+ |Zju|+ |Z̄ju|)‖Lp′(Cn)

≤ C‖u‖αLp(Cn) (‖u‖Lp(Cn) + ‖Zju‖Lp(Cn) + ‖Z̄ju‖Lp(Cn))

≤ C‖u(·, t)‖α
W̃

1,2
L (Cn)

‖u(·, t)‖W̃ 1,p
L (Cn)

≤ C‖u‖α
L∞(J,W̃ 1,2

L )‖u(·, t)‖W̃ 1,p
L (Cn).

Now taking Lq
′
norm with respe
t to the t-variable on both sides and an appli
a-

tion of the Hölder's inequality in the t-variable with q′

q
+ q−q′

q
= 1, for q > 2 gives

the estimate (6.0.4).

Estimate (6.0.5) follows from the estimate (6.0.4). Estimate (6.0.6) follows

from Stri
hartz estimates (Theorem 3.0.7) and the estimate (6.0.5). The fa
t

that

∫ t

t0
e−i(t−s)LG(z, u(z, s)) ds ∈ C(I, W̃ 1,2

L ) follows from Lemma 4.0.16 and

G(z, u) ∈ Lq
′

lo


(I, W̃ 1,p′

L ). Hen
e the Proposition.

Proposition 6.0.30 Let I be an open interval in R, G̃ be as in (1.0.23) with

0 ≤ α < 2
n−1

. Let p = 2 + α and {ǫm} a sequen
e of nonnegative real numbers


onverging to 0. Then

lim
m→∞

∫

Cn

G̃(z, |e−ǫmLvm(z, t)|)dz =
∫

Cn

G̃(z, |v(z, t)|)dz.

whenever vm → v in C ∩ L∞(I, Lp(Cn)).

Proof. Sin
e v, vm ∈ C ∩ L∞(I, Lp(Cn)), for ea
h t ∈ I,

‖(vm − v)(·, t)‖Lp(Cn) ≤ ‖vm − v‖L∞(I,Lp(Cn)) → 0

as m→ ∞. By adding and subtra
ting appropriate terms we have
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∫

Cn

∣

∣

∣
G̃(z, |e−ǫmLvm(z, t)|)− G̃(z, |v(z, t)|)

∣

∣

∣
dz

≤
∫

Cn

∣

∣

∣
G̃(z, |e−ǫmLvm|)− G̃(z, |e−ǫmLv|)

∣

∣

∣
dz

+

∫

Cn

∣

∣

∣
G̃(z, |e−ǫmLv|)− G̃(z, |v|)

∣

∣

∣
dz.

In view of (1.0.25) and Lemma 4.0.17, an appli
ation of Hölder's inequality with

(1 + α)p′ = p shows that

∫

Cn

∣

∣

∣
G̃(z, |e−ǫmLvm|)− G̃(z, |e−ǫmLv|)

∣

∣

∣
dz

≤ C

∫

Cn

|e−ǫmL(vm − v)| (|e−ǫmLvm|1+α + |e−ǫmLv|1+α)dz

≤ C‖e−ǫmL(vm − v)‖Lp(Cn)(‖e−ǫmLvm‖α+1
Lp(Cn) + ‖e−ǫmLv‖α+1

Lp(Cn))

≤ C‖(vm − v)(·, t)‖Lp(Cn)(‖vm(·, t)‖α+1
Lp(Cn) + ‖v(·, t)‖α+1

Lp(Cn)).

Sin
e {vm} is a Cau
hy sequen
e in L∞(I, Lp(Cn)), ‖vm(·, t)‖Lp(Cn) is bounded

for t �xed. Hen
e

∫

Cn

∣

∣

∣
G̃(z, |e−ǫmLvm|)− G̃(z, |e−ǫmLv|)

∣

∣

∣
dz → 0

as m→ ∞.

A similar argument shows that

∫

Cn(G̃(z, |e−ǫmLv(z, t)|)−G̃(z, |v(z, t)|))dz tends
to zero as m→ ∞, hen
e the Lemma.

Lo
al wellposednes in W̃ 1,2
L (Cn)

Theorem 6.0.31 (Lo
al well posedness) Let f = u(·, t0) ∈ W̃ 1,2
L (Cn), and G be

as in (1.0.15) and (1.0.16) with α ∈ [0, 2
n−1

). Then the initial value problem

(1.0.13), (1.0.14) has a unique maximal solution u ∈ C((T∗, T
∗), W̃ 1,2

L (Cn)) ∩
Lq1
lo


(

(T∗, T
∗), W̃ 1,p1

L

)

, where t0 ∈ (T∗, T
∗) and (q1, p1) be an arbitrary admissible

pair. Fix p = 2 + α. Moreover the following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), W̃ 1,2

L )∩Lq1
lo


(

(T∗, T
∗), W̃ 1,p

L

)

for every admissible pair (q1, p) with q1 > 2.
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(ii)(Blowup alternative) If T ∗ <∞ (respe
tively, T∗ > −∞), then ‖u(·, t)‖
W̃

1,2
L

→
∞ as t→ T ∗

(respe
tively, t→ T∗).

(iii)(Stability) If fj → f in W̃ 1,2
L (Cn), then uj(·, t) → u(·, t) in W̃ 1,2

L (Cn) for

ea
h t ∈ (T∗, T
∗) and also uj → u in Lq1

(

I, W̃ 1,p1(Cn)
)

for every admissible

pair (q1, p1) and every interval I with Ī ⊂ (T∗, T
∗).

Proof. Proof follows by similar arguments as in Theorem 5.0.23 and Theorem

5.0.26. For 
ompleteness we give the proof.

Lo
al existen
e: We establish the lo
al existen
e of solution for the problem

(1.0.13), (1.0.14) by establishing the existen
e of solution in the spa
e X (see

Lemma 5.0.21) for the equivalent integeral equation

u(z, t) = e−i(t−t0)Lf(z)− i

∫ t

t0

e−i(t−s)LG(z, u(z, s))ds. (6.0.10)

For given positive numbers T and M , 
onsider the set E = ET,M given by

E =







u ∈ L∞
(

IT ; W̃
1,2
L (Cn)

)

∩ Lq
(

IT , W̃
1,p
L (Cn)

)

∣

∣

∣

∣

∣

∣

‖u‖
L∞(IT ,W̃ 1,2

L ) ≤M,

‖u‖
Lq(IT ,W̃ 1,p

L ) ≤ M







where IT = (t0 − T, t0 + T ) and (q, p) be an admissible pair with p = 2 + α and

q > 2. Then E with the metri
 given by

d(u, v) = ‖u− v‖L∞(IT ,L2(Cn)) + ‖u− v‖Lq(IT ,Lp(Cn))

is a 
omplete metri
 spa
e. This 
an be veri�ed by similar arguments as in

Proposition 5.0.22.

First we verify that H given by (1.0.21) maps ET,M to ET,M for small T . If

u ∈ ET,M , using the estimates from Lemma 6.0.27 and Proposition 6.0.29, in

(1.0.20), we see that,

max
{

‖Hu‖
L∞(IT ,W̃ 1,2

L (Cn)), ‖Hu‖Lq(IT ,W̃ 1,p
L (Cn))

}

≤ C ‖f‖
W̃

1,2
L (Cn) + C T

q−q′
qq′ ‖u‖α

L∞(IT ;W̃ 1,2
L (Cn))

‖u‖
Lq(IT ,W̃

1,p
L (Cn))

≤ C‖f‖
W̃

1,2
L (Cn) + C T

q−q′
qq′ M1+α. (6.0.11)
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This quantity is at most M provided we 
hoose

T ≤ T0 =

(

M − C‖f‖W̃ 1,2
L

CM1+α

)
qq′

q−q′

.

Thus for a given M > C‖f‖
W̃

1,2
L
, H maps ET,M to ET,M for all T ≤ T0.

For u, v ∈ E, using Stri
hartz estimate (3.0.2) and the estimate (6.0.3), we

get

d(Hu,Hv) = ‖Hu−Hv‖L∞(IT ,L2(Cn)) + ‖Hu−Hv‖Lq(IT ,Lp(Cn))

≤ C‖G(z, u)−G(z, v)‖
Lq′(IT ,Lp′(Cn))

≤ CT
q−q′
qq′

[

‖u‖α
L∞(IT ,W̃ 1,2

L ) + ‖v‖α
L∞(IT ,W̃ 1,2

L )

]

‖u− v‖Lq(IT ,Lp(Cn))

≤ CT
q−q′
qq′ Mαd(u, v) (6.0.12)

Now we 
hoose

M =

{

1 if f = 0

2C‖f‖
W̃

1,2
L (Cn) if f 6= 0

(6.0.13)

and

T =







min{π, (2C)−
qq′

q−q′ } if f = 0

min{π, (2C)−(1+α) qq′

q−q′ ‖f‖−α
qq′

q−q′

W̃
1,2
L (Cn)

} if f 6= 0
(6.0.14)

where C is the same 
onstant that appears in the inequalities (6.0.11), (6.0.12)

and is independent of T . For these 
hoi
es ofM and T , the operatorH maps E to

E and also is a 
onta
tion on E. Therefore H has unique �xed point in E. From

Lemma 6.0.27 and Proposition 6.0.29, we 
on
lude that u ∈ C(IT , W̃
1,2
L (Cn)) ∩

Lq1(IT , W̃
1,p1
L (Cn)) for every admissible pair (q1, p1).

Now we 
onsider inital time t0 − T and t0 + T . By the above argument

we get open intervals 
ontaining t0 − T and t0 + T on whi
h solution exists to

the initial value problem (1.0.13), (1.0.14). By 
ontinuing this pro
ess, we get

maximal interval (T∗, T
∗) 
ontaining t0 and solution u of the initial value problem

(1.0.13), (1.0.14) lies in C((T∗, T
∗), W̃ 1,2

L (Cn))∩Lq1
lo


((T∗, T
∗), W̃ 1,p1

L (Cn)) for every

admissible pair (q1, p1).
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Blowup alternative: Suppose T ∗ < ∞ and sup
t∈[t0,T ∗)

‖u(z, t)‖
W̃

1,2
L

= M0 < ∞.

Clearly f 6= 0, see blowup alternative in Theorem 5.0.26. Now we 
hoose a

sequen
e tj ↑ T ∗
. From lo
al existen
e we 
an 
hoose

Tj = min{C1‖u(., tj)‖
−α qq′

q−q′

W̃
1,2
L

, π}

su
h that u ∈ C([tj − Tj , tj + Tj ], W̃
1,2
L ) where C1 = (2C)

−(1+α) qq′

q−q′
, see (6.0.14).

Hen
e by assumption Tj ≥ min{C1M
−α qq′

q−q′

0 , π}, a 
onstant independent of tj ,

for q > 2. Thus we 
an 
hoose j so large that tj + Tj > T ∗
, whi
h 
ontradi
ts

maximality of T ∗
. Hen
e if T ∗ < ∞ then lim

t→T ∗
‖u(z, t)‖

W̃
1,2
L

= ∞. Similarly, we


an show that lim
t→T∗

‖u(., t)‖W̃ 1,2
L

= ∞, if T∗ > −∞.

Uniqueness: Suppose that u, v ∈ C((T∗, T
∗), W̃ 1,2

L ) ∩ Lq
lo


((T∗, T
∗), W̃ 1,p

L ) are

two solutions of the equations (1.0.13) and (1.0.14) where (q, p) be an admissible

pair with p = 2 + α and q > 2. Then u and v will satisfy integral equation

(1.0.20), see Lemma 5.0.21. Sin
e u(·, t0) = v(·, t0) = f and the solution given

by the 
ontra
tion mapping is unique on [t0 − T, t0 + T ], u(·, t) = v(·, t) for

t ∈ [t0 − T, t0 + T ]. Let t̃ ∈ (T∗, T
∗) be su
h that u(·, t̃) = v(·, t̃). For τ ∈ (t̃, T ∗),

we have

u(z, τ) = e−i(τ−t̃)Lu(z, t̃)− i

∫ τ

t̃

e−i(τ−s)LG(z, u(z, s))ds,

v(z, τ) = e−i(τ−t̃)Lv(z, t̃)− i

∫ τ

t̃

e−i(τ−s)LG(z, v(z, s))ds.

By Stri
hartz estimate (3.0.2) and Lemma 6.0.28, we have

‖u− v‖
Lq((t̃,τ),Lp(Cn)) =

∥

∥

∥

∥

∫ τ

t̃

e−i(t−s)L (G(u)−G(v)) (z, s)ds

∥

∥

∥

∥

Lq((t̃,τ),Lp(Cn))

≤ C|τ − t̃|
q−q′

qq′ Mα
t̃,τ
‖u− v‖

Lq((t̃,τ),Lp(Cn))

for all τ ∈ (t̃, T ∗) where Mt̃,τ = max{‖u‖
L∞((t̃,τ),W̃ 1,2

L ), ‖v‖L∞((t̃,τ),W̃ 1,2
L )}, see

(6.0.13). Sin
e u, v ∈ C
(

[t0, T
∗), W̃ 1,2

L

)

, we have Mt̃,τ < ∞. Choose τ ∈ [t̃, T ∗)

su�
iently 
lose to t̃ su
h that C|τ − t̃|
q−q′

qq′ Mα
t̃,τ

= c < 1, so that

0 ≤ (1− c)‖u− v‖Lq((t̃,τ):Lp(Cn)) ≤ 0.
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Hen
e u = v on the larger interval [t̃, τ ].

Now let θ =sup{T̃ : t0 < T̃ < T ∗ : ‖u − v‖Lq([t0,T̃ ],Lp) = 0}. If θ < T ∗
,

then for su�
iently small ǫ > 0, 
hoose t̃ = θ − ǫ, τ = θ + ǫ and by the above

observation, ‖u−v‖Lq((θ−ǫ,θ+ǫ),Lp) = 0, whi
h 
ontradi
ts the de�nition of θ. Thus

we 
on
lude that θ = T ∗
, proving the uniqueness on [t0, T

∗). Similarly one 
an

show uniqueness on (T∗, t0].

Stability: Stability follows by similar arguments as in Theorem 5.0.26.

Blowup analysis in W̃ 1,2
L (Cn)

In this se
tion we show that the maximal solution established in Theorem 6.0.31

is a
tually a global one. This is established by showing that there is no �nite

time blow up. We use a blow up analysis as in [12℄ using the 
onservation laws,

to 
on
lude that there is no �nite time blow up.

The mass 
onservation (1.0.22) formally derived in 
hapter 1, is valid for

u ∈ C((T∗, T
∗), W̃ 1,2

L (Cn)) but the formal 
omputation for the energy 
onservation

law (1.0.24) given there is valid only for u(·, t) ∈ W̃ 2,2
L (Cn) for ea
h t in the interval

of existen
e. However, sin
e the S
hrödinger equation does not have regularizing

property, we 
an not expe
t u to be in the se
ond order Sobolev spa
e W̃ 2,2
L (Cn),

for the initial data f ∈ W̃ 1,2
L (Cn). So we need some alternate argument to prove

the energy 
onservation in W̃ 1,2
L (Cn).

We dedu
e the energy 
onservation for u ∈ W̃ 1,2
L (Cn) from the equation

(1.0.24) valid for u(·, t) ∈ W̃ 2,2
L (Cn) by an approximation argument, using the

stability result obtained for the maximal solution, and a regularization argument

on the nonlinearity.

Let {fm}n∈N be a sequen
e of fun
tions in W̃ 2,2
L (Cn) su
h that fm → f in

W̃ 1,2
L (Cn) and for ǫ > 0, set Gǫ(z, u) = e−ǫLG(z, e−ǫLu).

