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1. Some historical remarks

Coxeter groups appear crucially in many situations in mathematics. It has a long and

rich history (see [1], p. 249-264). Coxeter groups and Coxeter-Dynkin diagrams appear in

many classification contexts: regular polyhedra in Euclidean Spaces (classified by Schläfli

in 1852); semi-simple Lie Algebras over complex numbers (classified by Killing and Cartan;

Van der Warden by 1933); quivers with finitely many indecomposables; cluster algebras

with finitely many seeds; singularities of hypersurfaces (see [9]); theory of hypergeometric

functions; crystallographic, etc.,

The modern theory of Coxeter groups developed around the fundamental contributions

by : H.S.M. Coxeter, E.Witt, J.Tits; M. Davis; M. Salvetti; and E. B. Vinberg.

In [3], Coxeter determined all finite, irreducible groups of Euclidean displacements

which are generated by reflections, completing the work of Cartan [5], [6], who had de-

termined all “crystallographic” reflection groups (that is, the ones appearing as automor-

phism groups of finite root systems; equivalently, those having an embedding in an infinite

discrete group of displacements). In 1941, Stifel remarked that the Weyl groups appearing

in the classification, due to W. Killing and E. Cartan, of finite dimensional simple Lie

algebras over the field C of complex numbers, are exactly the groups generated by reflec-

tions that leave invariant lattices in finite dimensional Euclidean space (i.e., free abelian

groups of maximal rank). Chevalley and Harish-Chandra gave a uniform proof for the

bijective correspondence between the crystallographic groups and complex semi-simple

Lie algebras. In [2], Coxeter further showed that a finite group generated by reflections
1
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of an Euclidean or of an affine space if, and only if, it admits a presentation of the form

〈s1, s2, . . . , sn | s2
i , (sisj)

mi,j〉,

where M = (mi,j) is a n × n matrix with mi,i = 1 for each i and mi,j = mj,i ∈ Z≥2 for

i 6= j. Following Tits [11], groups given by such presentations are now called Coxeter

groups whether the group, or the generating set in the presentation, is finite or not.

Coxeter [4] and Witt [13] observed that irreducible, infinite groups of Euclidean dis-

placements generated by reflections correspond bijectively, up to isomorphism, to simple

Lie algebras over C. Witt gave a new characterization of infinite discrete groups of Eu-

clidean displacements. Those groups and the groups generated by reflections in hyperbolic

spaces are all given by Coxeter presentations. This motivated the study of the groups

defined by Coxeter presentations: first, in terms of geometric realization by Witt, and

Coxeter and Moser; and then, combinatorially and algebraically, by Tits [11]. Good

sources for the basic theory, with particular emphasis on realisation of Coxeter groups

as groups generated by reflections in Euclidean and affine spaces are, [11], [10]. For the

theory of Coxeter groups generated by reflections in hyperbolic spaces, [12] provides a

good beginning.

The general theory of Coxeter groups was pioneered by Tits in 1960. This historically

important, unpublished work finally appeared in print in ([11], Vol 1, chap 43, p. 803-818).

In fifties, Tits set for himself the task of geometrically understanding simple Lie groups

over C, especially the groups of exceptional type. His idea was to construct a geomet-

ric/combinatorial object for each simple group G over C of Lie type, on which G acts,

revealing much of the structure of G. Guiding examples were the projective spaces of

dimension n for the groups PSLn+1(k) and the polar spaces for classical matrix groups,

constructed by Fredenthal and Tits (see [25]). The structure he constructed are now called

Tits buildings or spherical buildings. Given the Bruhat decomposition for each of these

groups and the central role of the corresponding Weyl groups in the structure theory of

these groups (so called theory of groups with (B,N)-pairs), it was natural to study the

structure of Coxeter groups and look for a natural geometric structure for these groups.

The buildings Tits constructed for G generalizes the Cayley graph for the Weyl group of

G.

Tits showed that the Coxeter group W (M) defined by the Coxeter matrix M = (mi,j)

has a faithful representation ρ on the real vector space V with a basis {es : s ∈ S}



INTRODUCTION TO COXETER GROUPS 3

indexed by the set S of defining generators of W (M). Further, W (M) leaves invariant a

symmetric (possibly degenerate) bilinear form B on V defined in terms of M (in fact, by

setting B(es, es′) = − cos(π/ms,s′) or −1 according as ms,s′ is finite or not). Thus, ρ(W )

is a subgroup of the orthogonal group OB(V ). We note that the set of generators in the

presentation of W (M), or the group W (M), could be infinite.

Thus, Coxeter groups are linear groups and share all the properties of linear groups:

solvability of word problem, residual finiteness, virtual torsion-freeness, etc., They are

automatic groups and also Cat(0) groups. In particular, each Coxeter group acts geomet-

rically on a simply connected, non-positively curved, piecewise Euclidean, cell complex,

known as Davis complex, with Moussong metric (see [8]). Thus, they fit into many pow-

erful theories of geometric group theory and are geometrically very nice.

The action ρ of W on V is regular on a cone = (now called a Tits cone) in V with

vertex at the origin. The cone = is the union of the images {w(σ) : w ∈ W} of a simplicial

cone σ in V appearing as the intersection of certain half-spaces in V , each defined by the

hyperplanes orthogonal (relative to B) to a basis element es of V .

The Tits cone = is V if B is positive definite and a half-space of V with the vertex of =
on the boundary if B is positive semi-definite. Otherwise, it is a cone properly contained

in a half-space of V . For more on Tits cone, see [12]. Further, B is positive definite if,

and only if, W (M) is finite; and B is positive semi-definite if, and only if, W (M) is an

affine reflection group; i.e., the semi-direct product of free abelian group on n generators

by a finite Coxeter group on n generators.

References

[1] N. Bourbaki, Lie groups and Lie Algebras, chap. 4-6.

[2] H. S. M. Coxeter, The complete enumeration of finite groups of the form R2
i = (RiRj)

kij = 1,

Journal of Lond. Math. Soc. v X (1935), 21-25.

[3] H. S. M. Coxeter, Discrete group generated by reflections, Ann. of Math. v XXXV (1934), 588-621.

[4] H. S. M. Coxeter and H. Weyl, The structure and representations of continuous groups, (Institute

for Adv. Study, MI notes by N. Jacobson and R. Brand, 1934-1935) Appendix.
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2. Coxeter groups

‘Coxeter’s theory of refection groups is the only case known to me in which an inter-

esting class of presentations characterise an interesting class of groups’- John Conway

Objective: To present an introduction to the theory of Coxeter groups with emphasis

on structural aspects of the theory.

2.1. Free monoid on I: Let I be a set (of any cardinality) and let I∗ denote the free

monoid consisting of words (i.e. finite sequences) in I, with concatenation as the monoid

operation. The empty word is the identity element of I∗. We write f = (i1, i2, . . . , it) ∈ I∗

as i1i2 . . . it and say that length of f is t and denote it by l(f). The words Pm(i, j) =

iji . . . of length m, i, j ∈ I and m > 2 appear prominently in what follows. Note that

Pm(i, j) = (ij)m/2 if m is even and (ij)(m−1)/2i if m is odd.

2.2. The length function l: Let G be a group and S be a set of generators of G such

that 1G /∈ S and, for each s ∈ S, s−1 ∈ S. Throughout, we assume that there is a bijection

i→ si, i ∈ I and si ∈ S, from I to S. This bijection extends to a monoid homomorphism

from I∗ to G. The image si1si2 . . . sit of f = i1, · · · , it ∈ I∗ in G is written as rf . For g ∈ G,

the length lS(g) of g is the minimum of the lengths of f ∈ I∗ such that rf = g. Thus,

lS = 0 or 1 accordingly as g = IG or g ∈ S. An expression of g as rf with l(f) = lS(g) is

said to be a reduced expression of g. We write lS(g) as l(g) if there is no ambiguity about
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S. Some times, it is of interest to consider the length function on G relative to the set

SG = {gsg−1 : g ∈ G, s ∈ S}.

Proposition 2.1. Let g, g′ ∈ G. Then, the following hold:

(i) l(gg′) ≤ l(g) + l(g′),

(ii) l(g−1) = l(g),

(iii) |l(g)− l(g′−1)| ≤ l(gg′−1).

Proof. (i) and (ii) are clear. Replacing g by gg′−1 in (i) and using (ii), we get

l(g)− l(g′) ≤ l(gg′−1),(2.1)

l(gg′−1) = l(g′g−1)(2.2)

Interchanging g and g′ in (2.1) and using (2.2), we get

l(g′)− l(g) ≤ l(g′g−1) = l(gg′−1).(2.3)

Now, (iii) follows from (2.1) and (2.3). �

G can be considered as a metric space relative to the matrix dS defined by dS(g, g′) =

l(gg′−1). This metric is invariant under the left translations of G.

