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Synopsis

1. Introdution

The free Shrödinger equation on Rn
is the PDE

i∂tψ(x, t) + ∆ψ(x, t) = 0, x ∈ R
n, t ∈ R

whih gives the quantum mehanial desription of the evolution of a free par-

tile in R
n
. If ψ is the solution of the Shrödinger equation, then |ψ(x, t)|2 is

interpreted as the probability density for �nding the position of the partile in

Rn
at a given time t. More generally for any self adjoint di�erential operator L

on Rn
, we onsider the initial value problem for the Shrödinger equation for the

operator L:

i∂tu(x, t)− Lu(x, t) = 0, x ∈ R
n, t ∈ R

u(x, 0) = f(x)

with L now representing the orresponding Hamiltonian of the quantum mehan-

ial system.

The signi�ane of this view point is that, most Hamiltonians of interest,

namely the perturbation of the Laplaian with a potential V (of the form L =

−∆ + V ) or the magneti Laplaian orresponding to the magneti potential

(A1(x), ..., An(x)) (of the form L =
∑n

j=1

(

i∂xj + Aj(x)
)2
) on Rn

, an be analysed

with our approah, in terms of the spetral theory of the Hamiltonian.

In this thesis we onsider the twisted Laplaian. The twisted laplaian on Cn

is given by

L =
n
∑

j=1

[

(

i∂xj +
yj
2

)2

+
(

i∂yj −
xj
2

)2
]

whih is of the form

2n
∑

j=1

[

(i∂wj
− Aj(w))

2
]

, hene represents a Shrödinger oper-

ator on Cn
for the magneti vetor potential A(z) = iz

2
, z ∈ Cn

.

The Shrödinger equation for the magneti potential with magneti �eld de-

aying at in�nity has been studied by many authors, see for instane Yajima [39℄,
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where author studies the propagator for the linear equation. In ontrast, the

nonlinear equation in our situation orresponds to a magneti equation with a

onstant magneti �eld, whih has no deay. For more details on general mag-

neti Shrödinger equation orresponding to magneti �eld without deay, see

[1℄. In [40℄ Zhang and Zheng proved the loal well posedness for the nonlinear

Shrödinger equation with twisted Laplaian and polynomial nonlinearity. The

well posedness result for nonlinear Shrödinger equation on Rn
has been stud-

ied by many others, see Ginibre Velo [12, 13, 14℄, Cazenave Weissler [6, 7, 8℄,

Tsutsumi [36℄, Kato [16℄, Begout [2℄, Sjögren Torrea [27℄, to mention only a few.

The magneti Laplaian naturally arises in the study of system in the presene

of a magneti �eld, hene there is an ative interest and extensive researh is going

on in the study with magneti Laplaian. In expliit terms the twisted Laplaian

looks like

L = −∆+
1

4
|z|2 − i

n
∑

1

(

xj
∂

∂yj
− yj

∂

∂xj

)

.

In this thesis we will study the well posedness, i.e., loal existene, uniqueness,

stability and blowup alternative of the initial value problem (see Setion 3)

i∂tu(z, t)− Lu(z, t) = G(z, u), z ∈ C
n, t ∈ R

u(z, t0) = f(z)

with f in ertain �rst order Sobolev spaes related to the twisted Laplaian and

also in L2(Cn), see Setions 4, 6, 7, 8. This work is based on [24℄ (to appear in

J. Funt. Anal. 265 (1) (2013) 1-27) and [25, 29℄.

Twisted Laplaian and Laguerre operator are losely related to eah other in

the following sense. If f ∈ S(Cn) is radial then Lf(z) = Ln−1f(r) where Ln−1

is 1-dimensional Laguerre operator of type n− 1 given by (9) and r = |z|. More

generally we an onsider n-dimensional Laguerre operator Lβ on R
n
+ = (0,∞)n

of type β ∈
(

−1
2
,∞
)n

whih has singularity at xj = 0, 1 ≤ j ≤ n. By similar

analysis we also prove the loal well posedness of the initial value problem for

Shrödinger equation with the Laguerre operator and initial value in L2(Rn
+, dν)

where dν =
(

∏n
j=1 x

2βj+1
j

)

dx, see Setion 9. This work is based on the Strihartz

estimates for the Laguerre operator proved in Sohani [28℄ (to appear in Pro.

Math. Si.).
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2. Shrödinger propagator for the twisted Lapla-

ian

Now we de�ne the Shrödinger propagator e−itL through the spetral theory of

the twisted Laplaian L. The twisted Laplaian is losely related to the sub

Laplaian on the Heisenberg group, hene the spetral theory of this operator is

losely onneted with the representation theory of the Heisenberg group. Here

we give a brief review of the spetral theory of the twisted Laplaian L. The

material disussed here is based on the books by Folland [11℄ and Thangavelu

[33, 34℄.

The eigenfuntions of the operator L are alled the speial Hermite funtions,

whih are de�ned in terms of the Fourier-Wigner transform. For a pair of fun-

tions f, g ∈ L2(Rn), the Fourier-Wigner transform is de�ned to be

V (f, g)(z) = (2π)−
n
2

∫

Rn

eix·ξf
(

ξ +
y

2

)

g
(

ξ − y

2

)

dξ,

where z = x + iy ∈ Cn. For any two multi-indies µ, ν the speial Hermite

funtions Φµ ν are given by

Φµ ν(z) = V (hµ, hν)(z)

where hµ and hν are Hermite funtions on R
n
. Reall that for eah nonnegative

integer k, the one dimensional Hermite funtions hk are de�ned by

hk(x) =
(−1)k

√

2kk!
√
π

(

dk

dxk
e−x

2

)

e
x2

2 .

Now for eah multi index ν = (ν1, · · · , νn), the n-dimensional Hermite funtions

are de�ned by the tensor produt :

hν(x) =

n
∏

i=1

hνi(xi), x = (x1, · · · , xn).

Φµν are eigenfuntions of L with eigenvalue 2|ν|+n and they also form a omplete
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orthonormal system in L2(Cn). Thus every f ∈ L2(Cn) has the expansion

f =
∑

µ, ν

〈f,Φµν〉Φµν

in terms of the eigenfuntions of L. The above expansion may be written as

f =

∞
∑

k=0

Pkf

where

Pkf =
∑

µ,|ν|=k

〈f,Φµ,ν〉Φµν

is the spetral projetion orresponding to the eigenvalue 2k + n. Now for any

f ∈ L2(Cn) suh that Lf ∈ L2(Cn), by self adjointness of L, we have Pk(Lf) =
(2k + n)Pkf . It follows that for f ∈ L2(Cn) with Lf ∈ L2(Cn)

Lf =

∞
∑

k=0

(2k + n)Pkf.

Thus, we an de�ne Shrödinger propagator e−itL as

e−itLf =

∞
∑

k=0

e−it(2k+n)Pkf.

Note that Pkf has the ompat representation

Pkf(z) = (2π)−n(f × ϕk)(z)

in terms of the Laguerre funtion ϕk(z) = Ln−1
k (1

2
|z|2)e− 1

4
|z|2

, see [33℄. Hene

formally we an express e−itL as a twisted onvolution operator:

e−itLf = f ×Kit

for f ∈ S(Cn) where Kit(z) =
(4πi)−n

(sin t)n
e

i(cot t)|z|2

4
.
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3. Nonlinear Shrödinger equation for the twisted

Laplaian

We onsider the initial value problem for the nonlinear Shrödinger equation for

the twisted Laplaian L:

i∂tu(z, t)− Lu(z, t) = G(z, u), z ∈ Cn, t ∈ R (1)

u(z, t0) = f(z). (2)

Here we onsider the nonlinearity G of the form

G(z, w) = ψ(x, y, |w|)w, (x, y, w) ∈ Rn × Rn × C, (3)

where z = x+iy ∈ Cn, w ∈ C and ψ ∈ C(Rn×Rn×[0,∞))∩C1(Rn×Rn×(0,∞))

satisfy the following inequality

|F (x, y, η)| ≤ λ|η|α (4)

for F = ψ, ∂xjψ, ∂yjψ (1 ≤ j ≤ n) and w∂wψ(x, y, w), α ≥ 0 and some onstant

λ ≥ 0. The lass of nonlinearity given by (3), (4) inludes in partiular, power

type nonlinearity of the form |u|αu.
When G ≡ 0 and f ∈ L2(Cn) the solution to this initial value problem is

given by the Shrödinger propagator

u(z, t) = e−i(t−t0)Lf(z).

When G(z, u) = g(z), the solution is given by the Duhamel formula

u(z, t) = e−i(t−t0)Lf(z)− i

∫ t

t0

e−i(t−s)Lg(z)ds.

Thus in the linear ase, the solution is determined one the funtions f and g are

known.

The basi idea in nonlinear analysis is the following heuristi reasoning based

on the above formula. If the solution u is known, then one would expet u to

satisfy the above equation with g(z) replaed by G(z, u(z, s)):

u(z, t) = e−i(t−t0)Lf(z)− i
∫ t

t0
e−i(t−s)LG(z, u(z, s))ds. (5)

Indeed one an show that u from a reasonable funtion spae satis�es a PDE
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of the form (1), (2), if and only if u satis�es an integral equation of the form (5).

This redues the existene theorem for the solution to the nonlinear Shrödinger

equation to a �xed point theorem for the operator

H(u)(z, t) = e−i(t−t0)Lf(z)− i

∫ t

t0

e−i(t−s)LG(z, u(z, s))ds

in a suitable subset of the relevant funtion spae.

4. Some auxiliary funtion spaes

The Sobolev spae W̃ 1,p(Cn)

Let Lj and Mj be the di�erential operators de�ned by

Lj =

(

∂

∂xj
+ i

yj
2

)

and Mj =

(

∂

∂yj
− i

xj
2

)

, j = 1, 2, ..., n.

We onsider the following spae

W̃ 1,p(Cn) = {f ∈ Lp(Cn) : Ljf,Mjf ∈ Lp(Cn), 1 ≤ j ≤ n}.

It is easy to see that W̃ 1,p(Cn) is a Banah spae with respet to norm ‖f‖ =

‖f‖Lp(Cn)+
∑n

j=1

(

‖Ljf‖Lp(Cn) + ‖Mjf‖Lp(Cn)

)

. The di�erential operators Lj and

Mj are the natural ones adaptable to the power type nonlinearity G(u) = |u|αu
and the generality that we onsider here. The natural hoie, namely the standard

Sobolev spae W 1,p
L (Cn) de�ned using the twisted Laplaian L (see [35℄), is not

suitable for treating suh nonlinearities.

An interesting relation between the Sobolev spae W̃ 1,p(Cn) and the ordinary

Sobolev spae W 1,p(Cn) is the following: If u ∈ W̃ 1,p(Cn), then |u| ∈ W 1,p(Cn).

We have the ontinuous inlusion

W̃ 1,p1(Cn) →֒ Lp2(Cn) for p1 ≤ p2 ≤ 2np1
2n−p1

if p1 < 2n

for p1 ≤ p2 <∞ if p1 = 2n (6)

for p1 ≤ p2 ≤ ∞ if p1 > 2n.

The di�erential operators Lj and Mj (1 ≤ j ≤ n) have the following ommuta-
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tivity properties

Lje
−itLf = e−itLLjf

Mje
−itLf = e−itLMjf

Lj

∫ t

t0

e−i(t−s)Lg(z, s)ds =

∫ t

t0

e−i(t−s)LLjg(z, s)ds

Mj

∫ t

t0

e−i(t−s)Lg(z, s)ds =

∫ t

t0

e−i(t−s)LMjg(z, s)ds

where f ∈ S ′(Cn), t, t0 ∈ R, g ∈ Lq
′

lo

(

I, W̃ 1,p′(Cn)
)

for some admissible pair

(q, p) (see De�nition 5.1) and open interval I ontaining t, t0.

The Sobolev spae W̃ 1,p
L (Cn)

The loal well posedness of the nonlinear Shrödinger equation for the twisted

Laplaian has been studied in [24℄ for initial value in W̃ 1,2(Cn). However this

approah does not onlude energy onservation.

We overome this di�ulty by introduing the Sobolev spae W̃ 1,2
L (Cn) de�ned

using the operators Zj and Zj, whih is the natural one in this ontext where

Zj =
∂

∂zj
+

1

2
z̄j , Zj = − ∂

∂z̄j
+

1

2
zj

and

∂
∂zj

,

∂
∂z̄j

denote the omplex derivatives

∂
∂xj

∓ i ∂
∂yj

respetively. Though they

do not ommute with e−itL, they have a reasonable ommutative relation, suitable

for us. The advantage of working with this Sobolev spae is that we get energy

onservation in this ase. From this we an show that there is no �nite time

blowup, hene an onlude global existene in the Sobolev spae W̃ 1,2
L (Cn).

We onsider the following Banah spae

W̃ 1,p
L (Cn) = {f ∈ Lp(Cn) : Zjf, Zjf ∈ Lp(Cn), 1 ≤ j ≤ n}

with norm ‖f‖ = ‖f‖Lp(Cn) +
∑n

j=1

(

‖Zjf‖Lp(Cn) + ‖Zjf‖Lp(Cn)

)

.

The Sobolev spae W̃ 1,p
L (Cn) will also satisfy embedding (6) as similar to

spae W̃ 1,p(Cn). Operators Zj and Z̄j (1 ≤ j ≤ n) have the following quasi
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ommutativity properties

Zje
−itLf = e−2ite−itLZjf

Zje
−itLf = e2ite−itLZjf

Zj

∫ t

t0

e−i(t−s)Lg(z, s)ds = e−2it

∫ t

t0

e−i(t−s)Le2isZjg(z, s)ds

Zj

∫ t

t0

e−i(t−s)Lg(z, s)ds = e2it
∫ t

t0

e−i(t−s)Le−2isZjg(z, s)ds

where f ∈ S ′(Cn), t, t0 ∈ R, g ∈ Lq
′

lo

(

I, W̃ 1,p′

L (Cn)
)

for some admissible pair

(q, p) and open interval I ontaining t, t0.

5. Strihartz estimates

Strihartz estimate is an important tool in the study of loal existene of solutions

to dispersive equations, in whih no derivatives are present in the nonlinearity.

Strihartz estimates were �rst proved by Strihartz [30℄ for free Shrödinger and

wave equations on Rn
. They were generalized to general admissible pairs (q, p)

by Ginibre and Velo [14, 15℄, Lindblad and Sogge [19℄. The end point estimates

were proved by Keel and Tao [17℄. End point estimates were also proved by

D'Anona, Fanelli, Vega and Visigia [9℄ for magneti Shrödinger equation with

some onditions on the potential A and V .

The Homogeneous Strihartz estimate (7) for twisted Laplaian is proved by

Ratnakumar [22℄. We begin with the following de�nition of admissible pair and

disuss the Strihartz estimates.

De�nition 5.1 Let n ≥ 1. We say that a pair (q, p) is admissible if

1 ≤ q ≤ 2, 0 ≤ n

(

1

2
− 1

p

)

<
1

2
or

2 < q ≤ ∞ and 0 ≤ n

(

1

2
− 1

p

)

≤ 1

q
.

Remark 5.2 The admissibility ondition on (q, p) implies that 2 ≤ p < 2n
n−1

.

Sine Strihartz estimates will be in terms of mixed Lp spaes, we de�ne spae
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Lq((a, b), Lp(Cn)) by the following

Lq((a, b), Lp(Cn)) = {g is measurable on C
n × (a, b) : ‖g‖Lq((a,b),Lp(Cn)) <∞}

where ‖g‖Lq((a,b),Lp(Cn)) =
(

∫ b

a
‖g‖q

Lp(Cn)dt
)

1
q

.

The main Strihartz type estimates is ompiled in the following theorem.

Theorem 5.3 (Strihartz Estimates) Let (q, p), (q1, p1) be two admissible

pairs, (a, b) be a �nite interval with t0 ∈ [a, b], f ∈ L2(Cn) and g ∈ Lq
′
1((a, b), Lp

′
1)

where q′1 and p′1 are onjugate exponents of q1 and p1 respetively. Then the

following estimates hold over Cn × (a, b):

‖e−itLf‖Lq((a,b),Lp(Cn)) ≤ C‖f‖2 (7)

∥

∥

∥

∫ t

t0
e−i(t−s)Lg(z, s)ds

∥

∥

∥

Lq((a,b),Lp(Cn))
≤ C‖g‖

L
q′
1((a,b),Lp′

1 (Cn)
(8)

where the onstant C depends on admissible pairs but independent of t0. Moreover

e−itLf ∈ C(R, L2(Cn)) and
∫ t

t0
e−i(t−s)Lg(z, s)ds ∈ C([a, b], L2).

Remark 5.4 Note that e−itLf(z) is 2π periodi in t, hene we an not expet the

above Strihartz inequalities for unbounded intervals exept when q = ∞. Sine

| sin t| is π periodi, onstant C in the inequalities (7) and (8) an be hosen

independent of interval (a, b) provided b− a ≤ π.

6. A Loal existene result

We onsider initial value f ∈ W̃ 1,2(Cn). We have proved the loal well posedness

of initial value problem (1), (2) in this ase, see [24℄. Now we state the main

theorems.

Theorem 6.1 (Loal existene) Assume that G is as in (3), (4), α ∈ [0, 2
n−1

)

and u(·, t0) = f ∈ W̃ 1,2(Cn). Then there exist a number T = T (‖u(·, t0)‖) suh

that the initial value problem (1), (2) has a unique solution u ∈ C([t0 − T, t0 +

T ]; W̃ 1,2(Cn)).

Theorem 6.2 Let u(·, t0) = f ∈ W̃ 1,2(Cn), α ∈ [0, 2
n−1

) and G be as in (3), (4).

Initial value problem (1), (2) has unique maximal solution u ∈ C((T∗, T
∗), W̃ 1,2)∩

Lq1
lo

(

(T∗, T
∗), W̃ 1,p1(Cn)

)

, where t0 ∈ (T∗, T
∗) and (q1, p1) be an arbitrary admis-

sible pair. Fix p = 2 + α. Moreover the following properties hold:
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(i)(Uniqueness) Solution is unique in C((T∗, T
∗), W̃ 1,2)∩Lq1

lo

(

(T∗, T
∗), W̃ 1,p

)

for every admissible pair (q1, p) with q1 > 2.

(ii)(Blowup alternative) If T ∗ <∞ (respetively, T∗ > −∞), then ‖u(·, t)‖W̃ 1,2

→ ∞ as t→ T ∗ (respetively, t→ T∗).

(iii)(Stability) If fj → f in W̃ 1,2(Cn), then uj → u in Lq1(I, W̃ 1,p1(Cn)) for

every admissible pair (q1, p1) and every interval I with Ī ⊂ (T∗, T
∗).

7. Global well posedness in W̃ 1,2
L (Cn)

In this Setion we onsider initial value f ∈ W̃ 1,2
L (Cn). As similar to Theorem

6.1 and Theorem 6.2, we have the following Theorem (see [25℄).

Theorem 7.1 (Loal well posedness) Let f = u(·, t0) ∈ W̃ 1,2
L (Cn), α ∈ [0, 2

n−1
)

and G be as in (3) and (4). Then the Initial value problem (1), (2) has unique

maximal solution u ∈ C((T∗, T
∗), W̃ 1,2

L (Cn)) ∩ Lq1
lo

(

(T∗, T
∗), W̃ 1,p1

L

)

, where t0 ∈
(T∗, T

∗) and (q1, p1) be an arbitrary admissible pair. Fix p = 2+α. Moreover the

following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), W̃ 1,2

L )∩Lq1
lo

(

(T∗, T
∗), W̃ 1,p

L

)

for every admissible pair (q1, p) with q1 > 2.

(ii)(Blowup alternative) If T ∗ <∞ (respetively, T∗ > −∞), then ‖u(·, t)‖
W̃

1,2
L

→
∞ as t→ T ∗

(respetively, t→ T∗).

(iii)(Stability) If fj → f in W̃ 1,2
L (Cn), then uj → u in W̃ 1,2

L (Cn) for eah

t ∈ (T∗, T
∗) and also in Lq1

(

I, W̃ 1,p1(Cn)
)

for every admissible pair (q1, p1)

and every interval I with Ī ⊂ (T∗, T
∗).

Our main result is the following theorem (see [25℄).

Theorem 7.2 (Global well posedness) Let f ∈ W̃ 1,2
L (Cn), α ∈ [0, 2

n−1
) and ψ :

Rn × Rn × [0,∞) → R be real valued as in (3) and (4). Then the solution

u ∈ C((T∗, T
∗), W̃ 1,2

L (Cn)) ∩ Lq1
lo

(

(T∗, T
∗), W̃ 1,p1

L

)

of the initial value problem

(1.0.13), (1.0.14) as obtained in Theorem 7.1 satis�es the following properties:

(i)(Conservation of harge) ‖u(·, t)‖L2(Cn) = ‖f‖L2(Cn), t ∈ (T∗, T
∗).
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(ii)(Conservation of energy) E(u(·, t)) = E(u(·, t0)), t ∈ (T∗, T
∗), where

E(u) =
1

4

n
∑

j=1

∫

Cn

(

|Zju(z, t)|2 + |Zju(z, t)|2
)

dz +

∫

Cn

G̃(z, |u|)dz.

(iii)(Global existene) If ψ ≥ 0 is nonnegative, the solution extends to the

whole of R. For nonpositive ψ, the solution is global if 0 ≤ α < 2
n
.

Critial Case α = 2
n−1

Now we onsider the ritial ase α = 2
n−1

. In subritial ase 0 ≤ α < 2
n−1

for

eah α, we have some q > 2 suh that (q, 2 + α) be an admissible pair, whih

is not the ase when α = 2
n−1

. To treat ritial ase, we adopt the trunation

argument of Cazenave and Weissler [7℄. To prove loal existene, we trunate the

nonlinearityG and obtain solution for the trunated problem. We obtain solution

u for nonlinearity G by using Strihartz estimates and by passing to the limit.

Now we state the main theorem, see [29℄.

Theorem 7.3 Let f ∈ W̃ 1,2
L (Cn) and G be as in (3) and (4) with α = 2

n−1

and n ≥ 2. Initial value problem (1), (2) has unique maximal solution u ∈
C((T∗, T

∗), W̃ 1,2
L )∩Lq1

lo

(

(T∗, T
∗), W̃ 1,p1

L (Cn)
)

, where t0 ∈ (T∗, T
∗) and (q1, p1) be

an arbitrary admissible pair. Moreover the following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), W̃ 1,2

L (Cn))∩Lγ((T∗, T ∗), W̃ 1,ρ
L )

where ρ = 2n2

n2−n+1
, γ = 2n

n−1
.

(ii)(Blowup alternative) If T ∗ < ∞ then ‖u‖
Lq((t0,T ∗),W̃ 1,p

L ) = ∞ for every

admissible pair (q, p) with 2 < p and

1
q
= n

(

1
2
− 1

p

)

. Similar onlusion

holds if T∗ > −∞.

(iii)(Stability) If fj → f in W̃ 1,2
L (Cn) then ‖u− ũj‖Lq(I,W̃ 1,p

L (Cn)) → 0 as j → ∞
for every admissible pair (q, p) and every interval I with I ⊂ (T∗, T

∗), where

u, ũj are solutions orresponding to f, fj respetively.
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8. Global well posedness in L2(Cn)

Now we disuss global well posedness in L2(Cn) for subritial ase 0 ≤ α < 2
n

(see [25℄). However in ritial ase α = 2
n
, we an prove global well posedness in

L2(Cn) only for su�iently small intial value, see Remark 8.3.

Subritial Case 0 ≤ α < 2
n

Theorem 8.1 Let u(·, t0) = f ∈ L2(Cn), 0 ≤ α < 2
n
and G be as in (3) and (4).

Initial value problem (1), (2) has unique maximal solution u ∈ C((T∗, T
∗), L2) ∩

Lq2
lo

((T∗, T
∗), Lp2(Cn)), where t0 ∈ (T∗, T

∗) and (q2, p2) be an arbitrary admissible

pair. Fix p = 2 + α. Moreover the following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), L2(Cn)) ∩ Lq2

lo

((T∗, T
∗), Lp)

where q2 ∈ [q1, q],
1
q
= n

(

1
2
− 1

p

)

and q1 =
2p(p−1)

2p+2n−np
≥ 1.

(ii)(Blowup alternative) If T ∗ < ∞ then ‖u‖Lq2((t0,T ∗),Lp(Cn) = ∞ where q2 ∈
[q1, q]. Similar onlusion holds if T∗ > −∞.

(iii)(Stability) If fj → f in L2(Cn), then uj → u in Lq2 (I, Lp2(Cn)) for every

interval I with I ⊂ (T∗, T
∗) and for every admissible pair (q2, p2), where uj

and u are solutions orresponding to fj and f respetively.

(iv)(Conservation of harge and global existene) If ψ is real valued, then

we have onservation of harge ‖u(·, t)‖L2(Cn) = ‖f‖L2(Cn) for every t ∈
(T∗, T

∗). Moreover solution is global, i.e., T∗ = −∞ and T ∗ = ∞.

Critial Case α = 2
n

Theorem 8.2 Let u(·, t0) = f ∈ L2(Cn), α = 2
n
and G be as in (3) and (4). Ini-

tial value problem (1), (2) has unique maximal solution u ∈ C((T∗, T
∗), L2(Cn))∩

Lq1
lo

((T∗, T
∗), Lp1(Cn)), where t0 ∈ (T∗, T

∗) and (q1, p1) be an arbitrary admissible

pair. Fix p = 2 + α. Moreover the following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), L2(Cn))∩Lp((T∗, T ∗), Lp(Cn)).

(ii)(Blowup alternative) If T ∗ < ∞ then ‖u‖Lp((t0,T ∗),Lp) = ∞. Similar on-

lusion holds if T∗ > −∞.
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(iii)(Stability) If fj → f in L2(Cn), then uj → u in Lq1 (I, Lp1(Cn)) for every

interval I with I ⊂ (T∗, T
∗) and for every admissible pair (q1, p1), where uj

and u are solutions orresponding to fj and f respetively.

(iv)(Conservation of harge) If ψ : Rn × Rn × [0,∞) → R is real valued,

then we have onservation of harge ‖u(·, t)‖L2(Cn) = ‖f‖L2(Cn) for every

t ∈ (T∗, T
∗).

Remark 8.3 If ‖f‖L2(Cn) is su�iently small, then

‖e−i(t−t0)Lf‖Lp(I,Lp) ≤ C‖f‖L2 < δ

where p = 2(n+1)
n

. Sine C will not depend on I and t0 as long as |I| ≤ π and from

onservation of harge, we get global solution, i.e., −T∗ = T ∗ = ∞ in Theorem

8.2.

9. The ase of the Laguerre operator

As disussed in Setion 1, here we onsider the Laguerre ase. Laguerre operator

Lβ on Rn
+ = (0,∞)n with β ∈ (−1

2
,∞)n is given by,

Lβ = −∆−
∑n

j=1

(

2βj+1

xj

∂
∂xj

)

+ |x|2

4
. (9)

For eah multi index µ ∈ Zn≥0 and β ∈ (−1
2
,∞)n, the n-dimensional Laguerre

funtions are de�ned by the tensor produt of 1-dimensional Laguerre funtions

ψβµ(x) =

n
∏

j=1

ψβjµj (xj), x ∈ R
n
+

where ψ
βj
k (y) =

(

2−βj k!
Γ(k+βj+1)

)
1
2
L
βj
k (y

2

2
)e−

y2

4
, y ∈ R+, k ≥ 0 and Laguerre polyno-

mial L
βj
k (y) is given by the following

L
βj
k (y) =

k
∑

j=0

Γ(k + βj + 1)

Γ(k − j + 1)Γ(j + βj + 1)

(−y)j
j!

·

Laguerre funtions ψβµ(x) form a omplete orthonormal family in L2(Rn
+, dν)

where dν(x) = x2β1+1
1 · · ·x2βn+1

n dx1 · · · dxn. Eah ψβµ is an eigenfuntion of the
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Laguerre operator Lβ with eigenvalue

(

2|µ|+∑n
j=1 βj + n

)

.

Shrödinger Propagator e−itLβ

If f ∈ C2 ∩ L2(Rn
+, dν) suh that Lβf ∈ L2(Rn

+, dν) then we observe that

〈

Lβf, ψ
β
µ

〉

ν
=
〈

f, Lβψ
β
µ

〉

ν
=

(

2|µ|+ n +

n
∑

j=1

βj

)

〈

f, ψβµ
〉

ν
.

Therefore for f ∈ L2(Rn
+, dν), we de�ne e−itLβf as L2(Rn

+, dν) funtion by the

following

e−itLβf =
∞
∑

k=0

e−it(2k+n+
∑n

j=1 βj)
∑

|µ|=k

〈

f, ψβµ
〉

ν
ψβµ .

It is easy to see that e−itLβ
is a unitary operator with adjoint operator eitLβ

on

L2(Rn
+, dν).

Remark 9.1 e−itLβf is periodi in t if and only if

∑n

j=1 βj is rational whereas

eit
∑

βje−itLβf and |e−itLβf | are always periodi in t with period ≤ 2π.

Strihartz estimates

De�nition 9.2 Let n ≥ 1 and β ∈ (−1
2
,∞)n. We say that a pair (q, p) is

admissible in the Laguerre ase if

1 ≤ q ≤ 2, 0 ≤
(

n+

n
∑

j=0

βj

)

(

1− 2

p

)

< 1 or

2 < q ≤ ∞ and 0 ≤
(

n+
n
∑

j=0

βj

)

(

1− 2

p

)

≤ 2

q
.

Remark 9.3
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(i) The admissibility ondition on (q, p) implies that

0 ≤
(

n+

n
∑

j=0

βj

)

(

1− 2

p

)

< 1.

(ii) If 1 ≤ q ≤ 2, n = 1, 1 + β < 1, then p ∈ [2,∞].

(iii) If 1 ≤ q ≤ 2, n = 1, 1 + β = 1, then p ∈ [2,∞).

(iv) If 1 ≤ q ≤ 2,
(

n+
∑n

j=0 βj

)

> 1, then p ∈
[

2,
2(n+

∑n
j=0 βj)

(n+
∑n

j=0 βj)−1

)

.

The main Strihartz type estimates is ompiled in following theorem (see [28℄).

Theorem 9.4 (Strihartz Estimates) Let (q, p), (q1, p1) be two admissible pairs

aording to de�nition 9.2, (a, b) be a �nite interval with t0 ∈ [a, b], f ∈ L2(Rn
+, dν)

and g ∈ Lq
′
1((a, b), Lp

′
1(dν)). Then the following estimates hold over Rn

+ × (a, b):

‖e−itLβf‖Lq((a,b),Lp(dν)) ≤ C‖f‖L2(dν) (10)

∥

∥

∥

∫ t

t0
e−i(t−s)Lβg(x, s)ds

∥

∥

∥

Lq((a,b),Lp(dν))
≤ C‖g‖

L
q′
1((a,b), Lp′

1 (dν))
(11)

where onstant C depends on admissible pairs but independent of t0. Moreover

e−itLβf ∈ C(R, L2(Rn
+, dν)) and

∫ t

t0
e−i(t−s)Lβg(x, s)ds ∈ C([a, b], L2(Rn

+, dν)).

Remark 9.5 As similar to Remark 5.4, we an not expet the above Strihartz

inequalities for unbounded intervals exept when q = ∞. Also Sine | sin t| is π
periodi, onstant C in the inequalities (10) and (11) an be hosen independent

of interval (a, b) provided b− a ≤ π.

Loal well posedness in L2(Rn
+, dν)

We onsider the initial value problem for the nonlinear Shrödinger equation for

the Laguerre operator Lβ :

i∂tu(x, t)− Lβu(x, t) = G(x, u), x ∈ Rn
+, t ∈ R (12)

u(x, t0) = f(x) (13)

where nonlinearity G is a funtion on Rn
+ × C satisfying similar onditions as in

(3), (4).
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Sine Lβ has no deomposition in terms of �rst di�erential operators as the

twisted Laplaian L has, we only onsider the initial value in L2(Rn
+, dν). As

similar to the twisted Laplaian ase, we an prove the loal well posedness of

the above IVP.

Now we disuss the loal well posedness result for the above IVP for subritial

ase 0 ≤ α < 2
n+

∑n
j=1 βj

and ritial ase α = 2
n+

∑n
j=1 βj

.

Subritial ase 0 ≤ α < 2

n+
∑n

j=1 βj

Now we state the main Theorem for the subritial ase 0 ≤ α < 2
n+

∑n
j=1 βj

.

Theorem 9.6 Let u(·, t0) = f ∈ L2(Rn
+, dν), 0 ≤ α < 2

n+
∑n

j=1 βj
and G be a fun-

tion satisfying similar onditions as in (3), (4). Initial value problem (12), (13)

has unique maximal solution u ∈ C((T∗, T
∗), L2(Rn

+, dν))∩Lq2
lo

((T∗, T
∗), Lp2(dν))

for every admissible pair (q2, p2), where t0 ∈ (T∗, T
∗). Fix p = 2 + α. Moreover

the following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), L2(dν))∩Lq2

lo

((T∗, T
∗), Lp(dν))

where q2 ∈ [q1, q] and

1

q
=

(

n +

n
∑

j=1

βj

)

(

1

2
− 1

p

)

, q1 =
2p(p− 1)

2p−
(

n +
∑n

j=1 βj

)

(p− 2)
≥ 1.

(ii)(Blowup alternative) If T ∗ < ∞ (respetively, T∗ > −∞), then u /∈
Lq2((t0, T

∗), Lp(Rn
+, dν)) (respetively, u /∈ Lq2((T∗, t0), L

p(Rn
+, dν))) where

q2 ∈ [q1, q].

(iii)(Stability) If fj → f in L2(Rn
+, dν), then uj → u in Lq2

(

I, Lp2(Rn
+, dν)

)

for every interval I with I ⊂ (T∗, T
∗) and for every admissible pair (q2, p2),

where uj and u are solutions orresponding to fj and f respetively.

Critial ase α = 2

n+
∑n

j=1
βj

Now we state the main theorem for the ritial ase α = 2
n+

∑n
j=1 βj

.

Theorem 9.7 Let u(·, t0) = f ∈ L2(Rn
+, dν), α = 2

n+
∑n

j=1 βj
and G be a funtion

satisfying similar onditions as in (3), (4). Initial value problem (12), (13) has

unique maximal solution u ∈ C((T∗, T
∗), L2(Rn

+, dν))∩Lq1
lo

(

(T∗, T
∗), Lp1(Rn

+, dν)
)
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for every admissible pair (q1, p1), where t0 ∈ (T∗, T
∗). Fix p = 2 + α. Moreover

the following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), L2(dν))∩Lp((T∗, T ∗), Lp(dν)).