In view of estimates (4.0.8), (4.0.9) in Lemma 4.0.17 and estimate (6.0.3) in

Lemma 6.0.28, for v1, v2 ∈ L∞(I, W̃ 1,2
L (Cn)), we observe that
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‖Gǫ(z, v1)−Gǫ(z, v2)‖Lq′(I,Lp′ ) ≤ C‖G(z, e−ǫLv1)−G(z, e−ǫLv2)‖Lq′(I,Lp′ (Cn))

≤ C|I|
q−q′
qq′ ‖e−ǫL(v1 − v2)‖Lq(I,Lp(Cn))

×
(

‖e−ǫLv1‖αL∞(I,W̃ 1,2
L )

+ ‖e−ǫLv2‖αL∞(I,W̃ 1,2
L )

)

≤ C|I|
q−q′
qq′ ‖v1 − v2‖Lq(I,Lp(Cn))

×
(

‖v1‖αL∞(I,W̃ 1,2
L )

+ ‖v2‖αL∞(I,W̃ 1,2
L )

)

(6.0.15)

where 
onstant C is independent of ǫ for ǫ ∈ (0, 1].

Using estimates (4.0.8), (4.0.9) in Lemma 4.0.17 and estimate (6.0.5) in Propo-

sition 6.0.29, for v ∈ L∞(I, W̃ 1,2
L (Cn)) ∩ Lq(I, W̃ 1,p

L (Cn)), we observe that

‖Gǫ(z, v(z, t))‖Lq′ (I,W̃ 1,p′

L (Cn))
≤ C‖G(z, e−ǫLv(z, t))‖

Lq′ (I,W̃ 1,p′

L (Cn))

≤ C|I|
q−q′
qq′ ‖e−ǫLv‖α

L∞(I,W̃ 1,2
L (Cn))

‖e−ǫLv‖Lq(I,W̃ 1,p
L (Cn))

≤ C|I|
q−q′
qq′ ‖v‖α

L∞(I,W̃ 1,2
L (Cn))

‖v‖Lq(I,W̃ 1,p
L (Cn)) (6.0.16)

where 
onstant C is independent of ǫ for ǫ ∈ (0, 1].

Now we 
onsider the initial value problem

i∂tu(z, t)− Lu(z, t) = Gǫ(z, u), z ∈ C
n, t ∈ R (6.0.17)

u(·, t0) = fm. (6.0.18)

Observe that, in view of the estimates (6.0.15) and (6.0.16), the arguments used

in the proof of Theorem 6.0.31 is valid for the above problem and we get a unique

solution uǫm ∈ C(I, W̃ 1,2
L (Cn)) that satis�es the integral equation (see Lemma

5.0.21)

uǫm(z, t) = e−i(t−t0)Lfm(z)− i

∫ t

t0

e−i(t−s)LGǫ(z, u
ǫ
m(z, s))ds. (6.0.19)

Moreover sin
e ‖fm‖W̃ 1,2
L

→ ‖f‖
W̃

1,2
L
, in view of (6.0.14), we 
an 
hoose interval I


ontaining t0 small and assume that uǫm are de�ned on I for every m and ǫ > 0.

For the same reason, in view of (6.0.13), we 
an also �nd an M su
h that

sup
t∈I

‖uǫm‖W̃ 1,2
L (Cn) ≤M (6.0.20)
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valid for all 0 < ǫ ≤ 1 and m ∈ N.

The following 
onvergen
e result is 
ru
ial in the proof of 
onservation of

energy in W̃ 1,2
L .

Proposition 6.0.32 Let ǫ > 0 and f ∈ W̃ 1,2
L (Cn). Let uǫ and u be the solu-

tions of the equations (1.0.13), and (6.0.17) respe
tively with same initial value

u(·, t0) = uǫ(·, t0) = f . Then there exists T > 0 su
h that

uǫ → u, as ǫ→ 0

in L∞(I, Lp1(Cn)) for all 2 ≤ p1 <
2n
n−1

where I = (t0 − T, t0 + T ).

Proof. By lo
al existen
e argument, the solution u and uǫ exists on an interval

(t0−T, t0+T ), where T depends only on ‖f‖
W̃

1,2
L
, see (6.0.14). In view of (1.0.21)

and Lemma 5.0.21, we have

uǫ(z, t)− u(z, t) = −i
∫ t

t0

e−i(t−s)L[Gǫ(z, u)−G(z, u)]ds.

Hen
e by estimate (3.0.2), we see that

‖uǫ − u‖Lq1 (I,Lp1(Cn)) ≤ C ‖Gǫ −G‖Lq′(I,Lp′(Cn)) (6.0.21)

for every admissible pair (q1, p1). Sin
e Gǫ(z, u) = e−ǫLG(z, e−ǫLu), by adding

and subtra
ting appropriate terms, we see that

‖Gǫ(z, u
ǫ) − G(z, u)‖Lq′(I,Lp′ (Cn)) (6.0.22)

≤ ‖Gǫ(z, u
ǫ)−Gǫ(z, u)‖Lq′ (I,Lp′(Cn))

+ ‖e−ǫL[G(z, e−ǫLu)−G(z, u)]‖Lq′ (I,Lp′(Cn))

+ ‖e−ǫLG(z, u)−G(z, u)‖Lq′(I,Lp′ (Cn)).

We �rst estimate the last two terms. In view of Lemma 4.0.17, we have

‖e−ǫLG(·, u(·, t))−G(·, u(·, t))‖Lp′(Cn) = o(ǫ)

‖e−ǫLu(·, t)− u(·, t)‖Lp(Cn) = o(ǫ)

as ǫ → 0, for ea
h t ∈ I. Hen
e an appli
ation of the dominated 
onvergen
e
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theorem in the t-variable shows that as ǫ→ 0

‖e−ǫLG(z, u)−G(z, u)‖Lq′(I,Lp′(Cn)) = o(ǫ) (6.0.23)

‖e−ǫLu− u‖Lq(I,Lp(Cn)) = o(ǫ). (6.0.24)

Equation (6.0.23) gives the required estimate for the third term in the RHS of

(6.0.22). By estimate (4.0.8) and estimate (6.0.3), we see that

‖e−ǫL[G(z, e−ǫLu)−G(z, u)]‖Lq′(I,Lp′(Cn)) (6.0.25)

≤ CT
q−q′
qq′ ‖u‖α

L∞(I,W̃ 1,2
L (Cn))

‖e−ǫLu− u‖Lq(IT ,Lp(Cn)) = o(ǫ)

as ǫ → 0 by (6.0.24), whi
h gives the estimate for the se
ond term on the RHS

of (6.0.22). Again estimate (6.0.15) gives the inequality

‖Gǫ(z, u
ǫ)−Gǫ(z, u)‖Lq′ (I,Lp′(Cn)) ≤ CT

q−q′

qq′ Mα‖uǫ − u‖Lq(I,Lp(Cn)).(6.0.26)

Now from the estimate (6.0.21), (6.0.22) and in view of (6.0.26), (6.0.25) and

(6.0.23) we see that

‖uǫ − u‖Lq1(I,Lp1 (Cn)) ≤ CT
q−q′

qq′ Mα‖uǫ − u‖Lq(I,Lp(Cn)) + o(ǫ) (6.0.27)

‖uǫ − u‖Lq(I,Lp(Cn)) ≤ CT
q−q′

qq′ Mα‖uǫ − u‖Lq(I,Lp(Cn)) + o(ǫ). (6.0.28)

Let us 
hoose T su�
iently small so that CT
q−q′

qq′ Mα < 1
2
with 
onstant C in the

inequality (6.0.28). This gives

‖uǫ − u‖Lq(I,Lp(Cn)) = o(ǫ)

as ǫ→ 0. From estimate (6.0.27) with pair (∞, 2), we have

‖uǫ − u‖L∞(I,L2(Cn)) = o(ǫ). (6.0.29)

Now we prove

‖uǫ − u‖L∞(I,Lp1 (Cn)) = o(ǫ) (6.0.30)

as ǫ→ 0 for all 2 ≤ p1 <
2n
n−1

.
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Now we 
hoose r ∈ (p1,
2n
n−1

) and λ ∈ (0, 1) su
h that

1
p1

= λ
2
+ 1−λ

r
. Thus by

Hölders inequality with indi
es

r
(1−λ)p1

and

2
λp1

, we get

‖uǫ − u‖Lp1(Cn) ≤ ‖uǫ − u‖1−λ
Lr(Cn)‖uǫ − u‖λL2(Cn).

Re
all that by lo
al existen
e theorem u, uǫ ∈ C(I, W̃ 1,2
L ) and there exist M su
h

that

sup
t∈I

‖u‖W̃ 1,2
L

≤M, sup
t∈I

‖uǫ‖W̃ 1,2
L

≤M

by (6.0.20). Thus by Lemma 4.0.14, we have ‖uǫ−u‖Lr(Cn) ≤ ‖u−uǫ‖
W̃

1,2
L

≤ 2M

for 2 ≤ r ≤ 2n
n−1

. Thus we see that

‖uǫ − u‖L∞(I,Lp1(Cn)) ≤ (2M)1−λ‖uǫ − u‖λL∞(I,L2(Cn)). (6.0.31)

This proves (6.0.30) in view of (6.0.29).

Our main result in this se
tion is the following Theorem.

Theorem 6.0.33 (Global well posedness) Let f ∈ W̃ 1,2
L (Cn) and ψ be real valued

fun
tion as in (1.0.15) and (1.0.16) with α ∈ [0, 2
n−1

). Then the solution u ∈
C((T∗, T

∗), W̃ 1,2
L (Cn))∩Lq1

lo


(

(T∗, T
∗), W̃ 1,p1

L

)

of the initial value problem (1.0.13),

(1.0.14) as obtained in Theorem 6.0.31 satis�es the following properties:

(i)(Conservation of 
harge) ‖u(·, t)‖L2(Cn) = ‖f‖L2(Cn), t ∈ (T∗, T
∗).

(ii)(Conservation of energy) E(u(·, t)) = E(u(·, t0)), t ∈ (T∗, T
∗), where

E(u) =
1

4

n
∑

j=1

∫

Cn

(

|Zju(z, t)|2 + |Zju(z, t)|2
)

dz +

∫

Cn

G̃(z, |u|)dz. (6.0.32)

(iii)(Global existen
e) If ψ ≥ 0 is nonnegative, the solution extends to the

whole of R. For nonpositive ψ, the solution is global if 0 ≤ α < 2
n
.

Proof. The proof of 
onservation of 
harge (1.0.22) given in 
hapter 1 is valid

for u ∈ ((T∗, T
∗), W̃ 1,2

L (Cn)) as observed before. Thus we need to prove en-

ergy 
onservation. Let uǫm(z, t) denote the solution to the regularized problem

(6.0.17), (6.0.18). Then uǫm ∈ C(I, W̃ 1,2
L (Cn)) ∩ Lq1(I; W̃ 1,p1

L (Cn)) for every ad-

missible pair (q1, p1) and is given by the integral equation (6.0.19), where I =
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(t0 − T, t0 + T ). Sin
e fm ∈ W̃ 2,2
L (Cn), therefore from equation (4.0.12) and The-

orem 3.0.7 e−i(t−t0)Lfm ∈ C(I, W̃ 2,2
L (Cn)). From estimate (6.0.16), Gǫ(z, u

ǫ
m) ∈

Lq
′
(I, W̃ 1,p′

L (Cn)) and from estimate (4.0.10) Gǫ(z, u
ǫ
m) ∈ Lq

′
(I, W̃ 2,p′

L (Cn)). From

these observations, equation (6.0.19) and equation (4.0.12), we 
on
lude that

uǫm ∈ C(I, W̃ 2,2
L (Cn)) for ea
h m ∈ N and ǫ > 0 .

Sin
e 〈Gǫ(z, u
ǫ
m), ∂tu

ǫ
m〉 = 〈G(z, e−ǫLuǫm), e−ǫL∂tuǫm〉, taking L2(Cn) inner prod-

u
t with ∂tu
ǫ
m on both sides of the equation (6.0.17) with u repla
ed by uǫm and a


omputation similar to the one that led to (1.0.24) yields the energy 
onservation:

1

4

n
∑

j=1

(‖Zjuǫm(·, t)‖22 +
∥

∥Zju
ǫ
m

∥

∥

2

2
) +

∫

Cn

G̃(z, |e−ǫLuǫm|)dz = E(fm). (6.0.33)

By stability uǫm(·, t) → uǫ(·, t) in W̃ 1,2
L (Cn) for ea
h t ∈ I and also uǫm → uǫ in

Lq1(I; W̃ 1,p1
L (Cn)) for every admissible pair (q1, p1) as m→ ∞. By Lemma 4.0.14

C∩L∞(I, Lp(Cn)) ⊂ C∩L∞(I, W̃ 1,2
L ) and uǫm → uǫ in L∞(I, Lp(Cn)) as m→ ∞.

From estimate (4.0.8), e−ǫLuǫm → e−ǫLuǫ in L∞(I, Lp(Cn)) as m→ ∞.

Thus letting m → ∞ in (6.0.33) and using Proposition 6.0.30, we get the

energy 
onservation for uǫ:

E(f) =
1

4

n
∑

j=1

(‖Zjuǫ(·, t)‖22 +
∥

∥Zju
ǫ(·, t)

∥

∥

2

2
) + λ

∫

Cn

G̃(z, |e−ǫLuǫ|)dz (6.0.34)

for ea
h ǫ > 0. From Proposition 6.0.32) uǫ → u in L∞(I, Lp(Cn)) and therefore

from Proposition 6.0.30, we see that

lim
ǫ→0

∫

Cn

G̃(z, |e−ǫLuǫ|)dz =
∫

Cn

G̃(z, |u|)dz. (6.0.35)

From Proposition 6.0.32 uǫ(·, t) → u(·, t) in L2(Cn) for ea
h t ∈ I. Therefore for

any sequen
e {ǫm} of positive real numbers 
onverging to 0, we see

‖Su(·, t)‖L2(Cn) = sup
φ∈S(Cn),‖φ‖

L2≤1

|〈Su(·, t), φ〉|

= sup
φ∈S(Cn),‖φ‖

L2≤1

|〈u(·, t), S∗φ〉|

= sup
φ∈S(Cn),‖φ‖

L2≤1

lim
m→∞

|〈uǫm(·, t), S∗φ〉|
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= sup
φ∈S(Cn),‖φ‖

L2≤1

lim
m→∞

|〈Suǫm(·, t), φ〉|

≤ sup
φ∈S(Cn),‖φ‖

L2≤1

lim inf
m→∞

‖Suǫm(·, t)‖L2‖φ(·, t)‖L2

≤ lim inf
m→∞

‖Suǫm(·, t)‖L2(Cn) (6.0.36)

for S = Zj, Z̄j.

Taking limit as ǫm → 0 in (6.0.34), in view of the inequality (6.0.36) and the

identity (6.0.35), we see that E(u(·, t)) ≤ E(f) = E(u(·, t0)) for ea
h t ∈ I =

[t0−T, t0+T ]. This shows that E(u(·, t)) has lo
al maximum at t0. This argument


an be repeated for any point in (T∗, T
∗) instead of t0. Sin
e t → E(u(·, t))

is 
ontinuous and it has lo
al maximum at every point, therefore E(u(·, t)) is


onstant on (T∗, T
∗). This proves the energy 
onservation.