2.3. The Cayley graph ΓG(S): The Cayley graph Γ = ΓG(S) associated with (G,S) as

above is the labelled, directed graph with vertex set G and a directed edge from g to gs

(respectively, gs to g), labelled s (respectively, s−1), for all g ∈ G, s ∈ S. The direction

of the edge is ignored if s is an involution. Since S generates G, Γ is connected. For each

g ∈ G, the permutation τg of G taking x ∈ G to gx is a label preserving automorphism of

Γ. For g, g′ ∈ G, l(gg′−1) is the length of the shortest path in Γ from g to g′. A shortest

path in Γ from g to g′ is called a geodesic from g to g′. A subset A of G is said to be

convex if A contains each vertex of each geodesic in Γ connecting any two elements of A.

2.4. The simplicial complex ΣG(S): The simplicial complex Σ = ΣG(S) associated

with (G,S) as above is the partially ordered set (or poset, for short) of left cosets {g〈S ′〉 :

g ∈ G,S ′ ( S}, with the partial order ‘A 4 B if, and only if, B ⊆ A’. If A 4 B, we say

that A is a face of B. Maximal elements of Σ are called chambers. They are the cosets

of the trivial subgroup of G and can be - and, are - identified with the elements of G.

Maximal elements of Σ \ {{g} : g ∈ G} are called panels of Σ. If s ∈ S is an involution,

then g〈s〉 is a panel for each g ∈ G; and {g} and {gs} are the only chambers in G with
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g〈s〉 as a face. The permutation τg of G defined in (2.3) for g ∈ G is an automorphism of

Σ. The map τ 7→ τg is an injective homomorphism from G to the group of automorphisms

of Σ. If s ∈ S is an involution, then, for each g ∈ G, ρgsg−1 fixes the panel g1〈s1〉 if, and

only if, gsg−1 = g1s1g
−1
1 and in this case, it interchanges the chambers g1 and g1s1. The

set of all panels fixed by ρr for a conjugate r of an element of S is called a wall in Σ.

We can also consider Σ as a metric space with the distance dΣ defined as dΣ

(
g1〈S1〉, g2〈S2〉

)
=

min{l(x−1
1 x2) : xi ∈ gi(Si)} for gi ∈ G and Si ⊆ S, i = 1, 2.

2.5. Coxeter matrix M , Coxeter graph ΓM and Coxeter group W (M) and Artin

group A(M): A function from I × I to N ∪ {∞}, taking (i, j) ∈ I × I to mi,j, is called

a Coxeter matrix over I if mi,i = 1 and mi,j = mj,i ≥ 2 or ∞ for all i, j ∈ I, i 6= j. We

write M = (mi,j).

The Coxeter diagram ΓM of type M is a graph with I as the set of vertices and a

2-subset {i, j} of I is called an edge if mi,j ≥ 3 and the edge is labelled mi,j if mi,j ≥ 4 or

∞. Note that this diagram encapsulates all the information in M .

Different conventions of labelling is convenient and used sometimes. Here is one: for

i, j ∈ I, i 6= j, {i, j} is not an edge if mi,j = ∞, is an unlabelled edge if mi,j = 2 and an

edge with label mi,j if 2 < mi,j 6=∞. However, in this notes, unless specified, we always

use the previous labelling.

Definition 2.2. The Coxeter diagram ΓM is said to be:

(i) indecomposable if ΓM is a connected graph;

(ii) right-angled if mi,j ∈ {2,∞} for all i 6= j;

(iii) of finite type if |I| < +∞;

(iv) of spherical type if mi,j 6=∞ for all i, j;

(v) of even type if mi,j is even or ∞ for all i 6= j;

(vi) universal right-angled if mi,j =∞ for all i 6= j; and

(vii) of large type if mi,j = 3 for all i, j.

Definition 2.3. A pair (G,S) as in section (2.2) is said to be:

(i) a pre-Coxeter system of type M if sisj has order mi,j for all i, j ∈ I;

(ii) a Coxeter system of type M if G has the presentation

〈S | (sisj)mi,j , i, j ∈ I, mi,j 6=∞〉;
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(iii) an Artin-Tits system of type M if G has the presentation

〈S | rPm(i,j) = rPm(j,i), i 6= j, m = mi,j 6=∞〉;

The group G is said to be a Coxeter group of type M , and is written as W (M) in case

(ii); and G is said to be an Artin group, and sometimes also called an Artin-Tits group

of type M , and is written as A(M) in case (iii). A Coxeter group of type M is said to be

indecomposable, right-angled, etc., if so is its defining Coxter diagram.

Though much is known about the structure and representation theory of the Coxeter

groups, very little is known about the Artin groups. The following problems about Artin

groups seem to be basic:

(1) Is every Artin group torsion-free?

(2) Is the centre of each nonspherical Artin group trivial?

(3) Does each Artin group has a solvable word problem?

(4) Does every Artin group satisfies the K(π, 1)-conjecture?

In contrast, the solutions to (1), (2), (3) and (4) for Coxeter groups is known.

Note: (1): s ∈ S is an involution in (i) and in (ii) (see Theorem 2.4) and is of infinite

order in (iii). The presentation in (ii) can also be written as in (iii), allowing i = j also.

The relation rPm(i,j) = rPm(j,i) is called a braid relation of length m.

(2) Many fundamental results about Coxeter groups give criteria for a pre-Coxeter system

of type M to be a Coxeter system of type M .

(3) The Coxeter diagram ΓM clearly defines the group W (M). A fundamental question

in the subject is to decide whether the group structure of a Coxeter group determines M .

More precisely,

Question (1): if (G,S) and (G,S ′) are Coxeter systems, does there exist an automor-

phism of G mapping S onto S ′?

This problem, and some variants of it, are called rigidity problems. The answer to this

question is negative as Coxeter groups for the following two diagrams

2n and

n
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are isomorphic, and in fact to the dihedral group of order 4n.

Exercise: The diagrams

4 and

give the same group.

However, the answer to the Question (1) is conjectured to be positive except for specific

list of counter examples. For the current status on this conjecture, see

(1) B. Mühlherr, The isomorphism for Coxeter groups, Fields institute communica-

tions

(2) K. Nuida, On the Isomorphism Problem for Coxeter Groups and Related Topics.

In: Sastry N. (eds) Groups of Exceptional Type, Coxeter Groups and Related

Geometries. Springer Proceedings in Mathematics and Statistics, vol 82. Springer,

New Delhi (2014).

(3) N. Brady, J. P. Mc Carmond, B. Mühlherr, W. Neumann, Rigidity of Coxeter

groups and Artin groups, Geom. Dedicata 94 (2002), 185-214.

2.6. Alternating Coxeter and Artin groups: Let F (S) denote the free group on S.

The map from S to the multiplicative group {−1, 1}, taking each element s of S to −1,

extends to a group homomorphism η from F (S) to {−1, 1}. Since the relations in the

presentation of A(M), as well as of W (M), are all of even length, η defines a surjective

homomorphism from A(M) to {−1, 1}. This further factors through W (M). By abuse of

notation, we denote each of three homomorphisms with domains F (S), A(M) and W (M)

with the common range {−1, 1} by η; and also the image of s ∈ S ⊆ F (S) in A(M) as

well as in W (M) also by s. Thus, s is non-trivial and, if |S| > 1, W (M) is not simple.

The kernels of η in W (M) and in A(M) are respectively called the alternating Coxeter

group of type M and the alternating Artin group of type M .

Since length of each relation in the presentation of G, G ∈ {A(M),W (M)} is even,

the relation η(xy) = η(x)η(y) for x, y ∈ G translates into l(xy) = l(x) + l(y) (mod 2).

Consequently, for each s ∈ S, l(s) = 1 (mod 2) and s 6= 1G. If r is a conjugate of s, s ∈ S
in W , then : l(r) is odd, l(rx) 6= l(x) 6= l(xr). Further by Proposition 2.1, |l(sx) − l(x)|
and |l(xs) − l(x)| are at most l(s) = 1, {l(xs), l(sx)} ⊆ {l(x) + 1, l(x) − 1} for each
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x ∈ G. We show that, for all i, j ∈ I, order of sisj in W (M) is mi,j (Theorem 2.4 (i)).

This would imply that ρ is injective on S. The map ρ from F (S) to A(M) is also known

to be injective on S.

2.7. Some examples and remarks:

(1) If |S| = 1, then W (M) ' C2 and A(M) ' (Z,+).

(2) If |S| = 2 and Γ is

m
m ≥ 2 or ∞,

then W (Γ) is a dihedral group of order 2m.