(ii)(Blowup alternative) If T ∗ < ∞ then ‖u‖Lp((t0,T ∗),Lp(dν)) = ∞. Similar

onlusion holds if T∗ > −∞.

(iii)(Stability) If fj → f in L2(Cn), then uj → u in Lq1
(

I, Lp1(Rn
+, dν)

)

for

every interval I with I ⊂ (T∗, T
∗) and for every admissible pair (q1, p1),

where uj and u are solutions orresponding to fj and f respetively.
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Chapter 1

Introdution

In this thesis we will study the well posedness problem for the nonlinear Shrödinger

equation for the magneti Laplaian on R2n
, orresponding to onstant magneti

�eld. The magneti Laplaian in this ase orresponds to the so alled �twisted

Laplaian" on Cn
. We establish the well posednes in ertain �rst order Sobolev

spaes assoiated to the twisted Laplaian, and also in L2(Cn). In this onnetion,

we also study Shrödinger equation for the (n-dimensional) Laguerre di�erential

operator.

Shrödinger equations, arise in quantum mehanis as evolution equations

desribing the dynamis of the quantum partiles. Hene the natural problem to

study is the Cauhy problem: Find u(·, t) for any time t, for a given initial data

u(t0) = f at time t = t0.

A Cauhy problem is said to be loally well posed in a Banah spae B, if

for any given initial data f = u(·, t0) ∈ B, for t = t0, there exists an interval I

ontaining t0 and a unique solution u ∈ C(I, B) to the Cauhy problem whih is

stable, i.e., depends ontinuously on the initial data. If I = R, we say that the

problem is globally well posed.

The Shrödinger equation is also an example of a dispersive equation, in the

sense that the solutions spread out in spae as time t→ ∞. This feature usually

translates into a suitable deay estimate for the solution with respet to time t

as t → ∞. For free Shrödinger equation on Rn
, this is given by the L1 → L∞

estimate of the form

‖u(·, t)‖L∞(Rn) ≤ |2t|−n
2 ‖f‖L1(Rn) (1.0.1)

1



2

where u(x, t) is given by (1.0.4). Suh deay estimates are useful in the analysis of

dispersive equations, espeially in establishing Strihartz estimates, a very ruial

tool in modern approah to dispersive equations, see [12℄.

The Shrödinger equation

The free Shrödinger equation on R
n
is the PDE

i∂tψ(x, t) + ∆ψ(x, t) = 0, x ∈ R
n, t ∈ R

whih gives the quantum mehanial desription of the evolution of a free partile

in Rn
. If ψ is the solution of the Shrödinger equation, then |ψ(x, t)|2 is inter-

preted as the probability density for �nding the position of the partile in Rn
at

a given time t. Let us onsider the initial value problem

i∂tu(x, t) + ∆u(x, t) = 0, x ∈ R
n, t ∈ R (1.0.2)

u(x, 0) = f(x). (1.0.3)

For f ∈ L2(Rn), the solution is given by the Fourier transform:

u(x, t) =

∫

Rn

e−it|ξ|
2

f̂(ξ) eixξ dξ. (1.0.4)

This may be written as a onvolution operator

u(x, t) = (2it)−
n
2

(

f ∗ e
i|x|2

4t

)

(x) (1.0.5)

whih leads to the dispersive estimate mentioned in (1.0.1).

In view of (1.0.4) we write

u(x, t) = eit∆f(x)

interpreting the Fourier inversion formula as the spetral deomposition in terms

of the eigenfuntions of the Laplaian, see [30℄, [31℄. Using Planheral theorem

in (1.0.4), we see that

‖u(·, t)‖2 = ‖eit∆f‖2 = ‖f‖2 (1.0.6)
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whih physially represents the harge onservation.

Now let us onsider the inhomogeneous Shrödinger equation

i∂tu(x, t) + ∆u(x, t) = g(x, t), x ∈ R
n, t ∈ R (1.0.7)

u(x, t0) = f(x). (1.0.8)

The solution in this ase is given by the Duhamel's formua:

u(x, t) = ei(t−t0)∆f − i

∫ t

t0

ei(t−s)∆g(x, s)ds. (1.0.9)

This an be seen as follows. Taking Fourier transform in the x-variable, we

have

i∂tû(ξ, t)− |ξ|2û(ξ, t) = ĝ(ξ, t)

i∂t(e
it|ξ|2û(ξ, t)) = eit|ξ|

2

ĝ(ξ, t).

Now integrate with respet to the t-variable on the interval (t0, t), we have

i(eit|ξ|
2

û(ξ, t)− eit0|ξ|
2

û(ξ, t0)) =

∫ t

t0

eis|ξ|
2

ĝ(ξ, s)ds

û(ξ, t) = e−i(t−t0)|ξ|
2

f̂(ξ)− i

∫ t

t0

e−i(t−s)|ξ|
2

ĝ(ξ, s)ds.

By taking inverse Fourier transform in the ξ-variable, this yields (1.0.9).

This formal omputation suggests that u given by the above equation should

be a solution to the initial value problem (1.0.7), (1.0.8). This equivalene is

ruial in loal existene theory. In fat, we prove suh equivalene for the twisted

Laplaian L in Lemma 5.0.21.

More generally for any self adjoint di�erential operator L on Rn
, having the

spetral representation L =
∫

E
λ dPλ, we an assoiate the Shrödinger propaga-

tor {e−itL : t ∈ R} given by

e−itLf =

∫

E

e−itλdPλ(f) (1.0.10)

for f ∈ L2(Rn). Here dPλ denote the spetral projetion for L, i.e., a projetion

valued measure supported on the spetrum E of L, see [26℄.
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In this ase, the funtion u(x, t) = e−itLf(x) solves the initial value problem

for the Shrödinger equation for the operator L:

i∂tu(x, t)− Lu(x, t) = 0, x ∈ R
n, t ∈ R (1.0.11)

u(x, 0) = f(x) (1.0.12)

with L now representing the orresponding Hamiltonian of the quantum mehan-

ial system.

The signi�ane of this view point is that, most Hamiltonians of interest,

namely the perturbation of the Laplaian with a potential V (of the form L =

−∆ + V ) or the magneti Laplaian orresponding to the magneti potential

(A1(x), ..., An(x)) (of the form L =
∑n

j=1

(

i∂xj + Aj(x)
)2
) on Rn

, an be analysed,

in terms of the spetral theory of the Hamiltonian, see [24℄ and [20, 21℄.

In this thesis, we onentrate on Shrödinger equation for an interesting mag-

neti Laplaian on C
n
of the form

2n
∑

j=1

[

(i∂wj
− Aj(w))

2
]

, orresponding to the

magneti vetor potential A(z) = iz
2
, z ∈ Cn

. This happens to be the twisted

Laplaian on C
n
.

Twisted Laplaian

The twisted Laplaian L on Cn
is given by

L =
1

2

n
∑

j=1

(

ZjZj + ZjZj
)

where Zj = ∂
∂zj

+ 1
2
z̄j , Zj = − ∂

∂z̄j
+ 1

2
zj , j = 1, 2, . . . , n. Here ∂

∂zj
and

∂
∂z̄j

denote the omplex derivatives

∂
∂xj

∓ i ∂
∂yj

respetively. The operator L may be

viewed as the omplex analogue of the quantum harmoni osillator Hamiltonian

H = −∆+ |x|2 on Rn
, whih has the representation

H =
1

2

n
∑

j=1

(

AjA
∗
j + A∗

jAj
)

in terms of the reation operators Aj = − ∂
∂xj

+ xj and the annihilation operators

A∗
j =

∂
∂xj

+xj , j = 1, 2, . . . , n. The operator L was introdued by R. S. Strihartz
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[31℄, and alled the speial Hermite operator and it looks quite similar to the

Hermite operator on Cn
. In expliit terms the twisted Laplaian looks like

L = −∆+
1

4
|z|2 − i

n
∑

1

(

xj
∂

∂yj
− yj

∂

∂xj

)

.

This may be re written as

L =

n
∑

j=1

[

(

i∂xj +
yj
2

)2

+
(

i∂yj −
xj
2

)2
]

whih is of the form

2n
∑

j=1

[

(i∂wj
−Aj(w))

2
]

hene represents a Shrödinger operator

on Cn
for the magneti vetor potential A(z) = iz

2
, z ∈ Cn

.

Nonlinear Shrödinger equation for the twisted Lapla-

ian

We onsider the initial value problem for the nonlinear Shrödinger equation for

the twisted Laplaian L:

i∂tu(z, t)− Lu(z, t) = G(z, u), z ∈ C
n, t ∈ R (1.0.13)

u(z, t0) = f(z) (1.0.14)

for f ∈ L2(Cn). Here we onsider the nonlinearity G of the form

G(z, w) = ψ(x, y, |w|)w, (x, y, w) ∈ R
n × R

n × C, (1.0.15)

where z = x+iy ∈ Cn, w ∈ C and ψ ∈ C(Rn×Rn×[0,∞))∩C1(Rn×Rn×(0,∞))

satisfy the following inequality

|F (x, y, η)| ≤ C|η|α (1.0.16)

with F = ψ, ∂xjψ, ∂yjψ (1 ≤ j ≤ n) and η∂ηψ(x, y, η), α ≥ 0 and for some

onstant C. By mean value theorem, we see that

|G(z, u)−G(z, v)| ≤ |u− v|Ψ(u, v) (1.0.17)
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where Ψ(u, v) = (|η∂ηψ(x, y, η)|+ |ψ(x, y, η)|) |η=θ|u|+(1−θ)|v| for some 0 < θ < 1.

Notie that in view of the ondition (1.0.16) on ψ, we have

|G(z, u)−G(z, v)| ≤ C(|u|α + |v|α)|u− v| (1.0.18)

for some onstant C, where u, v ∈ C and z ∈ Cn
.

When G ≡ 0 and f ∈ L2(Cn) the solution to this initial value problem is

given by the Shrödinger propagator

u(z, t) = e−i(t−t0)Lf(z).

When G(z, u) = g(z), the solution is given by the Duhamel's formula (see equa-

tion (1.0.9))

u(z, t) = e−i(t−t0)Lf(z)− i

∫ t

t0

e−i(t−s)Lg(z)ds. (1.0.19)

Thus in the linear ase, the solution is determined one the funtions f and g are

known.

The basi idea in nonlinear analysis is the following heuristi reasoning based

on the above formula. If the solution u is known, then one would expet u to

satisfy the above equation with g(z) replaed by G(z, u(z, s)):

u(z, t) = e−i(t−t0)Lf(z)− i

∫ t

t0

e−i(t−s)LG(z, u(z, s))ds. (1.0.20)

Indeed one an show that u from a reasonable funtion spae satis�es a PDE

of the form (1.0.13), (1.0.14), if and only if u satis�es an integral equation of the

form (1.0.20), see Lemma 5.0.21.

This redues the existene theorem for the solution to the nonlinear Shrödinger

equation to a �xed point theorem for the operator

H(u)(z, t) = e−i(t−t0)Lf(z)− i

∫ t

t0

e−i(t−s)LG(z, u(z, s))ds (1.0.21)

in a suitable subset of the relevant funtion spae.
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Conservation laws

Now we disuss the onservation of mass and energy for the magneti Shrödinger

equation (1.0.13). For proving mass onservation, we assume that ψ is real valued.

Taking L2(Cn) inner produt with u on both sides of Shrödinger equation (1.0.13)

and taking imaginary part, we get the mass onservation

d

dt
‖u(·, t)‖22 = 0. (1.0.22)

Taking L2(Cn) inner produt with respet to ∂tu on both sides and taking real

part, we get the energy onservation

d

dt

(

1

4

n
∑

j=1

(‖Zju(z, t)‖22 +
∥

∥Zju(z, t)
∥

∥

2

2
) +

∫

Cn

G̃(z, u)dz

)

= 0

where G̃ : Cn × [0,∞) → C is given by the following

G̃(z, τ) =

∫ τ

0

ψ(z, s)s ds. (1.0.23)

This leads to the onservation of the energy E:

E(u(·, t)) = 1

4

n
∑

j=1

(‖Zju(·, t)‖22 +
∥

∥Zju(·, t)
∥

∥

2

2
) +

∫

Cn

G̃(z, |u|)dz. (1.0.24)

In Theorem 6.0.33 in hapter 6 we prove that these formal identities are valid

in the spae of existene of the solution. If G(z, u) = λ|u|αu, then G̃(z, |u|) =
λ

α+2
|u|α+2

. Note that for eah z ∈ Cn
, G̃(z, ·) : [0,∞) → R2

is a C1
map and

∂G̃
∂σ

(z, σ) = G(z, σ). Also note that by mean value theorem

|G̃(z, σ1)− G̃(z, σ2)| = |σ1 − σ2| |G(z, θσ1 + (1− θ)σ2)| where θ ∈ (0, 1)

≤ C|σ1 − σ2|(|σ1|1+α + |σ2|1+α). (1.0.25)

In this thesis we will study the well posedness, i.e., loal existene, uniqueness,

stability and blowup alternative of the initial value problem (1.0.13), (1.0.14)

with f in ertain �rst order Sobolev spaes related to the twisted Laplaian and

also in L2(Cn), see hapters 4, 5, 6, 7. This work is based on [24℄ (published in
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J. Funt. Anal. 265 (1) (2013) 1-27) and [25, 29℄.

The Shrödinger equation for the magneti potential with magneti �eld de-

aying at in�nity has been studied by many authors, see for instane Yajima [39℄,

where author studies the propagator for the linear equation. In ontrast, the

nonlinear equation in our situation orresponds to a magneti equation with a

onstant magneti �eld, whih has no deay. For more details on general mag-

neti Shrödinger equation orresponding to magneti �eld without deay, see

[1℄. In [40℄ Zhang and Zheng also onsider the nonlinear Shrödinger equation

for the twisted Laplaian and with polynomial nonlinearity. They obtain produt

rule for frational derivatives using Littlewood Paley theory and as a onsequene

prove the loal well posedness result. There is a vast literature available for the

well posedness results for nonlinear Shrödinger equation on Rn
. See for instane

the papers by Ginibre and Velo [12, 13, 14℄, Kato [16℄, Cazenave and Weisler

[6, 7, 8℄, Tsutsumi [36℄, Begout [2℄, Sjögren Torrea [27℄, the books by Cazenave

[4℄ and Tao[32℄ and the extensive referenes there in. Some of the referenes that

we ame aross dealing with magneti Shrödinger equation are [39℄, [1℄ and [5℄

as mentioned before. In fat, the stability result disussed in [5℄, is atually the

stability problem for the nonlinear Shrödinger equation for the twisted Laplaian

in the plane.

The lass of nonlinearity given by (1.0.15), (1.0.16) inludes in partiular,

power type nonlinearity of the form |u|αu and is also adaptable to the Shrödinger
equation for the twisted Laplaian, for loal existene via Kato's method [16℄.

The main di�ulty in this approah is aused by the nonommutativity of L with

∂
∂xj
, ∂
∂yj

and the nonompatibility of L with the powertype nonlinearty as observed

in [5℄. We are able to overome this di�ulty by introduing the appropriate set

of di�erential operators Lj ,Mj and operators Zj, Zj (1 ≤ j ≤ n) and working

with suitable Sobolev spaes de�ned using these operators (see hapter 4 for

de�nition).

We follow Kato's method [16℄ to prove the loal existene in �rst order Sobolev

spaes related to operators Lj,Mj and operators Zj, Zj (1 ≤ j ≤ n). Conser-

vation laws have been an important tool for proving the existene of solutions

of nonlinear Shrödinger equations, whih is available for a large lass of nonlin-

earities, see Ginibre and Velo [12℄. In [12℄ Ginibre and Velo studied the Cauhy

problem in the energy spae for power type nonlinearities. T. Kato ([16℄), intro-

dued a method using Strihartz estimates whih was appliable even for those
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nonlinear problems, where onservation laws are not available. In hapter 4 we

observe that the operators

Lj =

(

∂

∂xj
+ i

yj
2

)

, and Mj =

(

∂

∂yj
− i

xj
2

)

, j = 1, 2, ..., n

ommute with both the operators e−itL and

∫ t

0

e−i(t−s)Lds, for j = 1, 2, . . . , n.

These operators are also ompatible with the nonlinearityG onsidered in (1.0.15),

(1.0.16). Therefore we onsider the following Banah spae

W̃ 1,2(Cn) = {f ∈ L2(Cn) : Ljf,Mjf ∈ L2(Cn), 1 ≤ j ≤ n}

with norm ‖f‖W̃ 1,2(Cn) = ‖f‖L2(Cn)+
∑n

j=1

(

‖Ljf‖L2(Cn) + ‖Mjf‖L2(Cn)

)

. In hap-

ter 5 we prove the loal well posedness for initial value f in W̃ 1,2(Cn).

Observe that in view of (1.0.24), W̃ 1,2(Cn) is not the energy spae, therefore

energy onservation is not possible in the above ase. We overome this situation

by introduing the Sobolev spae W̃ 1,2
L (Cn) (see hapter 4) de�ned using the

operators Zj and Zj, whih is the energy spae and natural one in this ontext.

Though they do not ommute with e−itL, they have a reasonable ommutation

relation, suitable for our purpose. The advantage of working with this Sobolev

spae is that we get energy onservation in this ase, see Theorem 6.0.33 in hapter

6. From this we an show that there is no �nite time blow up in defoussing ase

(when ψ is nonnegative) and also in fousing ase (when ψ is nonpositive) with

0 ≤ α < 2
n
, hene in Theorem 6.0.33 we onlude the global existene in the

Sobolev spae W̃ 1,2
L (Cn).

In hapter 6 we also onsider the ritial ase α = 2
n−1

. In subritial ase

0 ≤ α < 2
n−1

for eah α, we have some q > 2 suh that (q, 2+α) be an admissible

pair, whih may not be the ase when α = 2
n−1

. To treat the ritial ase, we

adopt trunation argument of Cazenave and Weissler [7℄. To prove loal existene,

we trunate the nonlinearity G and obtain solution for the trunated problem.

We obtain solution u for the nonlinearity G by using Strihartz estimates and by

passing to the limit.

In hapter 7 we prove the global well posedness in L2(Cn) for subritial ase

0 ≤ α < 2
n
using mass onservation. However in ritial ase α = 2

n
, we an prove

global well posedness in L2(Cn) for intial value with su�iently small norm in

L2(Cn). Our approah is based on Cazenave and Weissler [7℄.
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Twisted Laplaian and Laguerre operator are losely related to eah other in

the following sense. If f ∈ S(Cn) is radial then Lf(z) = Ln−1f(r) where Ln−1

is 1-dimensional Laguerre operator of type n − 1 given by (8.0.1) and r = |z|.
More generally we an onsider n-dimensional Laguerre operator Lβ on R

n
+ =

(0,∞)n of type β ∈
(

−1
2
,∞
)n

whih has singularity at xj = 0, 1 ≤ j ≤ n.

Moreover speial Hermite funtions Φµ+µ̃,µ,Φµ,µ+µ̃ on Cn
with µ̃ ∈ Zn≥0 are related

with n-dimensional Laguerre funtions ψµ̃µ , see Theorem 1.3.4 and Theorem 1.3.5,

page 19-20 in [33℄, where ψµ̃µ are given by (8.0.2). By similar analysis we also

prove the loal well posedness of the initial value problem for the Shrödinger

equation with the Laguerre operator and initial value in L2(Rn
+, dν) where dν =

(

∏n
j=1 x

2βj+1
j

)

dx, see hapter 8. This work is based on the Strihartz estimates

for the Laguerre operator proved in Sohani [28℄ (to appear in Pro. Math. Si.).



Chapter 2

Shrödinger propagator for the

twisted Laplaian

Now we de�ne the Shrödinger propagator e−itL through the spetral theory of the

twisted Laplaian. The twisted Laplaian is losely related to the sub Laplaian

on the Heisenberg group, hene the spetral theory of this operator is losely

onneted with the representation theory of the Heisenberg group. Here we give

a brief review of the spetral theory of the twisted Laplaian L. The materials

disussed here is based on the the following books: Folland [11℄, and Thangavelu

[33, 34℄.

The eigenfuntions of the operator L are alled the speial Hermite funtions,

whih are de�ned in terms of the Fourier-Wigner transform. For a pair of fun-

tions f, g ∈ L2(Rn), the Fourier-Wigner transform is de�ned to be

V (f, g)(z) = (2π)−
n
2

∫

Rn

eix·ξf
(

ξ +
y

2

)

g
(

ξ − y

2

)

dξ,

where z = x + iy ∈ Cn. For any two multi-indies µ, ν the speial Hermite

funtions Φµ ν are given by

Φµ ν(z) = V (hµ, hν)(z)

where hµ and hν are Hermite funtions on Rn
. Reall that for eah nonnegative

integer k, the one dimensional Hermite funtions hk are de�ned by

hk(x) =
(−1)k

√

2kk!
√
π

(

dk

dxk
e−x

2

)

e
x2

2 .

11
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Now for eah multi index ν = (ν1, · · · , νn), the n-dimensional Hermite funtions

are de�ned by the tensor produt :

hν(x) =
n
∏

i=1

hνi(xi), x = (x1, · · · , xn).

Sine the Hermit funtions satisfy the reursion relations

(

− d

dx
+ x

)

hk(x) = (2k + 2)
1
2hk+1(x),

(

d

dx
+ x

)

hk(x) = (2k)
1
2hk−1(x),

it follows that the speial Hermit funtions satisfy the relations

ZjΦµ,ν = i(2νj)
1
2Φµ,ν−ej , ZjΦµ,ν = −i(2νj + 2)

1
2Φµ,ν+ej . (2.0.1)

Sine L = 1
2

∑n
j=1

(

ZjZj + ZjZj
)

, it follows that Φµν are eigenfuntions of L
with eigenvalue 2|ν|+n and moreover, they form a omplete orthonormal system

in L2(Cn). Thus every f ∈ L2(Cn) has the expansion

f =
∑

µ, ν

〈f,Φµν〉Φµν (2.0.2)

in terms of the eigenfuntions of L. The above expansion may be written as

f =

∞
∑

k=0

Pkf (2.0.3)

where

Pkf =
∑

µ,|ν|=k

〈f,Φµ,ν〉Φµν (2.0.4)

is the spetral projetion orresponding to the eigenvalue 2k + n. We also have

the Planheral theorem for the speial Hermit expansion

‖f‖22 =
∞
∑

k=0

‖Pkf‖22. (2.0.5)
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Now for any f ∈ L2(Cn) suh that Lf ∈ L2(Cn), by self adjointness of L, we
have Pk(Lf) = (2k + n)Pkf . It follows that for f ∈ L2(Cn) with Lf ∈ L2(Cn)

Lf =

∞
∑

k=0

(2k + n)Pkf. (2.0.6)

Thus, we an de�ne e−itL as

e−itLf =
∞
∑

k=0

e−it(2k+n)Pkf. (2.0.7)

Note that Pkf has the ompat representation

Pkf(z) = (2π)−n(f × ϕk)(z) = (2π)−n
∫

Cn

f(z − w)ϕk(w)e
i
2
Im(z.w)dw (2.0.8)

in terms of the Laguerre funtion ϕk(z) = Ln−1
k (1

2
|z|2)e− 1

4
|z|2

, see [22, 33℄. For

f ∈ L2(Cn), we have ompat form e−(r+it)Lf = f × Kr+it(z) (see [22℄) where

r > 0 and

Kr+it(z) = (2π)−ne−n(r+it)(1− e−2(r+it))−ne
− 1+e−2(r+it)

1−e−2(r+it)
· |z|

2

4 .

Let us onsider sequene {rm} of positive real numbers onverging to zero. We

observe that e−(rm+it)Lf → e−itLf as rm → 0 in L2(Cn) and therefore upto a

subsequene e−(rm+it)Lf(z) → e−itLf(z) for a.e. z as rm → 0. Sine

|Krm+it(z)| ≤ 2| sin t|−n,

for f ∈ L1 ∩ L2(Cn),

f ×Krm+it(z) → f ×Kit(z) as rm → 0

for a.e. z. Hene we an express e−itL as a twisted onvolution operator:

e−itLf = f ×Kit

for f ∈ L1 ∩ L2(Cn) where Kit(z) =
(4πi)−n

(sin t)n
e

i(cot t)|z|2

4
.





Chapter 3

Strihartz estimates

Strihartz estimates are useful for establishing existene of solution for semilinear

Shrödinger and wave equations, in whih no derivatives are present in the non-

linearity. Strihartz estimates were �rst proved by Strihartz [30℄ for solutions of

Shrödinger and wave equations on Rn
. They were generalized by Ginibre and

Velo [14, 15℄, Lindblad and Sogge [19℄. In [17℄ Keel and Tao proved Strihartz

estimates inluding endpoint for the wave and the Shrödinger equations.

Homogeneous Strihartz estimates for twisted Laplaian is proved by Rat-

nakumar in [22℄. We begin with the following de�nitions of mixed Lp spae

Lq((a, b), Lp(Cn)), admissible pair and prove the Strihartz estimates. For mixed

Lp spaes we would like to refer to setion 8.18 in Edwards [10℄.

De�nition 3.0.1 Let n ≥ 1 and 1 ≤ p, q ≤ ∞. We de�ne Lq((a, b), Lp(Cn)) by

the following

Lq((a, b), Lp(Cn)) = {g is measurable on C
n × (a, b) : ‖g‖Lq((a,b),Lp(Cn)) <∞}

where ‖g‖Lq((a,b),Lp(Cn)) =
(

∫ b

a
‖g‖q

Lp(Cn)dt
)

1
q

.

De�nition 3.0.2 Let n ≥ 1. We say that a pair (q, p) is admissible if

1 ≤ q ≤ 2, 0 ≤ n

(

1

2
− 1

p

)

<
1

2
or

2 < q ≤ ∞ and 0 ≤ n

(

1

2
− 1

p

)

≤ 1

q
<

1

2
.

15
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Remark 3.0.3 The admissibility ondition on (q, p) implies that 2 ≤ p < 2n
n−1

.

Admissible ondition is basially oming from the following Lemma 3.0.4 and

Remark 3.0.5 whih are useful in proving Strihartz estimate (3.0.3). This Lemma

was proved in [22℄ (see Lemma 2, p. 293-294) for ompat interval [−π, π], we
state here for arbitrary ompat interval [a, b]. Same proof will work here, so we

skip the proof.

Lemma 3.0.4 Let (a, b) be a bounded interval and T be the operator given by

Tf(t) =

∫ b

a

K(t− s)f(s)ds.

Then the following inequality

‖Tf‖q ≤ CK‖f‖q′

holds for q = ∞ if K ∈ L∞(a−b, b−a), for q ∈ (2,∞) if K ∈ weak L
q
2 (a−b, b−a)

and also for 1 ≤ q ≤ 2 if K ∈ L1(a− b, b − a). The onstant CK is independent

of f but depends on K and interval (a, b).

Remark 3.0.5 Let p ∈ [2,∞], a, b ∈ R and a < b. | sin t|−2n( 1
2
− 1

p) ∈ weak

L
q
2 (a − b, b − a) with q ∈ (2,∞) if 2 < q ≤ 1

n( 1
2
− 1

p
)
or n(1

2
− 1

p
) ≤ 1

q
< 1

2
. Also

| sin t|−2n( 1
2
− 1

p) ∈ L1(a − b, b − a) if 2n
(

1
2
− 1

p

)

< 1. If we onsider p = 2 then

| sin t|−2n( 1
2
− 1

p) = 1 ∈ L∞(a− b, b− a).

Now we state a Lemma whih is helpful in proving Strihartz estimates (The-

orem 3.0.7). For proof we refer to Lemma 3 in [22℄.

Lemma 3.0.6 Let [a, b] be a bounded interval ontaining t0. Let hj(z, t) ∈
Lq

′
j((a, b), L2(Cn)), where q′j is onjugate exponent of qj with 1 ≤ qj ≤ ∞ for

j = 1, 2. Then the funtions

e−i(t−t0)Lh1(z, t)e
−i(s−t0)Lh2(z, s), h1(z, t)e

i(t−s)Lh2(z, s)

belong to L1(Cn × (a, b)× (a, b)).

The main Strihartz type estimates in this hapter is ompiled in the following

theorem. Homogeneous Strihartz estimate (3.0.1) is proved in [22℄. For om-
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pleteness, we also give the proof of the estimate (3.0.1). Our approah is similar

to the Eulidean ase disussed in Cazenave [4℄.

Theorem 3.0.7 (Strihartz Estimates) Let (q, p), (q1, p1) be two admissible

pairs, (a, b) a �nite interval with t0 ∈ [a, b], f ∈ L2(Cn) and g ∈ Lq
′
1((a, b), Lp

′
1(Cn))

where q′1 and p′1 are onjugate exponents of q1 and p1 respetively. Then the fol-

lowing estimates hold over Cn × (a, b):

‖e−itLf‖Lq((a,b),Lp(Cn)) ≤ C‖f‖2 (3.0.1)

∥

∥

∥

∥

∫ t

t0

e−i(t−s)Lg(z, s)ds

∥

∥

∥

∥

Lq((a,b),Lp(Cn))

≤ C‖g‖
L
q′
1((a,b),Lp′

1 (Cn)
(3.0.2)

where the onstant C depends on admissible pairs and independent of t0. Moreover

e−itLf ∈ C(R, L2(Cn)) and
∫ t

t0
e−i(t−s)Lg(z, s)ds ∈ C([a, b], L2(Cn)).

Remark 3.0.8 Note that e−i(t−t0)Lf(z) is 2π periodi in t, hene we an not

expet the above Strihartz inequalities for unbounded intervals exept when

q = ∞. Also Sine | sin t| is π periodi, in view of Remark 3.0.5, onstant C

in the inequalities (3.0.1) and (3.0.2) an be hosen independent of the interval

(a, b) provided b− a ≤ π.

Proof. We prove the Theorem in the following steps. In step 2 we prove estimate

(3.0.1) and e−itLf ∈ C(R, L2(Cn)), whereas in step 6 we prove estimate (3.0.2).

Step 1: We will prove estimate (3.0.2) when (q, p) = (q1, p1). Using Minkowski's

inequality for integrals and from Proposition 1 in [22℄, we get

∥

∥

∥

∥

∫ t

t0

e−i(t−s)Lg(z, s)ds

∥

∥

∥

∥

Lp(Cn)

≤ C

∫ b

a

| sin(t− s)|−2n( 1
2
− 1

p
)‖g(·, s)‖Lp′(Cn)ds.

Now taking Lq-norm with respet to the t-variable on the interval (a, b) and using

Lemma 3.0.4 with Remark 3.0.5 we get the estimate (3.0.2) for (q, p) = (q1, p1),

i.e.,

∥

∥

∥

∥

∫ t

t0

e−i(t−s)Lg(z, s)ds

∥

∥

∥

∥

Lq((a,b),Lp(Cn))

≤ C‖g‖Lq′((a,b);Lp′(Cn)) (3.0.3)
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Step 2: To prove estimate (3.0.1), we �rst prove the following estimate

∥

∥

∥

∥

∫ b

a

ei(t−t0)Lg(z, t)dt

∥

∥

∥

∥

L2(Cn)

≤ C‖g‖Lq′((a,b),Lp′ (Cn)). (3.0.4)

By density argument it is enough to prove estimate (3.0.4) for g ∈ Lq
′
((a, b), L2∩

Lp
′
(Cn)). Sine e−itL is the adjoint of eitL on L2(Cn), from Lemma 3.0.6, the

Hölder's inequality for the mixed Lp spaes and the estimate (3.0.3), we get

estimate (3.0.4):

∥

∥

∥

∥

∫ b

a

ei(t−t0)Lg(·, t)dt
∥

∥

∥

∥

2

L2(Cn)

=

〈
∫ b

a

ei(t−t0)Lg(·, t)dt,
∫ b

a

ei(s−t0)Lg(·, s)ds
〉

=

∫ b

a

∫ b

a

〈

ei(t−t0)Lg(·, t), ei(s−t0)Lg(·, s)
〉

dsdt

=

∫ b

a

∫ b

a

〈

g(·, t), e−i(t−s)Lg(·, s)
〉

dsdt

=

∫ b

a

〈

g(·, t),
∫ b

a

e−i(t−s)Lg(·, s)ds
〉

dt

≤ ‖g‖Lq′((a,b),Lp′ (Cn))

∥

∥

∥

∥

∫ b

a

e−i(t−s)Lg(z, s)ds

∥

∥

∥

∥

Lq((a,b),Lp(Cn))

≤ C‖g‖2
Lq′((a,b),Lp′ (Cn))

.

Sine e−itL is unitary operator on L2(Cn), the estimate (3.0.1) follows if (q, p) =

(∞, 2). For q < ∞, estimate (3.0.1) follows from a duality argument, using

estimate (3.0.4), Lemma 3.0.6 and the fat that e−itL is adjoint operator of eitL

on L2(Cn). Sine |e−it(2k+n) − 1| ≤ 2 and ‖Pkf‖L2(Cn) ∈ l2(Z≥0), e
−itLf(z) ∈

C(R, L2(Cn)) follows from the dominated onvergene theorem.

Step 3: Now we will prove estimate (3.0.2) by using a duality argument in the

z-variable when (q, p) = (∞, 2). By a density argument it is enough to prove the

estimate (3.0.2) for g ∈ Lq
′
1((a, b), L2∩Lp′1(Cn)). Let h ∈ S(Cn) with ‖h‖L2(Cn) =

1. By Hölder's inequality, Lemma 3.0.6, estimate (3.0.1) and the fat that e−itL

is the adjoint of eitL on L2(Cn), we get

∣

∣

∣

∣

〈
∫ t

t0

e−i(t−s)Lg(·, s)ds, h
〉
∣

∣

∣

∣
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=

∣

∣

∣

∣

∫ t

t0

〈

g(·, s), ei(t−s)Lh
〉

ds

∣

∣

∣

∣

≤
∫ b

a

∣

∣

〈

g(·, s), ei(t−s)Lh
〉
∣

∣ ds

≤ ‖g‖
L
q′
1((a,b),Lp′

1 (dν))

∥

∥e−isL(eitLh)
∥

∥

Lq1 ((a,b)(ds),Lp1 (Cn))

≤ C‖g‖
L
q′1((a,b),Lp′1 (Cn))

‖eitLh‖L2(Cn)

= C‖g‖
L
q′
1((a,b),Lp′

1 (Cn))
‖h‖L2(Cn).