Global existen
e: Now we will prove global existen
e. Let us assume that

ψ is nonnegative. Then G̃ : Cn × [0,∞) → [0,∞) is also nonnegative and by


onservation of energy

E(f) = E(u(z, t))

=
1

4

n
∑

j=1

(‖Zju(z, t)‖22 +
∥

∥Zju(z, t)
∥

∥

2

2
) +

∫

Cn

G̃(z, |u|)dz (6.0.37)

≥ 1

4

n
∑

j=1

(‖Zju(z, t)‖22 +
∥

∥Zju(z, t)
∥

∥

2

2
) 9 ∞

as t → T∗ or t → T ∗
. By blowup alternative and Lemma 4.0.13, we have global

existen
e, i.e., −T∗ = T ∗ = ∞.

To deal with nonpositive ψ with 0 ≤ α < 2
n
, we �rst get an estimate for

∫

Cn G̃(z, u(z, t))dz 
omparing with ‖u(·, t)‖W̃ 1,2
L (Cn). In view of (1.0.25) and the

fa
t that α + 2 = p, we see that

∫

Cn

G̃(z, u)dz ≤ C

∫

Cn

|u(z, t)|pdz.

Sin
e p = 2 + α, α ∈ [0, 2
n
), we have 2 ≤ p ≤ 4

4−p
< 2n

n−1
. Sin
e p ≤ 4

4−p
, we 
an


hoose p1 su
h that

4
4−p

< p1 <
2n
n−1

. Let θ ∈ (0, 1] su
h that

1
p
= θ

2
+ 1−θ

p1
. Then

pθ = 2(p1−p)
(p1−2)

, (1−θ)p = p1(p−2)
(p1−2)

. An appli
ation of Hölder's inequality with indi
es
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2
pθ

and

p1
(1−θ)p

in the above shows that

∫

Cn

G̃(z, u)dz ≤ C

∫

Cn

|u(z, t)|θp |u(z, t)|(1−θ)p dz

≤ C

(
∫

Cn

|u(z, t)|2dz
)

pθ
2
(
∫

Cn

|u(z, t)|p1dz
)

(1−θ)p
p1

≤ C‖u(·, t)‖pθ
L2(Cn)‖u(·, t)‖

(1−θ)p

W̃
1,2
L (Cn)

≤ C‖f‖pθ
L2(Cn)‖u(·, t)‖

(1−θ)p

W̃
1,2
L (Cn)

. (6.0.38)

In the third inequality, we use embedding theorem (Lemma 4.0.14) and fourth in-

equality follows from 
onservation of 
harge. Sin
e ψ is nonpositive, from (1.0.23)

G̃ is also nonpositive. Hen
e from (6.0.37), by Lemma 4.0.13 and in view of the

estimate (6.0.38), we see that for all t ∈ (T∗, T
∗)

E(f) ≥ C1‖u(·, t)‖2W̃ 1,2
L

− C ‖f‖pθ
L2(Cn) ‖u(·, t)‖

(1−θ)p

W̃
1,2
L

. (6.0.39)

Note that for α < 2
n
, (1−θ)p = p1(p−2)

(p1−2)
< 2. Thus the above inequality shows that

‖u(·, t)‖
W̃

1,2
L
, 
an not blowup as t→ T∗ or t→ T ∗

. Hen
e by blow up alternative,

the maximal interval is R and proves the global existen
e.

Criti
al Case α = 2
n−1

In Theorem 6.0.31, we proved the lo
al well posedness in W̃ 1,2
L (Cn) for sub
riti
al


ase α ∈ [0, 2
n−1

). In this se
tion we will 
onsider 
riti
al 
ase α = 2
n−1

with n ≥ 2.

In Theorem 6.0.31, for 
riti
al 
ase α = 2
n−1

the main di�
ulty is that we don't

have any q > 2 so that (q, 2+ 2
n−1

) be
omes an admissible pair. We over
ome this

di�
ulty by 
onsidering admissible pair (γ, ρ) and by using embedding theorem

(Lemma 4.0.14), where

ρ =
2n2

n2 − n + 1
, γ =

2n

n− 1
.

To treat the 
riti
al 
ase, we adopt trun
ation argument of Cazenave and Weissler

[7℄. To prove lo
al existen
e, we trun
ate the nonlinearity G and obtain solution

for the trun
ated problem. We obtain solution u for the nonlinearity G by using

Stri
hartz estimates and by passing to the limit.
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For m ≥ 1, 
onsider Gm(z, u) = ψm(z, |u|)u : Cn × C → C, where

ψm(z, σ) =

{

ψ(z, σ) if 0 ≤ σ ≤ m

m2
(

ψ(z,σ)
σ2

− ψ(z,m)
σ2

+ ψ(z,m)
m2

)

if σ ≥ m.

For m = 0, we de�ne G0(z, u) = G(z, u) and ψ0(z, |u|) = ψ(z, |u|). Note that ψm
is di�erentiable at σ = m with respe
t to σ and also note that Gm will satisfy

(1.0.15) and (1.0.16) with α = 2
n−1

as well as α = 0. For m ≥ 1, Gm(z, ·) : C → C

is globally Lips
hitz from mean value theorem and

|Gm(z, u)−Gm(z, v)| ≤ Cm|u− v| for m ≥ 1 (6.0.40)

where 
onstant Cm depends on m ∈ N but independent of z ∈ Cn
and u, v ∈ C.

Moreover by mean value theorem we also see that

|Gm(z, u)−Gm(z, v)| ≤ C(|u|+ |v|) 2
n−1 |u− v| for m ≥ 0 (6.0.41)

where 
onstant C is independent of m ∈ Z≥0, z ∈ Cn
and u, v ∈ C.

Sin
e F0 satis�es estimate (1.0.16) with α = 2
n−1

, we 
on
lude that

|Fm(z, σ)| ≤ Cσ
2

n−1 , (6.0.42)

where Fm = ψm, ∂xjψm, ∂yjψm, σ∂σψm(x, y, σ) with 1 ≤ j ≤ n and 
onstant C is

independent of m.

In view of Duhamel's formula (see, Lemma 5.0.21) and in order to �nd solution

for given IVP (1.0.13), (1.0.14) with initial value f ∈ W̃ 1,2
L (Cn) and nonlinearity

Gm, it is su�
ient to �nd the solution of the following equation

u(z, t) = e−i(t−t0)Lf(z)− i

∫ t

t0

e−i(t−s)LG(z, um(z, s))ds.

This redu
es the existen
e theorem for the solution to the nonlinear S
hrödinger

equation to a �xed point theorem for the operator with m ≥ 0

Hm(u)(z, t) = e−i(t−t0)Lf(z)− i

∫ t

t0

e−i(t−s)LGm(z, u(z, s))ds. (6.0.43)
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Some auxilliary estimates

Lemma 6.0.34 Let u, v ∈ Lγ
(

I, W̃ 1,ρ
L (Cn)

)

for some interval I, then the fol-

lowing estimate holds for ea
h m ∈ Z≥0

‖Gm(z, u)−Gm(z, v)‖Lγ′(I,Lρ′(Cn)) ≤ C‖u− v‖Lγ(I,Lρ(Cn))×
(

‖u‖
Lγ(I,W̃ 1,ρ

L (Cn)) + ‖v‖
Lγ(I,W̃ 1,ρ

L (Cn))

)
2

n−1
(6.0.44)

where the 
onstant C is independent of u, v,m, t0 and I.

Proof. Sin
e

1
ρ′

= 1
ρ
+ n−1

n2 = 1
ρ
+ 2

n−1
· n−1
nγ

, by using Hölder's inequality in the

z-variable in (6.0.41) and by embedding theorem (Lemma 4.0.14), we get

‖Gm(·, u(·, t))−Gm(·, v(·, t))‖Lρ′(Cn)

≤ C‖(u− v)(·, t)‖Lρ(Cn)

(

‖u(·, t)‖
L

nγ
n−1 (Cn)

+ ‖v(·, t)‖
L

nγ
n−1 (Cn)

)
γ
n

≤ C‖(u− v)(·, t)‖Lρ(Cn)

(

‖u(·, t)‖W̃ 1,ρ
L (Cn) + ‖v(·, t)‖W̃ 1,ρ

L (Cn)

)
γ
n

(6.0.45)

for ea
h t ∈ I. Sin
e

1
γ′

= 1
γ
+ 1

n
, by taking Lγ

′
norm in the t-variable in this

inequality and then by using the Höder's inequality we get the desired estimate

(6.0.44).

Lemma 6.0.35 Let I be a bounded interval and u ∈ L∞(I, W̃ 1,2
L (Cn)) ∩ Lγ

(I, W̃ 1,ρ
L (Cn)), then following estimate holds

‖Gm(z, u(z, t))−G(z, u(z, t))‖
Lγ′(I,Lρ′(Cn))

≤ C|I|n−1
2n m− 1

n(n−1) ‖u‖
n2−n+1
n(n−1)

L∞(I,W̃ 1,2
L (Cn))

‖u‖
2

n−1

Lγ(I,W̃ 1,ρ
L (Cn))

for all m ≥ 1, where the 
onstant C is independent of m, u and I.

Proof. Note that

Gm(z, u(z, t))−G(z, u(z, t)) = (uχ|u(z,t)|>m(z, t))(ψm(z, |u|)− ψ(z, |u|)).

Therefore |Gm(z, u(z, t))−G(z, u(z, t))| ≤ C|uχ|u(z,t)|>m(z, t)| |u|
2

n−1
. By Taking
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Lρ
′
-norm in the z-variable, we have

‖Gm(z, u)−G(z, u)‖Lρ′(Cn) ≤ C‖uχ|u|>m(·, t)‖Lρ(Cn)‖u(·, t)‖
γ
n

L
nγ
n−1 (Cn)

≤ C‖uχ|u|>m(·, t)‖Lρ(Cn)‖u(·, t)‖
γ
n

W̃
1,ρ
L

. (6.0.46)

Now we observe the following

‖u χ|u|>m(·, t)‖ρLρ(Cn) =

∫

Cn

|u|ρχ|u|>m(z, t)dz

≤
∫

Cn

m
− ρ

n(n−1) |u| 2n
n−1dz

≤ m− ρ
n(n−1) ‖u‖

(n2−n+1)ρ
n(n−1)

L
2n
n−1 (Cn)

≤ m− ρ
n(n−1) ‖u‖

(n2−n+1)ρ
n(n−1)

W̃
1,2
L (Cn)

‖u χ|u|>m(·, t)‖Lρ ≤ m− 1
n(n−1) ‖u‖

(n2−n+1)
n(n−1)

W̃
1,2
L (Cn)

.

By taking Lγ-norm in the t-variable we have

‖uχ|u|>m‖Lγ(I,Lρ(Cn)) ≤ |I|n−1
2n m

− 1
n(n−1) ‖u‖

(n2−n+1)
n(n−1)

L∞(I,W̃ 1,2
L (Cn))

. (6.0.47)

By taking Lγ
′
-norm in the t-variable in the estimate (6.0.46) and using Hölder's

inequality, we get

‖Gm(z, u)−G(z, u)‖
Lγ′(I,Lρ′) ≤ C‖uχ|u|>m‖Lγ(I,Lρ)‖u‖

2
n−1

Lγ(I,W̃ 1,ρ
L )

.

By using inequality (6.0.47) in the above inequality, we get the desired estimate.

Lemma 6.0.36 Let u ∈ Lγ
(

I, W̃ 1,ρ
L (Cn)

)

for some interval I. Then for ea
h

m ∈ Z≥0, Gm(z, u(z, t)) ∈ Lγ
′
(

I, W̃ 1,ρ′

L (Cn)
)

and the following estimates hold:

‖SGm(z, u(z, t))‖Lγ′(I,Lρ′(Cn)) ≤ C‖u‖
n+1
n−1

Lγ(I,W̃ 1,ρ
L (Cn))

(6.0.48)

‖Gm(z, u(z, t))‖Lγ′
(

I,W̃
1,ρ′

L (Cn)
) ≤ C‖u‖

n+1
n−1

Lγ(I,W̃ 1,ρ
L (Cn))

(6.0.49)

where S = Id, Zj, Zj, 1 ≤ j ≤ n and the 
onstant C is independent of u and I.
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Proof. Sin
e ψm, ∂xjψm, ∂yjψm, |u|∂|u|ψm satisfy estimate (6.0.42), we have

|SGm(z, u)| ≤ C|u| 2
n−1 (|u|+ |Zju|+ |Z̄ju|)

where S = Id, Zj, Zj (1 ≤ j ≤ n), see estimate 6.0.9. Now estimate (6.0.48)

follows from Hölder's inequality and embedding theorem (Lemma 4.0.14) as we

used in the proof of Lemma 6.0.34. Estimate (6.0.49) is a 
onsequen
e of estimate

(6.0.48).

Proposition 6.0.37 Let I be a bounded interval su
h that t0 ∈ I.

(i) If u, v ∈ Lγ
(

I, W̃ 1,ρ
L (Cn)

)

, then Hmu − Hmv ∈ Lq1 (I, Lp1(Cn)) for every

admissible pair (q1, p1), for every m ≥ 0 and the following estimate holds:

‖Hmu−Hmv‖Lq1 (I,Lp1(Cn)) (6.0.50)

≤ C‖u− v‖Lγ(I,Lρ(Cn))

(

‖u‖
Lγ(I,W̃ 1,ρ

L (Cn)) + ‖v‖
Lγ(I,W̃ 1,ρ

L (Cn))

)
2

n−1

.

(ii) If u ∈ L∞
(

I, W̃ 1,2
L (Cn)

)

∩Lγ
(

I, W̃ 1,ρ
L (Cn)

)

, then Hmu−Hu ∈ Lq1 (I, Lp1(Cn))

for every admissible pair (q1, p1), for every m ≥ 1 and the following estimate

holds

‖Hmu−Hu‖Lq1(I,Lp1(Cn)) (6.0.51)

≤ C|I|n−1
2n m

− 1
n(n−1) ‖u‖

n2−n+1
n(n−1)

L∞(I,W̃ 1,2
L (Cn))

‖u‖
2

n−1

Lγ(I,W̃ 1,ρ
L (Cn))

where the 
onstant C is independent of u, v,m and t0.

Proof. Estimate (6.0.50) follows from Stri
hartz estimates (Theorem 3.0.7) and

Lemma 6.0.34, whereas estimate (6.0.51) follows from Theorem 3.0.7 and Lemma

6.0.35.

Now we state the following Proposition, whi
h is useful in proving 
ontinuous

dependen
e. Proof is similar to Proposition 5.0.24. But for 
ompleteness, we give

the proof.

Proposition 6.0.38 Let Φ be a 
ontinuous 
omplex valued fun
tion on C su
h

that |Φ(w)| ≤ C|w| 2
n−1

with n ≥ 2. Let {um} be a bounded sequen
e in Lγ
(

I, W̃ 1,ρ
L

)
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for some interval I. If um → u in Lγ(I, Lρ(Cn)) then u ∈ Lγ
(

I, W̃ 1,ρ
L (Cn)

)

and

[Φ(um)− Φ(u)]Su→ 0 in Lγ
′ (

I, Lρ
′
(Cn)

)

, for S = Id, Zj, Zj ; 1 ≤ j ≤ n.