(3) If the Coxeter diagram is disconnected and the labelling considered is the former

defined (respectively, the latter suggested) in section (2.5), then the Coxeter group

defined by the diagram is the direct product ( respectively, the free product) of

the Coxeter groups defined by its connected components. This statement is true

if the word ‘Coxeter group’ is replaced by ‘Artin group’ in the statement.

(4) If

M :
∞

,

then W (M) ' PGL2(Z). We can take

s1 = ±

[
0 1

1 0

]
,

s2 = ±

[
−1 1

0 1

]
and

s3 = ±

[
1 0

0 −1

]
(see [10], Section 5.1 for a hint)

(5) If

Γn:
s1 s2 s3 sn−1 sn ,

then W (Γn) ' Sn+1.
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Notation: For integers i, j, i < j, we denote the set of integers k such that i ≤ k ≤ j by

[i, j].

Proof of (5). The map taking k ∈ [1, n] to the transposition tk = (k, k + 1) ∈ Sn+1

extends to a group homomorphism θ from W (Γn) onto Sn+1, because {tk} satisfies the

defining relations of W (Γn). That this homomorphism is surjective, follows because:

W1 = 〈s1, s2, . . . , sn−1〉 ' Sn by induction hypothesis; and using the relations for W (Γn),

we see that {W1, W1sn . . . si : i ∈ [1, n]} are all the mutually distinct cosets of W1 in W .

So, |W (Γn)| = (n+ 1)W1 = (n+ 1)! and θ is also injective. �

(S) Coxeter diagrams of irreducible, finite Coxeter groups: Coxeter groups de-

fined by the diagrams in (S.i), (S.ii) below, is the complete list of finite reflection groups,

upto isomorphism, acting irreducibly on Euclidean spaces.

(S.i) Crystallographic root systems:

An: (n ≥ 1 vertices)

Bn = Cn: (n ≥ 2 vertices)

Dn: (n ≥ 4 vertices)

E6 :

E7 :

E8 :

F4: 4
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G2: 6

(S.ii) Non-crystallographic root systems:

H3: 5

H4: 5

I2(m):
m

(m = 5 or m ≥ 7)

Figure 1

Remark 2.4. (1) The subscript n in the diagram Xn above denotes the number of nodes

and the dimension of the Euclidean spce on which the corresponding Coxeter groups

acts faithfully and irreducibly. No two of these groups are isomorphic. This is also the

complete list of irreducible Coxeter systems, for which the bilinear form associated in

section 2.8 is positive definite.

(2) Except for the types H3, H4 and I2(m),m = 5 or m ≥ 7, W (Xn) is the Weyl group

of a finite dimensional simple Lie algebra of type Xn over C and is the stabilizer, in

the orthogonal group of rank n, of the corresponding root system. These are called

crystallographic groups. They stabilize a lattice (i.e. a free abelian subgroup of rank n)

in Rn.

(3) The following groups W (Xn) are the groups of symmetries of the regular polytopes in

the Euclidean spaces Rn. For groups, we use the notation of: J. Conway, et. al, Atlas of

Finite groups, Camb. Univ. Press.

• W (An) ' Sn+1 and is the group of symmetries of a regular n-simplex in Rn+1 and,

of its dual.

• W (Bn) ' 2nSn, n ≥ 2 and is the group of symmetries of a n-dimensional hypercube

in Rn and, of its dual.

• W (Dn) ' 2n−1Sn, n ≥ 4. This is not the symmetry group of a regular polytope.

• W (F4) ' 23 : S4 : S3 and is the group of symmetries of a regular (3, 4, 3)-polytope

in R4. This has 24 octahedral faces and is self dual. The set of vertices of this polytope

is the root system of type F4.
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• W (I2(m)) ' D2m and is the group of symmetries of a regular m-gon in R2.

• W (H3) ' 2 × A5 and is the group of symmetries of a icosahedron (with twenty

triangular faces) in R3 and of its dual, a regular dodecahedron (with twelve pentagonal

faces) in R3.

• W (H4) ' 2A5 × (2 × A5) and is the group of symmetries of the regular cell in R4

(this has 600 tetrahedrol faces) and of its dual, the 600-solid in R4.

(A) Coxeter diagrams for irreducible affine Coxeter groups: The Coxeter groups

for the diagrams X̃n in Figure 2 below act on the Euclidean space Rn irreducibly as affine

transformations. The number of nodes in X̃n is n+ 1. If we delete the node of X̃n marked

“X” and the dotted edge(s) incident with it, we get a crystallographic spherical diagram

Xn and W (X̃n) is the semi-direct product of a free abelian group of rank n extended by

the finite Coxeter group W (Xn).

Following are the irreducible affine Coxeter diagrams:

Ã1:
∞

X

Ãn:

X

(n+ 1 nodes n ≥ 2)

B̃2: 4 4X

4
X

B̃n, n ≥ 3:

C̃n, n ≥ 3:
4 4 X

D̃n, n ≥ 4:
X
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Ẽ6:

X

XẼ7:

XẼ8:

F̃4: X
4

G̃2:
6X

Figure 2

No two of these diagrams are isomorphic. This is the complete list of irreducible Coxeter

systems with positive indefinite quadratic form. Each diagram X̃n encodes a simplex σn in

Rn, unique up to scaling, with the following properties: the vertices of X̃n are in bijection

with the facets (faces of codimension one) of σn, and the faces labelled s, s′ intersect in the

dihedral angle π/ms,s′ . These properties are enough to describe the simplicies associated

with X̃n, n ≥ 2. The simplices associated with X̃n, n ≥ 2, are the only simplices in Rn

where the dihedral angles are π/m for an integer m > 1. The diagram Ã1 corresponds to

a 1-simplex in R1 whose faces are its end points. These faces do not intersect and this is

indicated by the label ∞ on the unique edge in Ã1.

2.8. Linear representation of a Coxeter group W (S) of the type M : Let (W,S)

be a Coxeter system over I of type M and i → si be a bijection from I to S. In this

section, we present a real linear representaion ρ of W (S), due to Tits, and deduce that

the cannonical map from the free group on S to W (S) is injective on S (Theorem 2.4).

Tits also showed that ρ is faithful, thus proving that Coxeter groups are linear groups

(see [1], chapter V , section 4, corollary 2).
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Let V be the vector space over R with basis {ei : i ∈ I}. Let B be the (possibly

degenrate) symmetric bilinear form on V defined by setting B(ei, ej) = −cos(π/mi,j) or

−1 according as mi,j is finite or not. Thus, B(ei, ei) = 1 and B(ei, ej) ≤ 0 if i 6= j. The

form B is called a Tits form. For a subset A of V , we define A⊥ = {v ∈ V : B(v, a) = 0

for each a ∈ A}. We denote by OB(V ) the orthogonal group defined by B.

For each v ∈ V with B(v, v) = 1, we denote by rv the reflection of V in the hyperplane

V ⊥; explicitly, rv(x) = x − 2B(v, x)v for x ∈ V . Since rv(x) = −v and rv
2(x) = x for

each x ∈ V , rv is an involution. Also, rv = r−v for each v ∈ V with B(v, v) = 1. Further,

for x, y ∈ V , B(rv(x), rv(y)) = B(x, y). So, rv ∈ OB(V ). We write rei as ri for i ∈ I.

Theorem 2.4 (Tits). The following hold:

(i) |ri| = 2 and |rirj| = mi,j for i, j ∈ I. Consequently, the map si → ri from

S ⊆ F (S) to OB(V ) is injective and extends to a unique group homomorphism ρ

from W to OB(V ). Further, order of sisj in W is mi,j.

(ii) If ri ∈ 〈rj : j ∈ J〉 ≤ OB(V ) for some i ∈ I and J ⊆ I, then i ∈ J .

Proof. By definition, ri 6= r2
i = Id on V for each i ∈ I. Now choose i, j ∈ I and let

Vij denote the subspace of V spanned by ei, ej. Then, both ri and rj map Vij to itself.

Further

rirj(ei) = ri
(
ei − 2B(ei, ej)ej

)
= −ei − 2B(ei, ej)

(
ej − 2B(ei, ej)ei

)
=

(
4B(ei, ej)

2 − 1)
)
ei − 2B(ei, ej)ej, and

rirj(ej) = ri(−ej) = −
(
ej − 2B(ei, ej)ei

)
= 2B(ei, ej)ei − ej.

If B(ei, ej) = 1 (i.e., if mi,j =∞), then

(rirj)(ei + ej) = 3ei + 2ej − 2ei − ej = ei + ej,

and

(rirj)(ei) = 3ei + 2ej = 2(ei + ej) + ei.

So

(rirj)
m(ei) = 2m(ei + ej) + ei

and rirj ≤ OB(V ) is of infinite order.