Taking supremum over all h with ‖h‖L2(Cn) = 1 and then supremum over t ∈
(a, b), we get the estimate

∥

∥

∥

∥

∫ t

t0

e−i(t−s)Lg(z, s)ds

∥

∥

∥

∥

L∞((a,b),L2(Cn))

≤ C ‖g‖
L
q′1((a,b);Lp′1 (Cn))

. (3.0.5)

Step 4: Now we will prove estimate (3.0.2) when (q1, p1) = (∞, 2). Estimate

(3.0.2) follows from estimate (3.0.5) if (q, p) = (∞, 2). So we assume that (q, p) 6=
(∞, 2). To prove estimate (3.0.2), take h ∈ Lq

′ (

(a, b), L2 ∩ Lp′(Cn)
)

. Now from

Lemma 3.0.6 and the fat that e−itL is the adjoint of eitL on L2(Cn), we observe

the following

∫ b

a

〈
∫ t

t0

e−i(t−s)Lg(·, s)ds, h(·, t)
〉

Cn

dt

=

(
∫ t0

t=a

∫ t0

s=t

+

∫ b

t=t0

∫ t

s=t0

)

〈

g(·, s), ei(t−s)Lh(·, t)
〉

Cn ds dt

=

(
∫ t0

s=a

∫ s

t=a

+

∫ b

s=t0

∫ b

t=s

)

〈

g(·, s), ei(t−s)Lh(·, t)
〉

Cn dt ds

=

∫ t0

a

〈

g(·, s),
∫ s

a

e−i(s−t)Lh(·, t)dt
〉

Cn

ds

+

∫ b

t0

〈

g(·, s),
∫ b

s

e−i(s−t)Lh(·, t)dt
〉

Cn

ds.

In view of estimate (3.0.5) and Hölder's inequality, we get the estimate

∥

∥

∥

∥

∫ t

t0

e−i(t−s)Lg(z, s)ds

∥

∥

∥

∥

Lq((a,b),Lp(Cn))

≤ C‖g‖L1((a,b),L2(Cn). (3.0.6)

Step 5: Now we assume that q, q1 > 2 and
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1

q
= n

(

1

2
− 1

p

)

,
1

q1
= n

(

1

2
− 1

p1

)

.

In this ase estimate (3.0.2) follows from bilinear Riesz-Thorin interpolation the-

orem and estimates (3.0.3), (3.0.5), (3.0.6) (see step 4 at page no. 36 in Cazenave

[4℄).

Step 6: To prove estimate (3.0.2), let us de�ne q̃, q̃1 by the following

1

q̃
= n

(

1

2
− 1

p

)

,
1

q̃1
= n

(

1

2
− 1

p1

)

.

Then 1 ≤ q ≤ q̃, 1 ≤ q1 ≤ q̃1 and 2 < q̃, q̃1. By Hölder's inequality in the

t-variable and step 4 we obtain estimate (3.0.2):

∥

∥

∥

∥

∫ t

t0

e−i(t−s)Lgds

∥

∥

∥

∥

Lq((a,b),Lp(Cn))

≤ (b− a)κ1
∥

∥

∥

∥

∫ t

t0

e−i(t−s)Lgds

∥

∥

∥

∥

Lq̃((a,b),Lp(Cn))

≤ C(b− a)κ1 ‖g‖
L
q̃′1 ((a,b),Lp′1 (Cn))

≤ C(b− a)κ1+κ2 ‖g‖
L
q′
1 ((a,b),Lp′

1 (Cn))

≤ C ‖g‖
L
q′
1 ((a,b),Lp′

1 (Cn))

where

κ1 =
1

q
− n

(

1

2
− 1

p

)

, κ2 =
1

q1
− n

(

1

2
− 1

p1

)

.

Step 7: Now we prove

∫ t

t0
e−i(t−s)Lg(z, s)ds ∈ C([a, b], L2(Cn)). Let tm → t.

Consider h ∈ S(Cn) and we see that

∣

∣

∣

∣

∣

〈
∫ t

t0

e−i(tm−s)Lg(·, s)ds−
∫ t

t0

e−i(t−s)Lg(·, s)ds, h
〉

(Cn)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

t0

〈

e−i(tm−s)Lg(·, s)− e−i(t−s)Lg(·, s), h
〉

(Cn)
ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

t0

〈

g(·, s),
(

ei(tm−s)L − ei(t−s)L
)

h
〉

(Cn)
ds

∣

∣

∣

∣

≤
∫ b

a

‖g(·, s)‖Lp′(Cn)‖e−i(s−t0)L
(

ei(tm−t0)Lh− ei(t−t0)Lh
)

‖Lp(Cn)ds

≤ ‖g‖Lq′((a,b),Lp′ (Cn))‖e−i(s−t0)L
(

ei(tm−t0)Lh− ei(t−t0)Lh
)

‖Lq((a,b)(ds),Lp(Cn))

≤ C‖g‖Lq′((a,b),Lp′ (Cn))‖
(

ei(tm−t0)L − ei(t−t0)L
)

h‖L2(Cn).
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By density of S(Cn) in L2(Cn), this shows that

∫ t

t0

e−i(tm−s)Lg(·, s)ds→
∫ t

t0

e−i(t−s)Lg(·, s)ds

weakly in L2(Cn). Also note that L2(Cn) norm of this sequene is onstant and

equal to:

∥

∥

∥

∥

∫ t

t0

e−i(tm−s)Lg(·, s)ds
∥

∥

∥

∥

L2(Cn)

=

∥

∥

∥

∥

e−i(tm−t)L

∫ t

t0

e−i(t−s)Lg(·, s)ds
∥

∥

∥

∥

L2(Cn)

=

∥

∥

∥

∥

∫ t

t0

e−i(t−s)Lg(·, s)ds
∥

∥

∥

∥

L2(Cn)

.

Therefore we have the onvergene in L2(Cn):

∫ t

t0

e−i(tm−s)Lg(·, s)ds→
∫ t

t0

e−i(t−s)Lg(·, s)ds.

Also sine

∥

∥

∥

∫ tm

t
e−i(tm−s)Lg(·, s)ds

∥

∥

∥

L2(Cn)
≤ C‖g‖Lq′([t,tm],Lp′(Cn)) → 0 as tm → t,

we onlude that

∫ t

t0
e−i(t−s)Lg(z, s)ds ∈ C([a, b], L2(Cn)).





Chapter 4

Some auxiliary funtion spaes

The Sobolev spae W̃ 1,p(Cn)

Let Lj and Mj be the di�erential operators de�ned by

Lj =

(

∂

∂xj
+ i

yj
2

)

and Mj =

(

∂

∂yj
− i

xj
2

)

, j = 1, 2, ..., n. (4.0.1)

We onsider the spae

W̃ 1,p(Cn) = {f ∈ Lp(Cn) : Ljf,Mjf ∈ Lp(Cn), 1 ≤ j ≤ n}

with norm ‖f‖ = ‖f‖Lp(Cn) +
∑n

j=1

(

‖Ljf‖Lp(Cn) + ‖Mjf‖Lp(Cn)

)

. If {fk} is a

Cauhy sequene in W̃ 1,p(Cn) then there exists f, gj , hj ∈ Lp(Cn) suh that fk →
f, Ljfk → gj,Mjfk → hj in L

p(Cn) as k → ∞ for 1 ≤ j ≤ n. Sine Lj ,Mj are

skew adjoint operators, it is easy to see that Ljf = gj,Mjf = hj in S ′(Cn) for

1 ≤ j ≤ n. This shows that f ∈ W̃ 1,p(Cn) and fk → f in W̃ 1,p(Cn). Hene

W̃ 1,p(Cn) is a Banah spae.

An interesting relation between the Sobolev spae W̃ 1,p(Cn) and the ordinary

Sobolev spae W 1,p(Cn) is the following: If u ∈ W̃ 1,p(Cn), then |u| ∈ W 1,p(Cn).

Lemma 4.0.9 [Sobolev Embedding Theorem℄ We have the ontinuous inlusion

W̃ 1,p1(Cn) →֒ Lp2(Cn) for p1 ≤ p2 ≤ 2np1
2n−p1

if p1 < 2n

for p1 ≤ p2 <∞ if p1 = 2n

for p1 ≤ p2 ≤ ∞ if p1 > 2n

23
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where 1 < p1 <∞.

Proof. Let f ∈ W̃ 1,p1(Cn) and ǫ > 0. Consider uǫ = e−ǫLf . Note that (4.0.6)

is also valid for f ∈ Lp1(Cn). Sine Kǫ given by (4.0.7) is in S(Cn) and from

Lemma 4.0.17 uǫ = f ×Kǫ ∈ W̃ 1,p1(Cn) ∩ C∞(Cn) and we have

2|uǫ|
∂

∂xj
|uǫ| =

∂

∂xj
(uǫuǫ) = 2ℜ

(

uǫ
∂

∂xj
uǫ

)

= 2ℜ
(

uǫ(
∂

∂xj
+
iyj
2
) uǫ

)

.

Hene on the set Aǫ = {z ∈ Cn | uǫ(z) 6= 0} , we have
∣

∣

∣

∣

∂

∂xj
|uǫ|
∣

∣

∣

∣

=

∣

∣

∣

∣

ℜ
(

uǫ
|uǫ|

(
∂

∂xj
+
iyj
2
) uǫ

)
∣

∣

∣

∣

≤ |Lj(uǫ)| .

Similarly

∣

∣

∣

∂
∂yj

|uǫ|
∣

∣

∣
≤ |Mjuǫ| on Aǫ. Note that ‖uǫ‖Lp2 (Cn) = ‖uǫχAǫ

‖Lp2 (Cn). By

the usual Sobolev embedding on Cn
and above observations, we have inequality

‖uǫ‖Lp2(Cn) ≤ C‖|uǫχAǫ
|‖W 1,p1 ≤ C ‖uǫ‖W̃ 1,p1 . Sine Se−ǫLf = e−ǫLSf for S =

Lj ,Mj(1 ≤ j ≤ n) (see Lemma 4.0.10), therfore by Lemma 4.0.17 uǫ = e−ǫLf → f

in W̃ 1,p1(Cn) and also in Lp2(Cn) as ǫ → 0. Therefore we have ‖f‖Lp2(Cn) ≤
C‖f‖W̃ 1,p1(Cn). Hene Lemma is proved.

Lemma 4.0.10 Let f ∈ S ′(Cn). Then for every t, t0 ∈ R, we have the following

equalities in S ′(Cn)

Lje
−i(t−t0)Lf = e−i(t−t0)LLjf

Mje
−i(t−t0)Lf = e−i(t−t0)LMjf.

Proof. Sine f ∈ S ′(Cn), Lje
−i(t−t0)Lf, Mje

−i(t−t0)Lf ∈ S ′(Cn). In view of

(1.3.17), (1.3.18), (1.3.21) and (1.3.22) in [33℄, we have

LjΦµ,ν =
i

2

(

(2µj)
1
2Φµ−ej ,ν + (2µj + 2)

1
2Φµ+ej ,ν

)

MjΦµ,ν =
1

2

(

(2µj)
1
2Φµ−ej ,ν − (2µj + 2)

1
2Φµ+ej ,ν

)

.

Sine Lj ,Mj are skew adjoint operators and �nite linear ombination of speial

Hermite funtions are dense in S(Cn) (Theorem 1.4.4 in [34℄), Lemma follows
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from the following observations

〈

Lje
−i(t−t0)Lf,Φµ,ν

〉

=
〈

e−i(t−t0)LLjf,Φµ,ν
〉

〈

Mje
−i(t−t0)Lf,Φµ,ν

〉

=
〈

e−i(t−t0)LMjf,Φµ,ν
〉

for every µ, ν ∈ (Z≥0)
n
.

Lemma 4.0.11 Let t0 ∈ R and I an open interval ontaining t0. Let g ∈
Lq

′

lo

(

I, W̃ 1,p′(Cn)
)

, where (q, p) be an admissible pair. Then

∫ t

t0
e−i(t−s)Lg(z, s)ds ∈

C(I, W̃ 1,2(Cn)). Moreover for eah t ∈ I, we have the following equalities in

L2(Cn)

Lj

∫ t

t0

e−i(t−s)Lg(z, s)ds =

∫ t

t0

e−i(t−s)LLjg(z, s)ds

Mj

∫ t

t0

e−i(t−s)Lg(z, s)ds =

∫ t

t0

e−i(t−s)LMjg(z, s)ds.

Proof. Sine g ∈ Lq
′

lo

(

I, W̃ 1,p′(Cn)
)

, by Strihartz estimates (Theorem 3.0.7)

∫ t

t0
e−i(t−s)LSg(z, s)ds ∈ C(I, L2(Cn)), where S = Lj ,Mj , 1 ≤ j ≤ n. In view of

Theorem 1.4.4 in [34℄, Lemma follows from the following observations

〈

Lj

∫ t

t0

e−i(t−s)Lg(z, s)ds,Φµ,ν

〉

=

〈
∫ t

t0

e−i(t−s)LLjg(z, s)ds,Φµ,ν

〉

〈

Mj

∫ t

t0

e−i(t−s)Lg(z, s)ds,Φµ,ν

〉

=

〈
∫ t

t0

e−i(t−s)LMjg(z, s)ds,Φµ,ν

〉

for every µ, ν ∈ (Z≥0)
n
.

The Sobolev spae W̃ 1,p
L (Cn)

The loal well posedness of the nonlinear Shrödinger equation for the twisted

Laplaian is disussed in hapter 5 for initial values in W̃ 1,2(Cn). However this

approah does not give the energy onservation. We overome this di�ulty by

introduing the Sobolev spae W̃ 1,2
L (Cn) de�ned using the operators Zj and Zj

Zj =
∂

∂zj
+

1

2
z̄j, Zj = − ∂

∂z̄j
+

1

2
zj ,
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whih is the natural one in this ontext. Here

∂
∂zj

,

∂
∂z̄j

denote the omplex deriva-

tives

∂
∂xj

∓ i ∂
∂yj

respetively.

De�nition 4.0.12 Let m be a nonnegative integer and 1 ≤ p < ∞. We de�ne

spae W̃m,p
L (Cn) by the following

W̃m,p
L (Cn) = {f ∈ Lp(Cn) : Sαf ∈ Lp(Cn), |α| ≤ m}

where Sα denotes monomial in Z1, . . . , Zn, Z̄1, . . . , Z̄n of degree |α| = α1+· · ·+α2n.

W̃m,p
L (Cn) is a Banah spae with norm given by

‖f‖W̃m,p
L

=
∑

|α|≤m

‖Sαf‖Lp.

Lemma 4.0.13 Let f ∈ W̃ 1,2
L (Cn). Then we have

‖f‖W̃ 1,2
L

≈
∑

1≤j≤n

(‖Zjf‖L2 + ‖Z̄jf‖L2).

Proof. Clearly

‖f‖W̃ 1,2
L

≥
∑

1≤j≤n

(‖Zjf‖L2 + ‖Z̄jf‖L2).

Now we show that

‖f‖W̃ 1,2
L

≤ 2
∑

1≤j≤n

(‖Zjf‖L2 + ‖Z̄jf‖L2).

Enough to show that ‖Z̄jf‖2 ≥ ‖f‖2, 1 ≤ j ≤ n. This follows from the Planheral

theorem for the speial Hermite expansion

‖f‖22 =
∑

µ,ν

|〈f, φµ,ν〉|2,

for f ∈ L2(Cn). In view of (2.0.1) and Zj, Z̄j are adjoint of eah other, we have

Z̄jf =
∑

µ, ν

〈Z̄jf,Φµν〉Φµ ν = −
∑

µ, νj≥1

i(2νj)
1
2 〈f,Φµ ν−ej〉Φµν . (4.0.2)

Thus in view of equation (4.0.2), we have
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‖Z̄jf‖22 =
∑

µ, νj≥1

2νj|〈f,Φµν−ej〉|2 =
∑

µ,ν

(2νj + 2)|〈f,Φµ,ν〉|2 ≥ ‖f‖22,

whih ompletes the proof.

Though the operators Zj and Z̄j (1 ≤ j ≤ n) do not ommute with e−itL, they

have a reasonable ommutation relation, suitable for our purpose, see Lemma

4.0.15. The advantage of working with this Sobolev spae is that we get energy

onservation in this ase. Using this we an show that there is no �nite time blow

up in the defoussing ase and also in the fousing ase with 0 ≤ α < 2
n
, whih

yields the global existene in the Sobolev spae W̃ 1,2
L (Cn).

We have the following embedding theorem for the Sobolev spae W̃ 1,p
L (Cn).

Lemma 4.0.14 ( Sobolev Embedding Theorem ) We have the ontinuous inlu-

sion

W̃ 1,p1
L (Cn) →֒ Lp2(Cn) for p1 ≤ p2 ≤ 2np1

2n−p
if p1 < 2n

for p1 ≤ p2 <∞ if p1 = 2n

for p1 ≤ p2 ≤ ∞ if p1 > 2n

where 1 < p1 <∞.

Proof. Let f ∈ W̃ 1,p1
L (Cn) and ǫ > 0. Consider uǫ = e−ǫLf . Then uǫ ∈

W̃ 1,p1
L (Cn) ∩ C∞(Cn) and we have

2|uǫ|
∂

∂xj
|uǫ| =

∂

∂xj
(uǫuǫ) = 2ℜ

(

uǫ
∂

∂xj
uǫ

)

= 2ℜ
(

uǫ(
∂

∂xj
− iyj

2
) uǫ

)

.

Note that

1

2

(

Zj + Z̄j
)

= −i
(

∂

∂yj
+
ixj
2

)

,
1

2

(

Zj − Z̄j
)

=

(

∂

∂xj
− iyj

2

)

. (4.0.3)

Hene on the set Aǫ = {z ∈ Cn | uǫ(z) 6= 0}, we have
∣

∣

∣

∣

∂

∂xj
|uǫ|
∣

∣

∣

∣

=

∣

∣

∣

∣

ℜ
(

uǫ
|uǫ|

(
∂

∂xj
− iyj

2
) uǫ

)
∣

∣

∣

∣

≤ 1

2
(|Zjuǫ|+ |Z̄juǫ|).

Similarly

∣

∣

∣

∂
∂yj

|uǫ|
∣

∣

∣
≤ 1

2
(|Zjuǫ|+|Z̄juǫ|) on Aǫ. Note that ‖uǫ‖Lp2 (Cn) = ‖uǫχAǫ

‖Lp2 (Cn).

By the usual Sobolev embedding on C
n
and above observations, we have in-

equality ‖uǫ‖Lp2(Cn) ≤ C‖|uǫχAǫ
|‖W 1,p1 ≤ C ‖uǫ‖W̃ 1,p1

L
. By Lemma 4.0.17 uǫ =
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e−ǫLf → f in W̃ 1,p1
L (Cn) and also in Lp2(Cn) as ǫ → 0. Therefore we have

‖f‖Lp2(Cn) ≤ C‖f‖
W̃

1,p1
L (Cn)

, where onstant C is a generi onstant independent

of f . Hene Lemma is proved.

Lemma 4.0.15 (Quasi ommutativity) Let f ∈ S ′(Cn). Then for every t, t0 ∈ R,

we have the following equalities in S ′(Cn)

Zje
−i(t−t0)Lf = e−2i(t−t0)e−i(t−t0)LZjf

Zje
−i(t−t0)Lf = e2i(t−t0)e−i(t−t0)LZjf.

Proof. Note that both Zje
−i(t−t0)Lf and Z̄je

−i(t−t0)Lf are in S ′(Cn) for f ∈
S ′(Cn). Sine every tempered distribution has a speial Hermite expansion,

enough to show the identities

〈

Zje
−i(t−t0)Lf,Φµ,ν

〉

= e−2i(t−t0)
〈

e−i(t−t0)LZjf,Φµ,ν
〉

〈

Zje
−i(t−t0)Lf,Φµ,ν

〉

= e2i(t−t0)
〈

e−i(t−t0)LZjf,Φµ,ν
〉

for every µ, ν ∈ (Z≥0)
n
.

Sine Zj and Z̄j are adjoint of eah other, both identities in the Lemma an

be easily veri�ed using the relations

e−i(t−t0)LZjΦµ,ν = e2i(t−t0) Zje
−i(t−t0)LΦµ,ν (4.0.4)

e−i(t−t0)LZjΦµ,ν = e−2i(t−t0) Zje
−i(t−t0)LΦµ,ν (4.0.5)

whih follows from the relations (2.0.1) and the fat that e−iτLΦµ,ν = e−iτ(2k+n)Φµ,ν .

Lemma 4.0.16 (Quasi ommutativity) Let t0 ∈ R and I an open interval suh

that t0 ∈ I. Let g ∈ Lq
′

lo

(

I, W̃ 1,p′

L (Cn)
)

, where (q, p) be an admissible pair. Then

∫ t

t0
e−i(t−s)Lg(z, s)ds ∈ C(I, W̃ 1,2

L (Cn)). Moreover for eah t ∈ I, we have the

following equalities in L2(Cn)

Zj

∫ t

t0

e−i(t−s)Lg(z, s)ds = e−2it

∫ t

t0

e−i(t−s)Le2isZjg(z, s)ds

Zj

∫ t

t0

e−i(t−s)Lg(z, s)ds = e2it
∫ t

t0

e−i(t−s)Le−2isZjg(z, s)ds.
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Proof. Sine g ∈ Lq
′

lo

(

I, W̃ 1,p′

L (Cn)
)

, by Strihartz estimates (Theorem 3.0.7)

∫ t

t0
e−i(t−s)LSg(z, s)ds ∈ C(I, L2(Cn)), where S = Zj, Z̄j, 1 ≤ j ≤ n. As disussed

in Lemma 4.0.15, Lemma follows from the following observations

〈

Zj

∫ t

t0

e−i(t−s)Lg(z, s)ds,Φµ,ν

〉

= e−2it

〈
∫ t

t0

e−i(t−s)Le2isLjg(z, s)ds,Φµ,ν

〉

〈

Z̄j

∫ t

t0

e−i(t−s)Lg(z, s)ds,Φµ,ν

〉

= e2it
〈
∫ t

t0

e−i(t−s)Le−2isMjg(z, s)ds,Φµ,ν

〉

for every µ, ν ∈ (Z≥0)
n
. These identities an be easily veri�ed using the relations

(4.0.4), (4.0.5).

Now we disuss the heat operator assoiated with the twisted Laplaian. For

ǫ > 0, onsider the heat operator for the twisted Laplaian given by

e−ǫLf =
∞
∑

k=0

e−ǫ(2k+n)Pkf

for f ∈ L2(Cn). By orthogonality of the speial Hermit funtions Φµ,ν , Pkf are

orthogonal projetions. Hene it is lear that e−ǫL is ontration on L2(Cn).

‖e−ǫLf‖22 =
∞
∑

k=1

e−2ǫ(2k+n)‖Pkf‖22.

The heat operator e−ǫL has the following integral representation as a twisted

onvolution operator

e−ǫLf = f ×Kǫ, (4.0.6)

where

Kǫ(z) = (2π)−ne−nǫ(1− e−2ǫ)−ne
−

(1+e−2ǫ)

(1−e−2ǫ)

|z|2

4
(4.0.7)

see (2.10), (2.11) in [22℄. Note that ‖Kǫ‖L1(Cn) = 2ne−nǫ(1 + e−2ǫ)−n < 1 and

limǫ→0 ‖Kǫ‖L1(Cn) = 1.

Lemma 4.0.17 For ǫ > 0, e−ǫL : Lp(Cn) → W̃m,p
L (Cn) de�nes a bounded oper-

ator for eah nonnegative integer m and 1 ≤ p ≤ ∞. In partiular we have the
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following inequalities:

‖e−ǫLf‖Lp(Cn) ≤ C‖f‖Lp(Cn) (4.0.8)

‖e−ǫLf‖W̃ 1,p
L (Cn) ≤ C‖f‖W̃ 1,p

L (Cn) (4.0.9)

‖e−ǫLf‖W̃m,p
L (Cn) ≤ Cǫ‖f‖Lp(Cn) (4.0.10)

with onstant C in (4.0.8) and (4.0.9) is independent of ǫ ∈ (0, 1]. Moreover, for

f ∈ W̃m,p
L (Cn), e−ǫLf → f in W̃m,p

L (Cn), 1 < p <∞.

Proof. In view of (4.0.6) and the fat that |f × g| ≤ |f | ∗ |g|, we see that

|e−ǫLf | ≤ |f | ∗Kǫ, (4.0.11)

where Kǫ is given by (4.0.7). Sine

‖Kǫ‖L1(Cn) = 2ne−nǫ(1 + e−2ǫ)−n ≤ 1,

estimate (4.0.8) follows from Young's inequality, see Folland [11℄ with C = 1.

As in Lemma 4.0.15 we see that e−ǫLf, Zje
−ǫLf, Zje

−ǫLf ∈ S ′(Cn), for ǫ > 0,

for f ∈ S ′(Cn), and the following equalities hold:

Zje
−ǫLf = e2ǫe−ǫLZjf, Zje

−ǫLf = e−2ǫe−ǫLZjf, (4.0.12)

hene the estimate (4.0.9) follows from the estimate (4.0.8). To prove (4.0.10),

enough to prove

‖S̃e−ǫLf‖Lp(Cn) ≤ Cǫ‖f‖Lp(Cn)

for any monomial S̃ in (Z1, . . . , Zn, Z̄1, . . . , Z̄n) of degree at most m. In view of

(4.0.6) and equation (1.3.10) in Thangavelu [33℄, we have

S̃e−ǫLf = S̃(f ×Kǫ) = f × S̃Kǫ.

Sine Kǫ ∈ S(Cn), S̃Kǫ ∈ L1(Cn), hene (4.0.10) follows by Young's inequality.

To prove the onvergene in W̃m,p
L (Cn), we �rst observe that for f ∈ L2

,

e−ǫLf → f in L2(Cn) as ǫ→ 0. This follows from the identity

‖e−ǫLf − f‖2L2(Cn) =
∞
∑

k=0

|1− e−ǫ(2k+n)|2‖Pkf‖2L2(Cn)
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by an appliation of the dominated onvergene theorem applied to the sum.

First we onsider the simple ase m = 0. In view of the uniform estimate

(4.0.8), enough to prove the onvergene on a dense set in Lp. For 2 < p < ∞,

writing

1
p
= β

2
+ 1−β

∞
= β

2
and an appliation of Hölder's inequality using the

estimate (4.0.8), we see that

‖e−ǫLf − f‖Lp(Cn) ≤ ‖e−ǫLf − f‖β
L2(Cn)‖e−ǫLf − f‖1−β

L∞(Cn)

≤ ‖e−ǫLf − f‖β
L2(Cn)(2‖f‖L∞(Cn))

1−β

whih goes to zero as ǫ → 0, for f ∈ L2 ∩ L∞(Cn). Similarly we an prove

onvergene in Lp(Cn) for 1 < p < 2.

For m 6= 0, we need to show S̃(e−ǫLf − f) → 0 in Lp(Cn) as ǫ → 0. But in

view of (4.0.12), we have

S̃(Z, Z̄)(e−ǫLf) = S̃(e2ǫ, e−2ǫ) e−ǫL(S̃(Z, Z̄)f).

Hene applying the previous argument to the Lp funtion g = S̃(Z, Z̄)f , and

observing that S̃(e2ǫ, e−2ǫ) → 1, the result follows.





Chapter 5

A loal existene result

In this hapter we prove the loal well posedness of the initial value problem

(1.0.13), (1.0.14):

i∂tu(z, t)− Lu(z, t) = G(z, u), z ∈ C
n, t ∈ R

u(z, t0) = f(z).

in the �rst order Sobolev spae W̃ 1,2(Cn). The di�erential operators Lj and Mj

are the natural ones adaptable to the power type nonlinearity G(u) = |u|αu and

the generality that we onsider here. Moreover we have the embedding theorem

(Lemma 4.0.9) and the operators Lj ,Mj ommute with e−i(t−t0)L and

∫ t

t0
e−i(t−s)L,

see Lemma 4.0.10. Theorem 5.0.23 and Theorem 5.0.26 are main results of this

hapter, see [24℄. Now we prove some auxilliary estimates.

Lemma 5.0.18 Let f ∈ W̃ 1,2(Cn) and t0 ∈ R. Then for every bounded in-

terval I and every admissible pair (q1, p1), t → e−i(t−t0)Lf ∈ C(R, W̃ 1,2(Cn)) ∩
Lq1
lo

(R, W̃ 1,p1(Cn)) and the following estimates hold :

‖e−i(t−t0)Lf‖
L∞(R,W̃ 1,2(Cn)) = ‖f‖W̃ 1,2(Cn) (5.0.1)

‖e−i(t−t0)Lf‖
Lq1(I,W̃ 1,p1(Cn)) ≤ C‖f‖W̃ 1,2(Cn) (5.0.2)

where the onstant C is independent of f and t0.

Proof. Sine both Lj and Mj ommute with the isometry e−i(t−t0)L, we have

Se−i(t−t0)Lf = e−i(t−t0)LSf, ‖Se−i(t−t0)Lf‖L2(Cn) = ‖Sf‖L2(Cn)

33
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for every t ∈ R with S = Lj , or Mj , j = 1, 2, ..., n from whih (5.0.1) follows.

Estimate (5.0.2) follows from the Strihartz type estimate (3.0.2) for e−i(t−t0)L

using the above ommutativity.

Lemma 5.0.19 Let I be a bounded interval and (q, p) an admissible pair with

p = 2 + α and q > 2. Let G be as in (1.0.15), (1.0.16), α ∈ [0, 2
n−1

) and

u, v ∈ L∞(I, W̃ 1,2(Cn)). Then u, v ∈ Lq(I, Lp(Cn)) and the following estimate

holds

‖G(z, u)−G(z, v)‖Lq′(I,Lp′ (Cn)) ≤ C|I|
q−q′
qq′ ‖u− v‖Lq(I,Lp(Cn))

×
(

‖u‖α
L∞(I,W̃ 1,2)

+ ‖u‖α
L∞(I,W̃ 1,2)

)

.(5.0.3)

Proof. Sine I is a bounded interval, in view of embedding theorem (Lemma

4.0.9), u, v ∈ Lq(I, Lp(Cn)). By estimate (1.0.18),

1
p′
= α

p
+ 1

p
, Holder's inequality

in the z-variable and Sobolev embedding theorem (Lemma 4.0.9), we observe that

‖G(·, u)−G(·, v)‖Lp′(Cn) ≤ C‖|u− v|(|u|α + |v|α)‖Lp′ (Cn)

≤ C‖(u− v)(·, t)‖Lp(Cn)

(

‖u‖αLp(Cn) + ‖v‖αLp(Cn)

)

(5.0.4)

≤ C‖(u− v)(·, t)‖Lp(Cn)

(

‖u(·, t)‖α
W̃ 1,2 + ‖v(·, t)‖α

W̃ 1,2

)

≤ C‖(u− v)(·, t)‖Lp(Cn)

(

‖u‖α
L∞(I,W̃ 1,2)

+ ‖v‖α
L∞(I,W̃ 1,2)

)

where t ∈ I. Now by taking Lq
′
norm in the t-variable on the interval I in the

above inequality, we get the required estimate (5.0.3).

Proposition 5.0.20 Let t0 ∈ R and I an open interval ontaining t0. Let G

be as in (1.0.15), (1.0.16), α ∈ [0, 2
n−1

) and (q, p) an admissible pair with p =

α + 2, q > 2. If u ∈ L∞
lo

(I, W̃ 1,2(Cn)) ∩ Lq
lo

(I, W̃ 1,p(Cn)), then G(z, u(z, t)) ∈
Lq

′

lo

(I, W̃ 1,p′) and

∫ t

t0
e−i(t−s)LG(z, u(z, s))ds ∈ C(I, W̃ 1,2). Moreover, for every

bounded interval J with J ⊂ I, t0 ∈ J and every admissible pair (q1, p1), the

following inequalities hold:

‖SG(z, u(z, t))‖Lq′ (J,Lp′ (Cn)) ≤ C|J |
q−q′
qq′ ‖u‖α

L∞(J,W̃ 1,2(Cn))
(5.0.5)

×(‖u‖Lq(J,Lp(Cn)) + ‖Su‖Lq(J,Lp(Cn)))

‖G(z, u(z, t))‖Lq′(J,W̃ 1,p′ (Cn)) ≤ C|J |
q−q′
qq′ ‖u‖α

L∞(J,W̃ 1,2(Cn))
(5.0.6)

×‖u‖Lq(J,W̃ 1,p(Cn))
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∥

∥

∥

∥

∫ t

t0

e−i(t−s)LG(z, u(z, s))ds

∥

∥

∥

∥

Lq1 (J,W̃ 1,p1 (Cn))

≤ C|J |
q−q′
qq′ ‖u‖α

L∞(J,W̃ 1,2)
(5.0.7)

×‖u‖Lq(J,W̃ 1,p(Cn))

where S = Id, Lj ,Mj (1 ≤ j ≤ n) and the onstant C is independent of u and t0.

Proof. To prove the inequality (5.0.5), we �rst observe that

Lj [ψ(x, y, |u|)u] = ψ(x, y, |u|)Lju+ u (∂|u|ψ)(x, y, |u|)ℜ
(

ū

|u|Lju
)

+ u(∂xjψ)(x, y, |u|) (5.0.8)

Mj [ψ(x, y, |u|)u] = ψ(x, y, |u|)Mju+ u (∂|u|ψ)(x, y, |u|)ℜ
(

ū

|u|Mju

)

+ u(∂yjψ)(x, y, |u|). (5.0.9)

Thus we see that for S = Lj and Mj , |SG| satis�es an inequality of the form

|SG| ≤ |ψ(x, y, |u|)Su|+ |ψ̃1(x, y, |u|)Su|+ |ψ̃2(x, y, |u|) u| (5.0.10)

where ψ̃1(x, y, |u|) = u∂|u|ψ and ψ̃2(x, y, |u|) = u∂xjψ or u∂yjψ depending on

S = Lj or Mj . Moreover, by assumption (1.0.16) on ψ, we have |ψ̃i(x, y, |u|)| ≤
C|u|α, i = 1, 2. Therefore

|SG| ≤ C|u|α(|u|+ |Su|) (5.0.11)

for S = Id, Lj ,Mj; 1 ≤ j ≤ n. Sine q′

q
+ q−q′

q
= 1, an appliation of the Hölder's

inequality in the t-variable shows that for q > 2

‖SG(z, u(z, t))‖
Lq′(J ;Lp′(Cn)) ≤ |J |

q−q′
qq′ ‖SG(z, u(z, t))‖Lq(J ;Lp′(Cn))

≤ C|J |
q−q′
qq′ ‖|u|α(|u|+ |Su|)‖Lq(J ;Lp′) . (5.0.12)

A further appliation of Hölder's inequality in the z-variable, using p′

p
+ αp′

p
= 1

and Lemma 4.0.9, we see that for a.e. t ∈ J

‖|u|α(|u|+ |Su|)‖Lp′(Cn) ≤ ‖u(·, t)‖αLp(Cn) (‖u(·, t)‖Lp(Cn) + ‖Su(·, t)‖Lp(Cn))

≤ C‖u(·, t)‖α
W̃ 1,2(Cn)

(‖u(·, t)‖Lp(Cn) + ‖Su(·, t)‖Lp(Cn))

≤ C‖u‖α
L∞(J,W̃ 1,2)(‖u(·, t)‖Lp + ‖Su(·, t)‖Lp). (5.0.13)
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Now taking Lq norm with respet to the t-variable on both sides, and substituting

in the RHS of inequality (5.0.12) gives the estimate (5.0.5).