Proof. First we will prove u ∈ Lγ
(

I, W̃ 1,ρ
L (Cn)

)

. By a duality argument (also

see Lemma A.2.1 in [12℄), we have

‖Su‖Lγ(I,Lρ(Cn)) = sup
φ∈C∞

c (Cn×I),‖φ‖
Lγ′ (I,Lρ′ (Cn))

≤1

∣

∣

∣
〈Su, φ〉z,t

∣

∣

∣

= sup
φ

∣

∣

∣
〈u, S∗φ〉z,t

∣

∣

∣

= sup
φ

lim
m→∞

∣

∣

∣
〈um, S∗φ〉z,t

∣

∣

∣

= sup
φ

lim
m→∞

∣

∣

∣
〈Sum, φ〉z,t

∣

∣

∣

≤ sup
φ

lim inf
m→∞

‖Sum‖Lγ(I,Lρ(Cn))‖φ‖Lγ′ (I,Lρ′(Cn))

≤ lim inf
m→∞

‖Sum‖Lγ(I,Lρ(Cn)) (6.0.52)

for S = Zj, Z̄j; 1 ≤ j ≤ n. Therefore

‖u‖
Lγ(I,W̃ 1,ρ

L (Cn)) ≤ lim inf
m→∞

‖um‖Lγ(I,W̃ 1,ρ
L (Cn)) <∞.

Sin
e um → u in Lγ(I, Lρ(Cn)), we 
an extra
t a subsequen
e still denoted by uk

su
h that

‖uk+1 − uk‖Lγ(I,Lρ(Cn)) ≤
1

2k

for all k ≥ 1 and uk(z, t) → u(z, t) a.e. Hen
e by 
ontinuity of Φ,

[Φ(uk)− Φ(u)]Su→ 0 for a.e (z, t) ∈ C
n × I. (6.0.53)

We establish the norm 
onvergen
e by appealing to a dominated 
onvergen
e

argument in z and t variables su

essively.

Consider the fun
tion H(z, t) =
∑∞

k=1 |uk+1(z, t) − uk(z, t)|. Clearly H ∈
Lγ(I, Lρ(Cn)). Also for l > k,

|(ul − uk)(z, t)| ≤ |ul − ul−1|+ · · ·+ |uk+1 − uk| ≤ H(z, t),

hen
e |uk − u| ≤ H. This leads to the pointwise almost everywhere inequality
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|uk(z, t)| ≤ |u(z, t)|+H(z, t) = v(z, t).

Hen
e

| [Φ(uk)− Φ(u)]Su(z, t)|ρ′ ≤ C[v
2

n−1 + |u| 2
n−1 ]ρ

′ |Su(z, t)|ρ′. (6.0.54)

Sin
e u, v ∈ Lγ(I, Lρ(Cn)), using Hölder's inequality with

1
ρ′

= 1
ρ
+ n−1

n2 = 1
ρ
+

2
n−1

· n−1
nγ

and Lemma 4.0.14, we get

∫

Cn

[v
2

n−1 + |u| 2
n−1 ]ρ

′ |Su(z, t)|ρ′dz (6.0.55)

≤ (‖v(·, t)‖
L

nγ
n−1 (Cn)

+ ‖u(·, t)‖
L

nγ
n−1 (Cn)

)
ρ′γ
n ‖Su(·, t)‖ρ′

Lρ(Cn).

≤ (‖v(·, t)‖W̃ 1,ρ
L (Cn) + ‖u(·, t)‖W̃ 1,ρ

L (Cn))
ρ′γ
n ‖Su(·, t)‖ρ′

Lρ(Cn) <∞

for a.e. t ∈ I. Thus in view of (6.0.54), (6.0.55) and using dominated 
onvergen
e

theorem in the z-variable, we see that

‖ [Φ(uk)− Φ(u)]Su(·, t)‖Lp′(Cn) → 0 (6.0.56)

as k → ∞, for a.e. t.

Again, in view of (6.0.54) and (6.0.55), we get

‖[Φ(uk)− Φ(u)]Su(·, t)‖Lρ′(Cn)

≤ C(‖v(·, t)‖W̃ 1,ρ
L (Cn) + ‖u(·, t)‖W̃ 1,ρ

L (Cn))
γ
n‖Su(·, t)‖Lρ(Cn).

Sin
e

1
γ′

= 1
γ
+ 1

n
, an appli
ation of the Hölder's inequality in the t-variable shows

that

‖[Φ(uk)− Φ(u)]Su‖Lγ′(I,Lρ′(Cn))

≤ C(‖v‖
Lγ(I,W̃ 1,ρ

L (Cn)) + ‖u‖
Lγ(I,W̃ 1,ρ

L (Cn)))
γ
n‖Su‖Lγ(I,Lρ(Cn)).

Hen
e a further appli
ation of dominated 
onvergen
e theorem with (6.0.56)

shows that ‖ (Φ(uk)− Φ(u))Su‖Lγ′(I,Lρ′ ) → 0, as k → ∞.

Thus we have shown that [Φ(umk
)− Φ(u)]Su → 0 in Lγ

′
(I, Lρ

′
(Cn)) for
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some subsequen
e umk
whenever um → u in Lγ(I, Lρ(Cn)). But the above ar-

guments are also valid if we had started with any subsequen
e of um. It fol-

lows that any subsequen
e of [Φ(um)− Φ(u)]Su has a subsequen
e that 
on-

verges to 0 in Lγ
′
(I, Lρ

′
(Cn)). From this we 
on
lude that the original sequen
e

[Φ(um)− Φ(u)]Su 
onverges to zero in Lγ
′
(I, Lρ

′
(Cn)), hen
e the proposition.

Lo
al well posedness for 
riti
al 
ase α = 2
n−1

Now we state the main theorem of this se
tion.

Theorem 6.0.39 Let f ∈ W̃ 1,2
L (Cn) and G be as in (1.0.15) and (1.0.16) with

α = 2
n−1

and n ≥ 2. Initial value problem (1.0.13), (1.0.14) has maximal solution

u ∈ C((T∗, T
∗), W̃ 1,2

L )∩Lq1
lo


(

(T∗, T
∗), W̃ 1,p1

L (Cn)
)

, where t0 ∈ (T∗, T
∗) and (q1, p1)

be an arbitrary admissible pair. Moreover the following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), W̃ 1,2

L (Cn))∩Lγ((T∗, T ∗), W̃ 1,ρ
L ).

(ii)(Blowup alternative) If T ∗ < ∞ then ‖u‖
Lq̃((t0,T ∗),W̃ 1,p̃

L ) = ∞ for every

admissible pair (q̃, p̃) with 2 < p̃ and

1
q̃
= n

(

1
2
− 1

p̃

)

. Similar 
on
lusion

holds if T∗ > −∞.

(iii)(Stability) If fk → f in W̃ 1,2
L (Cn) then ‖u− ũk‖Lq1(I,W̃ 1,p1

L (Cn)) → 0 as k →
∞ for every admissible pair (q1, p1) and every interval I with I ⊂ (T∗, T

∗),

where u, ũk are solutions 
orresponding to f, fk respe
tively.

Proof. Lo
al existen
e: Sin
e Gm(z, ·) : C → C is globally Lips
hitz for ea
h

m ≥ 1, see estimate (6.0.40), from Theorem 6.0.31, it follows that there exists a

unique global solution um ∈ C(R, W̃ 1,2
L (Cn)) of the initial value problem

i∂tv(z, t)− Lv(z, t) = Gm(z, v), z ∈ C
n, t ∈ R (6.0.57)

v(·, t0) = f. (6.0.58)

Furthermore Hmum = um (see 6.0.43) and um ∈ Lq1
lo


(R, W̃ 1,p1
L (Cn)) for every

admissible pair (q1, p1). We dedu
e from Lemma 6.0.36 and Stri
hartz estimates
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(Theorem 3.0.7) that

‖um‖Lq1((t0,t0+T ),W̃ 1,p1
L (Cn))

≤ ‖e−i(t−t0)Lf‖
Lq1((t0,t0+T ),W̃ 1,p1

L (Cn)) + C‖um‖
n+1
n−1

Lγ((t0,t0+T ),W̃ 1,ρ
L (Cn))

.
(6.0.59)

Let l ≥ m, we see that

um − ul = (Hm(um)−Hm(ul)) + (Hm(ul)−H(ul)) + (H(ul)−Hl(ul)).

From Proposition 6.0.37, we dedu
e that

‖um − ul‖Lq1 ((t0,t0+T ),Lp1 (Cn)) ≤ C
(

‖um‖Lγ((t0,t0+T ),W̃
1,ρ
L ) + ‖ul‖Lγ((t0,t0+T ),W̃

1,ρ
L )

)
2

n−1 ×
(

‖um − ul‖Lγ((t0,t0+T ),Lρ) + T
n−1
2n m− 1

n(n−1) ‖ul‖
n2−n+1
n(n−1)

L∞((t0,t0+T ),W̃
1,2
L )

)

. (6.0.60)

We 
hoose T ≤ π, therefore we 
an take 
onstant C to be independent of T .

Let C̃ be larger than the 
onstant C that appear in (6.0.59), (6.0.60), (6.0.50),

(6.0.51) and in Stri
hartz estimates (Theorem 3.0.7) for the parti
ular 
hoi
e of

the admissible pairs (q, p) = (γ, ρ) and (q1, p1) = (γ, ρ). Fixed δ small enough so

that

C̃(4δ)
2

n−1 <
1

2
. (6.0.61)

We 
laim that if 0 < T ≤ π is su
h that

‖e−i(t−t0)Lf‖
Lγ((t0,t0+T ),W̃ 1,ρ

L (Cn)) ≤ δ (6.0.62)

then

sup
m≥1

‖um‖Lγ((t0,t0+T ),W̃ 1,ρ
L (Cn)) ≤ 2δ (6.0.63)

sup
m≥1

‖um‖Lq1((t0,t0+T ),W̃ 1,p1
L (Cn)) < ∞ (6.0.64)

for every admissible pair (q1, p1). Let θm(t) = ‖um‖Lγ((t0,t0+t),W̃ 1,ρ
L (Cn)). From

(6.0.59), we see that

θm(t) ≤ δ + C̃θm(t)
n+1
n−1 .
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If θm(t) = 2δ for some t ∈ (t0, t0 + T ], then

2δ ≤ δ + C̃(2δ)
n+1
n−1 < 2δ

whi
h is a 
ontradi
tion. Sin
e θm is a 
ontinuous fun
tion with θm(t0) = 0, we


on
lude that θm(t) < 2δ for all t ∈ (t0, t0 + T ], whi
h proves (6.0.63). From

(6.0.59), we see that

sup
m

‖um‖Lq1((t0,t0+T ),W̃ 1,p1
L (Cn)) ≤ ‖e−i(t−t0)Lf‖

Lq1((t0,t0+T ),W̃ 1,p1
L (Cn)) + C(2δ)

n+1
n−1

≤ C(q1, p1, n, δ, f) <∞.

This proves (6.0.64). By taking (q1, p1) = (γ, ρ) in (6.0.60), we see that

‖um − ul‖Lγ((t0,t0+T ),Lρ(Cn)) ≤ 1

2

(

‖um − ul‖Lγ((t0,t0+T ),Lρ(Cn)) + CT
n−1
2n m− 1

n(n−1)

)

≤ 2CT
n−1
2n m− 1

n(n−1) → 0 as m→ ∞.

This shows that um is a Cau
hy sequen
e in Lγ ((t0, t0 + T ), Lρ(Cn)) and from

(6.0.60) it is also Cau
hy sequen
e in Lq1 ((t0, t0 + T ), Lp1(Cn)) for every admis-

sible pair (q1, p1). Let u be its limit, then um → u in Lq1 ((t0, t0 + T ), Lp1(Cn))

for every admissible pair (q1, p1). By a duality argument (see (6.0.52)) and from

estimates (6.0.63), (6.0.64), we have

‖u‖
Lγ((t0,t0+T ),W̃ 1,ρ

L (Cn)) ≤ 2δ (6.0.65)

‖u‖
Lq1((t0,t0+T ),W̃ 1,p1

L (Cn)) < ∞. (6.0.66)

From Lemma 6.0.36, Gm(z, u(z, t)) ∈ Lγ
′
(

(t0, t0 + T ), W̃ 1,ρ′

L (Cn)
)

for ea
h m ≥
0. From Stri
hartz estimates (Theorem 3.0.7) and (6.0.43) with m = 0, Hu ∈
Lq1((t0, t0 + T ), W̃ 1,p1

L (Cn)) for every admissible pair (q1, p1).

From Lemma 6.0.34 ‖Gm(z, um)−Gm(z, u)‖Lγ′((t0,t0+T ),Lρ′(Cn)) → 0 and from

Lemma 6.0.35, ‖Gm(z, u)−G(z, u)‖Lγ′((t0,t0+T ),Lρ′(Cn)) → 0 asm→ ∞. Therefore

‖Gm(z, um)−G(z, u)‖Lγ′ ((t0,t0+T ),Lρ′ ) → 0 as m→ ∞.
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Sin
e um = Hmum for ea
h m ≥ 1, from Stri
hartz estimates we dedu
e that

‖um −Hu‖Lq1((t0,t0+T ),Lp1 (Cn)) = ‖Hmum −Hu‖Lq1 ((t0,t0+T ),Lp1(Cn))

≤ C‖Gm(z, um)−G(z, u)‖Lγ′ ((t0,t0+T ),Lρ′) → 0

as m→ ∞. Therefore for t ∈ (t0, t0 + T )

u = Hu = e−i(t−t0)Lf(z)− i

∫ t

t0

e−i(t−s)LG(z, u(z, s))ds. (6.0.67)

From Stri
hartz estimates and estimate (6.0.66), u ∈ C([t0, t0 + T ], W̃ 1,2
L ) ∩

Lq1((t0, t0 + T ), W̃ 1,p1
L (Cn)) for every admissible pair (q1, p1). In view of Lemma

5.0.21, u is also a solution to the initial value problem (1.0.13), (1.0.14). Sim-

ilarly solution exists on the interval [t0 − T ′, t0] for some T ′ > 0. Now we


ontinue this pro
ess with initial time t0 + T and t0 − T ′
. By 
ontinuing this

pro
ess, we get maximal interval (T∗, T
∗) and solution u ∈ C((T∗, T

∗), W̃ 1,2
L ) ∩

Lq1
lo


(

(T∗, T
∗), W̃ 1,p1

L (Cn)
)

for every admissible pair (q1, p1).

Blowup alternative: We prove blowup alternative by method of 
ontradi
tion.

Let us assume that T ∗ < ∞ and u ∈ Lq̃((t0, T
∗), W̃ 1,p̃

L ) for some admissible pair

(q̃, p̃) with 2 < p̃ and

1
q̃
= n

(

1
2
− 1

p̃

)

. Sin
e 2 < p̃ < 2n
n−1

, n ≥ 2, p̃ < 2n. We


hoose admissible pair (q1, p1) as follows

1

p′1
=

1

p1
+

2

n− 1

(

1

p̃
− 1

2n

)

,
1

q′1
=

1

q1
+

2

n− 1

1

q̃
·

Let us 
hoose s and t su
h that t0 ≤ s < t < T ∗
. Sin
e |SjG(z, u(z, t))| ≤

C|u| 2
n−1 (|u|+ |Zju|+ |Zju|) for Sj = Id, Zj, Zj (1 ≤ j ≤ n) (see estimate 6.0.9),

by Lemma 4.0.14 and Hölder's inequality we see that

‖G(z, u(z, τ))‖
L
q′1 ((s,t),W̃

1,p′1
L )

≤ C‖u‖
Lq1((s,t),W̃

1,p1
L )

‖u‖
2

n−1

Lq̃((s,t),W̃ 1,p̃
L )

. (6.0.68)

Sin
e (t0, T
∗) is a bounded interval, so we 
an 
hoose 
onstant C to be indepen-

dent of s and t, where t0 ≤ s < t < T ∗
. Now we see that

u(z, τ) = e−i(τ−s)Lu(·, s)(z)− i

∫ τ

s

e−i(τ−s1)LG(z, s1, u(z, s1))ds1.
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Therefore from Stri
hartz estimates (Theorem 3.0.7) and estimate (6.0.68), we

dedu
e that

‖u‖
Lq1((s,t),W̃ 1,p1

L ) ≤ C‖u(·, s)‖W̃ 1,2
L

+ C‖u‖
Lq1((s,t),W̃ 1,p1

L )‖u‖
2

n−1

Lq̃((s,t),W̃ 1,p̃
L )

where 
onstant C is independent of s and t. Sin
e p̃ 6= 2, so q̃ < ∞ and u ∈
Lq̃
(

(t0, T
∗), W̃ 1,p̃

L (Cn)
)

, we 
hoose s su�
iently 
lose to T ∗
su
h that

C‖u‖
2

n−1

Lq̃((s,T ∗),W̃ 1,p̃
L (Cn))

≤ 1

2
.