If B(ei, ej) 6= 1 (i.e., if mi,j < +∞), then Vij admits an orthonormal basis: in fact,

if f = −B(ei, ej)ei + ej, then B(f, f) = 1 − B(ei, ej)
2 > 0 and {ei, f/

√
B(f, f)} is
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an orthogonal basis for Vij. Consequently, V = Vij ⊕ V ⊥ij and Vij is isomorphic to the

Euclidean plane.

Let (−,−) be the standard inner product on R2. Choose the elements f1 = (1, 0) and

f2 = (− cos(π/mi,j), sin(π/mi,j)) of R2. The map taking ek to fk, k = 1, 2, extends to

a unique isometric isomorphism φ from Vij to R2; since sin(π/mi,j) 6= 0. Let Tk =

φ ◦ rk ◦ φ−1 ∈ GL(R2), k = 1, 2. Then, for x ∈ R2, Tk(x) = x − 2(x, fk)fk, i.e., T1 and

T2 are two reflections of the Euclidean plane whose axes make an angle of π/mi,j. Thus,

their product is a rotation of R2 about the origin by an angle 2π/mi,j. So, T1T2 is of order

mi,j and r1r2 induces an element of order mi,j on Vij. Since both ri and rj act as identity

on V ⊥ij , order of rirj indeed is mi,j. Now, from the presentation of W , the remaining

statements of (i) follows.

(ii) Let VJ = 〈ej : j ∈ J〉 ≤ V and GJ = 〈rj : j ∈ J〉 ≤ ρ(W ). For each g ∈ GJ and

v ∈ V, g(v) ∈ v + VJ . Since ri ∈ GJ , −ei = ri(ei) ∈ ei + VJ . Thus, ei ∈ VJ and i ∈ J . �

From now on, we write ρ(w)(x) as wx for w ∈ W and x ∈ V .

Remark 2.5.

(1) If x = λses + λs′es′ ∈ Vij, λs, λs′ ∈ R, then

B(x, y) = λ2
s + λ2

s′ − 2λsλs′ cos(π/m) = (λs − λs′ cos(π/m))2 + λ2
s sin2(π/m).

Thus, the restriction of B to Vs,s′ is positive. It is positive definite if ms,s′ 6= ∞ and, in

this case, 〈s, s′〉 is finite. If ms,s′ =∞, then B is positive indefinite, 〈s, s′〉 is infinite and

Rad(B) is one-dimensional. In general, W is finite if B is positive definite. If B is positive

indefinite, W is infinite and radical of B is one dimensional. (see [1](section 4, chapter

V ) and [10](section 6.5)).

(2) Let w ∈ W, si ∈ S with i ∈ I, r = wsiw
−1 ∈ W and α = ρ(w)(ei) ∈ V . Since

ρ(W ) ⊆ OB(V ), B is ρ(W )-invariant. So, for all x ∈ V ,

ρ(r)(x) = ρ(wsiw
−1)(x) = ρ(w)

(
ri(ρ(w)−1(x))

)
= ρ(w)

(
ρ(w)−1(x)− 2B(ρ(w)−1(x), ei)ei

)
= x− 2B(ρ(w−1)(x), ei)ρ(w)(ei)

= x− 2B(x, ρ(w)(ei))ρ(w)(ei) = rα(x).
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So ρ(r) is the reflection of V in the plane α⊥. Note that B(α, α) = B(ei, ei) = 1.

Proposition 2.5. Let (W,S) be an indecomposable Coxeter system of type M , and let

V,B and ρ be as above. Then the following hold:

(i) Radical of B contains every W -invariant proper subspace of V .

(ii) An endomorphism T of V commutes with ρ(W ) for each w ∈ W if, and only if,

T = λIV for some λ ∈ R.

(iii) If B is non-degenerate, then ρ is an irreducible representation of W .

(iv) If B is degenerate, then ρ is not completely reducible and W is infinite.

Proof. (i) Let U be a proper subspace of V such that w(U) ⊆ U for each w ∈ W . Suppose

that ei ∈ U for some i ∈ I. Since (W,S) is indecomposable, there exist j ∈ I such that

ej /∈ U and B(ei, ej) 6= 0. But then, B(ei, ej)ej = ei − rej(ei) ∈ U and so, ej ∈ U , a

contradiction. So ei /∈ U for each i ∈ I.

Now for x ∈ U and i ∈ I, B(x, ei)ei = x − rei(x) ∈ U . So, B(x, ei) = 0 for each i ∈ I
and U ⊆ Rad(B), completing the proof of (i).

(ii) For each i ∈ I,

−T (ei) = T (ri(ei)) = ri(T (ei)) = T (ei)−B(T (ei), ei)ei.

So T (ei) = λiei for some λi ∈ R. If T is non-trivial, then λi 6= 0 for some i. Now the

kernel of (T − λiI) is W -invariant (because, so is T ), non-trivial (because it contains i)

and is not in the Rad(B) (because B(ei, ei) = 1). By (i), it is equal to V and so T = λiId

on V .

(iii) If B is non-degenerate, then, by (i), any W -invariant subspace is trivial.

(iv) If B is degenerate, then Rad(B) is non-trivial and, by (i), has no W -invariant com-

plement in V . So (iv) follows from Maschke’s theorem. �

2.9. Here, we introdice Coxeter cpmplexes associated with a Coxeter system of type M

and indicate their prominent appearence in Tits buildings. Throughout (2.9), let G be

a group and S denote a set of its involutory generators, indexed by I. Vertices of the

Cayley graph Γ = ΓG(S) (see (2.3)) are called chambers of Γ and paths in Γ are called

galleries in Γ.

(a) Type of a gallery in Γ: The type of a gallery ν = (g=g0, g1, . . . , gk) in Γ is the

word f = (i1, i2, . . . , ik) in I, where gi = gi−1si for i ∈ [1, k]. We write ν as νf if g0 = IG

and as gνf in general. We say that νf is of type J, J ⊆ I, (or νf is a J-gallery) if
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{i1, i2, . . . , ik} ⊆ J . Since |si| = 2 for each i ∈ I, for each g ∈ G and i ∈ I, there is a

unique edge labelled si incident with g. Consequently, there is a unique gallery gνf in Γ

of a given type f = (i1, i2, . . . , ik) from g to grf ; namely, gνf = (gg0, gg1, . . . , ggk), where

g0 = IG, gt = si1si2 . . . sit for all t ∈ [1, k]. In particular, gk = rf . For g, g′ ∈ G, f 7→ gνf

is a bijection from the set of words f in I with rf = g−1g′ to the set of galleries gνf in Γ

from g to g′. Note that gνf is of type f .

(b) Residues and coresidues in Γ: For J ⊆ I, define an equivalence relation ‘∼J ’

on G by setting g ∼J g′ if either g = g′ or Γ has a gallery of type J from g to g′.

Equivalence classes in G relative to ∼J (respectively, relative to ∼I\J) are called J-residues

(respectively, J-coresidues) in Γ. The J-residue in Γ containing an element g of G is the

coset gGJ of the subgroup GJ = 〈sj : j ∈ J〉 in G. Thus, if J = ∅, then the J-residues in

Γ are the elements of G, and the set G is the only J-coresidue in Γ. Further, the terms

‘{i}-residue’ and ‘i-panel’ refer to the same object, viz., g〈si〉.
(c) ΓW (S) as a thin building of type M : From Theorem 2.4 (i), the Cayley graph

ΓW (S) associated with a Coxeter system (W,S) of type M has the following properties:

each i-panel is incident with two chambers of Γ (since |si| = 2); for each w ∈ W , the

map taking i ∈ I to the i-panel with w as a face is a bijection from I to the set of all

panels in Γ with w as a face (because si 6= sj for i 6= j); and for all i, j ∈ S, i 6= j, each

{i, j}-residue has 2mij chambers (since si, sj generate a dihedral subgroup of W of order

2mij). For x, y ∈ W , there is a gallery of type f , f ∈ I∗, from x to y if, and only if,

rf = x−1y; and, when it exists, it is unique. Thus, ΓW (S) is a thin building of type M

(see Example 2.6 below). In view of the remarks above, we identify i ∈ I with si ∈ S for

each i ∈ I and talk of panels, types of galleries, etc., in terms of S only.

(d) Coxeter complexes as apartments in buildings: Coxeter complexes are crucial

substructures of a building Tits constructed as a natural geometric structure for each sim-

ple group of Lie type. Here we contend ourself by giving the four distinct, but equivalent,

definitions of a building Tits gave to indicate the role of Coxeter complexes in buildings.

(d.i) The earliest definition Tits gave in [25] is in terms of simplicial complexes. Before we

give the definition of a building, we recall a few concepts related to simplicial complexes.

A simplicial complex with vertex set V is a non-empty collection 4 of finite (possibly

empty) subsets of V (called simplicies) such that every singleton subset of a non-empty

set V is in 4 (called a vertex ); and every subset B of a simplex A is a simplex (called a
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face of A). The cardinality r of A is called the rank of A and r−1 is called the dimension

of A.