Estimate (5.0.6) follows from the estimate (5.0.5). Estimate (5.0.7) follows

from Strihartz estimates (Theorem 3.0.7) and the estimate (5.0.6). The fat

that

∫ t

t0
e−i(t−s)LG(z, u(z, s)) ds ∈ C(I, W̃ 1,2) follows from Lemma 4.0.11 and

G(z, u) ∈ Lq
′

lo

(I, W̃ 1,p′). Hene we have proved the Proposition.

Equivalene of IVP and integral equation

In this setion we will show the equivalene of the di�erential equations (1.0.13),

(1.0.14) and the integral equation (1.0.20).

Lemma 5.0.21 Let I be an open interval ontaining t0 and G as in (1.0.15),

(1.0.16). Let α ∈ [0, 2
n−1

] for n ≥ 2 and α ∈ [0,∞) for n = 1. Let u ∈ X, where

X = {u ∈ C(I, L2(Cn)) : G(z, u(z, t)) ∈ L
q′1

lo

(I, Lp
′
1(Cn))}

for some admissible pair (q1, p1). Then u satis�es the nonlinear Shrödinger equa-

tion (1.0.13), with initial data (1.0.14) if and only if u satis�es the integral equa-

tion (1.0.20).

Proof. First observe that the following equalities

∂

∂t
(e−i(t−t0)Lf) = −iLe−i(t−t0)Lf (5.0.14)

∂

∂t

∫ t

t0

e−i(t−s)LG(z, s)ds = −iL
∫ t

t0

e−i(t−s)LG(z, s)ds+G(z, t) (5.0.15)

are valid in the distribution sense for f ∈ L2(Cn), G ∈ L
q′1

lo

(I, Lp
′
1(Cn)). Using

these we now show the equivalene of the initial value problem (1.0.13), (1.0.14)

and the integral equations (1.0.20).

If u satis�es (1.0.20) then using (5.0.14) and (5.0.15), we onlude that u

satis�es (1.0.13) and (1.0.14).

On the otherhand, if u satis�es (1.0.13) and (1.0.14) then the funtion v given

by

v(z, t) = u(z, t)− e−i(t−t0)Lf + i

∫ t

t0

e−i(t−s)LG(z, s)ds,
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satis�es

i∂tv(z, t)−Lv(z, t) = 0,

v(z, t0) = 0.

In view of Theorem 3.0.7 and given hypothesis, we have v ∈ C(I, L2(Cn)). There-

fore iL−1∂tv(z, t) − v(z, t) = 0 and L−1∂tv(z, t) ∈ C(I, L2(Cn)). Now for eah

µ, ν ∈ (Z≥0)
n
, and φ ∈ C∞

c (I), we observe that

〈

L−1∂tv(·, t),Φµ,ν
〉

= (2|ν|+ n)−1 〈∂tv(·, t),Φµ,ν〉 ∈ C(I) and

〈

iL−1∂tv(·, t),Φµ,νφ
〉

= i(2|ν|+ n)−1

〈

d

dt
〈v(·, t),Φµ,ν〉 , φ

〉

.

Therefore we take inner produt of the equation iL−1∂tv(z, t) − v(z, t) = 0 with

Φµ,ν and observe that

〈

iL−1∂tv(·, t)− v(·, t),Φµ,ν
〉

= 0

i(2|ν|+ n)−1 d

dt
〈v(·, t),Φµ,ν〉 − 〈v(·, t),Φµ,ν〉 = 0

d

dt

(

ei(2|ν|+n)t 〈v(·, t),Φµ,ν〉
)

= 0.

Sine t→ ei(2|ν|+n)t 〈v(·, t),Φµ,ν〉 is ontinuous and its distributional derivative is

zero, this funtion must be onstant. This shows that

〈v(·, t),Φµ,ν〉 = e−i(2|ν|+n)(t−t0) 〈v(·, t0),Φµ,ν〉 = 0

for every µ, ν ∈ (Z≥0)
n
. Therefore v(·, t) = 0 in L2(Cn) for eah t ∈ I and hene

u satis�es (1.0.20).

Now we prove (5.0.14) and (5.0.15). Let φ ∈ C∞
c (Cn × I). Sine I is an open

interval, supp φ ⊂ A × B, for some ompat set A ⊂ Cn
and some ompat

interval B ⊂ I. Clearly,

∂

∂t
(e−i(t−t0)Lφ̄) = e−i(t−t0)L

∂

∂t
φ̄− e−i(t−t0)LiLφ̄.

Also sine φ(z, ·) has ompat support in I for eah z,
∫

I
∂
∂t
(e−i(t−t0)Lφ)dt = 0,

hene
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∫

I

e−i(t−t0)L ∂tφ dt =

∫

I

e−i(t−t0)LiLφ dt = i

∫

I

ei(t−t0)LLφ dt. (5.0.16)

Using this and the pairing 〈f, ϕ〉 =
∫

fϕ̄, we see that

∫

Cn×I

e−i(t−t0)Lf(z)
∂

∂t
φ(z, t) dzdt =

〈

e−i(t−t0)Lf,
∂

∂t
φ

〉

=

〈

f, ei(t−t0)L
∂

∂t
φ

〉

=
〈

f,−iei(t−t0)LLφ
〉

=
〈

iLe−i(t−t0)Lf, φ
〉

.

This proves (5.0.14) in the distribution sense.

To prove (5.0.15), hoose a sequene {Gm} in C∞
c (A× B) suh that Gm → G

in Lq
′
1(B,Lp

′
1(A)). Note that Gm,LGm ∈ L2(A× B) hene,

lim
h→0

1

h

[

e−i(t+h−s)L − e−i(t−s)L
]

Gm(z, s) = −iL e−i(t−s)LGm(z, s)

and lim
s→t

e−i(t−s)LGm(z, s) = Gm(z, t) where both the limits are taken in L2(Cn)

sense. Thus as an L2(Cn) valued integral on I, we have

∂

∂t

∫ t

t0

e−i(t−s)LGm(z, s)ds

= lim
h→0

1

h

(
∫ t+h

t0

e−i(t+h−s)LGm(z, s)ds−
∫ t

t0

e−i(t−s)LGm(z, s)ds

)

= lim
h→0

1

h

∫ t+h

t0

(e−i(t+h−s)L − e−i(t−s)L)Gm(z, s)ds

+lim
h→0

1

h

∫ t+h

t

e−i(t−s)LGm(z, s)ds

= −iL
∫ t

t0

e−i(t−s)LGm(z, s)ds+Gm(z, t). (5.0.17)

Observe that

∫ t

t0

e−i(t−s)LGm(z, s)ds →
∫ t

t0

e−i(t−s)LG(z, s)ds in Lq1 (B;Lp1(A))

as m→ ∞. This follows from Strihartz estimates (Theorem 3.0.7), sine B is a

bounded interval. Thus using (5.0.17), we see that

〈
∫ t

t0

e−i(t−s)LG(z, s)ds,
∂

∂t
φ

〉

= lim
m→∞

〈
∫ t

0

e−i(t−s)LGm(z, s)ds,
∂

∂t
φ

〉
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= lim
m→∞

〈

− ∂

∂t

∫ t

0

e−i(t−s)LGm(z, s)ds, φ

〉

= lim
m→∞

〈

iL
∫ t

0

e−i(t−s)LGm(z, s)ds−Gm(z, t), φ

〉

= lim
m→∞

〈
∫ t

0

e−i(t−s)LGm(z, s)ds,−iLφ
〉

− 〈G(z, t), φ〉

= −
〈
∫ t

0

e−i(t−s)LG(z, s)ds, iLφ
〉

− 〈G(z, t), φ〉.

This shows that (5.0.15) holds in the distribution sense.

Loal existene

In this setion we prove loal existene of solutions in the �rst order Sobolev

spae W̃ 1,2(Cn). We follow Kato's approah [16℄ using Strihartz estimates. The

key step is to identify some omplete metri spae that lie in L∞((t0 − T, t0 +

T ); W̃ 1,2(Cn)), for a suitable T , where the operator H given by (1.0.21) is a

ontration. We proeed as follows:

For given positive numbers T and M , onsider the set E = ET,M given by

E =







u ∈ L∞
(

IT ; W̃
1,2
)

∩ Lq
(

IT , W̃
1,p
)

∣

∣

∣

∣

∣

∣

‖u‖
L∞(IT ,W̃ 1,2) ≤M,

‖u‖
Lq(IT ,W̃ 1,p) ≤M







where IT = (t0 − T, t0 + T ). Introdue a metri on E, by setting

d(u, v) = ‖u− v‖L∞(IT ,L2(Cn)) + ‖u− v‖Lq(IT ,Lp(Cn)).

Proposition 5.0.22 (E, d) is a omplete metri spae.

Proof. Let {um} be a Cauhy sequene in (E, d). Then {um} be a Cauhy

sequene in L∞ (IT , L
2(Cn)) and Lq (IT , L

p(Cn)). Sine these spaes are omplete

(see setion 8.18.1 in [10℄), there exists u ∈ L∞ (IT , L
2(Cn))∩Lq (IT , Lp(Cn)) and

um → u in L∞ (IT , L
2(Cn)) and also in Lq (IT , L

p(Cn)).

We need to show that u ∈ L∞(IT ; W̃
1,2(Cn)) ∩ Lq(IT ; W̃ 1,p(Cn)) with

max{‖u‖L∞(IT ,W̃ 1,2(Cn)), ‖u‖Lq(IT ,W̃ 1,p(Cn))} ≤M.

Let S = Id, Lj or Mj with 1 ≤ j ≤ n and ϕ ∈ C∞
c (Cn × IT ). Then for �xed
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t ∈ IT , using the pairing 〈, 〉z in the z-variable, we see that

|〈u(·, t), S∗ϕ(·, t)〉z| ≤ |〈(u− um)(·, t), S∗ϕ(·, t)〉|+ |〈Sum(·, t), ϕ(·, t)〉|
≤ ‖u(·, t)− um(·, t)‖Lp(Cn,dz)‖S∗ϕ(·, t)‖Lp′(Cn,dz)

+ ‖Sum(·, t)‖Lp(Cn,dz)‖ϕ(·, t)‖Lp′(Cn,dz).

Integrating with respet to t and applying the Hölder's inequality in the t-variable,

this yields

|〈Su, ϕ〉z,t| ≤ ‖u−um‖Lq(IT ,Lp(Cn))‖S∗ϕ‖Lq′(IT ,Lp′(Cn))+‖Sum‖Lq(IT ,Lp(Cn))‖ϕ‖Lq′(IT ,Lp′).

Sine um → u ∈ Lq(IT , L
p(Cn)), letting m→ ∞, we get

|〈Su, ϕ〉z,t| ≤ lim inf
m→∞

‖Sum‖Lq(IT ,Lp(Cn))‖ϕ‖Lq′(IT ,Lp′(Cn)).

Taking supremum over all ϕ ∈ C∞
c (Cn× IT ) with ‖ϕ‖Lq′ (IT ,Lp′(Cn)) ≤ 1, this gives

‖Su‖Lq(IT ;Lp) ≤ lim inf
m→∞

‖Sum‖Lq(IT ,Lp(Cn)). (5.0.18)

Therefore

‖u‖
Lq(IT ;W̃ 1,p) ≤ lim inf

m→∞
‖um‖Lq(IT ,W̃ 1,p(Cn)) ≤ M.

To get estimate for the pair (∞, 2), take ϕ ∈ C∞
c (Cn), and by the same arguments

as before

|〈Su(·, t), ϕ〉z| ≤ lim inf
m→∞

‖Sum(·, t)‖L2(Cn)‖ϕ‖L2(Cn)

for almost every t ∈ IT . Taking supremum over all ϕ ∈ C∞
c (Cn) with ‖ϕ‖L2 ≤ 1

this gives

‖Su(·, t)‖L2(Cn) ≤ lim inf
m→∞

‖Sum‖L∞(IT ,L2(Cn)). (5.0.19)

Taking the essential supremum over t ∈ IT , we get

‖Su‖L∞(IT ;L2) ≤ lim inf
m→∞

‖Sum‖L∞(IT ,L2(Cn)).

Therefore

‖u‖
L∞(IT ;W̃ 1,2) ≤ lim inf

m→∞
‖um‖L∞(IT ,W̃ 1,2(Cn)) ≤M.
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Now we prove the following theorem in whih we give the existene of soultion of

the initial value problem (1.0.13), (1.0.14).

Theorem 5.0.23 (Loal existene) Assume that G is as in (1.0.15), (1.0.16)

with α ∈ [0, 2
n−1

) and u(z, t0) = f(z) ∈ W̃ 1,2(Cn). Then there exist a number

T = T (‖u0‖) suh that the initial value problem (1.0.13), (1.0.14) has a unique

solution u ∈ C([t0 − T, t0 + T ]; W̃ 1,2(Cn)) ∩ Lq((t0 − T, t0 + T ), W̃ 1,p(Cn)), where

(q, p) be an admissible pair with p = 2 + α, q > 2.

Proof. In view of Lemma 5.0.21, we show existene of solution by showing that

operator H given by (1.0.21) has �xed point in the omplete metri spae E for

suitable T > 0 and M > 0. Let u ∈ E. In view of equation (1.0.21) and from

estimates in Lemma 5.0.18 and Proposition 5.0.20, we see that

max{‖Hu‖
L∞(IT ,W̃ 1,2), ‖Hu‖Lq(IT ,W̃ 1,p)}

≤ C ‖f‖W̃ 1,2 + C T
q−q′
qq′ ‖u‖α

L∞(IT ;W̃ 1,2)
‖u‖Lq(IT ,W̃ 1,p(Cn))

≤ C ‖f‖W̃ 1,2 + C T
q−q′
qq′ M1+α. (5.0.20)

For u, v ∈ E, using Strihartz estimate (3.0.2) and Lemma (5.0.19), we get

d(Hu,Hv) = ‖Hu−Hv‖L∞(IT ,L2) + ‖Hu−Hv‖Lq(IT ,Lp)

≤ C‖G(z, u)−G(z, v)‖
Lq′(IT ,Lp′)

≤ CT
q−q′
qq′ (‖u‖α

L∞(IT ,W̃ 1,2) + ‖v‖α
L∞(IT ,W̃ 1,2))‖u− v‖Lq(IT ,Lp)

≤ CT
q−q′
qq′ Mαd(u, v). (5.0.21)

Choose

M =

{

1 if f = 0

2C‖f‖W̃ 1,2(Cn) if f 6= 0
(5.0.22)

and

T =







min{π, (2C)−
qq′

q−q′ } if f = 0

min{π, (2C)−(1+α) qq′

q−q′ ‖f‖−α
qq′

q−q′

W̃ 1,2(Cn)
} if f 6= 0

(5.0.23)

where C is the same onstant that appears in the inequalities (5.0.20), (5.0.21)
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and is independent of T , see Remark 3.0.8.

For these hoies of M and T , operator H maps E to E and also is a onta-

tion on E. Therefore H has unique �xed point in E. From Lemma 5.0.18 and

Proposition 5.0.20, we onlude that u ∈ C(ĪT , W̃
1,2(Cn)) ∩ Lq1(IT , W̃

1,p1(Cn))

for every admissible pair (q1, p1). In view of Lemma 5.0.21 and estimate 5.0.6, u

is solution of the initial value problem (1.0.13), (1.0.14).

Blowup alternative, uniqueness and stability

In Theorem 5.0.26, we will prove blowup alternative, uniqueness and stability. We

�rst prove the following two Propositions whih are useful in proving Theorem

5.0.26.

Proposition 5.0.24 Let Φ be a ontinuous omplex valued funtion on C suh

that |Φ(w)| ≤ C|w|α for 0 ≤ α < 2
n−1

. Let a, b ∈ R. Suppose {um} be a sequene

in Lq
(

(a, b), W̃ 1,p(Cn)
)

∩ L∞((a, b), W̃ 1,2(Cn)) with p = 2 + α, q ≥ 2, suh that

sup
m∈N

‖um‖L∞((a,b),W̃ 1,2(Cn)) ≤M <∞.

If um → u in Lq((a, b), Lp(Cn)) and u ∈ Lq((a, b), W̃ 1,p) ∩ L∞((a, b), W̃ 1,2) then

[Φ(um)− Φ(u)]Su→ 0 in Lq
′ (

(a, b), Lp
′
(Cn)

)

, for S = Id, Lj,Mj ; 1 ≤ j ≤ n.

Proof. Sine um → u in Lq((a, b), Lp(Cn)), we an extrat a subsequene still

denoted by uk suh that

‖uk+1 − uk‖Lq((a,b),Lp(Cn)) ≤
1

2k

for all k ≥ 1 and uk(z, t) → u(z, t) a.e. (z, t), see Theorem 4.9 in Brezis [3℄.

Hene by ontinuity of Φ,

[Φ(uk)− Φ(u)]Su→ 0 for a.e. (z, t) ∈ C
n × (a, b). (5.0.24)

We establish the norm onvergene by appealing to a dominated onvergene

argument in the z and t variables suessively.

Consider the funtion H(z, t) =
∑∞

k=1 |uk+1(z, t) − uk(z, t)|. Clearly H ∈
Lq ((a, b), Lp(Cn)), sine the above series onverges absolutely in that spae. Also

for l > k, |(ul − uk)(z, t)| ≤ |ul − ul−1| + · · · + |uk+1 − uk| ≤ H(z, t) hene
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|uk − u| ≤ H. This leads to the pointwise almost everywhere inequality

|uk(z, t)| ≤ |u(z, t)|+H(z, t) = v(z, t).

Hene

| [Φ(uk)− Φ(u)]Su(z, t)|p′ ≤ |[vα + |u|α]Su(z, t)|p′.

Sine u, v ∈ Lq ((a, b), Lp(Cn)) and p = 2 + α, using Hölder's inequality with

p′

p
+ αp′

p
= 1, we get

∫

Cn

|(vα + |u|α)Su(z, t)|p′dz (5.0.25)

≤ (‖v(·, t)‖αp′
Lp(Cn)+ ‖u(·, t)‖αp′

Lp(Cn))‖Su(·, t)‖
p′

Lp(Cn).

Thus using dominated onvergene theorem in the z-variable, we see that

‖ [Φ(uk)− Φ(u)]Su(·, t)‖Lp′(Cn) → 0 (5.0.26)

as k → ∞, for a.e. t.

Again, in view of Lemma 4.0.9 and Hölder's inequality as above, we get

‖[Φ(uk) − Φ(u)]Su(·, t)‖Lp′(Cn)

≤ C
(

‖uk‖αL∞([a,b],W̃ 1,2(Cn)) + ‖u‖α
L∞([a,b],W̃ 1,2(Cn))

)

‖Su(·, t)‖Lp

≤ C(Mα + ‖u‖α
L∞([a,b],W̃ 1,2(Cn)))‖Su(·, t)‖Lp(Cn).

Sine ‖Su(·, t)‖Lp(Cn) ∈ Lq
′
((a, b)) and q ≥ 2, an appliation of the Hölder's

inequality in the t-variable shows that

∫ b

a

‖Su(·, t)‖q′
Lp(Cn)dt ≤ [b− a]

q−q′

q ‖Su(·, t)‖q′
Lq((a,b),Lp(Cn)).

Hene a further appliation of dominated onvergene theorem in the t-variable

shows that ‖ (Φ(uk)− Φ(u))Su‖Lq′((a,b),Lp′ ) → 0, as k → ∞.

Thus we have shown that [Φ(umk
)− Φ(u)]Su→ 0 in Lq

′
((a, b), Lp

′
(Cn)) when-

ever um → u in Lq((a, b), Lp(Cn)). But the above arguments are also valid if we

had started with any subsequene of um. It follows that any subsequene of

[Φ(um)− Φ(u)]Su has a subsequene that onverges to 0 in Lq
′
((a, b), Lp

′
(Cn)).

From this we onlude that the original sequene [Φ(um)− Φ(u)]Su onverges to
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zero in Lq
′
((a, b), Lp

′
(Cn)), hene the Proposition.

Proposition 5.0.25 Let {fm}m≥1 be a sequene in W̃ 1,2(Cn) suh that fm → f

in W̃ 1,2(Cn) as m → ∞. Let um and u be the solutions orresponding to the

initial data fm and f respetively, at time t = t0. Then there exists τ , depending

on ‖f‖W̃ 1,2 suh that ‖(um − u)(·, t)‖W̃ 1,2(Cn) → 0 for eah t ∈ [t0 − τ, t0 + τ ] and

‖um− u‖Lq1 ([t0−τ,t0+τ ],W̃ 1,p1(Cn)) → 0 as m→ ∞ for every admissible pair (q1, p1).

Moreover ‖G(z, um(z, t))−G(z, u(z, t))‖Lq′ ([t0−τ,t0+τ ],W̃ 1,p′(Cn)) → 0 as m→ ∞.

Proof. Sine ‖fm‖W̃ 1,2(Cn) → ‖f‖W̃ 1,2(Cn), by (5.0.22), (5.0.23) and by taking m

large if neessary, we an assume that solutions um are de�ned on [t0 − τ, t0 + τ ]

for τ < T . Setting Gm(z, t) = G(z, um(z, t)), we have

(um − u)(z, t) = e−i(t−t0)L(fm − f)(z)− i

∫ t

t0

e−i(t−s)L(Gm −G)(z, s)ds

for all t ∈ Iτ = [t0 − τ, t0 + τ ].

First we onsider the ase f ≡ 0. Sine H(0) = 0 and the �xed point of H in

E is unique, in this ase the solution u ≡ 0. Thus by Lemma 5.0.18, Proposition

5.0.20 and Strihartz estimates (Theorem 3.0.7), we see that

‖um‖Lq(Iτ ,W̃ 1,p) ≤ C‖fm‖W̃ 1,2 + Cτ
q−q′

qq′ ‖um‖αL∞(Iτ ,W̃ 1,2)
‖um‖Lq(Iτ ,W̃ 1,p).(5.0.27)

Note that ‖um‖L∞(Iτ ,W̃ 1,2) ≤Mm. Mm is given by the following

Mm =

{

1 if fm = 0

2C‖fm‖W̃ 1,2 if fm 6= 0

and ‖fm‖W̃ 1,2 → ‖f‖W̃ 1,2 = 0, therefore we have Mm ≤ 1 for large m. Now we

hoose τ su�iently small so that Cτ
q−q′

qq′ < 1
2
and from (5.0.27) we see that

‖um‖Lq(Iτ ,W̃ 1,p) ≤ 2C‖fm‖W̃ 1,2 → 0 as m→ ∞. (5.0.28)

Therefore by estimate (5.0.6)

‖Gm‖Lq′(Iτ ,W̃ 1,p′) ≤ Cτ
q−q′

qq′ ‖um‖αL∞(Iτ ,W̃ 1,2)
‖um‖Lq(Iτ ,W̃ 1,p) → 0
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as m→ ∞ and by Strihartz estimates

‖um‖Lq1 (Iτ ,W̃ 1,p1) ≤ C‖fm‖W̃ 1,2 + C‖Gm‖Lq′ (Iτ ,W̃ 1,p′) → 0

as m→ ∞ for every admissible pair (q1, p1).

Now we onsider the ase f 6= 0. We hoose m su�iently large suh that

‖fm − f‖W̃ 1,2 < ‖f‖W̃ 1,2. Therefore we have ‖fm‖W̃ 1,2 ≤ 2‖f‖W̃ 1,2 and Mm :=

2C‖fm‖W̃ 1,2 ≤ 2M := 4C‖f‖W̃ 1,2. By Lemma 5.0.19, equation (5.0.22), Lemma

5.0.18, Proposition 5.0.20 and the fat that Mm ≤ 2M we get

‖Gm −G‖Lq′(Iτ ,Lp′(Cn)) ≤ Cτ
q−q′

qq′ ‖f‖α
W̃ 1,2‖um − u‖Lq(Iτ ,Lp(Cn)) (5.0.29)

‖um − u‖Lq(Iτ ,Lp(Cn)) ≤ C‖fm − f‖L2 + Cτ
q−q′

qq′ ‖f‖α
W̃ 1,2‖um − u‖Lq(Iτ ,Lp(Cn)).

Now we hoose τ small so that Cτ
q−q′

qq′ ‖f‖α
W̃ 1,2 <

1
2
, we see that

‖um − u‖Lq(Iτ ,Lp(Cn)) ≤ 2C‖fm − f‖L2(Cn) → 0 (5.0.30)

as m → ∞. From estimate 5.0.29, we see that ‖Gm − G‖Lq′ (Iτ ,Lp′(Cn)) → 0 as

m→ ∞ and from Strihartz estimates ‖um− u‖Lq1 (Iτ ,Lp1(Cn)) → 0 as m→ ∞ for

every admissible pair (q1, p1).

For S = Lj ,Mj (1 ≤ j ≤ n) and by using (5.0.8), (5.0.9) with the notation

ψm = ψ (z, |um(z, t)|), we have

S(Gm −G) = ψmS(um − u) + (ψm − ψ)Su+ (∂jψm)(um − u)

+ (∂jψm − ∂jψ)u+ (∂2n+1ψm)umℜ(
um
|um|

S(um − u))

+ (∂2n+1ψm)umℜ(
um
|um|

Su)− (∂2n+1ψ)uℜ(
u

|u|Su)

(5.0.31)

where ∂j = ∂xj for S = Lj and ∂j = ∂yj for S =Mj , 1 ≤ j ≤ n.

Using the assumption (1.0.16) on ψ, Lemma 4.0.9, and the fat that Mm ≤
2M , similar omputations as in Proposition 5.0.20 shows that

‖ψmS(um − u)‖
Lq′(Iτ ,Lp′(Cn)) ≤ Cτ

q−q′

qq′ ‖f‖α
W̃ 1,2(Cn)

‖S(um − u)‖Lq(Iτ ,Lp(Cn))

‖(∂jψm)(um − u)‖
Lq′(Iτ ,Lp′(Cn)) ≤ Cτ

q−q′

qq′ ‖f‖α
W̃ 1,2‖um − u‖Lq(Iτ ,Lp(Cn))
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‖(∂2n+1ψm)umℜ(
um
|um|

S(um − u))‖
Lq′(Iτ ,Lp′(Cn))

≤ Cτ
q−q′

qq′ ‖f‖α
W̃ 1,2‖S(um − u)‖Lq(Iτ ,Lp(Cn)).

Sine ‖um − u‖Lq(Iτ ,Lp(Cn)) → 0, by seond inequality in the above estimates,

(∂jψm)(um − u) → 0 as m → ∞. Now G is C1
, so in view of the ondition

(1.0.16) on ψ and Proposition 5.0.24, the sequenes (ψm−ψ)Su, , (∂jψm − ∂jψ)u

and (∂4ψm)umℜ( um|um|
Su) − (∂4ψ)uℜ( u|u|Su) onverges to zero in Lq

′
(Iτ , L

p′(Cn))

as m→ ∞. Using these observations and from (5.0.31), we get

‖S(Gm −G)‖Lq′(Iτ ,Lp′) ≤ Cτ
q−q′

qq′ ‖f‖α
W̃ 1,2‖S(um − u)‖Lq(Iτ ,Lp(Cn)) + am

‖Gm −G‖Lq′(Iτ ,W̃ 1,p′) ≤ Cτ
q−q′

qq′ ‖f‖α
W̃ 1,2‖um − u‖Lq(Iτ ,W̃ 1,p(Cn)) + am(5.0.32)

where am → 0 as m → ∞ and S = Lj ,Mj; 1 ≤ j ≤ n. By Lemma 5.0.18 and

estimate (5.0.32), we see that

‖um − u‖Lq(Iτ ,W̃ 1,p) ≤ C‖fm − f‖W̃ 1,2 + Cτ
q−q′

qq′ ‖f‖α
W̃ 1,2‖um − u‖Lq(Iτ ,W̃ 1,p) + am.

Now hoose τ su�iently small so that

Cτ
q−q′

qq′ ‖f‖α
W̃ 1,2 ≤

1

2

and we see that ‖um − u‖Lq(Iτ ,W̃ 1,p) ≤ 2C‖fm − f‖W̃ 1,2 + 2am → 0 as m → ∞.

Now from (5.0.32), ‖Gm − G‖Lq′ (Iτ ,W̃ 1,p′) → 0 as m → ∞ and from Strihartz

estimates ‖um − u‖Lq1 (Iτ ,W̃ 1,p1) → 0 as m → ∞ for every admissible pair (q1, p1).

Sine um, u ∈ C(Iτ , W̃
1,2(Cn)) for eah m, therefore ‖(um−u)(·, t)‖W̃ 1,2 ≤ ‖um−

u‖L∞(Iτ ,W̃ 1,2) for eah t ∈ Iτ . Sine (∞, 2) is an admissible pair, therefore ‖(um−
u)(·, t)‖W̃ 1,2 → 0 as m→ ∞ for eah t ∈ Iτ . Hene the proposition.

Theorem 5.0.26 Let u(·, t0) = f ∈ W̃ 1,2(Cn), α ∈ [0, 2
n−1

) and G be as in

(1.0.15), (1.0.16). Then the initial value problem (1.0.13), (1.0.14) has unique

maximal solution u ∈ C((T∗, T
∗), W̃ 1,2(Cn)) ∩ Lq1

lo

(

(T∗, T
∗), W̃ 1,p1(Cn)

)

, where

t0 ∈ (T∗, T
∗) and (q1, p1) be an arbitrary admissible pair. Fix p = 2+α. Moreover

the following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), W̃ 1,2)∩Lq1

lo

(

(T∗, T
∗), W̃ 1,p

)

for every admissible pair (q1, p) with q1 > 2.
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(ii)(Blowup alternative) If T ∗ <∞ (respetively, T∗ > −∞), then ‖u(·, t)‖W̃ 1,2

→ ∞ as t→ T ∗ (respetively, t→ T∗).

(iii)(Stability) If fj → f in W̃ 1,2(Cn), then uj(·, t) → u(·, t) in W̃ 1,2(Cn) for

eah t ∈ (T∗, T
∗) and also uj → u in Lq1(I, W̃ 1,p1(Cn)) for every admissible

pair (q1, p1) and every interval I with Ī ⊂ (T∗, T
∗), where uj is the solution

of equation (1.0.13) with initial value uj(·, t0) = fj.

Proof. By loal existene (Theorem 5.0.23), the solution exists in C(IT : W̃ 1,2(Cn))

where IT = (t0 − T, t0 + T ). Sine ‖u(·, t0 + T )‖W̃ 1,2(Cn) < ∞, the argument in

the proof of Theorem 5.0.23 an be arried out with t0 + T as the initial time, to

extend the solution to the interval [t0 + T, T1]. This proedure an be ontinued

and we an get a sequene {Tm} suh that t0 + T < T1 < T2 < · · · < Tm < · · ·
as long as ‖u(·, Tm)‖W̃ 1,2(Cn) <∞. Let T ∗ = sup

m

Tm so that the solution extends

to [t0, T
∗). In the same way we an extend the solution to the left side to the

interval (T∗, t0] to get a solution in C((T∗, T
∗), W̃ 1,2(Cn)). Now we prove blowup

alternative, uniqueness and stability.

Blowup alternative: Suppose T ∗ < ∞ and sup
t∈[t0,T ∗)

‖u(z, t)‖W̃ 1,2 = M0 < ∞. If

f = 0, then H(0) = 0 and sine H has unique �xed point in E, u(·, t) = 0 for

t ∈ [t0 − T, t0 + T ] where T = min{π, (2C)−
qq′

q−q′ }, see (5.0.23). By onsidering

t0 − T and t0 + T as a initial time, by the same reasoning solution u(·, t) = 0

for t ∈ [t0 − 2T, t0 + 2T ]. By ontinuing this proess, solution u is global and

u(·, t) = 0 for t ∈ R. This ontradits the fat that T ∗ <∞. Therefore f 6= 0.

Now we hoose a sequene tj ↑ T ∗
. From loal existene (see (5.0.23)) we an

hoose Tj = min{C1‖u(., tj)‖
−α qq′

q−q′

W̃ 1,2 , π} suh that u ∈ C([tj − Tj , tj + Tj], W̃
1,2)

where C1 = (2C)
−(1+α) qq′

q−q′
. Hene by assumption Tj ≥ min{C1M

−α qq′
q−q′

0 , π},
a onstant independent of tj , for q > 2. Thus we an hoose j so large that

tj + Tj > T ∗
, whih ontradits maximality of T ∗

. Hene if T ∗ < ∞ then

lim
t→T ∗

‖u(z, t)‖W̃ 1,2 = ∞. Similarly, we an show that lim
t→T∗

‖u(., t)‖W̃ 1,2 = ∞, if

T∗ > −∞.

Uniqueness: Suppose that u, v ∈ C((T∗, T
∗), W̃ 1,2) ∩ Lq

lo

((T∗, T
∗), W̃ 1,p) are

two solutions of the equations (1.0.13) and (1.0.14) where (q, p) be an admissible

pair with p = 2 + α and q > 2. Then u and v will satisfy integral equation

(1.0.20), see Lemma 5.0.21. Sine u(·, t0) = v(·, t0) = f and the solution given

by the ontration mapping is unique on [t0 − T, t0 + T ], u(·, t) = v(·, t) for
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t ∈ [t0 − T, t0 + T ]. Let t̃ ∈ (T∗, T
∗) be suh that u(·, t̃) = v(·, t̃). For τ ∈ (t̃, T ∗),

we have

u(z, τ) = e−i(τ−t̃)Lu(z, t̃)− i

∫ τ

t̃

e−i(τ−s)LG(z, u(z, s))ds,

v(z, τ) = e−i(τ−t̃)Lv(z, t̃)− i

∫ τ

t̃

e−i(τ−s)LG(z, v(z, s))ds.

By Strihartz estimate (3.0.2) and Lemma 5.0.19, we have

‖u− v‖
Lq((t̃,τ),Lp(Cn)) =

∥

∥

∥

∥

∫ τ

t̃

e−i(t−s)L (G(u)−G(v)) (z, s)ds

∥

∥

∥

∥

Lq((t̃,τ),Lp(Cn))

≤ C|τ − t̃|
q−q′

qq′ Mα
t̃,τ
‖u− v‖

Lq((t̃,τ),Lp(Cn))

for all τ ∈ (t̃, T ∗) where Mt̃,τ = max{‖u‖
L∞((t̃,τ),W̃ 1,2), ‖v‖L∞((t̃,τ),W̃ 1,2)}, see

(5.0.22). Sine u, v ∈ C
(

[t0, T
∗), W̃ 1,2

)

, we have Mt̃,τ < ∞. Choose τ ∈ [t̃, T ∗)

su�iently lose to t̃ suh that C|τ − t̃|
q−q′

qq′ Mα
t̃,τ

= c < 1, so that

0 ≤ (1− c)‖u− v‖Lq((t̃,τ):Lp(Cn)) ≤ 0.