Therefore we get

‖u‖
Lq1((s,t),W̃ 1,p1

L (Cn)) ≤ 2C‖u(·, s)‖W̃ 1,2
L
.

Sin
e RHS is independent of t ∈ (s, T ∗), we have u ∈ Lq1
(

(s, T ∗), W̃ 1,p1
L (Cn)

)

.

Therefore u ∈ Lq1
(

(t0, T
∗), W̃ 1,p1

L

)

and G(z, u(z, τ)) ∈ Lq
′
1

(

(t0, T
∗), W̃

1,p′1
L

)

fol-

lows from (6.0.68). Now from Stri
hartz estimates and (6.0.67), u ∈ Lq2((t0, T
∗),

W̃ 1,p2
L (Cn))∩C([t0, T ∗], W̃ 1,2

L (Cn)) for every admissible pair (q2, p2). Now by 
on-

sidering T ∗
as a initial time and by lo
al existen
e argument, we get 
ontradi
tion

to maximality of T ∗
.

Uniqueness: Suppose u, v ∈ C((T∗, T
∗), W̃ 1,2

L ) ∩ Lγ
lo


((T∗, T
∗), W̃ 1,ρ

L ) are two

solutions of the equations (1.0.13) and (1.0.14). Then in view of Lemma 5.0.21

u and v will satisfy integral equation (1.0.20). From estimate 6.0.49 with m =

0, G(z, u) ∈ Lγ
′

lo


((T∗, T
∗), W̃ 1,ρ′

L ). Sin
e u(·, t0) = v(·, t0) = f , from estimate

(6.0.50) with m = 0 and (q1, p1) = (γ, ρ), there exists su�
iently small T su
h

that u(·, t) = v(·, t) for t ∈ [t0 − T, t0 + T ]. Let t̃ ∈ (T∗, T
∗) be su
h that

u(·, t̃) = v(·, t̃). For τ ∈ (t̃, T ∗), we have

u(z, τ) = e−i(τ−t̃)Lu(z, t̃)− i

∫ τ

t̃

e−i(τ−s)LG(z, u(z, s))ds,

v(z, τ) = e−i(τ−t̃)Lv(z, t̃)− i

∫ τ

t̃

e−i(τ−s)LG(z, v(z, s))ds.

By Stri
hartz estimate (3.0.2) and estimate (6.0.50) with m = 0 and (q1, p1) =

(γ, ρ), we have
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‖u− v‖
Lγ((t̃,τ),Lρ(Cn)) =

∥

∥

∥

∥

∫ τ

t̃

e−i(t−s)L (G(u)−G(v)) (z, s)ds

∥

∥

∥

∥

Lγ((t̃,τ),Lρ(Cn))

≤ C‖u− v‖
Lγ((t̃,τ),Lρ)

(

‖u‖
Lγ((t̃,τ),W̃ 1,ρ

L ) + ‖v‖
Lγ((t̃,τ),W̃ 1,ρ

L )

)
2

n−1

for all τ ∈ (t̃, T ∗). Choose τ ∈ (t̃, T ∗) su�
iently 
lose to t̃ su
h that

C
(

‖u‖
Lγ((t̃,τ),W̃ 1,ρ

L ) + ‖v‖
Lγ((t̃,τ),W̃ 1,ρ

L )

)
2

n−1 ≤ 1

2
.

Therefore ‖u − v‖
Lγ((t̃,τ),Lrho(Cn)) ≤ 1

2
‖u − v‖

Lγ((t̃,τ),Lρ(Cn)). Hen
e u = v on the

larger interval [t̃, τ ].

Now let θ =sup{T̃ : t0 < T̃ < T ∗ : ‖u − v‖Lγ([t0,T̃ ],Lρ) = 0}. If θ < T ∗
,

then for su�
iently small ǫ > 0, 
hoose t̃ = θ − ǫ, τ = θ + ǫ and by the above

observation, ‖u−v‖Lγ((θ−ǫ,θ+ǫ),Lρ) = 0, whi
h 
ontradi
ts the de�nition of θ. Thus

we 
on
lude that θ = T ∗
, proving the uniqueness on [t0, T

∗). Similarly one 
an

show uniqueness on (T∗, t0].

Stability: We prove stability in the following two steps.

Step 1: Let fk → f in W̃ 1,2
L (Cn). Then for ea
h T > 0,

‖e−i(t−t0)L(f − fk)‖Lγ(IT ,W̃ 1,ρ
L (Cn)) ≤ C‖f − fk‖W̃ 1,2

L (Cn) → 0 as k → ∞

where IT = (t0 − T, t0 + T ). Therefore for given δ > 0 in (6.0.61), 
hoose T (δ)

su�
iently small su
h that

‖e−i(t−t0)Lf‖Lγ(IT ,W̃
1,ρ
L ) ≤

δ

2
(6.0.69)

and 
hoose k su�
iently large so that

‖e−i(t−t0)L(f − fk)‖Lγ(IT ,W̃ 1,ρ
L (Cn)) ≤ C‖f − fk‖W̃ 1,2

L (Cn) ≤
δ

2
.

Therefore 
hoose k0(T ) so large su
h that

‖e−i(t−t0)Lfk‖Lγ(IT ,W̃ 1,ρ
L (Cn)) ≤ δ (6.0.70)

for k ≥ k0(T ).
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Let u and ũk are solutions 
orresponding to initial values f and fk at time

t0 respe
tively for k ≥ 1. In view of estimates (6.0.65) and (6.0.66), u, ũk will

satisfy following estimates

‖u‖
Lγ(IT ,W̃ 1,ρ

L (Cn)) ≤ 2δ (6.0.71)

‖u‖
Lq1((t0,t0+T ),W̃ 1,p1

L (Cn)) < ∞ (6.0.72)

sup
k≥k0(T )

‖ũk‖Lγ(IT ,W̃ 1,ρ
L (Cn)) ≤ 2δ (6.0.73)

sup
k≥k0(T )

‖ũk‖Lq1(IT ,W̃ 1,p1
L (Cn)) < ∞ (6.0.74)

where (q1, p1) be any admissible pair. Now from Stri
hartz estimates and Lemma

6.0.34,

‖u− ũk‖Lγ(IT ,Lρ) = ‖Hu−Hũk‖Lγ(IT ,Lρ)

≤ C‖f − fk‖W̃ 1,2
L (Cn) + C‖G(z, u)−G(z, ũk)‖Lγ′ (IT ,Lρ′)

≤ C‖f − fk‖W̃ 1,2
L (Cn) + C‖u− ũk‖Lγ(IT ,Lρ(Cn)) ×

(

‖u‖
Lγ(IT ,W̃ 1,ρ

L (Cn)) + ‖ũk‖Lγ(IT ,W̃ 1,ρ
L (Cn))

)
2

n−1
.

From (6.0.61) and (6.0.65),

C
(

‖u‖
Lγ(IT ,W̃ 1,ρ

L (Cn)) + ‖ũk‖Lγ(IT ,W̃ 1,ρ
L (Cn))

)
2

n−1 ≤ 1

2
.

Therefore ‖u − ũk‖Lγ(IT ,Lρ) ≤ 2C‖f − fk‖W̃ 1,2
L (Cn) → 0 as k → ∞. Sin
e {ũk}

is a bounded sequen
e in Lγ
(

IT , W̃
1,ρ
L (Cn)

)

, therefore from Lemma 6.0.34 with

m = 0, ‖G(z, u(z, t)) − G(z, ũk(z, t))‖Lγ′(IT ,Lρ′(Cn)) → 0 as j → ∞. Sin
e Hu =

u,Hũk = ũk, therefore from Theorem 3.0.7

‖u− ũk‖Lq1 (IT ,Lp1) ≤ C‖f − fk‖L2 + C‖G(z, u)−G(z, ũk)‖Lγ′(IT ,Lρ′(Cn)) → 0

as k → ∞ for every admissible pair (q1, p1). Note that (∂xj −
iyj
2
) = 1

2
(Zj − Zj)

and (∂yj +
ixj
2
) = i

2
(Zj+Zj). For S = (∂xj −

iyj
2
), (∂yj +

ixj
2
) and using the notation

ψ(k) = ψ (z, |ũk(z, t)|) (see equation (5.0.31)), we have
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S(G(k) −G) = ψ(k)S(ũk − u) + (ψ(k) − ψ)Su+ (∂jψ(k))(ũk − u)

+ (∂jψ(k) − ∂jψ)u+ (∂2n+1ψ(k))ũkℜ(
ũk
|ũk|

S(ũk − u))

+ (∂2n+1ψ(k))ũkℜ(
ũk
|ũk|

Su)− (∂2n+1ψ)uℜ(
u

|u|Su)

(6.0.75)

where ∂j = ∂xj for S = (∂xj −
iyj
2
) and ∂j = ∂yj for S = (∂yj +

ixj
2
), 1 ≤ j ≤ n.

Using the assumption (1.0.16) on ψ, Lemma 4.0.14, and by similar 
omputations

as used in Lemma 6.0.34 and Proposition 6.0.38, we have

‖ψ(k)S(ũk − u)‖
Lγ′(IT ,Lρ′) ≤ C‖S(ũk − u)‖Lγ(IT ,Lρ)‖ũk‖

2
n−1

Lγ(IT ,W̃ 1,ρ
L )

‖(∂jψ(k))(ũk − u)‖
Lγ′(IT ,Lρ′) ≤ C‖ũk − u‖Lγ(IT ,Lρ)‖ũk‖

2
n−1

Lγ(IT ,W̃ 1,ρ
L )

‖(∂2n+1ψ(k))ũkℜ(
ũk
|ũk|

S(ũk − u))‖
Lγ′(IT ,Lρ′)

≤ C‖S(ũk − u)‖Lγ(IT ,Lρ)‖ũk‖
2

n−1

Lγ(IT ,W̃ 1,ρ
L )

.

Sin
e ‖ũk − u‖Lγ(IT ,Lρ(Cn)) → 0 and {ũk} is a bounded sequen
e in Lγ(IT , W̃
1,ρ
L ),

therefore by se
ond inequality in the above estimates, (∂jψ(k))(ũk − u) → 0 as

k → ∞ in Lγ
′ (

IT , L
ρ′(Cn)

)

. Sin
e G is C1
, so in view of the 
ondition (1.0.16)

on ψ and Proposition 6.0.38, the sequen
es (ψ(k) − ψ)Su, , (∂jψ(k) − ∂jψ)u and

(∂2n+1ψ(k))ũkℜ( ũk|ũk|
Su) − (∂2n+1ψ)uℜ( u|u|Su) 
onverges to zero in Lγ

′
(Iτ , L

ρ′) as

k → ∞. Using these observations in (6.0.75), we get

‖S(G(k) −G)‖Lγ′ (IT ,Lρ′) ≤C‖ũk‖
2

n−1

Lγ(IT ,W̃ 1,ρ
L )

‖S(ũk − u)‖Lγ(IT ,Lρ(Cn)) + ak

where S = (∂xj −
iyj
2
), (∂yj +

ixj
2
) (1 ≤ j ≤ n) and ak → 0 as k → ∞. Sin
e

(∂xj −
iyj
2
) = 1

2
(Zj − Zj) and (∂yj +

ixj
2
) = i

2
(Zj + Zj), therefore we have

‖G(k) −G‖
Lγ′ (IT ,W̃

1,ρ′

L )
≤ C‖ũk‖

2
n−1

Lγ(IT ,W̃ 1,ρ
L )

‖ũk − u‖
Lγ(IT ,W̃

1,ρ
L ) + ak.(6.0.76)
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Now from Stri
hartz estimates and above estimate, we have

‖ũk − u‖Lγ(IT ,W̃
1,ρ
L ) ≤ C‖fk − f‖W̃ 1,2

L
+ C‖ũk‖

2
n−1

Lγ(IT ,W̃ 1,ρ
L )

‖ũk − u‖Lγ(IT ,W̃
1,ρ
L ) + ak.

(6.0.77)

Now we 
hoose δ > 0 su�
iently small su
h that it satis�es 
ondition (6.0.61)

and

C(2δ)
2

n−1 ≤ 1

2

where 
onstant C is appearing in the inequality (6.0.77). Note that T depends

on δ through (6.0.69). Therefore from estimates (6.0.73) and (6.0.77), we have

‖ũk − u‖Lq(IT ,W̃
1,p
L ) ≤ 2C‖fk − f‖W̃ 1,2

L
+ 2ak → 0

as k → ∞. Now from estimates (6.0.76) and (6.0.73)

‖G(k) −G‖
Lγ′ (IT ,W̃

1,ρ′

L )
→ 0

as k → ∞. From Stri
hartz estimates,

‖ũk − u‖
Lq1 (IT ,W̃

1,p1
L )

≤ C‖fk − f‖W̃ 1,2
L

+ C‖G(k) −G‖
Lγ′ (IT ,W̃

1,ρ′

L )
→ 0

as k → ∞ for every admissible pair (q1, p1).

Step 2: Let (T∗,k, T
∗
k ) be the maximal interval for the solutions ũk and I ⊂

(T∗, T
∗) be a 
ompa
t interval. As dis
ussed in Theorem 5.0.26, in order to prove

stability for interval I, it is enough to prove that ũk is de�ned on I, for all but

�nitely many k. In fa
t, we prove I ⊂ (T∗,k, T
∗
k ) for all but �nitely many k.

Without loss of generality, we assume that t0 ∈ I = [a, b], and give a proof by

the method of 
ontradi
tion. Suppose there exist in�nitely many T ∗
km

≤ b and let

c = lim inf T ∗
km
. Then for ǫ > 0, [t0, c− ǫ] ⊂ [t0, T

∗
km

) for all km su�
iently large

and ũkm are de�ned on [t0, c− ǫ].

By 
ompa
tness and step 1, the stability result proved above 
an be extended

to the interval [t0, c− ǫ].
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For given δ > 0, 
hoose ǫ > 0 su�
iently small su
h that

‖e−i(t−(c−ǫ))Lu(·, c− ǫ)− e−i(t−(c−ǫ))Lu(·, c)‖
Lγ((c−ǫ,c+ǫ),W̃ 1,ρ

L )

≤ C‖u(·, c− ǫ)− u(·, c)‖W̃ 1,2
L

≤ δ

6
‖e−i(t−(c−ǫ))Lu(·, c)− e−i(t−c)Lu(·, c)‖

Lγ((c−ǫ,c+ǫ),W̃ 1,ρ
L )

≤ C‖e−iǫtLu(·, c)− u(·, c)‖W̃ 1,2
L

≤ δ

6

‖e−i(t−c)Lu(·, c)‖
Lγ((c−ǫ,c+ǫ),W̃ 1,ρ

L ) ≤
δ

6
.