Equivalently, a simplicial complex can be thought of as a non-empty poset4 possessing

the following properties:

(α) any two elements of 4 have a greatest lower bound; and

(β) for each a ∈ 4, the poset 4≤a = {b ∈ 4 : b ≤ a} is isomorphic to the power set of

a set of cardinality r (considered as a poset with inclusion as the partial order). We say

that rank of a is r and dimension of a is r − 1.

Maximal simplicies in 4 are called chambers in 4. A simplicial complex is said to be

regular of rank k if all maximal simplicies have rank k.

A regular simplicial complex 4 of rank r is called a chamber complex if all chambers

have rank r and any two chambers can be connected by a gallery in 4; that is, given any

two chambers c, d in 4, there is a finite sequence (c = c0, . . . , ct = d) of chambers in 4
such that consecutive chambers ci−1, ci share a simplex of rank r−1. A chamber complex

4 is said to be thin, rigid or thick according as each simplex of rank r − 1, is on two, at

least two or more than two chambers respectively. With these definitions, we are ready

to give the first definition of a building.

First definition of a building (Tits): A building is a pair B = (4,A), where 4 is

a simplicial complex and A is a family of subcomplexes of 4 (called apartments), such

that the following holds:

(B-1) 4 is the union of its apartments;

(B-2) each apartment is a thin simplicial complex;

(B-3) any two given simplicies of 4 are contained in an apartment;

(B-4) if Σ and Σ′ are apartments containing two simplicies A and B, then there is a

simplicial isomorphism from Σ to Σ′ fixing A and B;

Remark 2.6.

• Taking A and B to be empty in (B-4), we see that any two apartments are isomorphic.

Further thinnes of an apartment can be shown to imply that every apartment is a Coxeter

complex. So, we can talk of a building of type M , where M is the Coxeter matrix which

is the common type of the apartments in 4.
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• 4 is also a chamber complex, because if A and B are maximal simplicies, by (B-3),

they are contained in an apartment A. So, they have the same rank and are connected

by a gallery in A and so also in 4. Thus, 4 is connected.

Example 2.6. The Coxeter system Σ = ΣW (S) defined in (2.4) is a thin building (with

only one apartment, namely Σ).

Example 2.7. Let V be a right vector space of dimension n + 1 over a field or a skew-

field K. Let 4 be the poset of all proper subspaces U of V ; that is, {0} < U < V ,

partially ordered by inclusion. An apartment is the subposet Aϕ of 4 consisting of all

proper subspaces of V generated by subsets of a given basis ϕ of V . Then, (4, {Aϕ : ϕ a

basis of V }) is a building of type An (see [22]).

(d.ii) Second definition of a building (Tits): Let (W,S) be a Coxeter system of type

M . A building B of type M is a pair (4, δ), where 4 is a non empty set (whose elements

are called chambers) and δ is a map from4×4 to the Coxeter group W of type M(called

the Weyl distance) such that, for all c, d ∈ 4, the following statements hold:

(Wd-1) δ(c, d) = IW if, and only if, c = d.

(Wd-2) If δ(c, d) = w and c′ ∈ 4 is such that δ(c′, c) = s ∈ S, then δ(c′, d) = sw or w.

If, in addition, l(sw) = l(w) + 1, then δ(c′, d) = sw.

(Wd-3) If δ(c, d) = w, then, for each s ∈ S, there exists c′ ∈ 4 such that δ(c′, c) = s

and δ(c′, d) = sw.

Example 2.8. Take 4 = W and define δ by setting δ(x, y) = x−1y for x, y ∈ W .

Example 2.9. Let V be as in Example 2.7 and let 4 now denote the set of all maximal

flags of proper subspaces of V; that is, sequences F = (U1, . . . , Un) of subspaces of V ,

where dimension of Ui is i and Ui < Ui+1 for each i. Let W ' Sn+1, the Coxeter group

corresponding to the diagram An in Figure 1. For F = (U1, . . . , Un) and F ′ = (U
′
1, . . . , U

′
n)

in 4, let δ(F, F
′
) ∈ Sn+1 be the map taking i ∈ [1, n + 1] to σ(i) = min{j ∈ [1, n + 1] :

Ui ≤ Ui−1 + U ′j}.
We take U0 = {0} and Un+1 = V . For F, F ′ ∈ 4, the map δ(F, F ′) is a permutation of

the set [1, n+ 1] (see [27], p.48) and (4, δ) is a building of type An.

(d.iii) To present the third definition of a building, we introduce the concept of a chamber

system. For each s ∈ S, define the equivalence relation ‘∼s’ on W by setting x ∼s y, x, y ∈
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W , if, and only if, δ(x, y) ∈ 〈s〉. Then, the pair (4, {∼s: s ∈ S}) is a chamber system in

the sense of the following definition:

Definition 2.10. A chamber system C over a set I is a pair (4, {∼i : i ∈ I}), where 4
is a non empty set and, for each i ∈ I, ’∼i’ is an equivalence relation on 4 such that

for each i ∈ I, each equivalence class relative to ∼i has atleast two elements; and, for

c, d ∈ 4 and i, j ∈ I, c∼id, c∼jd imply that either c = d or i = j.

Note that a chamber system C can also be seen as a graph with vertex set 4 and each

edge assigned a unique label (more colourfully, a ’colour’) which is an element of I.

Elements of 4 are called chambers and an equivalence class relative to ∼i is called an

i-panel. The chamber system C is said to be thin, rigid, thick according as each i-panel

of C has two, atleast two, atleast three chambers, respectively.

A gallery in C from a chamber c to a chamber d is a finite sequence ν = (c=c0, . . . , ck=d)

of elements of 4 such that ct−1∼it−1ct for each t ∈ [1, k]; its length is t; it is of type

f = (i1, . . . , ik) ∈ I∗ and is written as νf ; it is closed if ck = c0 and simple if ct−1 6= ct

and it−1 6= it for each t ∈ [1, k] (taking the relation i0 6= i1 to be vacuous); and ν is said

to be a geodesic if its length is the least among the lengths of the galleries in C from c to

d. We say that a subset A of 4 is convex if A contains each chamber of each geodesic in

C connecting any two distinct chambers of A.

Definition 2.11. Let (W,S) be a Coxeter system of type M = (mi,j)i,j∈I . A chamber

system C over I is said to be of type M if the following holds:

(Cox-1) for i, j ∈ I, i 6= j, and an integer n, 1 ≤ n < 2mi,j, C contains no simple, closed

galleries of type Pn(i, j);

(Cox-2) for i, j ∈ I, i 6= j, and m = mi,j 6= ∞, if C contains a simple gallery of type

Pm(i, j), then C also contains a simple gallery of type Pm(j, i) with the same extremities.

Example 2.12. With W,S,M as above, (W, {∼s : s ∈ S}) is a chamber system of type

M with the equivalence relation ‘∼i’ defined on W by w ∼i w′ if w′ = ws.

Example 2.13. Let V,4, F, F ′ ∈ 4 be as in Example 2.9 and I = [1, n]. For i ∈ I, define

the equivalence relation ‘∼i’ on 4 by saying that F∼iF
′

if Ut = U ′t for each t ∈ I, t 6= i.

Then (4, {∼i : i ∈ I}) is a thick chamber system of type M over I.

The following example is quite general and fundamental.
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Example 2.14. Coset chamber system: Let G be a group; B be a subgroup of G;

{Pi}i∈I be a collection of subgroups of G, each containing B; and 4 = {gB : g ∈ G}. For

i ∈ I, let ‘∼i’ be the equivalence relation on 4 defined by setting gB∼ig′B if, and only if,

gPi = g′Pi. The resulting chamber system (4, {∼i : i ∈ [n]}) is written as (G,B, {Pi}i∈I).

Example 2.12 is the case with G = W , B = 〈Id〉 and Pi = 〈si〉, si ∈ S. For a simple

algebraic group G, the chamber complex Tits used in constructing the building associated

with G is (G,B, {Pi}i∈I), where B is a Borel subgroup of G and {Pi} to be the set of all

minimal parabolic subgroups of G containing B.

We now present the:

Third definition of a building (Tits): Let (W,S) be a Coxeter system of type M =

(mi,j)i,j∈I . A building B of type M is a pair (C, δ), where C = (4, {∼i : i ∈ I}) is a

chamber system over I and δ : 4×4 −→ W is a map such that, for each reduced word

f in S (relative to the Coxeter system (W,S)) and for each x, y ∈ 4×4, δ(x, y) = rf =

x−1y ∈ W if, and only if, there is a gallery in C of type f from x to y.

δ is called the Weyl distance and W is called the Weyl group.