Hene u = v on the larger interval [t̃, τ ].

Now let θ =sup{T̃ : t0 < T̃ < T ∗ : ‖u − v‖Lq([t0,T̃ ],Lp) = 0}. If θ < T ∗
,

then for su�iently small ǫ > 0, hoose t̃ = θ − ǫ, τ = θ + ǫ and by the above

observation, ‖u−v‖Lq((θ−ǫ,θ+ǫ),Lp) = 0, whih ontradits the de�nition of θ. Thus

we onlude that θ = T ∗
, proving the uniqueness on [t0, T

∗). Similarly one an

show uniqueness on (T∗, t0].

Stability: Let {fm}m≥1 be a sequene in W̃ 1,2(Cn) suh that fm → f in W̃ 1,2

as m → ∞. Let um and u be the solutions orresponding to the initial values

fm and f respetively. Let (T∗, T
∗) and (T∗,m, T

∗
m) be maximal intervals for the

solutions u and um respetively and I ⊂ (T∗, T
∗) be a ompat interval.

The key idea is to extend the stability result proved in Proposition 5.0.25 to

the interval I by overing it with �nitely many intervals obtained by suessive

appliation of Proposition 5.0.25. This is possible provided um is de�ned on I,

for all but �nitely many m. In fat, we prove I ⊂ (T∗,m, T
∗
m) for all but �nitely

many m.
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We an assume that t0 ∈ I = [a, b], and give a proof by the method of

ontradition. Suppose there exist in�nitely many T ∗
mj

≤ b and let c = lim inf T ∗
mj
.

Then for ǫ > 0, [t0, c−ǫ] ⊂ [t0, T
∗
mj
) for allmj su�iently large and umj

are de�ned

on [t0, c− ǫ].

By ompatness, the stability result proved in Proposition 5.0.25 an be ex-

tended to the interval [t0, c−ǫ] by overing it with �nitely many intervals obtained

by suessive appliation of Proposition 5.0.25. Hene

‖umj
(·, c− ǫ)‖W̃ 1,2 → ‖u(·, c− ǫ)‖W̃ 1,2 as j → ∞.

Also by ontinuity we have

‖u(·, c− ǫ)‖W̃ 1,2 → ‖u(·, c)‖W̃ 1,2 as ǫ→ 0.

Thus, for any δ > 0, we have

‖umj
(·, c− ǫ)‖−α

qq′

q−q′

W̃ 1,2 > δ whenever ‖u(·, c)‖−α
qq′

q−q′

W̃ 1,2 > δ, (5.0.33)

for su�iently small ǫ and for all j ≥ j0(ǫ). Therefore by applying the loal

existene theorem (see equation 5.0.23), with c−ǫ as the initial time, without loss

of generality we an assume that umj
extends to [t0, c−ǫ+C1‖umj

(·, c−ǫ)‖−α
qq′

q−q′

W̃ 1,2 ]

for large j where C1 = (2C)
−(1+α) qq′

q−q′
. Now hoosing ǫ < C1

2
δ, we have by (5.0.33)

c− ǫ+ C1‖umj
(·, c− ǫ)‖−α

qq′

q−q′

W̃ 1,2 > c+
C1

2
δ for all j ≥ j0(ǫ).

It follows that T ∗
mj

≥ c+ C1

2
δ, hene ontradits the fat that lim inf T ∗

mj
= c.

Similarly we an show that [a, t0] ⊂ (T∗,m, t0] for all but �nitely many m whih

ompletes the proof of stability.





Chapter 6

Global well posedness in W̃
1,2
L (Cn)

In hapter 5, we proved the loal well posedness of the initial value problem

(1.0.13), (1.0.14) in W̃ 1,2(Cn). The reason for onsidering this spae was that

the operators Lj,Mj (1 ≤ j ≤ n) ommute with e−itL and

∫ t

t0
e−(t−s)L

and also

ompatible with the nonlinearity G. From (1.0.24), we see that W̃ 1,2(Cn) is not

the energy spae and therefore energy onservation is not possible in this ase.

Thus this approah does not onlude global existene.

Hene in this hapter we onsider initial value in the spae W̃ 1,2
L (Cn). This

spae has the advantage of being the energy spae, see (1.0.24). For proving mass

onservation we assume that ψ is real valued. Using these onservation laws, we

an show that there is no �nite time blow up in defoussing ase (when ψ is

nonnegative) with 0 ≤ α < 2
n−1

and also in fousing ase (when ψ is nonpositive)

with 0 ≤ α < 2
n
, hene in Theorem 6.0.33 we onlude global existene for initial

value in the Sobolev spae W̃ 1,2
L (Cn).

In this hapter we onsider both subritial 0 ≤ α < 2
n−1

(see [25℄) and ritial

ase α = 2
n−1

(see [29℄). Theorem 6.0.33 and Theorem 6.0.39 are main results of

this hapter.

Subritial ase 0 ≤ α < 2
n−1

In this setion, �rst we prove some auxilliary estimates.

Lemma 6.0.27 Let f ∈ W̃ 1,2
L (Cn) and t0 ∈ R. Then for every bounded in-

terval I and every admissible pair (q1, p1), t → e−i(t−t0)Lf ∈ C(R, W̃ 1,2
L (Cn)) ∩

Lq1
lo

(R, W̃ 1,p1
L (Cn)) and the following estimates hold :
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‖e−i(t−t0)Lf‖
L∞(R,W̃ 1,2

L (Cn)) = ‖f‖
W̃

1,2
L (Cn), (6.0.1)

‖e−i(t−t0)Lf‖
Lq1(I,W̃ 1,p1

L (Cn)) ≤ C‖f‖W̃ 1,2
L (Cn), (6.0.2)

where the onstant C is independent of f and t0.

Proof. From Lemma 4.0.15 we see that |Zje−i(t−t0)Lf | = |e−i(t−t0)LZjf | and
|Zje−i(t−t0)Lf | = |e−i(t−t0)LZjf |. Hene the proof follows from Theorem 3.0.7.

Lemma 6.0.28 Let I be a �nite interval and (q, p) an admissible pair with p =

2 + α and q > 2. Let G be as in (1.0.15), (1.0.16) with α ∈ [0, 2
n−1

) and u, v ∈
L∞(I, W̃ 1,2

L (Cn)). Then u, v ∈ Lq(I, Lp(Cn)) and the following estimate holds

‖G(z, u)−G(z, v)‖Lq′(I,Lp′ (Cn)) ≤ C|I|
q−q′
qq′ ‖u− v‖Lq(I,Lp(Cn))

×
(

‖u‖α
L∞(I,W̃ 1,2

L )
+ ‖u‖α

L∞(I,W̃ 1,2
L )

)

.(6.0.3)

Proof. Sine I is a �nite interval, in view of embedding theorem (Lemma 4.0.14),

u, v ∈ Lq(I, Lp(Cn)). By estimate (1.0.18),

1
p′
= α

p
+ 1

p
, Holder's inequality in the

z-variable and Lemma 4.0.14, we observe that

‖G(·, u)−G(·, v)‖Lp′(Cn) ≤ C‖|u− v|(|u|α + |v|α)‖Lp′ (Cn)

≤ C‖(u− v)(·, t)‖Lp(Cn)

(

‖u‖αLp(Cn) + ‖v‖αLp(Cn)

)

≤ C‖(u− v)(·, t)‖Lp(Cn)

(

‖u(·, t)‖α
W̃

1,2
L

+ ‖v(·, t)‖α
W̃

1,2
L

)

≤ C‖(u− v)(·, t)‖Lp(Cn)

(

‖u‖α
L∞(I,W̃ 1,2

L )
+ ‖v‖α

L∞(I,W̃ 1,2
L )

)

where t ∈ I. Now by taking Lq
′
norm in the t-variable on the interval I in the

above inequality, we get the required estimate (6.0.3).

Proposition 6.0.29 Let t0 ∈ R and I an open interval ontaining t0. Let G be

as in (1.0.15), (1.0.16) with α ∈ [0, 2
n−1

). Let (q, p) be an admissible pair with

p = α + 2, q > 2.

If u ∈ L∞
lo

(I, W̃ 1,2
L (Cn)) ∩ Lq

lo

(I, W̃ 1,p
L (Cn)), then for every bounded interval

J with J ⊂ I, t0 ∈ J and every admissible pair (q1, p1), the following inequalities

hold:
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‖SG(z, u(z, t))‖Lq′(J,Lp′ (Cn)) ≤ C|J |
q−q′
qq′ ‖u‖α

L∞(J,W̃ 1,2
L (Cn))

(6.0.4)

×‖u‖Lq(J,W̃ 1,p
L (Cn))

‖G(z, u(z, t))‖
Lq′ (J,W̃ 1,p′

L (Cn))
≤ C|J |

q−q′
qq′ ‖u‖α

L∞(J,W̃ 1,2
L (Cn))

(6.0.5)

×‖u‖Lq(J,W̃ 1,p
L (Cn))

∥

∥

∥

∥

∫ t

t0

e−i(t−s)LG(z, u(z, s))ds

∥

∥

∥

∥

Lq1 (J,W̃
1,p1
L )

≤ C|J |
q−q′
qq′ ‖u‖α

L∞(J,W̃ 1,2
L (Cn))

(6.0.6)

×‖u‖Lq(J,W̃ 1,p
L (Cn))

for S = Id, Zj, Zj (1 ≤ j ≤ n) and for some onstant C independent of u and t0.

Moreover

∫ t

t0
e−i(t−s)LG(z, u(z, s))ds ∈ C(I, W̃ 1,2

L (Cn)).

Proof. To prove the inequality (6.0.4), we �rst observe that

(∂xj −
iyj
2
)[ψ(x, y, |u|)u] = ψ(x, y, |u|) (∂xj −

iyj
2
)u+ u(∂xjψ)(x, y, |u|)

+ u (∂|u|ψ)(x, y, |u|)ℜ
(

ū

|u|(∂xj −
iyj
2
yj)u

)

(6.0.7)

(∂yj +
ixj
2
)[ψ(x, y, |u|)u] = ψ(x, y, |u|) (∂yj +

ixj
2
)u+ u(∂yjψ)(x, y, |u|)

+ u (∂|u|ψ)(x, y, |u|)ℜ
(

ū

|u|(∂yj +
ixj
2
)u

)

. (6.0.8)

Thus we see that for Sj = (∂xj −
iyj
2
) and (∂yj +

ixj
2
), |SjG| satis�es an inequality

of the form

|SjG| ≤ |ψ(x, y, |u|) u|+ |ψ̃1(x, y, |u|) u|+ |ψ̃2(x, y, |u|)Su|

where ψ̃1(x, y, |u|) = u∂xjψ or u∂yjψ depending on Sj = (∂xj −
iyj
2
) or (∂yj +

ixj
2
)

and ψ̃2(x, y, |u|) = u∂|u|ψ. Moreover, by assumption (1.0.16) on ψ, we have

|ψ̃i(x, y, |u|)| ≤ C|u|α, i = 1, 2. Therefore

|SjG| ≤ C|u|α(|u|+ |Su|)

for Sj = Id, (∂xj −
iyj
2
), (∂yj +

ixj
2
); 1 ≤ j ≤ n. From the observations

1
2
(Zj− Z̄j) =

(∂xj − i
2
yj) and

i
2
(Zj + Z̄j) = (∂yj +

i
2
xj) (see 4.0.3), we get the inequality



54

|SG| ≤ C|u|α
[

|u|+ |Zju|+ |Z̄ju|
]

(6.0.9)

for S = Id, Zj, Z̄j (1 ≤ j ≤ n) and for some onstant C.

An appliation of the Hölder's inequality in the z-variable, using p′

p
+ αp′

p
= 1

and Lemma 4.0.14, we see that for a.e. t ∈ J and S = Id, Zj, Z̄j

‖SG(·, u(·, t))‖Lp′(Cn) ≤ C‖|u|α(|u|+ |Zju|+ |Z̄ju|)‖Lp′(Cn)

≤ C‖u‖αLp(Cn) (‖u‖Lp(Cn) + ‖Zju‖Lp(Cn) + ‖Z̄ju‖Lp(Cn))

≤ C‖u(·, t)‖α
W̃

1,2
L (Cn)

‖u(·, t)‖W̃ 1,p
L (Cn)

≤ C‖u‖α
L∞(J,W̃ 1,2

L )‖u(·, t)‖W̃ 1,p
L (Cn).

Now taking Lq
′
norm with respet to the t-variable on both sides and an applia-

tion of the Hölder's inequality in the t-variable with q′

q
+ q−q′

q
= 1, for q > 2 gives

the estimate (6.0.4).

Estimate (6.0.5) follows from the estimate (6.0.4). Estimate (6.0.6) follows

from Strihartz estimates (Theorem 3.0.7) and the estimate (6.0.5). The fat

that

∫ t

t0
e−i(t−s)LG(z, u(z, s)) ds ∈ C(I, W̃ 1,2

L ) follows from Lemma 4.0.16 and

G(z, u) ∈ Lq
′

lo

(I, W̃ 1,p′

L ). Hene the Proposition.

Proposition 6.0.30 Let I be an open interval in R, G̃ be as in (1.0.23) with

0 ≤ α < 2
n−1

. Let p = 2 + α and {ǫm} a sequene of nonnegative real numbers

onverging to 0. Then

lim
m→∞

∫

Cn

G̃(z, |e−ǫmLvm(z, t)|)dz =
∫

Cn

G̃(z, |v(z, t)|)dz.

whenever vm → v in C ∩ L∞(I, Lp(Cn)).

Proof. Sine v, vm ∈ C ∩ L∞(I, Lp(Cn)), for eah t ∈ I,

‖(vm − v)(·, t)‖Lp(Cn) ≤ ‖vm − v‖L∞(I,Lp(Cn)) → 0

as m→ ∞. By adding and subtrating appropriate terms we have
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∫

Cn

∣

∣

∣
G̃(z, |e−ǫmLvm(z, t)|)− G̃(z, |v(z, t)|)

∣

∣

∣
dz

≤
∫

Cn

∣

∣

∣
G̃(z, |e−ǫmLvm|)− G̃(z, |e−ǫmLv|)

∣

∣

∣
dz

+

∫

Cn

∣

∣

∣
G̃(z, |e−ǫmLv|)− G̃(z, |v|)

∣

∣

∣
dz.

In view of (1.0.25) and Lemma 4.0.17, an appliation of Hölder's inequality with

(1 + α)p′ = p shows that

∫

Cn

∣

∣

∣
G̃(z, |e−ǫmLvm|)− G̃(z, |e−ǫmLv|)

∣

∣

∣
dz

≤ C

∫

Cn

|e−ǫmL(vm − v)| (|e−ǫmLvm|1+α + |e−ǫmLv|1+α)dz

≤ C‖e−ǫmL(vm − v)‖Lp(Cn)(‖e−ǫmLvm‖α+1
Lp(Cn) + ‖e−ǫmLv‖α+1

Lp(Cn))

≤ C‖(vm − v)(·, t)‖Lp(Cn)(‖vm(·, t)‖α+1
Lp(Cn) + ‖v(·, t)‖α+1

Lp(Cn)).

Sine {vm} is a Cauhy sequene in L∞(I, Lp(Cn)), ‖vm(·, t)‖Lp(Cn) is bounded

for t �xed. Hene

∫

Cn

∣

∣

∣
G̃(z, |e−ǫmLvm|)− G̃(z, |e−ǫmLv|)

∣

∣

∣
dz → 0

as m→ ∞.

A similar argument shows that

∫

Cn(G̃(z, |e−ǫmLv(z, t)|)−G̃(z, |v(z, t)|))dz tends
to zero as m→ ∞, hene the Lemma.

Loal wellposednes in W̃ 1,2
L (Cn)

Theorem 6.0.31 (Loal well posedness) Let f = u(·, t0) ∈ W̃ 1,2
L (Cn), and G be

as in (1.0.15) and (1.0.16) with α ∈ [0, 2
n−1

). Then the initial value problem

(1.0.13), (1.0.14) has a unique maximal solution u ∈ C((T∗, T
∗), W̃ 1,2

L (Cn)) ∩
Lq1
lo

(

(T∗, T
∗), W̃ 1,p1

L

)

, where t0 ∈ (T∗, T
∗) and (q1, p1) be an arbitrary admissible

pair. Fix p = 2 + α. Moreover the following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), W̃ 1,2

L )∩Lq1
lo

(

(T∗, T
∗), W̃ 1,p

L

)

for every admissible pair (q1, p) with q1 > 2.
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(ii)(Blowup alternative) If T ∗ <∞ (respetively, T∗ > −∞), then ‖u(·, t)‖
W̃

1,2
L

→
∞ as t→ T ∗

(respetively, t→ T∗).

(iii)(Stability) If fj → f in W̃ 1,2
L (Cn), then uj(·, t) → u(·, t) in W̃ 1,2

L (Cn) for

eah t ∈ (T∗, T
∗) and also uj → u in Lq1

(

I, W̃ 1,p1(Cn)
)

for every admissible

pair (q1, p1) and every interval I with Ī ⊂ (T∗, T
∗).

Proof. Proof follows by similar arguments as in Theorem 5.0.23 and Theorem

5.0.26. For ompleteness we give the proof.

Loal existene: We establish the loal existene of solution for the problem

(1.0.13), (1.0.14) by establishing the existene of solution in the spae X (see

Lemma 5.0.21) for the equivalent integeral equation

u(z, t) = e−i(t−t0)Lf(z)− i

∫ t

t0

e−i(t−s)LG(z, u(z, s))ds. (6.0.10)

For given positive numbers T and M , onsider the set E = ET,M given by

E =







u ∈ L∞
(

IT ; W̃
1,2
L (Cn)

)

∩ Lq
(

IT , W̃
1,p
L (Cn)

)

∣

∣

∣

∣

∣

∣

‖u‖
L∞(IT ,W̃ 1,2

L ) ≤M,

‖u‖
Lq(IT ,W̃ 1,p

L ) ≤ M







where IT = (t0 − T, t0 + T ) and (q, p) be an admissible pair with p = 2 + α and

q > 2. Then E with the metri given by

d(u, v) = ‖u− v‖L∞(IT ,L2(Cn)) + ‖u− v‖Lq(IT ,Lp(Cn))

is a omplete metri spae. This an be veri�ed by similar arguments as in

Proposition 5.0.22.

First we verify that H given by (1.0.21) maps ET,M to ET,M for small T . If

u ∈ ET,M , using the estimates from Lemma 6.0.27 and Proposition 6.0.29, in

(1.0.20), we see that,

max
{

‖Hu‖
L∞(IT ,W̃ 1,2

L (Cn)), ‖Hu‖Lq(IT ,W̃ 1,p
L (Cn))

}

≤ C ‖f‖
W̃

1,2
L (Cn) + C T

q−q′
qq′ ‖u‖α

L∞(IT ;W̃ 1,2
L (Cn))

‖u‖
Lq(IT ,W̃

1,p
L (Cn))

≤ C‖f‖
W̃

1,2
L (Cn) + C T

q−q′
qq′ M1+α. (6.0.11)
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This quantity is at most M provided we hoose

T ≤ T0 =

(

M − C‖f‖W̃ 1,2
L

CM1+α

)
qq′

q−q′

.

Thus for a given M > C‖f‖
W̃

1,2
L
, H maps ET,M to ET,M for all T ≤ T0.

For u, v ∈ E, using Strihartz estimate (3.0.2) and the estimate (6.0.3), we

get

d(Hu,Hv) = ‖Hu−Hv‖L∞(IT ,L2(Cn)) + ‖Hu−Hv‖Lq(IT ,Lp(Cn))

≤ C‖G(z, u)−G(z, v)‖
Lq′(IT ,Lp′(Cn))

≤ CT
q−q′
qq′

[

‖u‖α
L∞(IT ,W̃ 1,2

L ) + ‖v‖α
L∞(IT ,W̃ 1,2

L )

]

‖u− v‖Lq(IT ,Lp(Cn))

≤ CT
q−q′
qq′ Mαd(u, v) (6.0.12)

Now we hoose

M =

{

1 if f = 0

2C‖f‖
W̃

1,2
L (Cn) if f 6= 0

(6.0.13)

and

T =







min{π, (2C)−
qq′

q−q′ } if f = 0

min{π, (2C)−(1+α) qq′

q−q′ ‖f‖−α
qq′

q−q′

W̃
1,2
L (Cn)

} if f 6= 0
(6.0.14)

where C is the same onstant that appears in the inequalities (6.0.11), (6.0.12)

and is independent of T . For these hoies ofM and T , the operatorH maps E to

E and also is a ontation on E. Therefore H has unique �xed point in E. From

Lemma 6.0.27 and Proposition 6.0.29, we onlude that u ∈ C(IT , W̃
1,2
L (Cn)) ∩

Lq1(IT , W̃
1,p1
L (Cn)) for every admissible pair (q1, p1).

Now we onsider inital time t0 − T and t0 + T . By the above argument

we get open intervals ontaining t0 − T and t0 + T on whih solution exists to

the initial value problem (1.0.13), (1.0.14). By ontinuing this proess, we get

maximal interval (T∗, T
∗) ontaining t0 and solution u of the initial value problem

(1.0.13), (1.0.14) lies in C((T∗, T
∗), W̃ 1,2

L (Cn))∩Lq1
lo

((T∗, T
∗), W̃ 1,p1

L (Cn)) for every

admissible pair (q1, p1).
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Blowup alternative: Suppose T ∗ < ∞ and sup
t∈[t0,T ∗)

‖u(z, t)‖
W̃

1,2
L

= M0 < ∞.

Clearly f 6= 0, see blowup alternative in Theorem 5.0.26. Now we hoose a

sequene tj ↑ T ∗
. From loal existene we an hoose

Tj = min{C1‖u(., tj)‖
−α qq′

q−q′

W̃
1,2
L

, π}

suh that u ∈ C([tj − Tj , tj + Tj ], W̃
1,2
L ) where C1 = (2C)

−(1+α) qq′

q−q′
, see (6.0.14).

Hene by assumption Tj ≥ min{C1M
−α qq′

q−q′

0 , π}, a onstant independent of tj ,

for q > 2. Thus we an hoose j so large that tj + Tj > T ∗
, whih ontradits

maximality of T ∗
. Hene if T ∗ < ∞ then lim

t→T ∗
‖u(z, t)‖

W̃
1,2
L

= ∞. Similarly, we

an show that lim
t→T∗

‖u(., t)‖W̃ 1,2
L

= ∞, if T∗ > −∞.

Uniqueness: Suppose that u, v ∈ C((T∗, T
∗), W̃ 1,2

L ) ∩ Lq
lo

((T∗, T
∗), W̃ 1,p

L ) are

two solutions of the equations (1.0.13) and (1.0.14) where (q, p) be an admissible

pair with p = 2 + α and q > 2. Then u and v will satisfy integral equation

(1.0.20), see Lemma 5.0.21. Sine u(·, t0) = v(·, t0) = f and the solution given

by the ontration mapping is unique on [t0 − T, t0 + T ], u(·, t) = v(·, t) for

t ∈ [t0 − T, t0 + T ]. Let t̃ ∈ (T∗, T
∗) be suh that u(·, t̃) = v(·, t̃). For τ ∈ (t̃, T ∗),

we have

u(z, τ) = e−i(τ−t̃)Lu(z, t̃)− i

∫ τ

t̃

e−i(τ−s)LG(z, u(z, s))ds,

v(z, τ) = e−i(τ−t̃)Lv(z, t̃)− i

∫ τ

t̃

e−i(τ−s)LG(z, v(z, s))ds.

By Strihartz estimate (3.0.2) and Lemma 6.0.28, we have

‖u− v‖
Lq((t̃,τ),Lp(Cn)) =

∥

∥

∥

∥

∫ τ

t̃

e−i(t−s)L (G(u)−G(v)) (z, s)ds

∥

∥

∥

∥

Lq((t̃,τ),Lp(Cn))

≤ C|τ − t̃|
q−q′

qq′ Mα
t̃,τ
‖u− v‖

Lq((t̃,τ),Lp(Cn))

for all τ ∈ (t̃, T ∗) where Mt̃,τ = max{‖u‖
L∞((t̃,τ),W̃ 1,2

L ), ‖v‖L∞((t̃,τ),W̃ 1,2
L )}, see

(6.0.13). Sine u, v ∈ C
(

[t0, T
∗), W̃ 1,2

L

)

, we have Mt̃,τ < ∞. Choose τ ∈ [t̃, T ∗)

su�iently lose to t̃ suh that C|τ − t̃|
q−q′

qq′ Mα
t̃,τ

= c < 1, so that

0 ≤ (1− c)‖u− v‖Lq((t̃,τ):Lp(Cn)) ≤ 0.
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Hene u = v on the larger interval [t̃, τ ].

Now let θ =sup{T̃ : t0 < T̃ < T ∗ : ‖u − v‖Lq([t0,T̃ ],Lp) = 0}. If θ < T ∗
,

then for su�iently small ǫ > 0, hoose t̃ = θ − ǫ, τ = θ + ǫ and by the above

observation, ‖u−v‖Lq((θ−ǫ,θ+ǫ),Lp) = 0, whih ontradits the de�nition of θ. Thus

we onlude that θ = T ∗
, proving the uniqueness on [t0, T

∗). Similarly one an

show uniqueness on (T∗, t0].

Stability: Stability follows by similar arguments as in Theorem 5.0.26.

Blowup analysis in W̃ 1,2
L (Cn)

In this setion we show that the maximal solution established in Theorem 6.0.31

is atually a global one. This is established by showing that there is no �nite

time blow up. We use a blow up analysis as in [12℄ using the onservation laws,

to onlude that there is no �nite time blow up.

The mass onservation (1.0.22) formally derived in hapter 1, is valid for

u ∈ C((T∗, T
∗), W̃ 1,2

L (Cn)) but the formal omputation for the energy onservation

law (1.0.24) given there is valid only for u(·, t) ∈ W̃ 2,2
L (Cn) for eah t in the interval

of existene. However, sine the Shrödinger equation does not have regularizing

property, we an not expet u to be in the seond order Sobolev spae W̃ 2,2
L (Cn),

for the initial data f ∈ W̃ 1,2
L (Cn). So we need some alternate argument to prove

the energy onservation in W̃ 1,2
L (Cn).

We dedue the energy onservation for u ∈ W̃ 1,2
L (Cn) from the equation

(1.0.24) valid for u(·, t) ∈ W̃ 2,2
L (Cn) by an approximation argument, using the

stability result obtained for the maximal solution, and a regularization argument

on the nonlinearity.

Let {fm}n∈N be a sequene of funtions in W̃ 2,2
L (Cn) suh that fm → f in

W̃ 1,2
L (Cn) and for ǫ > 0, set Gǫ(z, u) = e−ǫLG(z, e−ǫLu).

In view of estimates (4.0.8), (4.0.9) in Lemma 4.0.17 and estimate (6.0.3) in

Lemma 6.0.28, for v1, v2 ∈ L∞(I, W̃ 1,2
L (Cn)), we observe that
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‖Gǫ(z, v1)−Gǫ(z, v2)‖Lq′(I,Lp′ ) ≤ C‖G(z, e−ǫLv1)−G(z, e−ǫLv2)‖Lq′(I,Lp′ (Cn))

≤ C|I|
q−q′
qq′ ‖e−ǫL(v1 − v2)‖Lq(I,Lp(Cn))

×
(

‖e−ǫLv1‖αL∞(I,W̃ 1,2
L )

+ ‖e−ǫLv2‖αL∞(I,W̃ 1,2
L )

)

≤ C|I|
q−q′
qq′ ‖v1 − v2‖Lq(I,Lp(Cn))

×
(

‖v1‖αL∞(I,W̃ 1,2
L )

+ ‖v2‖αL∞(I,W̃ 1,2
L )

)

(6.0.15)

where onstant C is independent of ǫ for ǫ ∈ (0, 1].

Using estimates (4.0.8), (4.0.9) in Lemma 4.0.17 and estimate (6.0.5) in Propo-

sition 6.0.29, for v ∈ L∞(I, W̃ 1,2
L (Cn)) ∩ Lq(I, W̃ 1,p

L (Cn)), we observe that

‖Gǫ(z, v(z, t))‖Lq′ (I,W̃ 1,p′

L (Cn))
≤ C‖G(z, e−ǫLv(z, t))‖

Lq′ (I,W̃ 1,p′

L (Cn))

≤ C|I|
q−q′
qq′ ‖e−ǫLv‖α

L∞(I,W̃ 1,2
L (Cn))

‖e−ǫLv‖Lq(I,W̃ 1,p
L (Cn))

≤ C|I|
q−q′
qq′ ‖v‖α

L∞(I,W̃ 1,2
L (Cn))

‖v‖Lq(I,W̃ 1,p
L (Cn)) (6.0.16)

where onstant C is independent of ǫ for ǫ ∈ (0, 1].

Now we onsider the initial value problem

i∂tu(z, t)− Lu(z, t) = Gǫ(z, u), z ∈ C
n, t ∈ R (6.0.17)

u(·, t0) = fm. (6.0.18)

Observe that, in view of the estimates (6.0.15) and (6.0.16), the arguments used

in the proof of Theorem 6.0.31 is valid for the above problem and we get a unique

solution uǫm ∈ C(I, W̃ 1,2
L (Cn)) that satis�es the integral equation (see Lemma

5.0.21)

uǫm(z, t) = e−i(t−t0)Lfm(z)− i

∫ t

t0

e−i(t−s)LGǫ(z, u
ǫ
m(z, s))ds. (6.0.19)

Moreover sine ‖fm‖W̃ 1,2
L

→ ‖f‖
W̃

1,2
L
, in view of (6.0.14), we an hoose interval I

ontaining t0 small and assume that uǫm are de�ned on I for every m and ǫ > 0.

For the same reason, in view of (6.0.13), we an also �nd an M suh that

sup
t∈I

‖uǫm‖W̃ 1,2
L (Cn) ≤M (6.0.20)
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valid for all 0 < ǫ ≤ 1 and m ∈ N.

The following onvergene result is ruial in the proof of onservation of

energy in W̃ 1,2
L .

Proposition 6.0.32 Let ǫ > 0 and f ∈ W̃ 1,2
L (Cn). Let uǫ and u be the solu-

tions of the equations (1.0.13), and (6.0.17) respetively with same initial value

u(·, t0) = uǫ(·, t0) = f . Then there exists T > 0 suh that

uǫ → u, as ǫ→ 0

in L∞(I, Lp1(Cn)) for all 2 ≤ p1 <
2n
n−1

where I = (t0 − T, t0 + T ).

Proof. By loal existene argument, the solution u and uǫ exists on an interval

(t0−T, t0+T ), where T depends only on ‖f‖
W̃

1,2
L
, see (6.0.14). In view of (1.0.21)

and Lemma 5.0.21, we have

uǫ(z, t)− u(z, t) = −i
∫ t

t0

e−i(t−s)L[Gǫ(z, u)−G(z, u)]ds.

Hene by estimate (3.0.2), we see that

‖uǫ − u‖Lq1 (I,Lp1(Cn)) ≤ C ‖Gǫ −G‖Lq′(I,Lp′(Cn)) (6.0.21)

for every admissible pair (q1, p1). Sine Gǫ(z, u) = e−ǫLG(z, e−ǫLu), by adding

and subtrating appropriate terms, we see that

‖Gǫ(z, u
ǫ) − G(z, u)‖Lq′(I,Lp′ (Cn)) (6.0.22)

≤ ‖Gǫ(z, u
ǫ)−Gǫ(z, u)‖Lq′ (I,Lp′(Cn))

+ ‖e−ǫL[G(z, e−ǫLu)−G(z, u)]‖Lq′ (I,Lp′(Cn))

+ ‖e−ǫLG(z, u)−G(z, u)‖Lq′(I,Lp′ (Cn)).

We �rst estimate the last two terms. In view of Lemma 4.0.17, we have

‖e−ǫLG(·, u(·, t))−G(·, u(·, t))‖Lp′(Cn) = o(ǫ)

‖e−ǫLu(·, t)− u(·, t)‖Lp(Cn) = o(ǫ)

as ǫ → 0, for eah t ∈ I. Hene an appliation of the dominated onvergene
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theorem in the t-variable shows that as ǫ→ 0

‖e−ǫLG(z, u)−G(z, u)‖Lq′(I,Lp′(Cn)) = o(ǫ) (6.0.23)

‖e−ǫLu− u‖Lq(I,Lp(Cn)) = o(ǫ). (6.0.24)

Equation (6.0.23) gives the required estimate for the third term in the RHS of

(6.0.22). By estimate (4.0.8) and estimate (6.0.3), we see that

‖e−ǫL[G(z, e−ǫLu)−G(z, u)]‖Lq′(I,Lp′(Cn)) (6.0.25)

≤ CT
q−q′
qq′ ‖u‖α

L∞(I,W̃ 1,2
L (Cn))

‖e−ǫLu− u‖Lq(IT ,Lp(Cn)) = o(ǫ)

as ǫ → 0 by (6.0.24), whih gives the estimate for the seond term on the RHS

of (6.0.22). Again estimate (6.0.15) gives the inequality

‖Gǫ(z, u
ǫ)−Gǫ(z, u)‖Lq′ (I,Lp′(Cn)) ≤ CT

q−q′

qq′ Mα‖uǫ − u‖Lq(I,Lp(Cn)).(6.0.26)

Now from the estimate (6.0.21), (6.0.22) and in view of (6.0.26), (6.0.25) and

(6.0.23) we see that

‖uǫ − u‖Lq1(I,Lp1 (Cn)) ≤ CT
q−q′

qq′ Mα‖uǫ − u‖Lq(I,Lp(Cn)) + o(ǫ) (6.0.27)

‖uǫ − u‖Lq(I,Lp(Cn)) ≤ CT
q−q′

qq′ Mα‖uǫ − u‖Lq(I,Lp(Cn)) + o(ǫ). (6.0.28)

Let us hoose T su�iently small so that CT
q−q′

qq′ Mα < 1
2
with onstant C in the

inequality (6.0.28). This gives

‖uǫ − u‖Lq(I,Lp(Cn)) = o(ǫ)

as ǫ→ 0. From estimate (6.0.27) with pair (∞, 2), we have

‖uǫ − u‖L∞(I,L2(Cn)) = o(ǫ). (6.0.29)

Now we prove

‖uǫ − u‖L∞(I,Lp1 (Cn)) = o(ǫ) (6.0.30)

as ǫ→ 0 for all 2 ≤ p1 <
2n
n−1

.
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Now we hoose r ∈ (p1,
2n
n−1

) and λ ∈ (0, 1) suh that

1
p1

= λ
2
+ 1−λ

r
. Thus by

Hölders inequality with indies

r
(1−λ)p1

and

2
λp1

, we get

‖uǫ − u‖Lp1(Cn) ≤ ‖uǫ − u‖1−λ
Lr(Cn)‖uǫ − u‖λL2(Cn).