Now we 
hoose k0(ǫ) su
h that following estimate holds for all k ≥ k0

‖e−i(t−(c−ǫ))ũkm(·, c− ǫ)− e−i(t−(c−ǫ))u(·, c− ǫ)‖
Lγ((c−ǫ,c+ǫ),W̃ 1,ρ

L )

≤ C‖ũkm(·, c− ǫ)− u(·, c− ǫ)‖
W̃

1,2
L

≤ δ
2
.

Therefore ‖e−i(t−(c−ǫ))ũkm(·, c − ǫ)‖
Lγ((c−ǫ,c+ǫ),W̃ 1,ρ

L ) ≤ δ for all km ≥ k0. Now by

lo
al existen
e argument (see (6.0.62)), ũkm is de�ned on (t0, c+ ǫ) and therefore

T ∗
km

≥ c+ ǫ for all km ≥ k0, hen
e 
ontradi
ts the fa
t that lim inf T ∗
km

= c.

Similarly we 
an show that [a, t0] ⊂ (T∗,k, t0] for all but �nitely many k whi
h


ompletes the proof of stability.



Chapter 7

Global well posedness in L2(Cn)

In this 
hapter we will prove global well posedness in L2(Cn) for the sub
riti
al


ase 0 ≤ α < 2
n
. However in the 
riti
al 
ase α = 2

n
, we 
an prove the global well

posedness in L2(Cn) only for su�
iently small intial value, see Remark 7.0.42.

We follow method of Cazenave and Weissler [7℄. Theorem 7.0.40 and Theorem

7.0.41 are main results of this 
hapter.

Sub
riti
al Case 0 ≤ α < 2
n

Theorem 7.0.40 Let u(·, t0) = f ∈ L2(Cn) and G be as in (1.0.15) and (1.0.16)

with 0 ≤ α < 2
n
. Initial value problem (1.0.13), (1.0.14) has unique maximal

solution u ∈ C((T∗, T
∗), L2(Cn)) ∩ Lq2

lo


((T∗, T
∗), Lp2(Cn)), where t0 ∈ (T∗, T

∗)

and (q2, p2) be an arbitrary admissible pair. Fix p = 2+α. Moreover the following

properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), L2(Cn)) ∩ Lq2

lo


((T∗, T
∗), Lp)

where q2 ∈ [q1, q],
1
q
= n

(

1
2
− 1

p

)

and q1 =
2p(p−1)

2p+2n−np
≥ 1.

(ii)(Blowup alternative) If T ∗ <∞ (respe
tively, T∗ > −∞), then

‖u‖Lq2((t0,T ∗),Lp(Cn)) = ∞ (respe
tively, ‖u‖Lq2((T∗,t0),Lp(Cn)) = ∞), where

q2 ∈ [q1, q].

(iii)(Stability) If fj → f in L2(Cn), then uj → u in Lq1 (I, Lp1(Cn)) for every

interval I with I ⊂ (T∗, T
∗) and for every admissible pair (q1, p1), where uj

and u are solutions 
orresponding to fj and f respe
tively.

83
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(iv)(Conservation of 
harge and global existen
e) If ψ is real valued, then

we have 
onservation of 
harge ‖u(·, t)‖L2(Cn) = ‖f‖L2(Cn) for every t ∈
(T∗, T

∗). Moreover solution is global, i.e., T∗ = −∞ and T ∗ = ∞.

Proof. The key point is that we prove lo
al existen
e without using embedding

theorems (Lemma 4.0.9, Lemma 4.0.14). For given positive real numbers T and

M with T ≤ π, 
onsider the metri
 spa
e

ET,M = {u ∈ Lq(I, Lp(Cn)) : ‖u‖Lq(I,Lp(Cn)) ≤M}

with metri
 d(u, v) = ‖u − v‖Lq(I,Lp(Cn)), where I = (t0 − T, t0 + T ). We show

existen
e of solution to the initail value problem (1.0.13), (1.0.14) by showing

that operator H given by (1.0.21) is 
ontra
tion on 
omplete metri
 sp
e ET,M

for suitable T and M .

Let q1 = 2p(p−1)
2p+2n−np

· Sin
e 0 ≤ α < 2
n
, p = 2 + α, therefore 1 ≤ q1 < q and

1
q′

= α
q1

+ 1
q1
. Let u, v ∈ Lq(I, Lp(Cn)). By taking Lq

′
norm with respe
t to the

t-variable in the inequality (5.0.4) and using the Hölder's inequality, we get

‖G(z, u)−G(z, v)‖Lq′(I,Lp′) ≤ C(‖u‖αLq1(I,Lp) + ‖v‖αLq1(I,Lp))

×‖u− v‖Lq1 (I,Lp) (7.0.1)

≤ CT
q−q1
qq1

(1+α)
(‖u‖αLq(I,Lp) + ‖v‖αLq(I,Lp))

×‖u− v‖Lq(I,Lp). (7.0.2)

From Stri
hartz estimates (Theorem 3.0.7), above estimate and for u ∈ ET,M , we

observe that

‖Hu‖Lq(I,Lp) ≤ C‖f‖L2(Cn) + C‖G(z, u(z, t))‖Lq′ (I,Lp′)

≤ C‖f‖L2(Cn) + CT
q−q1
qq1

(1+α)‖u‖αLq(I,Lp)‖u‖Lq(I,Lp(Cn))

≤ C‖f‖L2(Cn) + CT
q−q1
qq1

(1+α)
M1+α. (7.0.3)

From Theorem 3.0.7, estimate (7.0.2) and for u, v ∈ E, we observe that

‖Hu−Hv‖Lq(I,Lp(Cn)) ≤ C‖G(z, u)−G(z, v)‖Lq′ (I,Lp′)

≤ CT
q−q1
qq1

(1+α)
Mα‖u− v‖Lq(I,Lp(Cn)). (7.0.4)
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Choose

M =

{

1 if f = 0

2C‖f‖L2(Cn) if f 6= 0
(7.0.5)

and

T =







min{π, (2C)−
qq1

(q−q1)(1+α)} if f = 0

min{π, (2C)−
qq1
q−q1 ‖f‖

−
αqq1

(q−q1)(1+α)

L2(Cn) } if f 6= 0
(7.0.6)

where C is the same 
onstant that appears in the inequalities (7.0.3), (7.0.4) and

is independent of T . For this 
hoi
e of M and T , operator H is 
onta
tion on E.

Therefore H has unique �xed point in E. From estimate 7.0.2 with v = 0,

G(z, u(z, t)) ∈ Lq
′
(I, Lp

′
(Cn)), from Stri
hartz estimates u ∈ C(I, L2(Cn)) ∩

Lq̃(I, Lp̃(Cn)) for every admissible pair (q̃, p̃). In view of Lemma 5.0.21, u is

also a solution of the initial value problem (1.0.13), (1.0.14).

Now we 
onsider inital time t0 − T and t0 + T . Then by the above argument,

solution u is de�ned on the interval [T−1, T1] for some T−1 < t0−T and T1 > t0+T .

By 
ontinuing this pro
ess, we get maximal interval (T∗, T
∗) and solution u is de-

�ned on this interval. Moreover u ∈ C((T∗, T
∗), L2(Cn)) ∩ Lq̃

lo


((T∗, T
∗), Lp̃(Cn))

for every admissible pair (q̃, p̃). In view of estimates (7.0.1), (7.0.2), (7.0.4)

uniqueness follows by similar arguments as in Theorem 5.0.26.

Stability: We prove stability in the following two steps.

Step 1: Let {fm}m≥1 be a sequen
e in L2(Cn) su
h that fm → f in L2(Cn) as

m→ ∞. Let um and u be the solutions 
orresponding to the initial data fm and

f respe
tively, at time t = t0.

Sin
e fm → f in L2(Cn), in view of (7.0.6) we 
an 
hoose τ < T su�
iently

small so that um are de�ned on Iτ = (t0 − τ, t0 + τ) for su�
iently large m. Also

note that

um − u = e−i(t−t0)L(fm − f)− i

∫ t

t0

e−i(t−s)L(G(z, um(z, s))−G(z, u(z, s)))ds.

By Theorem 3.0.7 and estimate (7.0.2),

‖um − u‖Lq(Iτ ,Lp) ≤ C‖fm − f‖L2 + Cτ
q−q1
qq1

(1+α)
(Mα +Mα

m)‖um − u‖Lq(I,Lp)
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where Mm is given by (7.0.5) with f repla
ed by fm. Sin
e fm → f in L2(Cn),

{Mm} is a bounded sequen
e. We 
hoose τ su�
iently small so that

Cτ
q−q1
qq1

(1+α)
(Mα +Mα

m) ≤
1

2

for m ≥ 1. Thus ‖um − u‖Lq(Iτ ,Lp) ≤ 2C‖fm − f‖L2 → 0 as m → ∞. From

estimate (7.0.2) ‖G(z, um) − G(z, u)‖Lq′ (Iτ ,Lp′) → 0 as m → ∞. From Theorem

3.0.7

‖um − u‖Lq1(Iτ ,Lp1 ) ≤ C‖fm − f‖L2 + C‖G(z, um)−G(z, u)‖Lq′(Iτ ,Lp′) → 0

as m→ ∞ for every admissible pair (q1, p1).

Step 2: Let (T∗,m, T
∗
m) be the maximal interval for the solutions um and I ⊂

(T∗, T
∗) be a 
ompa
t interval. As dis
ussed in Theorem 5.0.26, in order to prove

stability for interval I, it is enough to prove that um is de�ned on I, for all but

�nitely many m. In fa
t, we prove I ⊂ (T∗,m, T
∗
m) for all but �nitely many m.

Without loss of generality, we assume that t0 ∈ I = [a, b], and give a proof by

the method of 
ontradi
tion. Suppose there exist in�nitely many T ∗
mj

≤ b and let

c = lim inf T ∗
mj
. Then for ǫ > 0, [t0, c− ǫ] ⊂ [t0, T

∗
mj
) for all mj su�
iently large

and umj
are de�ned on [t0, c− ǫ].

By 
ompa
tness, the stability result proved in step 1 
an be extended to the

interval [t0, c− ǫ]. Hen
e

‖umj
(·, c− ǫ)‖L2 → ‖u(·, c− ǫ)‖L2

as j → ∞.

Also by 
ontinuity we have

‖u(·, c− ǫ)‖L2 → ‖u(·, c)‖L2
as ǫ→ 0.

Thus, for any δ > 0, we have

‖umj
(·, c− ǫ)‖

−
αqq1

(q−q1)(1+α))

L2 > δ whenever ‖u(·, c)‖
−

αqq1
(q−q1)(1+α)

L2 > δ, (7.0.7)

for su�
iently small ǫ and for all j ≥ j0(ǫ). Therefore by applying the lo
al

existen
e argument (see equation 7.0.6), with c − ǫ as the initial time, without

loss of generality we 
an assume that umj
extends to [t0, c − ǫ + C1‖umj

(·, c −
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ǫ)‖
−

αqq1
(q−q1)(1+α)

L2 ] for large j where C1 = (2C)
− qq′

q−q′
. Now 
hoosing ǫ < C1

2
δ, we have

by (7.0.7)

c− ǫ+ C1‖umj
(·, c− ǫ)‖

−
αqq1

(q−q1)(1+α)

L2 > c+
C1

2
δ for all j ≥ j0(ǫ).

It follows that T ∗
mj

≥ c+ C1

2
δ, hen
e 
ontradi
ts the fa
t that lim inf T ∗

mj
= c.

Similarly we 
an show that [a, t0] ⊂ (T∗,m, t0] for all but �nitely many m whi
h


ompletes the proof of stability.

Blowup alternative: We prove blowup alternative by method of 
ontradi
tion.

Suppose T ∗ < ∞ and u ∈ Lq̃((t0, T
∗), Lp(Cn)) for some q̃ ∈ [q1, q]. Then by

estimates (7.0.1), G(z, u) ∈ Lq
′
((t0, T

∗), Lp
′
(Cn)) and by Stri
hartz estimates

u ∈ C([t0, T
∗], L2(Cn)) ∩ Lq2 ((t0, T ∗), Lp2(Cn)) for every admissible pair (q2, p2).

By taking T ∗
as initial time and by lo
al existen
e argument, solution exists on

the interval [t0, T
∗+ ǫ) for some ǫ > 0, whi
h is a 
ontradi
tion for maximality of

T ∗
.

Conservation of 
harge and global existen
e: Let {fm} be a sequen
e in

W̃ 1,2
L (Cn) 
onverging to f in L2(Cn). By stability um → u in L∞(I, L2(Cn))

for every interval I with I ⊂ (T∗, T
∗). By 
onservation of 
harge (see Theorem

6.0.33), ‖um(·, t)‖L2(Cn) = ‖fm‖L2(Cn) for ea
h t ∈ I. Therefore by taking limit

m→ ∞, we get ‖u(·, t)‖L2(Cn) = ‖f‖L2(Cn) for ea
h t ∈ I. Hen
e ‖u(·, t)‖L2(Cn) =

‖f‖L2(Cn) for ea
h t ∈ (T∗, T
∗). From 
onservation of 
harge and lo
al existen
e

argument ((7.0.5), (7.0.6)), we will get global solution, i.e., −T∗ = T ∗ = ∞.

Criti
al 
ase α = 2
n

Theorem 7.0.41 Let u(·, t0) = f ∈ L2(Cn), α = 2
n
and G be as in (1.0.15) and

(1.0.16). Initial value problem (1.0.13), (1.0.14) has unique maximal solution

u ∈ C((T∗, T
∗), L2(Cn))∩Lq1

lo


((T∗, T
∗), Lp1(Cn)), where t0 ∈ (T∗, T

∗) and (q1, p1)

be an arbitrary admissible pair. Fix p = 2+α. Moreover the following properties

hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), L2(Cn))∩Lp((T∗, T ∗), Lp(Cn)).

(ii)(Blowup alternative) If T ∗ <∞ (respe
tively, T∗ > −∞), then

‖u‖Lp((t0,T ∗),Lp(Cn)) = ∞ (respe
tively, ‖u‖Lp((T∗,t0),Lp(Cn)) = ∞).
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(iii)(Stability) If fj → f in L2(Cn), then uj → u in Lq1 (I, Lp1(Cn)) for every

interval I with I ⊂ (T∗, T
∗) and for every admissible pair (q1, p1), where uj

and u are solutions 
orresponding to fj and f respe
tively.

(iv)(Conservation of 
harge) If ψ : Rn × Rn × [0,∞) → R is real valued,

then we have 
onservation of 
harge ‖u(·, t)‖L2(Cn) = ‖f‖L2(Cn) for every

t ∈ (T∗, T
∗).

Proof. First we prove lo
al existen
e. For given positive real numbers T and δ

with T ≤ π, 
onsider the metri
 spa
e

ET,δ = {u ∈ Lp(I, Lp(Cn)) : ‖u‖Lp(I,Lp(Cn)) ≤ δ}

with metri
 d(u, v) = ‖u−v‖Lp(I,Lp(Cn)), where I = (t0−T, t0+T ) and p = 2(n+1)
n

.

Sin
e

1
p
= n(1

2
− 1

p
), (p, p) be an admissible pair. We show existen
e of solution

to the initail value problem (1.0.13), (1.0.14) by showing that operator H given

by (1.0.21) is 
ontra
tion on 
omplete metri
 sp
e ET,δ for suitable T and δ.