Example 2.15. (C, δ), where C is as in Example 2.12 and δ : W × W → W , taking

(x, y) ∈ W ×W to x−1y ∈ W , is a thin building.

Given two buildings B = (C, δ) and B′ = (C ′, δ′) of the same type M and the same Weyl

group W , a map π from a subset X of C to C ′ is said to be an isometry if δ
′
(π(x), π(y)) =

δ(x, y) for all x, y ∈ X.

A fundamental result due to Tits says that an isometry from any subset of ΣM to a

building B of type M extends to an isometry from ΣM to B, ([26], 3.7.4). In view of this,

a building of type M has plenty of apartments.

(d.iv) Fourth definition of a building (Tits):

This is based on the concept of a geometry of type M due to Buekenhout and the

characterization of buildings among geometries of a given type M . Here, generalized

polygons are the basic structures involved in the definition of a geometry. See [26] for this

elegant theory.

2.10. Reflections, walls and half spaces in Γ=ΓG(S): Let (G, S) be as in the

beginning of (2.9). Let

R = SG = {gsg−1|g ∈ G, s ∈ S},
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H be a set in bijection with R and h = R × {−1, 1}. We call elements of R reflections

in Γ. Some times, elements of S are also called fundamental reflections in Γ. Elements of

H are called walls in Γ and those of h are called half spaces of Γ.

We denote by rH and Hr the reflection and the wall, respectively, corresponding to

H ∈ H and r ∈ R under the fixed bijection between R and H mentioned above. We

identify Hr with the union Pr of all panels fixed by the automorphism τr of Γ defined in

(2.3). The chambers incident with a panel fixed by τr are interchanged by τr. When G is

a Coxeter group, G\Pr has two connected components which we indicate by the elements

(r, 1) and (r, −1) of h, and are interchanged by τr.

We transport the action of G on R by conjugation (with the action of g ∈ G on r ∈ R
written as grg−1) to an action ϕ of G on H, by defining

ϕ(g)(Hr) := Hgrg−1 , g ∈ G, r ∈ R.

We abbreviate ϕ(g)(Hr) as gHr. Note that, for g ∈ G and H ∈ H, rg(H) = grHg
−1.

For r = xsx−1 ∈ R, τr ∈ Aut(Γ) fixes an s′-pannel g〈s′〉 if, and only if, r = gs′g−1,

and, in this case, τr interchanges the chambers of the panel g〈s′〉. We then say that Hr

separates the chambers g and gs′ of Γ.

Notation: For f = (s1, . . . , sk) ∈ S∗, define g0 := r0 = IdG, gi = s1 . . . si ∈ G and ri =

gi−1sig
−1
i−1 ∈ R for all i ∈ [1, k]. We write ϕ(f) = {r1, . . . , rk} ⊆ R, r(f) = (r1, . . . , rk) ∈

R∗, and for r ∈ R, define n(f, r) = {i ∈ [1, k] : ri = r} and η(f, r) = (−1)n(f,r).

Note that rf = rk . . . r1 ∈ G and n(s, s) = 1 for s ∈ S. If f is the empty word in S,

then rf = 1G and n(f, r) = 0 for each r ∈ R.

For g, g′ ∈ G and f = (s1, . . . , sk) ∈ S∗ such that rf = g−1g′, (gg0, . . . , ggk), where gi is

as above, is a gallery in Γ of type f from g to grf . We denote it by gγf ; and when g = 1G,

as γf . The involutory automorphism τgrig−1 of Γ interchanges the chambers ggi−1 and ggi

of the si-panel ggi−1〈si〉. We say that the gallery gνf crosses the walls hgr1g−1 , . . . , hgrkg−1 .

Thus, for r ∈ R, n(f, r) is the number of times the gallery νf crosses the wall Hr. If

f ∈ S∗ is such that rf is a reduced expression of the element rf ∈ G in S, then n(f, r) = 0

or 1 for each r ∈ R in view of the following lemma.

Lemma 2.16. With the notation above, if ri = rj for some i, j ∈ [1, k], i < j, and

f ′ = (s1, . . . , ŝi, . . . , ŝj, . . . , sk) ∈ S∗, then rf = rf ′.
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Proof. Write ri = rj as r, r ∈ R, and consider the gallery νf = (1G = g0, g1, . . . , gk = g) in

Γ. Its type is f . The automorphism τr of Γ is involutory, type preserving and interchanges

the chambers of each of the 2-sets {gi−1, gi} and {gj−1, gj}. So, it maps the part γ1 of γf

from gi to gi−1 to a gallery γ2, namely (gi+1, . . . , gj−1), of the same type from gi−1 to gj.

Replacing the part ν1 of νf by ν2, we get a gallery ν ′ of type f ′ such that rf = rf ′ . �

For a general pair (G,S) as above, the set of walls crossed by different geodesics in

Γ with the same initial and the final chambers might be different. Remarkably, for a

Coxeter system, all geodesic in Γ with the same initial and final chambers cross the same

set of walls in Γ. ( see Theorem 0.4(ii)).

2.11. Characterizations of Coxeter systems: We start with

Lemma 2.17. Let G be a group and S be a set of involutions of G generating G. For

each s ∈ S, define a map ρs from h to itself by setting, for each (r, ε) ∈ h,

ρs(r, ε) =

(srs, ε); if r 6= s

(s,−ε); if r = s.

then:

(i) ρs 6= (ρs)
2 = id on h; consequently, ρs is a permutation of h;

(ii) for f = (s1, . . . , sk) ∈ S∗,

ρskρsk−1
...ρs1((r, ε)) = (g−1rg, ε(−1)n(f,r)),

where g = rf = s1 . . . sk ∈ G.

Proof. (i) is clear. We prove (ii) by induction on k. The cases k = 0 and k = 1 are clear.

Let k > 1, f ′ = (s1, . . . , sk−1) ∈ S∗ and g′ = s1 . . . sk−1. Using induction hypothesis,

ρsk(ρsk−1
. . . ρs1)((r, ε)) = ρsk(g′

−1
rg′, ε(−1)n(f ′, r))

= (g−1rg, ε(−1)n(f ′, r)+δsk, r)

= (g−1rg, ε(−1)n(f ′, r))),

because r(f) = (r(f ′), g′−1skg
′). So, (ii) holds. �

Lemma 2.18. let (G, S) be a Coxeter system of type M ; s, s′ ∈ S be such that m =

ms,s′ 6=∞, f = (s, s′, s, . . . , s, s′) ∈ S∗(2m terms), and r ∈ R. Then, n(f, r) = 0 or 2.
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Proof. For 1 ≤ j ≤ 2m , rj = (ss′)j−1s. Since the order of ss′ in G is m, the elements

r1, . . . , rm of the dihedral subgroup 〈s, s′〉 are mutually distinct. Further, rj = rj+m

for each j ∈ [1,m]. So, for each r ∈ R, n(f, r) = 2 if, and only if, r = (ss′)j
′−1s with

j′ ∈ {j, j +m} for some j ∈ [1, m], and n(f, r) = 0 otherwise. �

We now show that each of the conditions (A), (D), (E), (F ) stated in what follows on

the pair (G, S) characterise the Coxeter systems (W, S). We start with

(A) the action condition on (G S): There is a homomorphism ρ from G to the group

sym(h) of permutations of h such that, for each s ∈ S, ρ(s) maps (r, ε) ∈ h to (r,−ε) ∈ h

if r = s and to (srs, ε) ∈ h if r 6= s.

We write ρ(g) as ρg throughout.

Proposition 2.19. Assume that (A) holds for (G,S). Then, for g ∈ G, define R(g) =

{r ∈ R : ρg−1((r, 1)) = (g−1rg,−1).

(i) A reflection r ∈ R belongs to R(g) if, and only if, r occurs an odd number of times

in r(f) for each f ∈ S∗ such that rf = g (see Notation, page 22). In particular,

R(g) ⊆ ϕ(f) for each f ∈ S∗ such that rf = g and for r ∈ R, η(f, r) = 1 if

r ∈ R(g) and zero otherwise.

(ii) For any word f = (s1, . . . , sk) in S such that rf is a reduced expression for g in

S, we have ri 6= rj for all i, j ∈ [1, k], i 6= j. Consequently, R(g) = ϕ(f).

(iii) |R(g)| = l(g).

Proof. Let f = (s1, . . . , sk) ∈ S∗ be such that rf = g. First, note that, by Lemma 2.17(ii),

for r ∈ R,

ρsi−1
. . . ρs1((r, 1)) = (g−1

i−1rgi−1, ε)

for some ε ∈ {−1, 1}. By the action of ρsi on h specified in (A), the second coordinate

of its image under ρsi will be −ε if, and only if, g−1
i−1rgi−1 = si, that is, r = gi−1sig

−1
i−1. So

ρg−1((r, 1)) = (g−1rg, (−1)p), where p is the number of terms ri in r(f) such that r = ri.