Reall that by loal existene theorem u, uǫ ∈ C(I, W̃ 1,2
L ) and there exist M suh

that

sup
t∈I

‖u‖W̃ 1,2
L

≤M, sup
t∈I

‖uǫ‖W̃ 1,2
L

≤M

by (6.0.20). Thus by Lemma 4.0.14, we have ‖uǫ−u‖Lr(Cn) ≤ ‖u−uǫ‖
W̃

1,2
L

≤ 2M

for 2 ≤ r ≤ 2n
n−1

. Thus we see that

‖uǫ − u‖L∞(I,Lp1(Cn)) ≤ (2M)1−λ‖uǫ − u‖λL∞(I,L2(Cn)). (6.0.31)

This proves (6.0.30) in view of (6.0.29).

Our main result in this setion is the following Theorem.

Theorem 6.0.33 (Global well posedness) Let f ∈ W̃ 1,2
L (Cn) and ψ be real valued

funtion as in (1.0.15) and (1.0.16) with α ∈ [0, 2
n−1

). Then the solution u ∈
C((T∗, T

∗), W̃ 1,2
L (Cn))∩Lq1

lo

(

(T∗, T
∗), W̃ 1,p1

L

)

of the initial value problem (1.0.13),

(1.0.14) as obtained in Theorem 6.0.31 satis�es the following properties:

(i)(Conservation of harge) ‖u(·, t)‖L2(Cn) = ‖f‖L2(Cn), t ∈ (T∗, T
∗).

(ii)(Conservation of energy) E(u(·, t)) = E(u(·, t0)), t ∈ (T∗, T
∗), where

E(u) =
1

4

n
∑

j=1

∫

Cn

(

|Zju(z, t)|2 + |Zju(z, t)|2
)

dz +

∫

Cn

G̃(z, |u|)dz. (6.0.32)

(iii)(Global existene) If ψ ≥ 0 is nonnegative, the solution extends to the

whole of R. For nonpositive ψ, the solution is global if 0 ≤ α < 2
n
.

Proof. The proof of onservation of harge (1.0.22) given in hapter 1 is valid

for u ∈ ((T∗, T
∗), W̃ 1,2

L (Cn)) as observed before. Thus we need to prove en-

ergy onservation. Let uǫm(z, t) denote the solution to the regularized problem

(6.0.17), (6.0.18). Then uǫm ∈ C(I, W̃ 1,2
L (Cn)) ∩ Lq1(I; W̃ 1,p1

L (Cn)) for every ad-

missible pair (q1, p1) and is given by the integral equation (6.0.19), where I =
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(t0 − T, t0 + T ). Sine fm ∈ W̃ 2,2
L (Cn), therefore from equation (4.0.12) and The-

orem 3.0.7 e−i(t−t0)Lfm ∈ C(I, W̃ 2,2
L (Cn)). From estimate (6.0.16), Gǫ(z, u

ǫ
m) ∈

Lq
′
(I, W̃ 1,p′

L (Cn)) and from estimate (4.0.10) Gǫ(z, u
ǫ
m) ∈ Lq

′
(I, W̃ 2,p′

L (Cn)). From

these observations, equation (6.0.19) and equation (4.0.12), we onlude that

uǫm ∈ C(I, W̃ 2,2
L (Cn)) for eah m ∈ N and ǫ > 0 .

Sine 〈Gǫ(z, u
ǫ
m), ∂tu

ǫ
m〉 = 〈G(z, e−ǫLuǫm), e−ǫL∂tuǫm〉, taking L2(Cn) inner prod-

ut with ∂tu
ǫ
m on both sides of the equation (6.0.17) with u replaed by uǫm and a

omputation similar to the one that led to (1.0.24) yields the energy onservation:

1

4

n
∑

j=1

(‖Zjuǫm(·, t)‖22 +
∥

∥Zju
ǫ
m

∥

∥

2

2
) +

∫

Cn

G̃(z, |e−ǫLuǫm|)dz = E(fm). (6.0.33)

By stability uǫm(·, t) → uǫ(·, t) in W̃ 1,2
L (Cn) for eah t ∈ I and also uǫm → uǫ in

Lq1(I; W̃ 1,p1
L (Cn)) for every admissible pair (q1, p1) as m→ ∞. By Lemma 4.0.14

C∩L∞(I, Lp(Cn)) ⊂ C∩L∞(I, W̃ 1,2
L ) and uǫm → uǫ in L∞(I, Lp(Cn)) as m→ ∞.

From estimate (4.0.8), e−ǫLuǫm → e−ǫLuǫ in L∞(I, Lp(Cn)) as m→ ∞.

Thus letting m → ∞ in (6.0.33) and using Proposition 6.0.30, we get the

energy onservation for uǫ:

E(f) =
1

4

n
∑

j=1

(‖Zjuǫ(·, t)‖22 +
∥

∥Zju
ǫ(·, t)

∥

∥

2

2
) + λ

∫

Cn

G̃(z, |e−ǫLuǫ|)dz (6.0.34)

for eah ǫ > 0. From Proposition 6.0.32) uǫ → u in L∞(I, Lp(Cn)) and therefore

from Proposition 6.0.30, we see that

lim
ǫ→0

∫

Cn

G̃(z, |e−ǫLuǫ|)dz =
∫

Cn

G̃(z, |u|)dz. (6.0.35)

From Proposition 6.0.32 uǫ(·, t) → u(·, t) in L2(Cn) for eah t ∈ I. Therefore for

any sequene {ǫm} of positive real numbers onverging to 0, we see

‖Su(·, t)‖L2(Cn) = sup
φ∈S(Cn),‖φ‖

L2≤1

|〈Su(·, t), φ〉|

= sup
φ∈S(Cn),‖φ‖

L2≤1

|〈u(·, t), S∗φ〉|

= sup
φ∈S(Cn),‖φ‖

L2≤1

lim
m→∞

|〈uǫm(·, t), S∗φ〉|
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= sup
φ∈S(Cn),‖φ‖

L2≤1

lim
m→∞

|〈Suǫm(·, t), φ〉|

≤ sup
φ∈S(Cn),‖φ‖

L2≤1

lim inf
m→∞

‖Suǫm(·, t)‖L2‖φ(·, t)‖L2

≤ lim inf
m→∞

‖Suǫm(·, t)‖L2(Cn) (6.0.36)

for S = Zj, Z̄j.

Taking limit as ǫm → 0 in (6.0.34), in view of the inequality (6.0.36) and the

identity (6.0.35), we see that E(u(·, t)) ≤ E(f) = E(u(·, t0)) for eah t ∈ I =

[t0−T, t0+T ]. This shows that E(u(·, t)) has loal maximum at t0. This argument

an be repeated for any point in (T∗, T
∗) instead of t0. Sine t → E(u(·, t))

is ontinuous and it has loal maximum at every point, therefore E(u(·, t)) is

onstant on (T∗, T
∗). This proves the energy onservation.

Global existene: Now we will prove global existene. Let us assume that

ψ is nonnegative. Then G̃ : Cn × [0,∞) → [0,∞) is also nonnegative and by

onservation of energy

E(f) = E(u(z, t))

=
1

4

n
∑

j=1

(‖Zju(z, t)‖22 +
∥

∥Zju(z, t)
∥

∥

2

2
) +

∫

Cn

G̃(z, |u|)dz (6.0.37)

≥ 1

4

n
∑

j=1

(‖Zju(z, t)‖22 +
∥

∥Zju(z, t)
∥

∥

2

2
) 9 ∞

as t → T∗ or t → T ∗
. By blowup alternative and Lemma 4.0.13, we have global

existene, i.e., −T∗ = T ∗ = ∞.

To deal with nonpositive ψ with 0 ≤ α < 2
n
, we �rst get an estimate for

∫

Cn G̃(z, u(z, t))dz omparing with ‖u(·, t)‖W̃ 1,2
L (Cn). In view of (1.0.25) and the

fat that α + 2 = p, we see that

∫

Cn

G̃(z, u)dz ≤ C

∫

Cn

|u(z, t)|pdz.

Sine p = 2 + α, α ∈ [0, 2
n
), we have 2 ≤ p ≤ 4

4−p
< 2n

n−1
. Sine p ≤ 4

4−p
, we an

hoose p1 suh that

4
4−p

< p1 <
2n
n−1

. Let θ ∈ (0, 1] suh that

1
p
= θ

2
+ 1−θ

p1
. Then

pθ = 2(p1−p)
(p1−2)

, (1−θ)p = p1(p−2)
(p1−2)

. An appliation of Hölder's inequality with indies
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2
pθ

and

p1
(1−θ)p

in the above shows that

∫

Cn

G̃(z, u)dz ≤ C

∫

Cn

|u(z, t)|θp |u(z, t)|(1−θ)p dz

≤ C

(
∫

Cn

|u(z, t)|2dz
)

pθ
2
(
∫

Cn

|u(z, t)|p1dz
)

(1−θ)p
p1

≤ C‖u(·, t)‖pθ
L2(Cn)‖u(·, t)‖

(1−θ)p

W̃
1,2
L (Cn)

≤ C‖f‖pθ
L2(Cn)‖u(·, t)‖

(1−θ)p

W̃
1,2
L (Cn)

. (6.0.38)

In the third inequality, we use embedding theorem (Lemma 4.0.14) and fourth in-

equality follows from onservation of harge. Sine ψ is nonpositive, from (1.0.23)

G̃ is also nonpositive. Hene from (6.0.37), by Lemma 4.0.13 and in view of the

estimate (6.0.38), we see that for all t ∈ (T∗, T
∗)

E(f) ≥ C1‖u(·, t)‖2W̃ 1,2
L

− C ‖f‖pθ
L2(Cn) ‖u(·, t)‖

(1−θ)p

W̃
1,2
L

. (6.0.39)

Note that for α < 2
n
, (1−θ)p = p1(p−2)

(p1−2)
< 2. Thus the above inequality shows that

‖u(·, t)‖
W̃

1,2
L
, an not blowup as t→ T∗ or t→ T ∗

. Hene by blow up alternative,

the maximal interval is R and proves the global existene.

Critial Case α = 2
n−1

In Theorem 6.0.31, we proved the loal well posedness in W̃ 1,2
L (Cn) for subritial

ase α ∈ [0, 2
n−1

). In this setion we will onsider ritial ase α = 2
n−1

with n ≥ 2.

In Theorem 6.0.31, for ritial ase α = 2
n−1

the main di�ulty is that we don't

have any q > 2 so that (q, 2+ 2
n−1

) beomes an admissible pair. We overome this

di�ulty by onsidering admissible pair (γ, ρ) and by using embedding theorem

(Lemma 4.0.14), where

ρ =
2n2

n2 − n + 1
, γ =

2n

n− 1
.

To treat the ritial ase, we adopt trunation argument of Cazenave and Weissler

[7℄. To prove loal existene, we trunate the nonlinearity G and obtain solution

for the trunated problem. We obtain solution u for the nonlinearity G by using

Strihartz estimates and by passing to the limit.
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For m ≥ 1, onsider Gm(z, u) = ψm(z, |u|)u : Cn × C → C, where

ψm(z, σ) =

{

ψ(z, σ) if 0 ≤ σ ≤ m

m2
(

ψ(z,σ)
σ2

− ψ(z,m)
σ2

+ ψ(z,m)
m2

)

if σ ≥ m.

For m = 0, we de�ne G0(z, u) = G(z, u) and ψ0(z, |u|) = ψ(z, |u|). Note that ψm
is di�erentiable at σ = m with respet to σ and also note that Gm will satisfy

(1.0.15) and (1.0.16) with α = 2
n−1

as well as α = 0. For m ≥ 1, Gm(z, ·) : C → C

is globally Lipshitz from mean value theorem and

|Gm(z, u)−Gm(z, v)| ≤ Cm|u− v| for m ≥ 1 (6.0.40)

where onstant Cm depends on m ∈ N but independent of z ∈ Cn
and u, v ∈ C.

Moreover by mean value theorem we also see that

|Gm(z, u)−Gm(z, v)| ≤ C(|u|+ |v|) 2
n−1 |u− v| for m ≥ 0 (6.0.41)

where onstant C is independent of m ∈ Z≥0, z ∈ Cn
and u, v ∈ C.

Sine F0 satis�es estimate (1.0.16) with α = 2
n−1

, we onlude that

|Fm(z, σ)| ≤ Cσ
2

n−1 , (6.0.42)

where Fm = ψm, ∂xjψm, ∂yjψm, σ∂σψm(x, y, σ) with 1 ≤ j ≤ n and onstant C is

independent of m.

In view of Duhamel's formula (see, Lemma 5.0.21) and in order to �nd solution

for given IVP (1.0.13), (1.0.14) with initial value f ∈ W̃ 1,2
L (Cn) and nonlinearity

Gm, it is su�ient to �nd the solution of the following equation

u(z, t) = e−i(t−t0)Lf(z)− i

∫ t

t0

e−i(t−s)LG(z, um(z, s))ds.

This redues the existene theorem for the solution to the nonlinear Shrödinger

equation to a �xed point theorem for the operator with m ≥ 0

Hm(u)(z, t) = e−i(t−t0)Lf(z)− i

∫ t

t0

e−i(t−s)LGm(z, u(z, s))ds. (6.0.43)
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Some auxilliary estimates

Lemma 6.0.34 Let u, v ∈ Lγ
(

I, W̃ 1,ρ
L (Cn)

)

for some interval I, then the fol-

lowing estimate holds for eah m ∈ Z≥0

‖Gm(z, u)−Gm(z, v)‖Lγ′(I,Lρ′(Cn)) ≤ C‖u− v‖Lγ(I,Lρ(Cn))×
(

‖u‖
Lγ(I,W̃ 1,ρ

L (Cn)) + ‖v‖
Lγ(I,W̃ 1,ρ

L (Cn))

)
2

n−1
(6.0.44)

where the onstant C is independent of u, v,m, t0 and I.

Proof. Sine

1
ρ′

= 1
ρ
+ n−1

n2 = 1
ρ
+ 2

n−1
· n−1
nγ

, by using Hölder's inequality in the

z-variable in (6.0.41) and by embedding theorem (Lemma 4.0.14), we get

‖Gm(·, u(·, t))−Gm(·, v(·, t))‖Lρ′(Cn)

≤ C‖(u− v)(·, t)‖Lρ(Cn)

(

‖u(·, t)‖
L

nγ
n−1 (Cn)

+ ‖v(·, t)‖
L

nγ
n−1 (Cn)

)
γ
n

≤ C‖(u− v)(·, t)‖Lρ(Cn)

(

‖u(·, t)‖W̃ 1,ρ
L (Cn) + ‖v(·, t)‖W̃ 1,ρ

L (Cn)

)
γ
n

(6.0.45)

for eah t ∈ I. Sine

1
γ′

= 1
γ
+ 1

n
, by taking Lγ

′
norm in the t-variable in this

inequality and then by using the Höder's inequality we get the desired estimate

(6.0.44).

Lemma 6.0.35 Let I be a bounded interval and u ∈ L∞(I, W̃ 1,2
L (Cn)) ∩ Lγ

(I, W̃ 1,ρ
L (Cn)), then following estimate holds

‖Gm(z, u(z, t))−G(z, u(z, t))‖
Lγ′(I,Lρ′(Cn))

≤ C|I|n−1
2n m− 1

n(n−1) ‖u‖
n2−n+1
n(n−1)

L∞(I,W̃ 1,2
L (Cn))

‖u‖
2

n−1

Lγ(I,W̃ 1,ρ
L (Cn))

for all m ≥ 1, where the onstant C is independent of m, u and I.

Proof. Note that

Gm(z, u(z, t))−G(z, u(z, t)) = (uχ|u(z,t)|>m(z, t))(ψm(z, |u|)− ψ(z, |u|)).

Therefore |Gm(z, u(z, t))−G(z, u(z, t))| ≤ C|uχ|u(z,t)|>m(z, t)| |u|
2

n−1
. By Taking
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Lρ
′
-norm in the z-variable, we have

‖Gm(z, u)−G(z, u)‖Lρ′(Cn) ≤ C‖uχ|u|>m(·, t)‖Lρ(Cn)‖u(·, t)‖
γ
n

L
nγ
n−1 (Cn)

≤ C‖uχ|u|>m(·, t)‖Lρ(Cn)‖u(·, t)‖
γ
n

W̃
1,ρ
L

. (6.0.46)

Now we observe the following

‖u χ|u|>m(·, t)‖ρLρ(Cn) =

∫

Cn

|u|ρχ|u|>m(z, t)dz

≤
∫

Cn

m
− ρ

n(n−1) |u| 2n
n−1dz

≤ m− ρ
n(n−1) ‖u‖

(n2−n+1)ρ
n(n−1)

L
2n
n−1 (Cn)

≤ m− ρ
n(n−1) ‖u‖

(n2−n+1)ρ
n(n−1)

W̃
1,2
L (Cn)

‖u χ|u|>m(·, t)‖Lρ ≤ m− 1
n(n−1) ‖u‖

(n2−n+1)
n(n−1)

W̃
1,2
L (Cn)

.

By taking Lγ-norm in the t-variable we have

‖uχ|u|>m‖Lγ(I,Lρ(Cn)) ≤ |I|n−1
2n m

− 1
n(n−1) ‖u‖

(n2−n+1)
n(n−1)

L∞(I,W̃ 1,2
L (Cn))

. (6.0.47)

By taking Lγ
′
-norm in the t-variable in the estimate (6.0.46) and using Hölder's

inequality, we get

‖Gm(z, u)−G(z, u)‖
Lγ′(I,Lρ′) ≤ C‖uχ|u|>m‖Lγ(I,Lρ)‖u‖

2
n−1

Lγ(I,W̃ 1,ρ
L )

.

By using inequality (6.0.47) in the above inequality, we get the desired estimate.

Lemma 6.0.36 Let u ∈ Lγ
(

I, W̃ 1,ρ
L (Cn)

)

for some interval I. Then for eah

m ∈ Z≥0, Gm(z, u(z, t)) ∈ Lγ
′
(

I, W̃ 1,ρ′

L (Cn)
)

and the following estimates hold:

‖SGm(z, u(z, t))‖Lγ′(I,Lρ′(Cn)) ≤ C‖u‖
n+1
n−1

Lγ(I,W̃ 1,ρ
L (Cn))

(6.0.48)

‖Gm(z, u(z, t))‖Lγ′
(

I,W̃
1,ρ′

L (Cn)
) ≤ C‖u‖

n+1
n−1

Lγ(I,W̃ 1,ρ
L (Cn))

(6.0.49)

where S = Id, Zj, Zj, 1 ≤ j ≤ n and the onstant C is independent of u and I.
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Proof. Sine ψm, ∂xjψm, ∂yjψm, |u|∂|u|ψm satisfy estimate (6.0.42), we have

|SGm(z, u)| ≤ C|u| 2
n−1 (|u|+ |Zju|+ |Z̄ju|)

where S = Id, Zj, Zj (1 ≤ j ≤ n), see estimate 6.0.9. Now estimate (6.0.48)

follows from Hölder's inequality and embedding theorem (Lemma 4.0.14) as we

used in the proof of Lemma 6.0.34. Estimate (6.0.49) is a onsequene of estimate

(6.0.48).

Proposition 6.0.37 Let I be a bounded interval suh that t0 ∈ I.

(i) If u, v ∈ Lγ
(

I, W̃ 1,ρ
L (Cn)

)

, then Hmu − Hmv ∈ Lq1 (I, Lp1(Cn)) for every

admissible pair (q1, p1), for every m ≥ 0 and the following estimate holds:

‖Hmu−Hmv‖Lq1 (I,Lp1(Cn)) (6.0.50)

≤ C‖u− v‖Lγ(I,Lρ(Cn))

(

‖u‖
Lγ(I,W̃ 1,ρ

L (Cn)) + ‖v‖
Lγ(I,W̃ 1,ρ

L (Cn))

)
2

n−1

.

(ii) If u ∈ L∞
(

I, W̃ 1,2
L (Cn)

)

∩Lγ
(

I, W̃ 1,ρ
L (Cn)

)

, then Hmu−Hu ∈ Lq1 (I, Lp1(Cn))

for every admissible pair (q1, p1), for every m ≥ 1 and the following estimate

holds

‖Hmu−Hu‖Lq1(I,Lp1(Cn)) (6.0.51)

≤ C|I|n−1
2n m

− 1
n(n−1) ‖u‖

n2−n+1
n(n−1)

L∞(I,W̃ 1,2
L (Cn))

‖u‖
2

n−1

Lγ(I,W̃ 1,ρ
L (Cn))

where the onstant C is independent of u, v,m and t0.

Proof. Estimate (6.0.50) follows from Strihartz estimates (Theorem 3.0.7) and

Lemma 6.0.34, whereas estimate (6.0.51) follows from Theorem 3.0.7 and Lemma

6.0.35.

Now we state the following Proposition, whih is useful in proving ontinuous

dependene. Proof is similar to Proposition 5.0.24. But for ompleteness, we give

the proof.

Proposition 6.0.38 Let Φ be a ontinuous omplex valued funtion on C suh

that |Φ(w)| ≤ C|w| 2
n−1

with n ≥ 2. Let {um} be a bounded sequene in Lγ
(

I, W̃ 1,ρ
L

)
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for some interval I. If um → u in Lγ(I, Lρ(Cn)) then u ∈ Lγ
(

I, W̃ 1,ρ
L (Cn)

)

and

[Φ(um)− Φ(u)]Su→ 0 in Lγ
′ (

I, Lρ
′
(Cn)

)

, for S = Id, Zj, Zj ; 1 ≤ j ≤ n.

Proof. First we will prove u ∈ Lγ
(

I, W̃ 1,ρ
L (Cn)

)

. By a duality argument (also

see Lemma A.2.1 in [12℄), we have

‖Su‖Lγ(I,Lρ(Cn)) = sup
φ∈C∞

c (Cn×I),‖φ‖
Lγ′ (I,Lρ′ (Cn))

≤1

∣

∣

∣
〈Su, φ〉z,t

∣

∣

∣

= sup
φ

∣

∣

∣
〈u, S∗φ〉z,t

∣

∣

∣

= sup
φ

lim
m→∞

∣

∣

∣
〈um, S∗φ〉z,t

∣

∣

∣

= sup
φ

lim
m→∞

∣

∣

∣
〈Sum, φ〉z,t

∣

∣

∣

≤ sup
φ

lim inf
m→∞

‖Sum‖Lγ(I,Lρ(Cn))‖φ‖Lγ′ (I,Lρ′(Cn))

≤ lim inf
m→∞

‖Sum‖Lγ(I,Lρ(Cn)) (6.0.52)

for S = Zj, Z̄j; 1 ≤ j ≤ n. Therefore

‖u‖
Lγ(I,W̃ 1,ρ

L (Cn)) ≤ lim inf
m→∞

‖um‖Lγ(I,W̃ 1,ρ
L (Cn)) <∞.

Sine um → u in Lγ(I, Lρ(Cn)), we an extrat a subsequene still denoted by uk

suh that

‖uk+1 − uk‖Lγ(I,Lρ(Cn)) ≤
1

2k

for all k ≥ 1 and uk(z, t) → u(z, t) a.e. Hene by ontinuity of Φ,

[Φ(uk)− Φ(u)]Su→ 0 for a.e (z, t) ∈ C
n × I. (6.0.53)

We establish the norm onvergene by appealing to a dominated onvergene

argument in z and t variables suessively.

Consider the funtion H(z, t) =
∑∞

k=1 |uk+1(z, t) − uk(z, t)|. Clearly H ∈
Lγ(I, Lρ(Cn)). Also for l > k,

|(ul − uk)(z, t)| ≤ |ul − ul−1|+ · · ·+ |uk+1 − uk| ≤ H(z, t),

hene |uk − u| ≤ H. This leads to the pointwise almost everywhere inequality
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|uk(z, t)| ≤ |u(z, t)|+H(z, t) = v(z, t).

Hene

| [Φ(uk)− Φ(u)]Su(z, t)|ρ′ ≤ C[v
2

n−1 + |u| 2
n−1 ]ρ

′ |Su(z, t)|ρ′. (6.0.54)

Sine u, v ∈ Lγ(I, Lρ(Cn)), using Hölder's inequality with

1
ρ′

= 1
ρ
+ n−1

n2 = 1
ρ
+

2
n−1

· n−1
nγ

and Lemma 4.0.14, we get

∫

Cn

[v
2

n−1 + |u| 2
n−1 ]ρ

′ |Su(z, t)|ρ′dz (6.0.55)

≤ (‖v(·, t)‖
L

nγ
n−1 (Cn)

+ ‖u(·, t)‖
L

nγ
n−1 (Cn)

)
ρ′γ
n ‖Su(·, t)‖ρ′

Lρ(Cn).

≤ (‖v(·, t)‖W̃ 1,ρ
L (Cn) + ‖u(·, t)‖W̃ 1,ρ

L (Cn))
ρ′γ
n ‖Su(·, t)‖ρ′

Lρ(Cn) <∞

for a.e. t ∈ I. Thus in view of (6.0.54), (6.0.55) and using dominated onvergene

theorem in the z-variable, we see that

‖ [Φ(uk)− Φ(u)]Su(·, t)‖Lp′(Cn) → 0 (6.0.56)

as k → ∞, for a.e. t.

Again, in view of (6.0.54) and (6.0.55), we get

‖[Φ(uk)− Φ(u)]Su(·, t)‖Lρ′(Cn)

≤ C(‖v(·, t)‖W̃ 1,ρ
L (Cn) + ‖u(·, t)‖W̃ 1,ρ

L (Cn))
γ
n‖Su(·, t)‖Lρ(Cn).

Sine

1
γ′

= 1
γ
+ 1

n
, an appliation of the Hölder's inequality in the t-variable shows

that

‖[Φ(uk)− Φ(u)]Su‖Lγ′(I,Lρ′(Cn))

≤ C(‖v‖
Lγ(I,W̃ 1,ρ

L (Cn)) + ‖u‖
Lγ(I,W̃ 1,ρ

L (Cn)))
γ
n‖Su‖Lγ(I,Lρ(Cn)).

Hene a further appliation of dominated onvergene theorem with (6.0.56)

shows that ‖ (Φ(uk)− Φ(u))Su‖Lγ′(I,Lρ′ ) → 0, as k → ∞.

Thus we have shown that [Φ(umk
)− Φ(u)]Su → 0 in Lγ

′
(I, Lρ

′
(Cn)) for
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some subsequene umk
whenever um → u in Lγ(I, Lρ(Cn)). But the above ar-

guments are also valid if we had started with any subsequene of um. It fol-

lows that any subsequene of [Φ(um)− Φ(u)]Su has a subsequene that on-

verges to 0 in Lγ
′
(I, Lρ

′
(Cn)). From this we onlude that the original sequene

[Φ(um)− Φ(u)]Su onverges to zero in Lγ
′
(I, Lρ

′
(Cn)), hene the proposition.

Loal well posedness for ritial ase α = 2
n−1

Now we state the main theorem of this setion.

Theorem 6.0.39 Let f ∈ W̃ 1,2
L (Cn) and G be as in (1.0.15) and (1.0.16) with

α = 2
n−1

and n ≥ 2. Initial value problem (1.0.13), (1.0.14) has maximal solution

u ∈ C((T∗, T
∗), W̃ 1,2

L )∩Lq1
lo

(

(T∗, T
∗), W̃ 1,p1

L (Cn)
)

, where t0 ∈ (T∗, T
∗) and (q1, p1)

be an arbitrary admissible pair. Moreover the following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), W̃ 1,2

L (Cn))∩Lγ((T∗, T ∗), W̃ 1,ρ
L ).

(ii)(Blowup alternative) If T ∗ < ∞ then ‖u‖
Lq̃((t0,T ∗),W̃ 1,p̃

L ) = ∞ for every

admissible pair (q̃, p̃) with 2 < p̃ and

1
q̃
= n

(

1
2
− 1

p̃

)

. Similar onlusion

holds if T∗ > −∞.

(iii)(Stability) If fk → f in W̃ 1,2
L (Cn) then ‖u− ũk‖Lq1(I,W̃ 1,p1

L (Cn)) → 0 as k →
∞ for every admissible pair (q1, p1) and every interval I with I ⊂ (T∗, T

∗),

where u, ũk are solutions orresponding to f, fk respetively.

Proof. Loal existene: Sine Gm(z, ·) : C → C is globally Lipshitz for eah

m ≥ 1, see estimate (6.0.40), from Theorem 6.0.31, it follows that there exists a

unique global solution um ∈ C(R, W̃ 1,2
L (Cn)) of the initial value problem

i∂tv(z, t)− Lv(z, t) = Gm(z, v), z ∈ C
n, t ∈ R (6.0.57)

v(·, t0) = f. (6.0.58)

Furthermore Hmum = um (see 6.0.43) and um ∈ Lq1
lo

(R, W̃ 1,p1
L (Cn)) for every

admissible pair (q1, p1). We dedue from Lemma 6.0.36 and Strihartz estimates
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(Theorem 3.0.7) that

‖um‖Lq1((t0,t0+T ),W̃ 1,p1
L (Cn))

≤ ‖e−i(t−t0)Lf‖
Lq1((t0,t0+T ),W̃ 1,p1

L (Cn)) + C‖um‖
n+1
n−1

Lγ((t0,t0+T ),W̃ 1,ρ
L (Cn))

.
(6.0.59)

Let l ≥ m, we see that

um − ul = (Hm(um)−Hm(ul)) + (Hm(ul)−H(ul)) + (H(ul)−Hl(ul)).

From Proposition 6.0.37, we dedue that

‖um − ul‖Lq1 ((t0,t0+T ),Lp1 (Cn)) ≤ C
(

‖um‖Lγ((t0,t0+T ),W̃
1,ρ
L ) + ‖ul‖Lγ((t0,t0+T ),W̃

1,ρ
L )

)
2

n−1 ×
(

‖um − ul‖Lγ((t0,t0+T ),Lρ) + T
n−1
2n m− 1

n(n−1) ‖ul‖
n2−n+1
n(n−1)

L∞((t0,t0+T ),W̃
1,2
L )

)

. (6.0.60)

We hoose T ≤ π, therefore we an take onstant C to be independent of T .

Let C̃ be larger than the onstant C that appear in (6.0.59), (6.0.60), (6.0.50),

(6.0.51) and in Strihartz estimates (Theorem 3.0.7) for the partiular hoie of

the admissible pairs (q, p) = (γ, ρ) and (q1, p1) = (γ, ρ). Fixed δ small enough so

that

C̃(4δ)
2

n−1 <
1

2
. (6.0.61)

We laim that if 0 < T ≤ π is suh that

‖e−i(t−t0)Lf‖
Lγ((t0,t0+T ),W̃ 1,ρ

L (Cn)) ≤ δ (6.0.62)

then

sup
m≥1

‖um‖Lγ((t0,t0+T ),W̃ 1,ρ
L (Cn)) ≤ 2δ (6.0.63)

sup
m≥1

‖um‖Lq1((t0,t0+T ),W̃ 1,p1
L (Cn)) < ∞ (6.0.64)

for every admissible pair (q1, p1). Let θm(t) = ‖um‖Lγ((t0,t0+t),W̃ 1,ρ
L (Cn)). From

(6.0.59), we see that

θm(t) ≤ δ + C̃θm(t)
n+1
n−1 .
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If θm(t) = 2δ for some t ∈ (t0, t0 + T ], then

2δ ≤ δ + C̃(2δ)
n+1
n−1 < 2δ

whih is a ontradition. Sine θm is a ontinuous funtion with θm(t0) = 0, we

onlude that θm(t) < 2δ for all t ∈ (t0, t0 + T ], whih proves (6.0.63). From

(6.0.59), we see that

sup
m

‖um‖Lq1((t0,t0+T ),W̃ 1,p1
L (Cn)) ≤ ‖e−i(t−t0)Lf‖

Lq1((t0,t0+T ),W̃ 1,p1
L (Cn)) + C(2δ)

n+1
n−1

≤ C(q1, p1, n, δ, f) <∞.

This proves (6.0.64). By taking (q1, p1) = (γ, ρ) in (6.0.60), we see that

‖um − ul‖Lγ((t0,t0+T ),Lρ(Cn)) ≤ 1

2

(

‖um − ul‖Lγ((t0,t0+T ),Lρ(Cn)) + CT
n−1
2n m− 1

n(n−1)

)

≤ 2CT
n−1
2n m− 1

n(n−1) → 0 as m→ ∞.

This shows that um is a Cauhy sequene in Lγ ((t0, t0 + T ), Lρ(Cn)) and from

(6.0.60) it is also Cauhy sequene in Lq1 ((t0, t0 + T ), Lp1(Cn)) for every admis-

sible pair (q1, p1). Let u be its limit, then um → u in Lq1 ((t0, t0 + T ), Lp1(Cn))

for every admissible pair (q1, p1). By a duality argument (see (6.0.52)) and from

estimates (6.0.63), (6.0.64), we have

‖u‖
Lγ((t0,t0+T ),W̃ 1,ρ

L (Cn)) ≤ 2δ (6.0.65)

‖u‖
Lq1((t0,t0+T ),W̃ 1,p1

L (Cn)) < ∞. (6.0.66)

From Lemma 6.0.36, Gm(z, u(z, t)) ∈ Lγ
′
(

(t0, t0 + T ), W̃ 1,ρ′

L (Cn)
)

for eah m ≥
0. From Strihartz estimates (Theorem 3.0.7) and (6.0.43) with m = 0, Hu ∈
Lq1((t0, t0 + T ), W̃ 1,p1

L (Cn)) for every admissible pair (q1, p1).