Let u, v ∈ Lp(I, Lp(Cn)). By taking Lp
′
norm with respe
t to the t-variable

in the inequality (5.0.4) and using the Hölder's inequality, we get

‖G(z, u)−G(z, v)‖Lp′(I,Lp′ ) ≤ C(‖u‖αLp(I,Lp) + ‖v‖αLp(I,Lp))

×‖u− v‖Lp(I,Lp). (7.0.8)

From Stri
hartz estimates (Theorem 3.0.7), above estimate and for u, v ∈ ET,δ,

we observe that

‖Hu‖Lp(I,Lp(Cn)) ≤ ‖e−i(t−t0)Lf‖Lp(I,Lp) + C‖u‖αLp(I,Lp)‖u‖Lp(I,Lp)

≤ ‖e−i(t−t0)Lf‖Lp(I,Lp) + Cδ1+α (7.0.9)

‖Hu−Hv‖Lp(I,Lp(Cn)) ≤ C(‖u‖αLp(I,Lp) + ‖v‖αLp(I,Lp))‖u− v‖Lp(I,Lp(Cn))

≤ Cδα‖u− v‖Lp(I,Lp(Cn)). (7.0.10)

Choose

δ = (4C)−
1
α

(7.0.11)
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and T ≤ π su�
iently small su
h that

‖e−i(t−t0)Lf‖Lp(I,Lp(Cn)) ≤
δ

2
(7.0.12)

where C is the same 
onstant that appears in the inequalities (7.0.8), (7.0.9),

(7.0.10) and is independent of T . For this 
hoi
e of δ and T , operator H is a 
on-

ta
tion on ET,δ. Therefore H has unique �xed point in ET,δ. Sin
e G(z, u(z, t)) ∈
Lp

′
(I, Lp

′
(Cn)), from Stri
hartz estimates u ∈ C(I, L2(Cn)) ∩ Lq̃(I, Lp̃(Cn)) for

every admissible pair (q̃, p̃). In view of Lemma 5.0.21, u is also a solution of the

initial value problem (1.0.13), (1.0.14).

By su

esive appli
ation of lo
al existen
e argument, solution 
an be extended

to maximal interval (T∗, T
∗) and u ∈ C((T∗, T

∗), L2(Cn))∩Lq̃
lo


((T∗, T
∗), Lp̃(Cn))

for every admissible pair (q̃, p̃). In view of (7.0.8), (7.0.10) and (7.0.11), unique-

ness follows by similar arguments as in Theorem 5.0.26.

Stability: We prove stability in the following two steps.

Step 1: Let {fm}m≥1 be a sequen
e in L2(Cn) su
h that fm → f in L2(Cn) as

m→ ∞. Let um and u be the solutions 
orresponding to the initial data fm and

f respe
tively, at time t = t0. Sin
e fm → f in L2(Cn), by Theorem 3.0.7,

‖e−i(t−t0)L(fm − f)‖Lp(I,Lp(Cn)) ≤ C‖fm − f‖L2(Cn) → 0

as m → ∞. Choose τ < T , then by (7.0.12), ‖e−i(t−t0)Lf‖Lp(Iτ ,Lp(Cn)) <
δ
2
,

‖e−i(t−t0)Lfm‖Lp(Iτ ,Lp(Cn)) <
δ
2
and um are de�ned on Iτ for su�
iently large m,

where Iτ = (t0 − τ, t0 + τ). Setting Gm(z, t) = G(z, um(z, t)), we have

(um − u)(z, t) = e−i(t−t0)L(fm − f)(z)− i

∫ t

t0

e−i(t−s)L(Gm −G)(z, s)ds(7.0.13)

for all t ∈ Iτ . From estimate (7.0.8), we see that

‖G(z, um)−G(z, u)‖Lp′(Iτ ,Lp′ (Cn)) ≤ C(‖u‖αLp(I,Lp) + ‖v‖αLp(I,Lp))‖u− v‖Lp(I,Lp)

≤ Cδα‖u− v‖Lp(I,Lp). (7.0.14)

Now from equation (7.0.13), Theorem 3.0.7 and above estimate, we have

‖um − u‖Lp(Iτ ,Lp(Cn)) ≤ C‖fm − f‖L2 + Cδα‖um − u‖Lp(Iτ ,Lp(Cn)).
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Note that 
onstant C in the se
ond term of RHS of the above inequality is same


onstant that appears in the inequality (7.0.10). Now from (7.0.11), Cδα = 1
4
and

‖um−u‖Lp(Iτ ,Lp(Cn)) ≤ 4C
3
‖fm−f‖L2 → 0 as m→ ∞. Now from estimate (7.0.14)

‖G(z, um) − G(z, u)‖Lp′(Iτ ,Lp′(Cn)) → 0 as m → ∞. Now from equation (7.0.13)

and theorem 3.0.7, um → u in Lq1(Iτ , L
p1(Cn)) for every admissible pair (q1, p1).

Sin
e um, u ∈ C(Iτ , L
2(Cn)) for every m, therefore ‖(um−u)(·, t)‖L2(Cn) ≤ ‖um−

u‖L∞(Iτ ,L2(Cn)) → 0 as m→ ∞ for ea
h t ∈ Iτ .

Step 2: Let (T∗,m, T
∗
m) be the maximal interval for the solutions um and I ⊂

(T∗, T
∗) be a 
ompa
t interval. The key idea is to extend the lo
al stability

result proved above to the interval I by 
overing it with �nitely many intervals

obtained by su

essive appli
ation of the above lo
al stability argument. This

is possible provided um is de�ned on I, for all but �nitely many m. In fa
t, we

prove I ⊂ (T∗,m, T
∗
m) for all but �nitely many m.

Without loss of generality, we assume that t0 ∈ I = [a, b], and give a proof by

the method of 
ontradi
tion. Suppose there exist in�nitely many T ∗
mj

≤ b and let

c = lim inf T ∗
mj
. Then for ǫ > 0, [t0, c− ǫ] ⊂ [t0, T

∗
mj
) for all mj su�
iently large

and umj
are de�ned on [t0, c− ǫ].

By 
ompa
tness, the stability result proved in step 1 
an be extended to the

interval [t0, c− ǫ]. Hen
e for any interval J with |J | ≤ π, we have

‖e−i(t−(c−ǫ))L(umj
− u)(z, c− ǫ)‖Lp(J(dt),Lp(Cn)) ≤ C‖(umj

− u)(·, c− ǫ)‖L2 → 0

as j → ∞. Also by 
ontinuity we have

‖e−i(t−(c−ǫ))L(u(z, c− ǫ)− u(z, c))‖Lp(J,Lp(Cn)) ≤ C‖u(·, c− ǫ)− u(·, c)‖L2 → 0

as ǫ→ 0. We also observe that

‖e−i(t−c)L(e−iǫLu(z, c)− u(z, c))‖Lp(J,Lp(Cn)) ≤ C‖e−iǫLu(·, c)− u(·, c)‖L2 → 0

as ǫ→ 0. Now 
hoose η > 0 su�
iently small su
h that

‖e−i(t−c)Lu(z, c))‖Lp(Jη ,Lp(Cn)) <
δ

2
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where Jη = (c − η, c + η) and δ is given by (7.0.11). By the above observations,

we 
an 
hoose ǫ < η

2
su�
iently small su
h that

‖e−i(t−(c−ǫ))Lumj
(z, c− ǫ)‖Lp(Jη ,Lp(Cn)) <

δ

2

for su�
iently large j ≥ j0(ǫ). Therefore by applying the lo
al existen
e argument

(see equation 7.0.12), with c− ǫ as a initial time, umj
extends to [t0, c− ǫ+ η] for

large j. It follows that T ∗
mj

≥ c − ǫ+ η ≥ c + η

2
, hen
e 
ontradi
ts the fa
t that

lim inf T ∗
mj

= c.

Similarly we 
an show that [a, t0] ⊂ (T∗,m, t0] for all but �nitely many m whi
h


ompletes the proof of stability.

Conservation of 
harge follows exa
tly as in Theorem 7.0.40.

Blowup alternative: We prove blowup alternative by method of 
ontradi
-

tion. Suppose T ∗ < ∞ and u ∈ Lp((t0, T
∗), Lp(Cn)). Then by estimates (7.0.8),

G(z, u) ∈ Lp
′
((t0, T

∗), Lp
′
(Cn)) and by Stri
hartz estimates u ∈ C([t0, T

∗], L2) ∩
Lq̃
(

(T∗, T
∗), Lp̃(Cn)

)

for every admissible pair (q̃, p̃). By taking T ∗
as a initial

time and by lo
al existen
e argument, solution exists on the interval [t0, T
∗ + ǫ)

for some ǫ > 0, whi
h is a 
ontradi
tion for maximality of T ∗
.

Remark 7.0.42 If ‖f‖L2(Cn) is su�
iently small, then ‖e−i(t−t0)Lf‖Lp(I,Lp) ≤
C‖f‖L2 < δ where p = 2(n+1)

n
. Sin
e C is independent of t0 and interval

I = (t0 − T, t0 + T ) provided 2T ≤ π, from 
onservation of 
harge and (7.0.12)

we get global solution, i.e., −T∗ = T ∗ = ∞ in Theorem 7.0.41.





Chapter 8

The 
ase of the Laguerre operator

As dis
ussed in 
hapter 1, in this 
hapter we 
onsider the Laguerre 
ase. Laguerre

operator Lβ on R+ = (0,∞) with β ∈ (−1,∞) is given by,

Lβ = − d2

dx2
− 2β + 1

x

d

dx
+
x2

4
. (8.0.1)

The one dimensional Laguerre polynomials Lβk(x) of type β > −1 are de�ned by

the generating fun
tion identity

∞
∑

k=0

Lβk(x)t
k = (1− t)−β−1e−

xt
1−t , |t| < 1.

Here x > 0 and k ∈ Z≥0. Ea
h Lβk is a polynomial of degree k and expli
itly

given by

Lβk(x) =
k
∑

j=0

Γ(k + β + 1)

Γ(k − j + 1)Γ(j + β + 1)

(−x)j
j!

·

Laguerre fun
tions ψβk (x) =
(

2−βk!
Γ(k+β+1)

)
1
2
Lβk(

x2

2
)e−

x2

4
form a 
omplete orthonor-

mal family in L2(R+, x
2β+1dx). Ea
h ψβk is an eigenfun
tion of the Laguerre

operator Lβ given by (8.0.1) with eigenvalue (2k + β + 1), i.e.,

Lβψ
β
k = (2k + β + 1)ψβk .
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If f, g ∈ L2(R+, x
2β+1dx) with Lβf, Lβg ∈ L2(R+, x

2β+1dx), then 〈Lβf, g〉x2β+1dx
=

〈f, Lβg〉x2β+1dx
where inner produ
t is with respe
t to the measure x2β+1dx. There-

fore we say that Laguerre operator Lβ is self adjoint with repe
t to the measure

x2β+1dx. Thus for every f ∈ L2(R+, x
2β+1dx) has the Laguerre expansion

f =

∞
∑

k=0

〈

f, ψβk

〉

x2β+1dx
ψβk .

We 
all

〈

f, ψβk

〉

x2β+1dx
as the k-th Fourier-Laguerre 
oe�
ient of f . Now for ea
h

multi index µ = (µ1, · · · , µn) ∈ (Z≥0)
n
and β = (β1, · · · , βn) ∈ (−1,∞)n, the n-

dimensional Laguerre fun
tions are de�ned by the tensor produ
t of 1-dimensional

Laguerre fun
tions

ψβµ(x) =
n
∏

j=1

ψβjµj (xj), x ∈ R
n
+ = (R+)

n. (8.0.2)

The n-dimensional Laguerre operator Lβ for β = (β1, · · · , βn) ∈ (−1,∞)n, is

de�ned as the sum of 1-dimensional Laguerre operators Lβj

Lβ =
n
∑

j=1

Lβj = −∆−
n
∑

j=1

(

2βj + 1

xj

∂

∂xj

)

+
|x|2
4
.

Therefore Lβψ
β
µ =

(

2|µ|+
∑n

j=1 βj + n
)

ψβµ , where |µ| =
∑n

j=1 µj. Hen
e, ψβµ

are eigenfun
tions of Lβ with eigenvalue 2|µ|+
∑n

j=1 βj + n and they also form a


omplete orthonormal system in L2(Rn
+, dν(x)) where

dν(x) = x2β1+1
1 · · ·x2βn+1

n dx1 · · ·dxn.

Also note that Laguerre operator Lβ is self adjoint with repe
t to measure dν.

Thus for every f ∈ L2(Rn
+, dν(x)) has the Laguerre expansion

f =
∑

µ

〈

f, ψβµ
〉

ν
ψβµ =

∞
∑

k=0

Pkf,

where inner produ
t is with respe
t to measure ν and Pk denotes the Laguerre

proje
tion operator 
orresponding to the eigenvalue 2k +
∑n

j=1 βj + n given by
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Pkf =
∑

|µ|=k

〈

f, ψβµ
〉

ν
ψβµ .

The material dis
ussed here is based on the books by Thangavelu [33℄ and Lebedev

[18℄.

Remark 8.0.43 In view of estimate (1) in Watson [38℄ (see se
tion 3.31, page

49), in this 
hapter we only 
onsider β ∈
(

−1
2
,∞
)n
.

Remark 8.0.44 Note that L∞(Rn
+, dx) = L∞(Rn

+, dν) with equality of norms

‖f‖L∞(Rn
+,dx)

= ‖f‖L∞(Rn
+,dν)

, where dx denote the usual Lebesgue measure on

Rn
+.

S
hrödinger Propagator e−itLβ

If f ∈ C2 ∩ L2(Rn
+, dν) su
h that Lβf ∈ L2(Rn

+, dν) then we observe that

〈

Lβf, ψ
β
µ

〉

ν
=
〈

f, Lβψ
β
µ

〉

ν
=

(

2|µ|+ n +
n
∑

j=1

βj

)

〈

f, ψβµ
〉

ν
.

Therefore for f ∈ L2(Rn
+, dν), we de�ne e−itLβf as L2(Rn

+, dν) fun
tion by the

following

e−itLβf =
∞
∑

k=0

e−it(2k+n+
∑n

j=1 βj)
∑

|µ|=k

〈

f, ψβµ
〉

ν
ψβµ .

It is easy to see that e−itLβ
is unitary operator with adjoint eitLβ

on L2(Rn
+, dν).

Remark 8.0.45 e−itLβf is periodi
 in t if and only if

∑n
j=1 βj is rational whereas

eit
∑

βje−itLβf and |e−itLβf | are always periodi
 in t.

Now we state the following Lemma. This Lemma is proved in Sohani [28℄.

Proof relies on regularization argument introdu
ed in [20℄ (also see [22℄, [23℄) and

Mehler's formula for Laguerre fun
tions (see, (4.17.6) in [18℄), so we skip the

proof.
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Lemma 8.0.46 Let r > 0, β ∈
(

−1
2
,∞
)n
. Then e−(r+it)Lβ

is an integral operator

on L2(Rn
+, dν). Moreover

e−(r+it)Lβf(x) =

∫

Rn
+

f(y)K(x, y, r, t, β)dν(y)

K(x, y, r, t, β) = e−nre−it(n+
∑

βj)
(

1− e−2(r+it)
)−n

e
−

(

|x|2+|y|2

4

)(

1+e−2(r+it)

1−e−2(r+it)

)

×
n
∏

j=1

(

(xjyj)
−βj(e−2it)

−βj
2 Iβj

(

xjyje
−r(e−2it)

1
2

1− e−2(r+it)

))

where Iβj is the modi�ed Bessel fun
tion of �rst kind and | arg(e−2it)| < π.