So (i) follows.

(ii) follows from (i) and Lemma 2.16.

(iii) folllows from (i) and (ii). �

For g ∈ G and r ∈ R, we write η(g, r) = 1 if r ∈ r(f) where f is the type of a geodesic

in Γ from 1G to g, and zero otherwise.
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We now give another discription of R(g). Let Rg denote the set of all elements g1sg
−1
1

of G corresponding to the triples (g1, s, g2) ∈ G × S × G such that g = g1sg2 and

l(g) = l(g1) + 1 + l(g2).

Proposition 2.20. If (G, S) satisfies (A), then R(g) = Rg for each g ∈ G.

Proof. If r ∈ R(g) and s1 . . . sd, si ∈ S, is a reduced expression of g in S, then, by

Proposition 2.19 (i), r = (s1 . . . si−1)si(s1 . . . si−1)−1. Taking g1 = s1 . . . si−1, s = si and

g2 = si+1 . . . sd, we see that r ∈ Rg.

Now, let r = g1sg
−1
1 ∈ Rg with g1, s, g2 as in the definition of Rg. If s′1 . . . s

′
m and

s′′1 . . . s
′′
n are reduced expression for g′ and g′′ in S, respectively, then (s′1, . . . , s

′
m, s, s

′′
1, . . . , s

′′
n)

is a reduced expression in S for g and r ∈ r(f). By Proposition 2.19 (ii) and (i), the ele-

ments of r(f) are mutually distinct and r ∈ R(g). �

(D) Deletion condition on (G,S): If f = (s1, . . . , sk) ∈ S∗ is such that l(rf ) < k, then

there exist i, j ∈ [1, k], i 6= j, such that rf = rf ′ for f ′ = (s1, . . . , ŝi, . . . , ŝj, . . . , sk).

Proposition 2.21. If (A) holds for G(S), then so does (D).

Proof. If f is as in the statement of (D), then, s1 . . . sk is not a reduced expression for

rf ∈ G in S. By Proposition 2.19 (ii), ri = rJ for some i j ∈ [1, m], i 6= j and (D) now

follows from Lemma 2.16. �

Proposition 2.22. Let (W,S) be a Coxeter system of type M . Then,

(i) (W, S) satisfies (A) and so (D);

(ii) for w ∈ W and (r, ε) ∈ h, ρw((r, ε)) = (w−1rw, εη(w−1, r)).

Proof. (i) For each s ∈ S, the map ρs defined in (A) is an involution. So ρs ∈ sym(h). If

s1, s2 ∈ S and m = ms1,s2 6= ∞, then, by Lemma 2.17 (ii) and Lemma 2.18, ρsρs′ is of

order m. So, by the presentation of W (S), the map s→ ρs from S to sym(h) extends to

a group homomorphism from W to sym(h). This, together with proposition 2.21, imply

(i).

(ii) follows from Lemma 2.17 (ii). �

(E) The exchange condition on (G,S): (Matsumoto) For g ∈ G, s ∈ S, if s1 . . . sk is

a reduced expression for g in S, then, either l(sg) = l(g) + 1 or else there exists i ∈ [1, k]

such that

s1 . . . sk = ss1 . . . ŝi . . . sk.
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Equivalently,

s1 . . . si = ss1 . . . si−1.

The condition (E) says that, if l(sg) < l(g), then any geodesic γ in ΓG(S) from 1G to

g, g ∈ S, can be modified to a geodesic from 1G to g with {1, s} as the initial edge and

dropping an appropriate edge of γ.

The condition (E) rules out the possibility l(sg) = l(g) for g ∈ G and s ∈ S. Conse-

quently, {l(sg), l(gs)} ⊆ {l(g)+1, l(g)−1} for g ∈ G, s ∈ S. Further, lengths of different

expressions of g in S have the same parity.

Proposition 2.23. The condition (E) holds for a Coxeter system (W,S).

Proof. For w ∈ W and s ∈ S, l(sw) = l(w) + 1 or l(w)− 1 by (2.6). If l(sw) = l(w)− 1

and f = (s1, . . . , sk) ∈ S∗ is such that rf is a reduced expression for w, then, by the

condition (D) which holds in a Coxeter system (see Proposition 2.22 (ii)), sw = f ′, where

f ′ = (s = s0, . . . , ŝi, . . . .ŝj . . . , sk) for some i, j ∈ [0, k], i 6= j. Since rf is a reduced

expression for w in S, it follows that i = 0 and sw = s1 . . . ŝj . . . sk. Thus (E) holds for

(W,S). �

Applying the condition (E) to g−1, we get the (right) exchange condition (E’) stated

below on (G, S) which is clearly equivalent to (E).

(E’) For g ∈ G, s ∈ S, if s1 . . . sk be a reduced expression of g in S, then either l(gs) =

l(g) + 1 or there exists i ∈ [1, k] such that

s1 . . . sk = s1 . . . ŝi . . . sks.

Equivqlently,

si . . . sk = si+1 . . . sks.

Proposition 2.24. Asuume that the condition (E) holds for (G, S). If si1 . . . sin and

sj1 . . . sjn are reduced expressions of g, g ∈ G and sit , sjt ∈ S, then {si1 , . . . , sin} =

{sj1 , . . . , sjn}.

Proof. Deny. Let n be the smallest integer for which there is a counter example g, g ∈ G,

with l(g) = n. Then, n 6= 1 by Theorem 2.4(i). Since (si1 . . . sin)sjn = sj1 ...sjn−1 is of
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length less then n, by (E’),

sj1 . . . sjn−1 = (si1 . . . sin)sjn = si1 . . . ŝit . . . sin .

for some t ∈ [1, n]. By the choice of n, {sj1 , . . . , sjn−1} ⊆ {si1 , . . . , sin}. Considering

sj1(si1 . . . sin) = sj2 . . . sjn

instead and using (E), we see that {sj2 , . . . , sjn} ⊆ {si1 , . . . , sin}. So, {sj1 , . . . , sjn} ⊆
{si1 , . . . , sin} and, by symmetry, the proposition follows. �

Definition: Let g ∈ G and g = s1 . . . sk, si ∈ S, be a reduced expression. Define

Sg = {s1, . . . , sk}.

In view of Proposition 2.24, if (G, S) satisfies (E), then Sg is independent of the reduced

expression of g ∈ S. This, in particular, implies that each element of G, admits only a

finite number of reduced expressions in S. (see Remark 2.12 (1))

Corollary 2.25. If (G, S) satisfies (E), then S is a minimal generating set for G.

Consequently, if G is finitely generated, then it admits a finite subset S of G such that

(G, S) satisfies (E).

Corollary 2.26. If (G S) satisfies (E), then, for each g ∈ G, ∆(g) = {s ∈ S : l(sg) ≤
l(g)} is a finite subset of S.

Proof. For each s ∈ ∆(g), by (E), there is a reduced expression for g in S starting with

s. Since the number of reduced expressions of g in S is finite, the corollary follows. �

(F) Folding condition on (G, S): If g ∈ G and s, s′ ∈ S are such that l(sg) =

l(g) + 1 = l(gs′), then either l(sgs′) = l(g) + 2 or sgs′ = g.

Proposition 2.27. If (E) holds for (G, S), then so does (F ).

Proof. Let g = s1 . . . sk, si ∈ S, be a reduced expression for g in S. Then, s1 . . . sks
′ is a

reduced expression for gs′ in S. By (E), either l(sgs′) = l(g)+2 or there exists i ∈ [1, k+1]

such that sgs′ = s1 . . . ŝi . . . sksk+1 (writing s′ as sk+1). Since l(sg) = l(g) + 1, i = k + 1

and sgs′ = g. �

Proposition 2.28. If (F ) holds for (G, S), then so does (D).
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Proof. Let g = s1 . . . sd, si ∈ S, and l(g) < d. We show, by induction on d, that there

exists i, j ∈ [1, d], i < j, such that g = s1 . . . ŝi . . . ŝj . . . sd. By induction hypothesis, we

may assume that s1 . . . sd−1 and s2 . . . sd are both reduced expressions in S. Note that

d ≥ 2 and consider g′ = s2 . . . sd−1. Then, l(s1g
′) = l(g′) + 1 = l(g′sd) < l(g′) + 2. So, by

(F ), s1g
′sd = g′; that is g = ŝ1s2 . . . sd−1ŝd. �

Proposition 2.29. If (D) holds for (G, S), then so does (E).