From Lemma 6.0.34 ‖Gm(z, um)−Gm(z, u)‖Lγ′((t0,t0+T ),Lρ′(Cn)) → 0 and from

Lemma 6.0.35, ‖Gm(z, u)−G(z, u)‖Lγ′((t0,t0+T ),Lρ′(Cn)) → 0 asm→ ∞. Therefore

‖Gm(z, um)−G(z, u)‖Lγ′ ((t0,t0+T ),Lρ′ ) → 0 as m→ ∞.
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Sine um = Hmum for eah m ≥ 1, from Strihartz estimates we dedue that

‖um −Hu‖Lq1((t0,t0+T ),Lp1 (Cn)) = ‖Hmum −Hu‖Lq1 ((t0,t0+T ),Lp1(Cn))

≤ C‖Gm(z, um)−G(z, u)‖Lγ′ ((t0,t0+T ),Lρ′) → 0

as m→ ∞. Therefore for t ∈ (t0, t0 + T )

u = Hu = e−i(t−t0)Lf(z)− i

∫ t

t0

e−i(t−s)LG(z, u(z, s))ds. (6.0.67)

From Strihartz estimates and estimate (6.0.66), u ∈ C([t0, t0 + T ], W̃ 1,2
L ) ∩

Lq1((t0, t0 + T ), W̃ 1,p1
L (Cn)) for every admissible pair (q1, p1). In view of Lemma

5.0.21, u is also a solution to the initial value problem (1.0.13), (1.0.14). Sim-

ilarly solution exists on the interval [t0 − T ′, t0] for some T ′ > 0. Now we

ontinue this proess with initial time t0 + T and t0 − T ′
. By ontinuing this

proess, we get maximal interval (T∗, T
∗) and solution u ∈ C((T∗, T

∗), W̃ 1,2
L ) ∩

Lq1
lo

(

(T∗, T
∗), W̃ 1,p1

L (Cn)
)

for every admissible pair (q1, p1).

Blowup alternative: We prove blowup alternative by method of ontradition.

Let us assume that T ∗ < ∞ and u ∈ Lq̃((t0, T
∗), W̃ 1,p̃

L ) for some admissible pair

(q̃, p̃) with 2 < p̃ and

1
q̃
= n

(

1
2
− 1

p̃

)

. Sine 2 < p̃ < 2n
n−1

, n ≥ 2, p̃ < 2n. We

hoose admissible pair (q1, p1) as follows

1

p′1
=

1

p1
+

2

n− 1

(

1

p̃
− 1

2n

)

,
1

q′1
=

1

q1
+

2

n− 1

1

q̃
·

Let us hoose s and t suh that t0 ≤ s < t < T ∗
. Sine |SjG(z, u(z, t))| ≤

C|u| 2
n−1 (|u|+ |Zju|+ |Zju|) for Sj = Id, Zj, Zj (1 ≤ j ≤ n) (see estimate 6.0.9),

by Lemma 4.0.14 and Hölder's inequality we see that

‖G(z, u(z, τ))‖
L
q′1 ((s,t),W̃

1,p′1
L )

≤ C‖u‖
Lq1((s,t),W̃

1,p1
L )

‖u‖
2

n−1

Lq̃((s,t),W̃ 1,p̃
L )

. (6.0.68)

Sine (t0, T
∗) is a bounded interval, so we an hoose onstant C to be indepen-

dent of s and t, where t0 ≤ s < t < T ∗
. Now we see that

u(z, τ) = e−i(τ−s)Lu(·, s)(z)− i

∫ τ

s

e−i(τ−s1)LG(z, s1, u(z, s1))ds1.
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Therefore from Strihartz estimates (Theorem 3.0.7) and estimate (6.0.68), we

dedue that

‖u‖
Lq1((s,t),W̃ 1,p1

L ) ≤ C‖u(·, s)‖W̃ 1,2
L

+ C‖u‖
Lq1((s,t),W̃ 1,p1

L )‖u‖
2

n−1

Lq̃((s,t),W̃ 1,p̃
L )

where onstant C is independent of s and t. Sine p̃ 6= 2, so q̃ < ∞ and u ∈
Lq̃
(

(t0, T
∗), W̃ 1,p̃

L (Cn)
)

, we hoose s su�iently lose to T ∗
suh that

C‖u‖
2

n−1

Lq̃((s,T ∗),W̃ 1,p̃
L (Cn))

≤ 1

2
.

Therefore we get

‖u‖
Lq1((s,t),W̃ 1,p1

L (Cn)) ≤ 2C‖u(·, s)‖W̃ 1,2
L
.

Sine RHS is independent of t ∈ (s, T ∗), we have u ∈ Lq1
(

(s, T ∗), W̃ 1,p1
L (Cn)

)

.

Therefore u ∈ Lq1
(

(t0, T
∗), W̃ 1,p1

L

)

and G(z, u(z, τ)) ∈ Lq
′
1

(

(t0, T
∗), W̃

1,p′1
L

)

fol-

lows from (6.0.68). Now from Strihartz estimates and (6.0.67), u ∈ Lq2((t0, T
∗),

W̃ 1,p2
L (Cn))∩C([t0, T ∗], W̃ 1,2

L (Cn)) for every admissible pair (q2, p2). Now by on-

sidering T ∗
as a initial time and by loal existene argument, we get ontradition

to maximality of T ∗
.

Uniqueness: Suppose u, v ∈ C((T∗, T
∗), W̃ 1,2

L ) ∩ Lγ
lo

((T∗, T
∗), W̃ 1,ρ

L ) are two

solutions of the equations (1.0.13) and (1.0.14). Then in view of Lemma 5.0.21

u and v will satisfy integral equation (1.0.20). From estimate 6.0.49 with m =

0, G(z, u) ∈ Lγ
′

lo

((T∗, T
∗), W̃ 1,ρ′

L ). Sine u(·, t0) = v(·, t0) = f , from estimate

(6.0.50) with m = 0 and (q1, p1) = (γ, ρ), there exists su�iently small T suh

that u(·, t) = v(·, t) for t ∈ [t0 − T, t0 + T ]. Let t̃ ∈ (T∗, T
∗) be suh that

u(·, t̃) = v(·, t̃). For τ ∈ (t̃, T ∗), we have

u(z, τ) = e−i(τ−t̃)Lu(z, t̃)− i

∫ τ

t̃

e−i(τ−s)LG(z, u(z, s))ds,

v(z, τ) = e−i(τ−t̃)Lv(z, t̃)− i

∫ τ

t̃

e−i(τ−s)LG(z, v(z, s))ds.

By Strihartz estimate (3.0.2) and estimate (6.0.50) with m = 0 and (q1, p1) =

(γ, ρ), we have
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‖u− v‖
Lγ((t̃,τ),Lρ(Cn)) =

∥

∥

∥

∥

∫ τ

t̃

e−i(t−s)L (G(u)−G(v)) (z, s)ds

∥

∥

∥

∥

Lγ((t̃,τ),Lρ(Cn))

≤ C‖u− v‖
Lγ((t̃,τ),Lρ)

(

‖u‖
Lγ((t̃,τ),W̃ 1,ρ

L ) + ‖v‖
Lγ((t̃,τ),W̃ 1,ρ

L )

)
2

n−1

for all τ ∈ (t̃, T ∗). Choose τ ∈ (t̃, T ∗) su�iently lose to t̃ suh that

C
(

‖u‖
Lγ((t̃,τ),W̃ 1,ρ

L ) + ‖v‖
Lγ((t̃,τ),W̃ 1,ρ

L )

)
2

n−1 ≤ 1

2
.

Therefore ‖u − v‖
Lγ((t̃,τ),Lrho(Cn)) ≤ 1

2
‖u − v‖

Lγ((t̃,τ),Lρ(Cn)). Hene u = v on the

larger interval [t̃, τ ].

Now let θ =sup{T̃ : t0 < T̃ < T ∗ : ‖u − v‖Lγ([t0,T̃ ],Lρ) = 0}. If θ < T ∗
,

then for su�iently small ǫ > 0, hoose t̃ = θ − ǫ, τ = θ + ǫ and by the above

observation, ‖u−v‖Lγ((θ−ǫ,θ+ǫ),Lρ) = 0, whih ontradits the de�nition of θ. Thus

we onlude that θ = T ∗
, proving the uniqueness on [t0, T

∗). Similarly one an

show uniqueness on (T∗, t0].

Stability: We prove stability in the following two steps.

Step 1: Let fk → f in W̃ 1,2
L (Cn). Then for eah T > 0,

‖e−i(t−t0)L(f − fk)‖Lγ(IT ,W̃ 1,ρ
L (Cn)) ≤ C‖f − fk‖W̃ 1,2

L (Cn) → 0 as k → ∞

where IT = (t0 − T, t0 + T ). Therefore for given δ > 0 in (6.0.61), hoose T (δ)

su�iently small suh that

‖e−i(t−t0)Lf‖Lγ(IT ,W̃
1,ρ
L ) ≤

δ

2
(6.0.69)

and hoose k su�iently large so that

‖e−i(t−t0)L(f − fk)‖Lγ(IT ,W̃ 1,ρ
L (Cn)) ≤ C‖f − fk‖W̃ 1,2

L (Cn) ≤
δ

2
.

Therefore hoose k0(T ) so large suh that

‖e−i(t−t0)Lfk‖Lγ(IT ,W̃ 1,ρ
L (Cn)) ≤ δ (6.0.70)

for k ≥ k0(T ).
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Let u and ũk are solutions orresponding to initial values f and fk at time

t0 respetively for k ≥ 1. In view of estimates (6.0.65) and (6.0.66), u, ũk will

satisfy following estimates

‖u‖
Lγ(IT ,W̃ 1,ρ

L (Cn)) ≤ 2δ (6.0.71)

‖u‖
Lq1((t0,t0+T ),W̃ 1,p1

L (Cn)) < ∞ (6.0.72)

sup
k≥k0(T )

‖ũk‖Lγ(IT ,W̃ 1,ρ
L (Cn)) ≤ 2δ (6.0.73)

sup
k≥k0(T )

‖ũk‖Lq1(IT ,W̃ 1,p1
L (Cn)) < ∞ (6.0.74)

where (q1, p1) be any admissible pair. Now from Strihartz estimates and Lemma

6.0.34,

‖u− ũk‖Lγ(IT ,Lρ) = ‖Hu−Hũk‖Lγ(IT ,Lρ)

≤ C‖f − fk‖W̃ 1,2
L (Cn) + C‖G(z, u)−G(z, ũk)‖Lγ′ (IT ,Lρ′)

≤ C‖f − fk‖W̃ 1,2
L (Cn) + C‖u− ũk‖Lγ(IT ,Lρ(Cn)) ×

(

‖u‖
Lγ(IT ,W̃ 1,ρ

L (Cn)) + ‖ũk‖Lγ(IT ,W̃ 1,ρ
L (Cn))

)
2

n−1
.

From (6.0.61) and (6.0.65),

C
(

‖u‖
Lγ(IT ,W̃ 1,ρ

L (Cn)) + ‖ũk‖Lγ(IT ,W̃ 1,ρ
L (Cn))

)
2

n−1 ≤ 1

2
.

Therefore ‖u − ũk‖Lγ(IT ,Lρ) ≤ 2C‖f − fk‖W̃ 1,2
L (Cn) → 0 as k → ∞. Sine {ũk}

is a bounded sequene in Lγ
(

IT , W̃
1,ρ
L (Cn)

)

, therefore from Lemma 6.0.34 with

m = 0, ‖G(z, u(z, t)) − G(z, ũk(z, t))‖Lγ′(IT ,Lρ′(Cn)) → 0 as j → ∞. Sine Hu =

u,Hũk = ũk, therefore from Theorem 3.0.7

‖u− ũk‖Lq1 (IT ,Lp1) ≤ C‖f − fk‖L2 + C‖G(z, u)−G(z, ũk)‖Lγ′(IT ,Lρ′(Cn)) → 0

as k → ∞ for every admissible pair (q1, p1). Note that (∂xj −
iyj
2
) = 1

2
(Zj − Zj)

and (∂yj +
ixj
2
) = i

2
(Zj+Zj). For S = (∂xj −

iyj
2
), (∂yj +

ixj
2
) and using the notation

ψ(k) = ψ (z, |ũk(z, t)|) (see equation (5.0.31)), we have
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S(G(k) −G) = ψ(k)S(ũk − u) + (ψ(k) − ψ)Su+ (∂jψ(k))(ũk − u)

+ (∂jψ(k) − ∂jψ)u+ (∂2n+1ψ(k))ũkℜ(
ũk
|ũk|

S(ũk − u))

+ (∂2n+1ψ(k))ũkℜ(
ũk
|ũk|

Su)− (∂2n+1ψ)uℜ(
u

|u|Su)

(6.0.75)

where ∂j = ∂xj for S = (∂xj −
iyj
2
) and ∂j = ∂yj for S = (∂yj +

ixj
2
), 1 ≤ j ≤ n.

Using the assumption (1.0.16) on ψ, Lemma 4.0.14, and by similar omputations

as used in Lemma 6.0.34 and Proposition 6.0.38, we have

‖ψ(k)S(ũk − u)‖
Lγ′(IT ,Lρ′) ≤ C‖S(ũk − u)‖Lγ(IT ,Lρ)‖ũk‖

2
n−1

Lγ(IT ,W̃ 1,ρ
L )

‖(∂jψ(k))(ũk − u)‖
Lγ′(IT ,Lρ′) ≤ C‖ũk − u‖Lγ(IT ,Lρ)‖ũk‖

2
n−1

Lγ(IT ,W̃ 1,ρ
L )

‖(∂2n+1ψ(k))ũkℜ(
ũk
|ũk|

S(ũk − u))‖
Lγ′(IT ,Lρ′)

≤ C‖S(ũk − u)‖Lγ(IT ,Lρ)‖ũk‖
2

n−1

Lγ(IT ,W̃ 1,ρ
L )

.

Sine ‖ũk − u‖Lγ(IT ,Lρ(Cn)) → 0 and {ũk} is a bounded sequene in Lγ(IT , W̃
1,ρ
L ),

therefore by seond inequality in the above estimates, (∂jψ(k))(ũk − u) → 0 as

k → ∞ in Lγ
′ (

IT , L
ρ′(Cn)

)

. Sine G is C1
, so in view of the ondition (1.0.16)

on ψ and Proposition 6.0.38, the sequenes (ψ(k) − ψ)Su, , (∂jψ(k) − ∂jψ)u and

(∂2n+1ψ(k))ũkℜ( ũk|ũk|
Su) − (∂2n+1ψ)uℜ( u|u|Su) onverges to zero in Lγ

′
(Iτ , L

ρ′) as

k → ∞. Using these observations in (6.0.75), we get

‖S(G(k) −G)‖Lγ′ (IT ,Lρ′) ≤C‖ũk‖
2

n−1

Lγ(IT ,W̃ 1,ρ
L )

‖S(ũk − u)‖Lγ(IT ,Lρ(Cn)) + ak

where S = (∂xj −
iyj
2
), (∂yj +

ixj
2
) (1 ≤ j ≤ n) and ak → 0 as k → ∞. Sine

(∂xj −
iyj
2
) = 1

2
(Zj − Zj) and (∂yj +

ixj
2
) = i

2
(Zj + Zj), therefore we have

‖G(k) −G‖
Lγ′ (IT ,W̃

1,ρ′

L )
≤ C‖ũk‖

2
n−1

Lγ(IT ,W̃ 1,ρ
L )

‖ũk − u‖
Lγ(IT ,W̃

1,ρ
L ) + ak.(6.0.76)



81

Now from Strihartz estimates and above estimate, we have

‖ũk − u‖Lγ(IT ,W̃
1,ρ
L ) ≤ C‖fk − f‖W̃ 1,2

L
+ C‖ũk‖

2
n−1

Lγ(IT ,W̃ 1,ρ
L )

‖ũk − u‖Lγ(IT ,W̃
1,ρ
L ) + ak.

(6.0.77)

Now we hoose δ > 0 su�iently small suh that it satis�es ondition (6.0.61)

and

C(2δ)
2

n−1 ≤ 1

2

where onstant C is appearing in the inequality (6.0.77). Note that T depends

on δ through (6.0.69). Therefore from estimates (6.0.73) and (6.0.77), we have

‖ũk − u‖Lq(IT ,W̃
1,p
L ) ≤ 2C‖fk − f‖W̃ 1,2

L
+ 2ak → 0

as k → ∞. Now from estimates (6.0.76) and (6.0.73)

‖G(k) −G‖
Lγ′ (IT ,W̃

1,ρ′

L )
→ 0

as k → ∞. From Strihartz estimates,

‖ũk − u‖
Lq1 (IT ,W̃

1,p1
L )

≤ C‖fk − f‖W̃ 1,2
L

+ C‖G(k) −G‖
Lγ′ (IT ,W̃

1,ρ′

L )
→ 0

as k → ∞ for every admissible pair (q1, p1).

Step 2: Let (T∗,k, T
∗
k ) be the maximal interval for the solutions ũk and I ⊂

(T∗, T
∗) be a ompat interval. As disussed in Theorem 5.0.26, in order to prove

stability for interval I, it is enough to prove that ũk is de�ned on I, for all but

�nitely many k. In fat, we prove I ⊂ (T∗,k, T
∗
k ) for all but �nitely many k.

Without loss of generality, we assume that t0 ∈ I = [a, b], and give a proof by

the method of ontradition. Suppose there exist in�nitely many T ∗
km

≤ b and let

c = lim inf T ∗
km
. Then for ǫ > 0, [t0, c− ǫ] ⊂ [t0, T

∗
km

) for all km su�iently large

and ũkm are de�ned on [t0, c− ǫ].

By ompatness and step 1, the stability result proved above an be extended

to the interval [t0, c− ǫ].
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For given δ > 0, hoose ǫ > 0 su�iently small suh that

‖e−i(t−(c−ǫ))Lu(·, c− ǫ)− e−i(t−(c−ǫ))Lu(·, c)‖
Lγ((c−ǫ,c+ǫ),W̃ 1,ρ

L )

≤ C‖u(·, c− ǫ)− u(·, c)‖W̃ 1,2
L

≤ δ

6
‖e−i(t−(c−ǫ))Lu(·, c)− e−i(t−c)Lu(·, c)‖

Lγ((c−ǫ,c+ǫ),W̃ 1,ρ
L )

≤ C‖e−iǫtLu(·, c)− u(·, c)‖W̃ 1,2
L

≤ δ

6

‖e−i(t−c)Lu(·, c)‖
Lγ((c−ǫ,c+ǫ),W̃ 1,ρ

L ) ≤
δ

6
.

Now we hoose k0(ǫ) suh that following estimate holds for all k ≥ k0

‖e−i(t−(c−ǫ))ũkm(·, c− ǫ)− e−i(t−(c−ǫ))u(·, c− ǫ)‖
Lγ((c−ǫ,c+ǫ),W̃ 1,ρ

L )

≤ C‖ũkm(·, c− ǫ)− u(·, c− ǫ)‖
W̃

1,2
L

≤ δ
2
.

Therefore ‖e−i(t−(c−ǫ))ũkm(·, c − ǫ)‖
Lγ((c−ǫ,c+ǫ),W̃ 1,ρ

L ) ≤ δ for all km ≥ k0. Now by

loal existene argument (see (6.0.62)), ũkm is de�ned on (t0, c+ ǫ) and therefore

T ∗
km

≥ c+ ǫ for all km ≥ k0, hene ontradits the fat that lim inf T ∗
km

= c.

Similarly we an show that [a, t0] ⊂ (T∗,k, t0] for all but �nitely many k whih

ompletes the proof of stability.



Chapter 7

Global well posedness in L2(Cn)

In this hapter we will prove global well posedness in L2(Cn) for the subritial

ase 0 ≤ α < 2
n
. However in the ritial ase α = 2

n
, we an prove the global well

posedness in L2(Cn) only for su�iently small intial value, see Remark 7.0.42.

We follow method of Cazenave and Weissler [7℄. Theorem 7.0.40 and Theorem

7.0.41 are main results of this hapter.

Subritial Case 0 ≤ α < 2
n

Theorem 7.0.40 Let u(·, t0) = f ∈ L2(Cn) and G be as in (1.0.15) and (1.0.16)

with 0 ≤ α < 2
n
. Initial value problem (1.0.13), (1.0.14) has unique maximal

solution u ∈ C((T∗, T
∗), L2(Cn)) ∩ Lq2

lo

((T∗, T
∗), Lp2(Cn)), where t0 ∈ (T∗, T

∗)

and (q2, p2) be an arbitrary admissible pair. Fix p = 2+α. Moreover the following

properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), L2(Cn)) ∩ Lq2

lo

((T∗, T
∗), Lp)

where q2 ∈ [q1, q],
1
q
= n

(

1
2
− 1

p

)

and q1 =
2p(p−1)

2p+2n−np
≥ 1.

(ii)(Blowup alternative) If T ∗ <∞ (respetively, T∗ > −∞), then

‖u‖Lq2((t0,T ∗),Lp(Cn)) = ∞ (respetively, ‖u‖Lq2((T∗,t0),Lp(Cn)) = ∞), where

q2 ∈ [q1, q].

(iii)(Stability) If fj → f in L2(Cn), then uj → u in Lq1 (I, Lp1(Cn)) for every

interval I with I ⊂ (T∗, T
∗) and for every admissible pair (q1, p1), where uj

and u are solutions orresponding to fj and f respetively.

83



84

(iv)(Conservation of harge and global existene) If ψ is real valued, then

we have onservation of harge ‖u(·, t)‖L2(Cn) = ‖f‖L2(Cn) for every t ∈
(T∗, T

∗). Moreover solution is global, i.e., T∗ = −∞ and T ∗ = ∞.

Proof. The key point is that we prove loal existene without using embedding

theorems (Lemma 4.0.9, Lemma 4.0.14). For given positive real numbers T and

M with T ≤ π, onsider the metri spae

ET,M = {u ∈ Lq(I, Lp(Cn)) : ‖u‖Lq(I,Lp(Cn)) ≤M}

with metri d(u, v) = ‖u − v‖Lq(I,Lp(Cn)), where I = (t0 − T, t0 + T ). We show

existene of solution to the initail value problem (1.0.13), (1.0.14) by showing

that operator H given by (1.0.21) is ontration on omplete metri spe ET,M

for suitable T and M .

Let q1 = 2p(p−1)
2p+2n−np

· Sine 0 ≤ α < 2
n
, p = 2 + α, therefore 1 ≤ q1 < q and

1
q′

= α
q1

+ 1
q1
. Let u, v ∈ Lq(I, Lp(Cn)). By taking Lq

′
norm with respet to the

t-variable in the inequality (5.0.4) and using the Hölder's inequality, we get

‖G(z, u)−G(z, v)‖Lq′(I,Lp′) ≤ C(‖u‖αLq1(I,Lp) + ‖v‖αLq1(I,Lp))

×‖u− v‖Lq1 (I,Lp) (7.0.1)

≤ CT
q−q1
qq1

(1+α)
(‖u‖αLq(I,Lp) + ‖v‖αLq(I,Lp))

×‖u− v‖Lq(I,Lp). (7.0.2)

From Strihartz estimates (Theorem 3.0.7), above estimate and for u ∈ ET,M , we

observe that

‖Hu‖Lq(I,Lp) ≤ C‖f‖L2(Cn) + C‖G(z, u(z, t))‖Lq′ (I,Lp′)

≤ C‖f‖L2(Cn) + CT
q−q1
qq1

(1+α)‖u‖αLq(I,Lp)‖u‖Lq(I,Lp(Cn))

≤ C‖f‖L2(Cn) + CT
q−q1
qq1

(1+α)
M1+α. (7.0.3)

From Theorem 3.0.7, estimate (7.0.2) and for u, v ∈ E, we observe that

‖Hu−Hv‖Lq(I,Lp(Cn)) ≤ C‖G(z, u)−G(z, v)‖Lq′ (I,Lp′)

≤ CT
q−q1
qq1

(1+α)
Mα‖u− v‖Lq(I,Lp(Cn)). (7.0.4)
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Choose

M =

{

1 if f = 0

2C‖f‖L2(Cn) if f 6= 0
(7.0.5)

and

T =







min{π, (2C)−
qq1

(q−q1)(1+α)} if f = 0

min{π, (2C)−
qq1
q−q1 ‖f‖

−
αqq1

(q−q1)(1+α)

L2(Cn) } if f 6= 0
(7.0.6)

where C is the same onstant that appears in the inequalities (7.0.3), (7.0.4) and

is independent of T . For this hoie of M and T , operator H is ontation on E.

Therefore H has unique �xed point in E. From estimate 7.0.2 with v = 0,

G(z, u(z, t)) ∈ Lq
′
(I, Lp

′
(Cn)), from Strihartz estimates u ∈ C(I, L2(Cn)) ∩

Lq̃(I, Lp̃(Cn)) for every admissible pair (q̃, p̃). In view of Lemma 5.0.21, u is

also a solution of the initial value problem (1.0.13), (1.0.14).

Now we onsider inital time t0 − T and t0 + T . Then by the above argument,

solution u is de�ned on the interval [T−1, T1] for some T−1 < t0−T and T1 > t0+T .

By ontinuing this proess, we get maximal interval (T∗, T
∗) and solution u is de-

�ned on this interval. Moreover u ∈ C((T∗, T
∗), L2(Cn)) ∩ Lq̃

lo

((T∗, T
∗), Lp̃(Cn))

for every admissible pair (q̃, p̃). In view of estimates (7.0.1), (7.0.2), (7.0.4)

uniqueness follows by similar arguments as in Theorem 5.0.26.

Stability: We prove stability in the following two steps.

Step 1: Let {fm}m≥1 be a sequene in L2(Cn) suh that fm → f in L2(Cn) as

m→ ∞. Let um and u be the solutions orresponding to the initial data fm and

f respetively, at time t = t0.

Sine fm → f in L2(Cn), in view of (7.0.6) we an hoose τ < T su�iently

small so that um are de�ned on Iτ = (t0 − τ, t0 + τ) for su�iently large m. Also

note that

um − u = e−i(t−t0)L(fm − f)− i

∫ t

t0

e−i(t−s)L(G(z, um(z, s))−G(z, u(z, s)))ds.

By Theorem 3.0.7 and estimate (7.0.2),

‖um − u‖Lq(Iτ ,Lp) ≤ C‖fm − f‖L2 + Cτ
q−q1
qq1

(1+α)
(Mα +Mα

m)‖um − u‖Lq(I,Lp)
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where Mm is given by (7.0.5) with f replaed by fm. Sine fm → f in L2(Cn),

{Mm} is a bounded sequene. We hoose τ su�iently small so that

Cτ
q−q1
qq1

(1+α)
(Mα +Mα

m) ≤
1

2

for m ≥ 1. Thus ‖um − u‖Lq(Iτ ,Lp) ≤ 2C‖fm − f‖L2 → 0 as m → ∞. From

estimate (7.0.2) ‖G(z, um) − G(z, u)‖Lq′ (Iτ ,Lp′) → 0 as m → ∞. From Theorem

3.0.7

‖um − u‖Lq1(Iτ ,Lp1 ) ≤ C‖fm − f‖L2 + C‖G(z, um)−G(z, u)‖Lq′(Iτ ,Lp′) → 0

as m→ ∞ for every admissible pair (q1, p1).

Step 2: Let (T∗,m, T
∗
m) be the maximal interval for the solutions um and I ⊂

(T∗, T
∗) be a ompat interval. As disussed in Theorem 5.0.26, in order to prove

stability for interval I, it is enough to prove that um is de�ned on I, for all but

�nitely many m. In fat, we prove I ⊂ (T∗,m, T
∗
m) for all but �nitely many m.

Without loss of generality, we assume that t0 ∈ I = [a, b], and give a proof by

the method of ontradition. Suppose there exist in�nitely many T ∗
mj

≤ b and let

c = lim inf T ∗
mj
. Then for ǫ > 0, [t0, c− ǫ] ⊂ [t0, T

∗
mj
) for all mj su�iently large

and umj
are de�ned on [t0, c− ǫ].

By ompatness, the stability result proved in step 1 an be extended to the

interval [t0, c− ǫ]. Hene

‖umj
(·, c− ǫ)‖L2 → ‖u(·, c− ǫ)‖L2

as j → ∞.

Also by ontinuity we have

‖u(·, c− ǫ)‖L2 → ‖u(·, c)‖L2
as ǫ→ 0.

Thus, for any δ > 0, we have

‖umj
(·, c− ǫ)‖

−
αqq1

(q−q1)(1+α))

L2 > δ whenever ‖u(·, c)‖
−

αqq1
(q−q1)(1+α)

L2 > δ, (7.0.7)

for su�iently small ǫ and for all j ≥ j0(ǫ). Therefore by applying the loal

existene argument (see equation 7.0.6), with c − ǫ as the initial time, without

loss of generality we an assume that umj
extends to [t0, c − ǫ + C1‖umj

(·, c −
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ǫ)‖
−

αqq1
(q−q1)(1+α)

L2 ] for large j where C1 = (2C)
− qq′

q−q′
. Now hoosing ǫ < C1

2
δ, we have

by (7.0.7)

c− ǫ+ C1‖umj
(·, c− ǫ)‖

−
αqq1

(q−q1)(1+α)

L2 > c+
C1

2
δ for all j ≥ j0(ǫ).

It follows that T ∗
mj

≥ c+ C1

2
δ, hene ontradits the fat that lim inf T ∗

mj
= c.

Similarly we an show that [a, t0] ⊂ (T∗,m, t0] for all but �nitely many m whih

ompletes the proof of stability.

Blowup alternative: We prove blowup alternative by method of ontradition.

Suppose T ∗ < ∞ and u ∈ Lq̃((t0, T
∗), Lp(Cn)) for some q̃ ∈ [q1, q]. Then by

estimates (7.0.1), G(z, u) ∈ Lq
′
((t0, T

∗), Lp
′
(Cn)) and by Strihartz estimates

u ∈ C([t0, T
∗], L2(Cn)) ∩ Lq2 ((t0, T ∗), Lp2(Cn)) for every admissible pair (q2, p2).

By taking T ∗
as initial time and by loal existene argument, solution exists on

the interval [t0, T
∗+ ǫ) for some ǫ > 0, whih is a ontradition for maximality of

T ∗
.

Conservation of harge and global existene: Let {fm} be a sequene in

W̃ 1,2
L (Cn) onverging to f in L2(Cn). By stability um → u in L∞(I, L2(Cn))

for every interval I with I ⊂ (T∗, T
∗). By onservation of harge (see Theorem

6.0.33), ‖um(·, t)‖L2(Cn) = ‖fm‖L2(Cn) for eah t ∈ I. Therefore by taking limit

m→ ∞, we get ‖u(·, t)‖L2(Cn) = ‖f‖L2(Cn) for eah t ∈ I. Hene ‖u(·, t)‖L2(Cn) =

‖f‖L2(Cn) for eah t ∈ (T∗, T
∗). From onservation of harge and loal existene

argument ((7.0.5), (7.0.6)), we will get global solution, i.e., −T∗ = T ∗ = ∞.

Critial ase α = 2
n

Theorem 7.0.41 Let u(·, t0) = f ∈ L2(Cn), α = 2
n
and G be as in (1.0.15) and

(1.0.16). Initial value problem (1.0.13), (1.0.14) has unique maximal solution

u ∈ C((T∗, T
∗), L2(Cn))∩Lq1

lo

((T∗, T
∗), Lp1(Cn)), where t0 ∈ (T∗, T

∗) and (q1, p1)

be an arbitrary admissible pair. Fix p = 2+α. Moreover the following properties

hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), L2(Cn))∩Lp((T∗, T ∗), Lp(Cn)).

(ii)(Blowup alternative) If T ∗ <∞ (respetively, T∗ > −∞), then

‖u‖Lp((t0,T ∗),Lp(Cn)) = ∞ (respetively, ‖u‖Lp((T∗,t0),Lp(Cn)) = ∞).
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(iii)(Stability) If fj → f in L2(Cn), then uj → u in Lq1 (I, Lp1(Cn)) for every

interval I with I ⊂ (T∗, T
∗) and for every admissible pair (q1, p1), where uj

and u are solutions orresponding to fj and f respetively.

(iv)(Conservation of harge) If ψ : Rn × Rn × [0,∞) → R is real valued,

then we have onservation of harge ‖u(·, t)‖L2(Cn) = ‖f‖L2(Cn) for every

t ∈ (T∗, T
∗).

Proof. First we prove loal existene. For given positive real numbers T and δ

with T ≤ π, onsider the metri spae

ET,δ = {u ∈ Lp(I, Lp(Cn)) : ‖u‖Lp(I,Lp(Cn)) ≤ δ}

with metri d(u, v) = ‖u−v‖Lp(I,Lp(Cn)), where I = (t0−T, t0+T ) and p = 2(n+1)
n

.

Sine

1
p
= n(1

2
− 1

p
), (p, p) be an admissible pair. We show existene of solution

to the initail value problem (1.0.13), (1.0.14) by showing that operator H given

by (1.0.21) is ontration on omplete metri spe ET,δ for suitable T and δ.

Let u, v ∈ Lp(I, Lp(Cn)). By taking Lp
′
norm with respet to the t-variable

in the inequality (5.0.4) and using the Hölder's inequality, we get

‖G(z, u)−G(z, v)‖Lp′(I,Lp′ ) ≤ C(‖u‖αLp(I,Lp) + ‖v‖αLp(I,Lp))

×‖u− v‖Lp(I,Lp). (7.0.8)

From Strihartz estimates (Theorem 3.0.7), above estimate and for u, v ∈ ET,δ,

we observe that

‖Hu‖Lp(I,Lp(Cn)) ≤ ‖e−i(t−t0)Lf‖Lp(I,Lp) + C‖u‖αLp(I,Lp)‖u‖Lp(I,Lp)

≤ ‖e−i(t−t0)Lf‖Lp(I,Lp) + Cδ1+α (7.0.9)

‖Hu−Hv‖Lp(I,Lp(Cn)) ≤ C(‖u‖αLp(I,Lp) + ‖v‖αLp(I,Lp))‖u− v‖Lp(I,Lp(Cn))

≤ Cδα‖u− v‖Lp(I,Lp(Cn)). (7.0.10)

Choose

δ = (4C)−
1
α

(7.0.11)
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and T ≤ π su�iently small suh that

‖e−i(t−t0)Lf‖Lp(I,Lp(Cn)) ≤
δ

2
(7.0.12)

where C is the same onstant that appears in the inequalities (7.0.8), (7.0.9),

(7.0.10) and is independent of T . For this hoie of δ and T , operator H is a on-

tation on ET,δ. Therefore H has unique �xed point in ET,δ. Sine G(z, u(z, t)) ∈
Lp

′
(I, Lp

′
(Cn)), from Strihartz estimates u ∈ C(I, L2(Cn)) ∩ Lq̃(I, Lp̃(Cn)) for

every admissible pair (q̃, p̃). In view of Lemma 5.0.21, u is also a solution of the

initial value problem (1.0.13), (1.0.14).

By suesive appliation of loal existene argument, solution an be extended

to maximal interval (T∗, T
∗) and u ∈ C((T∗, T

∗), L2(Cn))∩Lq̃
lo

((T∗, T
∗), Lp̃(Cn))

for every admissible pair (q̃, p̃). In view of (7.0.8), (7.0.10) and (7.0.11), unique-

ness follows by similar arguments as in Theorem 5.0.26.

Stability: We prove stability in the following two steps.