Lemma 8.0.47 Let K(x, y, r, t, β) be the kernel as in Lemma 8.0.46. Then we

have uniform estimate for K in r ∈ (0, 1].

|K(x, y, r, t, β)| ≤ C

| sin t|n+
∑n

j=1 βj
(8.0.3)

where C only depends on n and β.

Proof. Let arg(e−2it) = −2t̃ with |t̃| < π
2
, then e−2it = e−2it̃

, (e−2it)
1
2 = e−it̃ and

cos 2t = cos 2t̃. Now we observe the following

∣

∣1− e−2(r+it)
∣

∣ =
(

1 + e−4r − 2e−2r cos 2t
)

1
2

xjyje
−(r+it̃)

1− e−2(r+it)
= xjyje

−r

(

(1− e−2r) cos t̃− i(1 + e−2r) sin t̃

1 + e−4r − 2e−2r cos 2t

)

∣

∣

∣

∣

∣

Re

(

xjyje
−(r+it̃)

1− e−2(r+it)

)∣

∣

∣

∣

∣

≤ xjyje
−r (1− e−2r)

1 + e−4r − 2e−2r cos 2t

1 + e−2(r+it)

1− e−2(r+it)
=

(1− e−4r)− 2ie−2r sin 2t

1 + e−4r − 2e−2r cos 2t

Now we observe that

|Iδ(z)| ≤
|z|δ

2δΓ(δ + 1)
exp(|Re(z)|), for δ > −1

2
(8.0.4)

whi
h follows from inequality (1) in se
tion 3.31, page 49 in Watson [38℄ and

equalities (5.7.4) and (5.7.6) in Lebedev [18℄. We also observe that
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(1 + e−2r)
(

|x|2 + |y|2
)

− 4e−r
∑

xjyj

= (1− e−r)2 (|x|2 + |y|2) + 2e−r
∑n

j=1(xj − yj)
2 ≥ (1− e−r)2 (|x|2 + |y|2) .

Using the above observations, we see that

|K(x, y, r, t, β)|

≤ Ce−r(n+
∑

βj)
(

1 + e−4r − 2e−2r cos 2t
)−

(n+
∑

βj )

2 e
− (1−e−2r)(1−e−r)2(|x|2+|y|2)

4(1+e−4r−2e−2r cos 2t)

≤ C
(

1 + e−4r − 2e−2r cos 2t
)−

(n+
∑

βj )

2 . (8.0.5)

Now for r ∈ (0, 1] we have

1 + e−4r − 2e−2r cos 2t = (1− e−2r)2 + 4e−2r sin2 t ≥ 4e−2 sin2 t.

Therefore using this estimate in (8.0.5) we get the desired estimate.

Lemma 8.0.48 Let t /∈ π
2
Z, 2 ≤ p ≤ ∞ and p′ = p

p−1
. Then

‖e−itLβf‖Lp(dν) ≤ C| sin t|−(1− 2
p)(n+

∑

βj)‖f‖Lp′(dν)

where 
onstant C depends only on n, p, β.

Proof. For f ∈ L2(Rn
+, dν) we have

‖e−itLβf‖2L2(dν) =

∞
∑

k=0

|e−it(2k+n+
∑

βj)|2.‖Pkf‖2L2(dν) = ‖f‖2L2(dν). (8.0.6)

For f ∈ L1 ∩ L2(Rn
+, dν) we observe from Lemma 8.0.47 and Remark 8.0.44 that

‖e−(r+it)Lβf‖L∞(Rn
+,dν)

≤ C| sin t|−(n+
∑

βj)‖e−(r+it)Lβf‖L1(Rn
+,dν)

.

Sin
e e−(rm+it)Lβf → e−itLβf in L2(dν) as rm → 0, e−(rmj
+it)Lβf(x) → e−itLβf(x)

a.e. x for some subsequen
e {rmj
}. Also observe that

∫

Rn
+

f(y)K(x, y, rmj
, t, β)dν(y) →

∫

Rn
+

f(y)K(x, y, 0, t, β)dν(y)



98

for a.e. x ∈ Rn
+. Therefore for f ∈ L1 ∩ L2(Rn

+, dν) we get

e−itLβf(x) =

∫

Rn
+

f(y)K(x, y, 0, t, β)dν(y). (8.0.7)

From Remark 8.0.44 and Lemma 8.0.47 we observe that

‖e−itLβf‖L∞(Rn
+,dν)

≤ C| sin t|−(n+
∑

βj)‖f‖L1(Rn
+,dν)

. (8.0.8)

This inequality 
an be proved for f ∈ L1(Rn
+, dν) by density argument. Us-

ing Riesz-Thorin interpolation theorem (see Folland [11℄) and in view of (8.0.6),

(8.0.8) Lemma follows.

Stri
hartz estimates

De�nition 8.0.49 Let n ≥ 1 and β ∈ (−1
2
,∞)n. We say that a pair (q, p) is

admissible in the Laguerre 
ase if

1 ≤ q ≤ 2, 0 ≤
(

n+

n
∑

j=0

βj

)

(

1− 2

p

)

< 1 or

2 < q ≤ ∞ and 0 ≤
(

n+
n
∑

j=0

βj

)

(

1− 2

p

)

≤ 2

q
< 1.

Remark 8.0.50 (i) The admissibility 
ondition on (q, p) implies that

0 ≤
(

n+
n
∑

j=0

βj

)

(

1− 2

p

)

< 1.

(ii) If 1 ≤ q ≤ 2, n = 1, 1 + β < 1, then p ∈ [2,∞].

(iii) If 1 ≤ q ≤ 2, n = 1, 1 + β = 1, then p ∈ [2,∞).

(iv) If 1 ≤ q ≤ 2,
(

n+
∑n

j=0 βj

)

> 1, then p ∈
[

2,
2(n+

∑n
j=0 βj)

(n+
∑n

j=0 βj)−1

)

.

Admissible 
ondition is basi
ally 
oming from the Lemma 3.0.4 and Remark

8.0.51.
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Remark 8.0.51 Let p ∈ [2,∞], a, b ∈ R. | sin t|−(1− 2
p)(n+

∑

βj) ∈ weak L
q
2 (a −

b, b − a) with q ∈ (2,∞) if 1 < q

2
≤ 1

(n+
∑n

j=0 βj)(1− 2
p
)
or

(

n +
∑n

j=0 βj

)

(1 − 2
p
) ≤

2
q
< 1. Also | sin t|−(1− 2

p)(n+
∑

βj) ∈ L1(a− b, b− a) if
(

n +
∑n

j=0 βj

)(

1− 2
p

)

< 1.

If we 
onsider p = 2 then | sin t|−(1− 2
p)(n+

∑

βj) = 1 ∈ L∞(a− b, b− a).

Now we prove a Lemma whi
h is helpful in proving Stri
hartz estimates.

Lemma 8.0.52 Let [a, b] be a bounded interval 
ontaining t0. Let hj(x, t) ∈
Lq

′
j((a, b), L2(Rn

+, dν(x))), where q
′
j is 
onjugate exponent of qj with 1 ≤ qj ≤ ∞

for j = 1, 2. Then the fun
tions

e−i(t−t0)Lβh1(x, t)e
−i(s−t0)Lβh2(x, s), h1(x, t)e

i(t−s)Lβh2(x, s)

belong to L1(Rn
+ × (a, b)× (a, b), dν(x)× dt× ds).

Proof. For simpli
ity we are 
onsidering h1 = h2 = h and q1 = q2 = q. Sin
e h ∈
Lq

′
((a, b), L2(dν)), h(·, t) ∈ L2(Rn

+, dν) for a.e. t ∈ (a, b). Therefore e−i(t−t0)Lβh

(·, t) ∈ L2(Rn
+, dν) for a.e. t ∈ (a, b). Then by Hölder's inequality e−i(t−t0)Lβh

(·, t)e−i(s−t0)Lβh(·, s) ∈ L1(Rn
+, dν) for a.e. t, s ∈ (a, b) and

∫

Rn
+

∣

∣e−i(t−t0)Lβh(x, t)e−i(s−t0)Lβh(x, s)
∣

∣ dν(x) ≤ ‖h(·, t)‖L2(dν)‖h(·, s)‖L2(dν).

Integrating with respe
t to t and s over (a, b)×(a, b) and using Hölder's inequality

in the t-variable, we get

∫ b

a

∫ b

a

∫

Rn
+

|e−i(t−t0)Lβh(x, t)e−i(s−t0)Lβh(x, s)|dν(x)dtds

≤
(
∫ b

a

‖h(·, t)‖L2(dν)dt

)2

≤ (b− a)
2
q ‖h‖2

Lq′((a,b),L2(dν))
.

Similarly h1(x, t)e
i(t−s)Lβh2(x, s) ∈ L1(Rn

+× (a, b)× (a, b), dν(x)× dt× ds) 
an be

proved.

The main Stri
hartz type estimates in this 
hapter is 
ompiled in following

theorem whi
h is proved in [28℄. Proof follows by similar arguments as in Theorem

3.0.7.
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Theorem 8.0.53 (Stri
hartz Estimates) Let (q, p), (q1, p1) be two admissible

pairs a

ording to de�nition 8.0.49. Let (a, b) be a �nite interval with t0 ∈ [a, b],

f ∈ L2(Rn
+, dν) and g ∈ Lq

′
1((a, b), Lp

′
1(Rn

+, dν)) where q′1 and p′1 are 
onjugate

exponents of q1 and p1 respe
tively. Then the following estimates hold over R
n
+ ×

(a, b):

‖e−itLβf‖Lq((a,b),Lp(dν)) ≤ C‖f‖L2(dν) (8.0.9)

∥

∥

∥

∥

∫ t

t0

e−i(t−s)Lβg(x, s)ds

∥

∥

∥

∥

Lq((a,b),Lp(dν))

≤ C‖g‖
L
q′
1((a,b),Lp′

1 (dν)
(8.0.10)

where the 
onstant C depends on admissible pairs but independent of t0. Moreover

e−itLβf ∈ C(R, L2(dν)) and
∫ t

t0
e−i(t−s)Lβg(x, s)ds ∈ C([a, b], L2(dν)).

Remark 8.0.54 Note that e−itLβf(x) is 2π periodi
 in t, hen
e we 
an not expe
t

the above Stri
hartz inequalities for unbounded intervals ex
ept when q = ∞.

Also Sin
e | sin t| is π periodi
, in view of Remark 8.0.51 and Remark 3.0.8,


onstant C in the inequalities (8.0.9) and (8.0.10) 
an be 
hosen independent of

interval (a, b) provided b− a ≤ π.

Lo
al well posedness in L2(Rn
+, dν)

We 
onsider the initial value problem for the nonlinear S
hrödinger equation for

the Laguerre operator Lβ :

i∂tu(x, t)− Lβu(x, t) = G(x, u), x ∈ R
n
+, t ∈ R (8.0.11)

u(x, t0) = f(x) (8.0.12)

where G is a fun
tion on Rn
+ × C satisfying similar 
onditions as in (1.0.15),

(1.0.16). Here we 
onsider the nonlinearity G of the form

G(x, w) = ψ(x, |w|)w, (x, w) ∈ R
n
+ × C, (8.0.13)

where ψ ∈ C(Rn
+ × [0,∞)) ∩ C1(Rn

+ × (0,∞)) satisfy the following inequality

|F (x, η)| ≤ C|η|α (8.0.14)
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with F = ψ, ∂xjψ (1 ≤ j ≤ n) and η∂ηψ(x, η), α ≥ 0 and for some 
onstant C.

By mean value theorem and estimate 8.0.14 on ψ, we have

|G(x, u)−G(x, v)| ≤ C(|u|α + |v|α)|u− v| (8.0.15)

where C is independent of u, v ∈ C and x ∈ Rn
+.

Sin
e Lβ has no de
omposition in terms of �rst di�erential operators as the

twisted Lapla
ian L has, therefore we only 
onsider the initial value in L2(Rn
+, dν).

As similar to the twisted Lapla
ian 
ase, we 
an prove the lo
al well posedness

of the initial value problem (8.0.11), (8.0.12).

Now we dis
uss the lo
al well posedness result for the above IVP for sub
riti
al


ase 0 ≤ α < 2
n+

∑n
j=1 βj

and 
riti
al 
ase α = 2
n+

∑n
j=1 βj

.

Sub
riti
al 
ase 0 ≤ α < 2

n+
∑n

j=1 βj

Now we state the following Theorem for the sub
riti
al 
ase 0 ≤ α < 2
n+

∑n
j=1 βj

.

Proof follows by similar arguments as in Theorem 7.0.40.

Theorem 8.0.55 Let u(·, t0) = f ∈ L2(Rn
+, dν), 0 ≤ α < 2

n+
∑n

j=1 βj
and G

be as in (8.0.13), (8.0.14). Initial value problem (8.0.11), (8.0.12) has unique

maximal solution u ∈ C((T∗, T
∗), L2(Rn

+, dν))∩Lq2
lo


(

(T∗, T
∗), Lp2(Rn

+, dν)
)

, where

t0 ∈ (T∗, T
∗) and (q2, p2) be an arbitrary admissible pair. Fix p = 2+α. Moreover

the following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), L2(dν))∩Lq2

lo


((T∗, T
∗), Lp(dν))

where q2 ∈ [q1, q] and

1

q
=

(

n +
n
∑

j=1

βj

)

(

1

2
− 1

p

)

, q1 =
2p(p− 1)

2p−
(

n +
∑n

j=1 βj

)

(p− 2)
≥ 1.

(ii)(Blowup alternative) If T ∗ < ∞ (respe
tively, T∗ > −∞), then u /∈
Lq2((t0, T

∗), Lp(Rn
+, dν)) (respe
tively, u /∈ Lq2((T∗, t0), L

p(Rn
+, dν))) where

q2 ∈ [q1, q].

(iii)(Stability) If fj → f in L2(Rn
+, dν), then uj → u in Lq2

(

I, Lp2(Rn
+, dν)

)

for every interval I with I ⊂ (T∗, T
∗) and for every admissible pair (q2, p2),

where uj and u are solutions 
orresponding to fj and f respe
tively.
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Criti
al 
ase α = 2

n+
∑n

j=1
βj

Now we state the following theorem for the 
riti
al 
ase α = 2
n+

∑n
j=1 βj

. Proof

follows by similar arguments as in Theorem 7.0.41.

Theorem 8.0.56 Let u(·, t0) = f ∈ L2(Rn
+, dν), α = 2

n+
∑n

j=1 βj
and G be as in

(8.0.13), (8.0.14). Initial value problem (8.0.11), (8.0.12) has unique maximal

solution u ∈ C((T∗, T
∗), L2(Rn

+, dν)) ∩ Lq1
lo


(

(T∗, T
∗), Lp1(Rn

+, dν)
)

, where t0 ∈
(T∗, T

∗) and (q1, p1) be an arbitrary admissible pair. Fix p = 2+α. Moreover the

following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), L2(dν))∩Lp((T∗, T ∗), Lp(dν)).

(ii)(Blowup alternative) If T ∗ < ∞ then ‖u‖Lp((t0,T ∗),Lp(dν)) = ∞. Similar


on
lusion holds if T∗ > −∞.

(iii)(Stability) If fj → f in L2(Cn), then uj → u in Lq1
(

I, Lp1(Rn
+, dν)

)

for

every interval I with I ⊂ (T∗, T
∗) and for every admissible pair (q1, p1),

where uj and u are solutions 
orresponding to fj and f respe
tively.
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