Step 1: Let {fm}m≥1 be a sequene in L2(Cn) suh that fm → f in L2(Cn) as

m→ ∞. Let um and u be the solutions orresponding to the initial data fm and

f respetively, at time t = t0. Sine fm → f in L2(Cn), by Theorem 3.0.7,

‖e−i(t−t0)L(fm − f)‖Lp(I,Lp(Cn)) ≤ C‖fm − f‖L2(Cn) → 0

as m → ∞. Choose τ < T , then by (7.0.12), ‖e−i(t−t0)Lf‖Lp(Iτ ,Lp(Cn)) <
δ
2
,

‖e−i(t−t0)Lfm‖Lp(Iτ ,Lp(Cn)) <
δ
2
and um are de�ned on Iτ for su�iently large m,

where Iτ = (t0 − τ, t0 + τ). Setting Gm(z, t) = G(z, um(z, t)), we have

(um − u)(z, t) = e−i(t−t0)L(fm − f)(z)− i

∫ t

t0

e−i(t−s)L(Gm −G)(z, s)ds(7.0.13)

for all t ∈ Iτ . From estimate (7.0.8), we see that

‖G(z, um)−G(z, u)‖Lp′(Iτ ,Lp′ (Cn)) ≤ C(‖u‖αLp(I,Lp) + ‖v‖αLp(I,Lp))‖u− v‖Lp(I,Lp)

≤ Cδα‖u− v‖Lp(I,Lp). (7.0.14)

Now from equation (7.0.13), Theorem 3.0.7 and above estimate, we have

‖um − u‖Lp(Iτ ,Lp(Cn)) ≤ C‖fm − f‖L2 + Cδα‖um − u‖Lp(Iτ ,Lp(Cn)).
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Note that onstant C in the seond term of RHS of the above inequality is same

onstant that appears in the inequality (7.0.10). Now from (7.0.11), Cδα = 1
4
and

‖um−u‖Lp(Iτ ,Lp(Cn)) ≤ 4C
3
‖fm−f‖L2 → 0 as m→ ∞. Now from estimate (7.0.14)

‖G(z, um) − G(z, u)‖Lp′(Iτ ,Lp′(Cn)) → 0 as m → ∞. Now from equation (7.0.13)

and theorem 3.0.7, um → u in Lq1(Iτ , L
p1(Cn)) for every admissible pair (q1, p1).

Sine um, u ∈ C(Iτ , L
2(Cn)) for every m, therefore ‖(um−u)(·, t)‖L2(Cn) ≤ ‖um−

u‖L∞(Iτ ,L2(Cn)) → 0 as m→ ∞ for eah t ∈ Iτ .

Step 2: Let (T∗,m, T
∗
m) be the maximal interval for the solutions um and I ⊂

(T∗, T
∗) be a ompat interval. The key idea is to extend the loal stability

result proved above to the interval I by overing it with �nitely many intervals

obtained by suessive appliation of the above loal stability argument. This

is possible provided um is de�ned on I, for all but �nitely many m. In fat, we

prove I ⊂ (T∗,m, T
∗
m) for all but �nitely many m.

Without loss of generality, we assume that t0 ∈ I = [a, b], and give a proof by

the method of ontradition. Suppose there exist in�nitely many T ∗
mj

≤ b and let

c = lim inf T ∗
mj
. Then for ǫ > 0, [t0, c− ǫ] ⊂ [t0, T

∗
mj
) for all mj su�iently large

and umj
are de�ned on [t0, c− ǫ].

By ompatness, the stability result proved in step 1 an be extended to the

interval [t0, c− ǫ]. Hene for any interval J with |J | ≤ π, we have

‖e−i(t−(c−ǫ))L(umj
− u)(z, c− ǫ)‖Lp(J(dt),Lp(Cn)) ≤ C‖(umj

− u)(·, c− ǫ)‖L2 → 0

as j → ∞. Also by ontinuity we have

‖e−i(t−(c−ǫ))L(u(z, c− ǫ)− u(z, c))‖Lp(J,Lp(Cn)) ≤ C‖u(·, c− ǫ)− u(·, c)‖L2 → 0

as ǫ→ 0. We also observe that

‖e−i(t−c)L(e−iǫLu(z, c)− u(z, c))‖Lp(J,Lp(Cn)) ≤ C‖e−iǫLu(·, c)− u(·, c)‖L2 → 0

as ǫ→ 0. Now hoose η > 0 su�iently small suh that

‖e−i(t−c)Lu(z, c))‖Lp(Jη ,Lp(Cn)) <
δ

2
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where Jη = (c − η, c + η) and δ is given by (7.0.11). By the above observations,

we an hoose ǫ < η

2
su�iently small suh that

‖e−i(t−(c−ǫ))Lumj
(z, c− ǫ)‖Lp(Jη ,Lp(Cn)) <

δ

2

for su�iently large j ≥ j0(ǫ). Therefore by applying the loal existene argument

(see equation 7.0.12), with c− ǫ as a initial time, umj
extends to [t0, c− ǫ+ η] for

large j. It follows that T ∗
mj

≥ c − ǫ+ η ≥ c + η

2
, hene ontradits the fat that

lim inf T ∗
mj

= c.

Similarly we an show that [a, t0] ⊂ (T∗,m, t0] for all but �nitely many m whih

ompletes the proof of stability.

Conservation of harge follows exatly as in Theorem 7.0.40.

Blowup alternative: We prove blowup alternative by method of ontradi-

tion. Suppose T ∗ < ∞ and u ∈ Lp((t0, T
∗), Lp(Cn)). Then by estimates (7.0.8),

G(z, u) ∈ Lp
′
((t0, T

∗), Lp
′
(Cn)) and by Strihartz estimates u ∈ C([t0, T

∗], L2) ∩
Lq̃
(

(T∗, T
∗), Lp̃(Cn)

)

for every admissible pair (q̃, p̃). By taking T ∗
as a initial

time and by loal existene argument, solution exists on the interval [t0, T
∗ + ǫ)

for some ǫ > 0, whih is a ontradition for maximality of T ∗
.

Remark 7.0.42 If ‖f‖L2(Cn) is su�iently small, then ‖e−i(t−t0)Lf‖Lp(I,Lp) ≤
C‖f‖L2 < δ where p = 2(n+1)

n
. Sine C is independent of t0 and interval

I = (t0 − T, t0 + T ) provided 2T ≤ π, from onservation of harge and (7.0.12)

we get global solution, i.e., −T∗ = T ∗ = ∞ in Theorem 7.0.41.





Chapter 8

The ase of the Laguerre operator

As disussed in hapter 1, in this hapter we onsider the Laguerre ase. Laguerre

operator Lβ on R+ = (0,∞) with β ∈ (−1,∞) is given by,

Lβ = − d2

dx2
− 2β + 1

x

d

dx
+
x2

4
. (8.0.1)

The one dimensional Laguerre polynomials Lβk(x) of type β > −1 are de�ned by

the generating funtion identity

∞
∑

k=0

Lβk(x)t
k = (1− t)−β−1e−

xt
1−t , |t| < 1.

Here x > 0 and k ∈ Z≥0. Eah Lβk is a polynomial of degree k and expliitly

given by

Lβk(x) =
k
∑

j=0

Γ(k + β + 1)

Γ(k − j + 1)Γ(j + β + 1)

(−x)j
j!

·

Laguerre funtions ψβk (x) =
(

2−βk!
Γ(k+β+1)

)
1
2
Lβk(

x2

2
)e−

x2

4
form a omplete orthonor-

mal family in L2(R+, x
2β+1dx). Eah ψβk is an eigenfuntion of the Laguerre

operator Lβ given by (8.0.1) with eigenvalue (2k + β + 1), i.e.,

Lβψ
β
k = (2k + β + 1)ψβk .

93
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If f, g ∈ L2(R+, x
2β+1dx) with Lβf, Lβg ∈ L2(R+, x

2β+1dx), then 〈Lβf, g〉x2β+1dx
=

〈f, Lβg〉x2β+1dx
where inner produt is with respet to the measure x2β+1dx. There-

fore we say that Laguerre operator Lβ is self adjoint with repet to the measure

x2β+1dx. Thus for every f ∈ L2(R+, x
2β+1dx) has the Laguerre expansion

f =

∞
∑

k=0

〈

f, ψβk

〉

x2β+1dx
ψβk .

We all

〈

f, ψβk

〉

x2β+1dx
as the k-th Fourier-Laguerre oe�ient of f . Now for eah

multi index µ = (µ1, · · · , µn) ∈ (Z≥0)
n
and β = (β1, · · · , βn) ∈ (−1,∞)n, the n-

dimensional Laguerre funtions are de�ned by the tensor produt of 1-dimensional

Laguerre funtions

ψβµ(x) =
n
∏

j=1

ψβjµj (xj), x ∈ R
n
+ = (R+)

n. (8.0.2)

The n-dimensional Laguerre operator Lβ for β = (β1, · · · , βn) ∈ (−1,∞)n, is

de�ned as the sum of 1-dimensional Laguerre operators Lβj

Lβ =
n
∑

j=1

Lβj = −∆−
n
∑

j=1

(

2βj + 1

xj

∂

∂xj

)

+
|x|2
4
.

Therefore Lβψ
β
µ =

(

2|µ|+
∑n

j=1 βj + n
)

ψβµ , where |µ| =
∑n

j=1 µj. Hene, ψβµ

are eigenfuntions of Lβ with eigenvalue 2|µ|+
∑n

j=1 βj + n and they also form a

omplete orthonormal system in L2(Rn
+, dν(x)) where

dν(x) = x2β1+1
1 · · ·x2βn+1

n dx1 · · ·dxn.

Also note that Laguerre operator Lβ is self adjoint with repet to measure dν.

Thus for every f ∈ L2(Rn
+, dν(x)) has the Laguerre expansion

f =
∑

µ

〈

f, ψβµ
〉

ν
ψβµ =

∞
∑

k=0

Pkf,

where inner produt is with respet to measure ν and Pk denotes the Laguerre

projetion operator orresponding to the eigenvalue 2k +
∑n

j=1 βj + n given by
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Pkf =
∑

|µ|=k

〈

f, ψβµ
〉

ν
ψβµ .

The material disussed here is based on the books by Thangavelu [33℄ and Lebedev

[18℄.

Remark 8.0.43 In view of estimate (1) in Watson [38℄ (see setion 3.31, page

49), in this hapter we only onsider β ∈
(

−1
2
,∞
)n
.

Remark 8.0.44 Note that L∞(Rn
+, dx) = L∞(Rn

+, dν) with equality of norms

‖f‖L∞(Rn
+,dx)

= ‖f‖L∞(Rn
+,dν)

, where dx denote the usual Lebesgue measure on

Rn
+.

Shrödinger Propagator e−itLβ

If f ∈ C2 ∩ L2(Rn
+, dν) suh that Lβf ∈ L2(Rn

+, dν) then we observe that

〈

Lβf, ψ
β
µ

〉

ν
=
〈

f, Lβψ
β
µ

〉

ν
=

(

2|µ|+ n +
n
∑

j=1

βj

)

〈

f, ψβµ
〉

ν
.

Therefore for f ∈ L2(Rn
+, dν), we de�ne e−itLβf as L2(Rn

+, dν) funtion by the

following

e−itLβf =
∞
∑

k=0

e−it(2k+n+
∑n

j=1 βj)
∑

|µ|=k

〈

f, ψβµ
〉

ν
ψβµ .

It is easy to see that e−itLβ
is unitary operator with adjoint eitLβ

on L2(Rn
+, dν).

Remark 8.0.45 e−itLβf is periodi in t if and only if

∑n
j=1 βj is rational whereas

eit
∑

βje−itLβf and |e−itLβf | are always periodi in t.

Now we state the following Lemma. This Lemma is proved in Sohani [28℄.

Proof relies on regularization argument introdued in [20℄ (also see [22℄, [23℄) and

Mehler's formula for Laguerre funtions (see, (4.17.6) in [18℄), so we skip the

proof.
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Lemma 8.0.46 Let r > 0, β ∈
(

−1
2
,∞
)n
. Then e−(r+it)Lβ

is an integral operator

on L2(Rn
+, dν). Moreover

e−(r+it)Lβf(x) =

∫

Rn
+

f(y)K(x, y, r, t, β)dν(y)

K(x, y, r, t, β) = e−nre−it(n+
∑

βj)
(

1− e−2(r+it)
)−n

e
−

(

|x|2+|y|2

4

)(

1+e−2(r+it)

1−e−2(r+it)

)

×
n
∏

j=1

(

(xjyj)
−βj(e−2it)

−βj
2 Iβj

(

xjyje
−r(e−2it)

1
2

1− e−2(r+it)

))

where Iβj is the modi�ed Bessel funtion of �rst kind and | arg(e−2it)| < π.

Lemma 8.0.47 Let K(x, y, r, t, β) be the kernel as in Lemma 8.0.46. Then we

have uniform estimate for K in r ∈ (0, 1].

|K(x, y, r, t, β)| ≤ C

| sin t|n+
∑n

j=1 βj
(8.0.3)

where C only depends on n and β.

Proof. Let arg(e−2it) = −2t̃ with |t̃| < π
2
, then e−2it = e−2it̃

, (e−2it)
1
2 = e−it̃ and

cos 2t = cos 2t̃. Now we observe the following

∣

∣1− e−2(r+it)
∣

∣ =
(

1 + e−4r − 2e−2r cos 2t
)

1
2

xjyje
−(r+it̃)

1− e−2(r+it)
= xjyje

−r

(

(1− e−2r) cos t̃− i(1 + e−2r) sin t̃

1 + e−4r − 2e−2r cos 2t

)

∣

∣

∣

∣

∣

Re

(

xjyje
−(r+it̃)

1− e−2(r+it)

)∣

∣

∣

∣

∣

≤ xjyje
−r (1− e−2r)

1 + e−4r − 2e−2r cos 2t

1 + e−2(r+it)

1− e−2(r+it)
=

(1− e−4r)− 2ie−2r sin 2t

1 + e−4r − 2e−2r cos 2t

Now we observe that

|Iδ(z)| ≤
|z|δ

2δΓ(δ + 1)
exp(|Re(z)|), for δ > −1

2
(8.0.4)

whih follows from inequality (1) in setion 3.31, page 49 in Watson [38℄ and

equalities (5.7.4) and (5.7.6) in Lebedev [18℄. We also observe that
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(1 + e−2r)
(

|x|2 + |y|2
)

− 4e−r
∑

xjyj

= (1− e−r)2 (|x|2 + |y|2) + 2e−r
∑n

j=1(xj − yj)
2 ≥ (1− e−r)2 (|x|2 + |y|2) .

Using the above observations, we see that

|K(x, y, r, t, β)|

≤ Ce−r(n+
∑

βj)
(

1 + e−4r − 2e−2r cos 2t
)−

(n+
∑

βj )

2 e
− (1−e−2r)(1−e−r)2(|x|2+|y|2)

4(1+e−4r−2e−2r cos 2t)

≤ C
(

1 + e−4r − 2e−2r cos 2t
)−

(n+
∑

βj )

2 . (8.0.5)

Now for r ∈ (0, 1] we have

1 + e−4r − 2e−2r cos 2t = (1− e−2r)2 + 4e−2r sin2 t ≥ 4e−2 sin2 t.

Therefore using this estimate in (8.0.5) we get the desired estimate.

Lemma 8.0.48 Let t /∈ π
2
Z, 2 ≤ p ≤ ∞ and p′ = p

p−1
. Then

‖e−itLβf‖Lp(dν) ≤ C| sin t|−(1− 2
p)(n+

∑

βj)‖f‖Lp′(dν)

where onstant C depends only on n, p, β.

Proof. For f ∈ L2(Rn
+, dν) we have

‖e−itLβf‖2L2(dν) =

∞
∑

k=0

|e−it(2k+n+
∑

βj)|2.‖Pkf‖2L2(dν) = ‖f‖2L2(dν). (8.0.6)

For f ∈ L1 ∩ L2(Rn
+, dν) we observe from Lemma 8.0.47 and Remark 8.0.44 that

‖e−(r+it)Lβf‖L∞(Rn
+,dν)

≤ C| sin t|−(n+
∑

βj)‖e−(r+it)Lβf‖L1(Rn
+,dν)

.

Sine e−(rm+it)Lβf → e−itLβf in L2(dν) as rm → 0, e−(rmj
+it)Lβf(x) → e−itLβf(x)

a.e. x for some subsequene {rmj
}. Also observe that

∫

Rn
+

f(y)K(x, y, rmj
, t, β)dν(y) →

∫

Rn
+

f(y)K(x, y, 0, t, β)dν(y)
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for a.e. x ∈ Rn
+. Therefore for f ∈ L1 ∩ L2(Rn

+, dν) we get

e−itLβf(x) =

∫

Rn
+

f(y)K(x, y, 0, t, β)dν(y). (8.0.7)

From Remark 8.0.44 and Lemma 8.0.47 we observe that

‖e−itLβf‖L∞(Rn
+,dν)

≤ C| sin t|−(n+
∑

βj)‖f‖L1(Rn
+,dν)

. (8.0.8)

This inequality an be proved for f ∈ L1(Rn
+, dν) by density argument. Us-

ing Riesz-Thorin interpolation theorem (see Folland [11℄) and in view of (8.0.6),

(8.0.8) Lemma follows.

Strihartz estimates

De�nition 8.0.49 Let n ≥ 1 and β ∈ (−1
2
,∞)n. We say that a pair (q, p) is

admissible in the Laguerre ase if

1 ≤ q ≤ 2, 0 ≤
(

n+

n
∑

j=0

βj

)

(

1− 2

p

)

< 1 or

2 < q ≤ ∞ and 0 ≤
(

n+
n
∑

j=0

βj

)

(

1− 2

p

)

≤ 2

q
< 1.

Remark 8.0.50 (i) The admissibility ondition on (q, p) implies that

0 ≤
(

n+
n
∑

j=0

βj

)

(

1− 2

p

)

< 1.

(ii) If 1 ≤ q ≤ 2, n = 1, 1 + β < 1, then p ∈ [2,∞].

(iii) If 1 ≤ q ≤ 2, n = 1, 1 + β = 1, then p ∈ [2,∞).

(iv) If 1 ≤ q ≤ 2,
(

n+
∑n

j=0 βj

)

> 1, then p ∈
[

2,
2(n+

∑n
j=0 βj)

(n+
∑n

j=0 βj)−1

)

.

Admissible ondition is basially oming from the Lemma 3.0.4 and Remark

8.0.51.
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Remark 8.0.51 Let p ∈ [2,∞], a, b ∈ R. | sin t|−(1− 2
p)(n+

∑

βj) ∈ weak L
q
2 (a −

b, b − a) with q ∈ (2,∞) if 1 < q

2
≤ 1

(n+
∑n

j=0 βj)(1− 2
p
)
or

(

n +
∑n

j=0 βj

)

(1 − 2
p
) ≤

2
q
< 1. Also | sin t|−(1− 2

p)(n+
∑

βj) ∈ L1(a− b, b− a) if
(

n +
∑n

j=0 βj

)(

1− 2
p

)

< 1.

If we onsider p = 2 then | sin t|−(1− 2
p)(n+

∑

βj) = 1 ∈ L∞(a− b, b− a).

Now we prove a Lemma whih is helpful in proving Strihartz estimates.

Lemma 8.0.52 Let [a, b] be a bounded interval ontaining t0. Let hj(x, t) ∈
Lq

′
j((a, b), L2(Rn

+, dν(x))), where q
′
j is onjugate exponent of qj with 1 ≤ qj ≤ ∞

for j = 1, 2. Then the funtions

e−i(t−t0)Lβh1(x, t)e
−i(s−t0)Lβh2(x, s), h1(x, t)e

i(t−s)Lβh2(x, s)

belong to L1(Rn
+ × (a, b)× (a, b), dν(x)× dt× ds).

Proof. For simpliity we are onsidering h1 = h2 = h and q1 = q2 = q. Sine h ∈
Lq

′
((a, b), L2(dν)), h(·, t) ∈ L2(Rn

+, dν) for a.e. t ∈ (a, b). Therefore e−i(t−t0)Lβh

(·, t) ∈ L2(Rn
+, dν) for a.e. t ∈ (a, b). Then by Hölder's inequality e−i(t−t0)Lβh

(·, t)e−i(s−t0)Lβh(·, s) ∈ L1(Rn
+, dν) for a.e. t, s ∈ (a, b) and

∫

Rn
+

∣

∣e−i(t−t0)Lβh(x, t)e−i(s−t0)Lβh(x, s)
∣

∣ dν(x) ≤ ‖h(·, t)‖L2(dν)‖h(·, s)‖L2(dν).

Integrating with respet to t and s over (a, b)×(a, b) and using Hölder's inequality

in the t-variable, we get

∫ b

a

∫ b

a

∫

Rn
+

|e−i(t−t0)Lβh(x, t)e−i(s−t0)Lβh(x, s)|dν(x)dtds

≤
(
∫ b

a

‖h(·, t)‖L2(dν)dt

)2

≤ (b− a)
2
q ‖h‖2

Lq′((a,b),L2(dν))
.

Similarly h1(x, t)e
i(t−s)Lβh2(x, s) ∈ L1(Rn

+× (a, b)× (a, b), dν(x)× dt× ds) an be

proved.

The main Strihartz type estimates in this hapter is ompiled in following

theorem whih is proved in [28℄. Proof follows by similar arguments as in Theorem

3.0.7.
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Theorem 8.0.53 (Strihartz Estimates) Let (q, p), (q1, p1) be two admissible

pairs aording to de�nition 8.0.49. Let (a, b) be a �nite interval with t0 ∈ [a, b],

f ∈ L2(Rn
+, dν) and g ∈ Lq

′
1((a, b), Lp

′
1(Rn

+, dν)) where q′1 and p′1 are onjugate

exponents of q1 and p1 respetively. Then the following estimates hold over R
n
+ ×

(a, b):

‖e−itLβf‖Lq((a,b),Lp(dν)) ≤ C‖f‖L2(dν) (8.0.9)

∥

∥

∥

∥

∫ t

t0

e−i(t−s)Lβg(x, s)ds

∥

∥

∥

∥

Lq((a,b),Lp(dν))

≤ C‖g‖
L
q′
1((a,b),Lp′

1 (dν)
(8.0.10)

where the onstant C depends on admissible pairs but independent of t0. Moreover

e−itLβf ∈ C(R, L2(dν)) and
∫ t

t0
e−i(t−s)Lβg(x, s)ds ∈ C([a, b], L2(dν)).

Remark 8.0.54 Note that e−itLβf(x) is 2π periodi in t, hene we an not expet

the above Strihartz inequalities for unbounded intervals exept when q = ∞.

Also Sine | sin t| is π periodi, in view of Remark 8.0.51 and Remark 3.0.8,

onstant C in the inequalities (8.0.9) and (8.0.10) an be hosen independent of

interval (a, b) provided b− a ≤ π.

Loal well posedness in L2(Rn
+, dν)

We onsider the initial value problem for the nonlinear Shrödinger equation for

the Laguerre operator Lβ :

i∂tu(x, t)− Lβu(x, t) = G(x, u), x ∈ R
n
+, t ∈ R (8.0.11)

u(x, t0) = f(x) (8.0.12)

where G is a funtion on Rn
+ × C satisfying similar onditions as in (1.0.15),

(1.0.16). Here we onsider the nonlinearity G of the form

G(x, w) = ψ(x, |w|)w, (x, w) ∈ R
n
+ × C, (8.0.13)

where ψ ∈ C(Rn
+ × [0,∞)) ∩ C1(Rn

+ × (0,∞)) satisfy the following inequality

|F (x, η)| ≤ C|η|α (8.0.14)
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with F = ψ, ∂xjψ (1 ≤ j ≤ n) and η∂ηψ(x, η), α ≥ 0 and for some onstant C.

By mean value theorem and estimate 8.0.14 on ψ, we have

|G(x, u)−G(x, v)| ≤ C(|u|α + |v|α)|u− v| (8.0.15)

where C is independent of u, v ∈ C and x ∈ Rn
+.

Sine Lβ has no deomposition in terms of �rst di�erential operators as the

twisted Laplaian L has, therefore we only onsider the initial value in L2(Rn
+, dν).

As similar to the twisted Laplaian ase, we an prove the loal well posedness

of the initial value problem (8.0.11), (8.0.12).

Now we disuss the loal well posedness result for the above IVP for subritial

ase 0 ≤ α < 2
n+

∑n
j=1 βj

and ritial ase α = 2
n+

∑n
j=1 βj

.

Subritial ase 0 ≤ α < 2

n+
∑n

j=1 βj

Now we state the following Theorem for the subritial ase 0 ≤ α < 2
n+

∑n
j=1 βj

.

Proof follows by similar arguments as in Theorem 7.0.40.

Theorem 8.0.55 Let u(·, t0) = f ∈ L2(Rn
+, dν), 0 ≤ α < 2

n+
∑n

j=1 βj
and G

be as in (8.0.13), (8.0.14). Initial value problem (8.0.11), (8.0.12) has unique

maximal solution u ∈ C((T∗, T
∗), L2(Rn

+, dν))∩Lq2
lo

(

(T∗, T
∗), Lp2(Rn

+, dν)
)

, where

t0 ∈ (T∗, T
∗) and (q2, p2) be an arbitrary admissible pair. Fix p = 2+α. Moreover

the following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), L2(dν))∩Lq2

lo

((T∗, T
∗), Lp(dν))

where q2 ∈ [q1, q] and

1

q
=

(

n +
n
∑

j=1

βj

)

(

1

2
− 1

p

)

, q1 =
2p(p− 1)

2p−
(

n +
∑n

j=1 βj

)

(p− 2)
≥ 1.

(ii)(Blowup alternative) If T ∗ < ∞ (respetively, T∗ > −∞), then u /∈
Lq2((t0, T

∗), Lp(Rn
+, dν)) (respetively, u /∈ Lq2((T∗, t0), L

p(Rn
+, dν))) where

q2 ∈ [q1, q].

(iii)(Stability) If fj → f in L2(Rn
+, dν), then uj → u in Lq2

(

I, Lp2(Rn
+, dν)

)

for every interval I with I ⊂ (T∗, T
∗) and for every admissible pair (q2, p2),

where uj and u are solutions orresponding to fj and f respetively.
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Critial ase α = 2

n+
∑n

j=1
βj

Now we state the following theorem for the ritial ase α = 2
n+

∑n
j=1 βj

. Proof

follows by similar arguments as in Theorem 7.0.41.

Theorem 8.0.56 Let u(·, t0) = f ∈ L2(Rn
+, dν), α = 2

n+
∑n

j=1 βj
and G be as in

(8.0.13), (8.0.14). Initial value problem (8.0.11), (8.0.12) has unique maximal

solution u ∈ C((T∗, T
∗), L2(Rn

+, dν)) ∩ Lq1
lo

(

(T∗, T
∗), Lp1(Rn

+, dν)
)

, where t0 ∈
(T∗, T

∗) and (q1, p1) be an arbitrary admissible pair. Fix p = 2+α. Moreover the

following properties hold:

(i)(Uniqueness) Solution is unique in C((T∗, T
∗), L2(dν))∩Lp((T∗, T ∗), Lp(dν)).

(ii)(Blowup alternative) If T ∗ < ∞ then ‖u‖Lp((t0,T ∗),Lp(dν)) = ∞. Similar

onlusion holds if T∗ > −∞.

(iii)(Stability) If fj → f in L2(Cn), then uj → u in Lq1
(

I, Lp1(Rn
+, dν)

)

for

every interval I with I ⊂ (T∗, T
∗) and for every admissible pair (q1, p1),

where uj and u are solutions orresponding to fj and f respetively.



Bibliography

[1℄ J. Avron, I. Herbst, B. Simon, Shrödinger operators With magneti

�elds. I. General Interations, Duke Math. J. 45 (1978), No. 4, 847-883.

[2℄ P. Begout, Neessary onditions and su�ient onditions for global

existene in the nonlinear Shrödinger equation, Adv. Math. Si. Appl.

12 (2002), no. 2, 817-827.

[3℄ H. Brezis, Funtional analysis, Sobolev spaes and partial di�erential

equations, Universitext Springer, New York, 2011.

[4℄ T. Cazenave, Semilinear Shrödinger equations, Courant Let. Notes

Math., 2003.

[5℄ T. Cazenave, Maria J. Esteban, On the stability of stationary states

for nonlinear Shrödinger equations with an external magneti �eld,

Mat. Apl. Comput. 7 (3) (1988), 155-168.

[6℄ T. Cazenave, F.B. Weissler, The Cauhy problem for the nonlinear

Shrödinger equation in H1
, Manusripta Math. 61 (4) (1988), 477-

494.

[7℄ T. Cazenave, F.B. Weissler, Some remarks on the nonlinear

Shrödinger equation in the ritial ase, Nonlinear Semigroups, Par-

tial Di�erential Equations, and Attrators, .L. Gill and W.W. Zahary

(eds.), Let. Notes Math. 1394, Springer, New York, 1989, 18-29.

[8℄ T. Cazenave, F.B. Weissler, The Cauhy problem for the ritial non-

linear Shrödinger equation in Hs
, Nonlinear Anal. 14 (1990), no. 10,

807-836.

103



104

[9℄ P. D'Anona, L. Fanelli, L. Vega, N. Visigia, Endpoint Strihartz

estimates for the magneti Shrödinger equation, J. Funt. Anal. 258

(10) (2010), 3227-3240.

[10℄ R. E. Edwards, Funtional Analysis. Theory and appliations. Cor-

reted reprint of the 1965 original. Dover Publiations, In., New York,

1995.

[11℄ G. B. Folland, Real Analysis, Modern tehniques and their applia-

tions, seond edition, Wiley-Intersiene Publ., New York, 1999.

[12℄ J. Ginibre, G. Velo, On a lass of nonlinear Shrödinger equations.

I. The Cauhy Problem, II. Sattering Theory, general ase, J. Funt.

Anal. 32 (1979),1-71.

[13℄ J. Ginibre, G. Velo, On the global Cauhy problem for some nonlinear

Shrödinger equations, Ann. Inst. H. Poinare 1 (4) (1984), 309-323.

[14℄ J. Ginibre, G. Velo, The global Cauhy problem for the nonlinear equa-

tion revisited, Ann. Inst. H. Poinare Set. C, 2 (4) (1985), 309-327.

[15℄ J. Ginibre, G. Velo, Generalized Strihartz inequalities for the wave

equation, J. Funt. Anal. 133 (1) (1995), 50-68.

[16℄ T. Kato, On nonlinear Shrödinger equations, Ann. Inst. H. Poinare

Set. A 46 (1) (1987) 113-129.

[17℄ M. Keel and T. Tao, End point Strihartz estimates, Amer. J. Math.

120 (1998), 955-980.

[18℄ N. N. Lebedev, Speial funtions and their appliations, Dover Publi-

ations In. 1972.

[19℄ H. Lindblad, C. D. Sogge, On existene and sattering with minimal

regularity for semilinear wave equations, J. Funt. Anal. 130 (2) (1995),

357-426.

[20℄ A. K. Nandakumaran and P.K. Ratnakumar, Shrödinger equation and

the osillatory semigroup for the Hermite operator, J. Funt. Anal. 224

(2) (2005), 371-385.



105

[21℄ A.K. Nandakumaran and Ratnakumar P.K., Corrigendum,

Shrödinger equation and the regularity of the osillatory semi-

group for the Hermite operator, J. Funt. Anal. 235 (2) (2006),

719-720.

[22℄ P. K. Ratnakumar, On Shrodinger propagator for the speial Hermite

operator, J. Fourier Anal. Appl. 14 (2008), 286-300.

[23℄ P. K. Ratnakumar, Shrödinger equation, a survey on regularity ques-

tions, J. Analysis 17 (2009), 87-99.

[24℄ P. K. Ratnakumar, V. K. Sohani, Nonlinear Shrödinger equation for

the twisted Laplaian, J. Funt. Anal. 265 (1) (2013) 1-27.

[25℄ P. K. Ratnakumar, V. K. Sohani, Nonlinear Shrödinger equation for

the twisted Laplaian- global well posedness, preprint.

[26℄ M. Reed and B. Simon, Methods of Modern Mathematial Physis, IV.

Analysis of Operators, Aademi Press, New York, 1978.

[27℄ P. Sjögren, J.L. Torrea, On the boundary onvergene of solutions to

the Hermite-Shrödinger equation, Colloq. Math. 118 (2010), no. 1,

161-174.

[28℄ V. K. Sohani, Strihartz estimates for the Shrödinger propagator for

the Laguerre operator, Pro. Indian Aad. Si. (Math. Si.) 123 (4)

(2013), 525-537.

[29℄ V. K. Sohani, Nonlinear Shrödinger equation for the twisted Laplaian

in the ritial ase, preprint.

[30℄ R. S. Strihartz, Restritions of Fourier transforms to quadrati sur-

faes and deay of solutions of wave equations, Duke Math. J. 44 (3)

(1977) 705-714.

[31℄ R. S. Strihartz, Harmoni analysis as spetral theory of Laplaians,

J. Funt. Anal., 87 (1989) 51-148.

[32℄ T. Tao, Nonlinear dispersive equations. Loal and global analysis.

AMS, CBMS Reg. Conf. Ser. Math., 106, (2006).



106

[33℄ S. Thangavelu, Letures on Hermite and Laguerre expansions, Math.

notes, 42, Prineton Univ. press, Prineton.(1993).

[34℄ S. Thangavelu, Harmoni Analysis on the Heisenberg Group, Prog.

Math. Vol. 154, Birkhauser (1998).

[35℄ S. Thangavelu, On regularity of twisted sperial means and speial

Hermite expansions, Pro. Indian Aad. Si., 103 (3) 1993, 303-320.

[36℄ Y. Tsutsumi, L2
-Solutions for nonlinear Shrödinger equations and

nonlinear Groups, Funkialaj Ekvaioj, 30 (1987), 115-125.

[37℄ M. C. Vilela, Inhomogeneous Strihartz estimates for the Shrödinger

equation, Trans. Amer. Math. So. 359 (2007), no. 5, 2123-2136.

[38℄ G.N. Watson, A Treatise on the theory of Bessel funtions, seond

edition, Cambridge University Press (1995).

[39℄ K. Yajima, Shrödinger evolution equations with magneti �elds, J.

Anal. Math. 56 (1991) 29-76.

[40℄ Z. Zhang, S. Zheng, Strihartz estimates and loal wellposedness for

the Shrödinger equation with the twisted sub-Laplaian, Pro. Centre

Math. Appl. Austral. Nat. Univ. 44, 2010.


	Synopsis
	Introduction
	Schrödinger propagator for the twisted Laplacian
	Strichartz estimates
	Some auxiliary function spaces
	A local existence result 
	Global well posedness in  L 1,2(Cn)
	Global well posedness in L2(Cn)
	The case of the Laguerre operator
	Bibliography