Proof. Let g = s1 . . . sk, si ∈ S, be a reduced expression for g in S and s0 ∈ S be

such that l(s0g) < l(g). Then, by (D), there exist i, j ∈ [0, k], i 6= j, such that

s0g = s0s1 . . . ŝi . . . ŝj . . . sk. If i 6= 0, then g = s1 . . . ŝi . . . ŝj . . . sk and l(g) < k, a

contadiction. So, i = 0 and s0g = s1 . . . ŝi . . . ŝj . . . sk. Thus (E) holds in (G, S). �

Following [1], we, now show that, if (G,S) satisfies (E), then (G,S) is a Coxeter system.

Assume that (G, S) satisfies (E). For g ∈ G, let Dg denote the set of all reduced words

f in S such that rf = g.

Lemma 2.30. Let A be a set and θ be a map from Dg to A such that θ(f) = θ(f ′) for

f, f ′ ∈ Dg whenever either

(a) f and f ′ have the same initial term or the same final term; or

(b) f = pk(s, s
′) and f ′ = pk(s, s

′) for some s, s′ ∈ S
holds. Then, θ is a constant function on Dg.

Proof. Consider f = (s1, . . . , sk), f
′ = (s′1, . . . , s

′
k) ∈ Dg and let h = (s′1, s1, . . . , sk−1) ∈

S∗. We first show that

(*) if θ(f) 6= θ(f ′), then h ∈ Dg and θ(f) 6= θ(h).

Proof of (*): Since s′1 . . . s
′
k is a reduced expression of g in S, l(s′1g) < l(g). By (E),

there exists an index j, j ∈ [1, k], such that rh′ is a reduced expression of g in S, where

h′ = (s′1, s1, s2, . . . , ŝj, . . . , sk); i.e., h ∈ Dg. By (a), θ(f ′) = θ(h′). If j < k, then,

θ(f) = θ(h′), by (a) again, and θ(f ′) = θ(h′) = θ(f), contradicting θ(f) 6= θ(f ′). So j = k

and h′ = h. Thus h ∈ Dg and θ(h) = θ(h′) = θ(f) 6= θ(f ′), completing the proof of (*).

Now, suppose that Dg contains elements f and f ′ such that θ(f) 6= θ(f ′). Consider the

following chain of words in S of length k:

f ′ = f0 = (s′1, s
′
2, . . . , s

′
k)

f = f1 = (s1, s2, . . . , sk)
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and, for 0 ≤ t ≤ k − 1,

fk+1−t =


(s1, s

′
1, s1, s

′
1 . . . , s1, s

′
1, s1, . . . , st), if k − t is even

(s′1, s1, s
′
1, s1, . . . , s

′
1, s1, . . . , st), if k − t is odd.

Observe that fk = pk(s1, s
′
1) and fk+1 = pk(s

′
1, s1), if k is odd and fk = pk(s

′
1, s1) and

fk+1 = pk(s1, s
′
1), if k is even.

By (*) and induction on j, fj, fj+1 ∈ Dg and θ(fj) 6= θ(fj+1), for j = 1, . . . , k. But the

statement for j = k contradicts (b). So θ is constant on Dg. �

Theorem 2.31 (Matsumoto). Let A be a monoid with unit element 1A and θ be a map

from S to A. For s, s′ ∈ S, let m = m(s, s′) be the order of ss′ in G. Put α(s, s′) =(
θ(s)θ(s′)

)t
,
(
θ(s)θ(s′)

)t
θ(s), 1A according as m = 2t, m = 2t + 1 or m = ∞. Assume

that α(s, s′) = α(s′, s) for s, s′ ∈ S with s 6= s′. Then, θ extends to a map θ̂ from G to A

such that θ̂(g) = θ(s1) . . . θ(sk) for all g ∈ G and each reduced expression s1 . . . sk of g in

S.

Proof. For g ∈ G, we show that the map θ̂g : Dg → A defined by θ̂g(f) = θ(s1) . . . θ(sk),

where f = (s1, . . . , sk) ∈ Dg, is a constant function on Dg by verifying the conditions (a)

and (b) of Lemma 2.30, using induction on l(g). This is trivial if l(g) = 0 or 1. Now, let

l(g) = k ≥ 2.

(a) Let f1, f2 (respectively, f ′1, f
′
2) be obtained from f, f ′ by deleting their first (re-

spectively, last) term. Let gi = rfi and g′i = rf ′i , i = 1, 2. Then rfi and rf ′i are reduced

expresions in S of gi and g′i respectively. By induction hypothesis, the definition of θ̂(gi)

and θ̂(g′i) is independent of the choice of the reduced expressionsfor gi and g′i in S. Further

θ̂g(f) = θ̂(s1)θ̂(g1) = θ̂g(g2)θ(sk),

and θ̂g(f1) = θ̂(s′1)θ̂(g′1) = θ̂(g′′2)θ(s′k).

If s1 = s′1 (respectively, sk = s′k), then g1 = g′1 = s1g (respectively, g2 = g′2 = gsk) and

θ̂(g1) = θ̂(g′1) (respectively, θ̂(g2) = θ̂(g′2)). So θ̂g(f) = θ̂g(f
′).

(b) Suppose that, there exist s, s′ ∈ S such that pk(s, s
′), pk(s

′, s) ∈ Dg. Since rpk(s, s′) and

rpk(s′, s) are distinct reduced expressions of the same element, namely g, of the dihedral
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group generated by s and s′, θ̂g(rpk(s, s′) = θ̂g(rpk(s′, s) by hypothesis that α(s, s′) =

α(s′, s). So (b) of Lemma 2.30 holds. �

Theorem 2.32 (Matsumoto). Let M be a Coxeter matrix and (G, S) be a pre-Coxeter

system of type M satisfying (E). Then, (G, S) is a Coxeter system of type M .

Proof. Let H be a group and θ : S → H be a map such that
(
θ(s)θ(s′)

)ms,s′ = 1H for

all s, s′ ∈ S such that ms,s′ is finite. By Theorem 2.31, θ extends to a map θ̂ from G

to H taking g ∈ G to θ̂(g) = θ(s1) . . . θ(sk), where s1 . . . sk is any reduced expression of

g in S. To verify that θ̂ is a group homomorphism, and thus show that G has Coxeter

presentation given by M , it is enough we show that θ̂(sg) = θ(s)θ̂(g) for all s ∈ S and

g ∈ G, because S generates G.

Let s ∈ S and g = s1 . . . sk be a reduced expression of g in S. If l(sg) = l(g) + 1,

then ss1 . . . sk is a reduced expression of sg and θ̂(sg) = θ(s)θ(s1) . . . θ(sk) = θ(s)θ̂(g). If

l(sg) = l(g) − 1, then, if g = sg, l(sg′) = l(g′) + 1 and, by the previous case, θ̂(sg′) =

θ(s)θ̂(g′); i.e., θ̂(sg) = θ(s)θ̂(g), completing the proof of the theorem. �

2.12. Some consequences of the exchange conditions: Assume that (G, S) satisfies

(E). For S ′ ⊆ S, the subgroup GS′ = 〈S ′〉 of G is called a standard parabolic subgroup of

G, any conjugate of it is called a parabolic subgroup of G. We denote by S(G) the set of

all standard parabolic subgroups of G.

(1) Let s1 . . . sk be a reduced expression of g in S. Then, the set Sg = {s1, . . . , sk} ⊆ S

is independent of the reduced expression of g ∈ S and every reduced expression of g in S

contains precisely the elements of Sg′. Consequently, the number of reduced expressions

in S for any element of G is finite. Further, Sg is the smallest subset S ′ of S such that

g ∈ GS′ ≤ G. (see Proposition 2.24)

Proof. Let A be the monoid consisting of all subsets of A with ”union of sets” as the binary

operation. The identity element of this monoid is the empty set. By Theorem 2.31, the

map θ from S to A taking s ∈ S to {s} ∈ A extends to a map θ̂ from G to A taking

g ∈ G with reduced expression g = s1 . . . sk, si ∈ S, in S to θ̂(g) = θ(s1) ∪ · · · ∪ θ(sk) =

{s1, . . . , sk}. Further, θ̂(g) is independent of the reduced expression of g in S. So the first

statement in (1) follows. Rest is clear. �

By (1), for S ′ ⊆ S, each S ′-residual in the chamber complex CG(S) is a convex set. The

following also is a consequence of (1).
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(2) Let {Si}i∈I be a family of subsets of S and S0 =
⋂
i∈I
Si. Then, GS0 =

⋂
i∈I
GSi

.

(3) Corollary of (1): For S ′ ⊆ S and g ∈ GS′, Sg ⊆ S ′.

Proof. The set H of all elements g of G such that Sg ⊆ S ′ is a subgroup of G; because,

for all s ∈ S and g, g′ ∈ G, Sg−1 = Sg; and Ssg ⊆ {s} ∪ {Sg} and so, by induction,

Sg′g ⊆ Sg′ ∪ Sg. Further, since S ′ ⊆ H ⊆ GS′ , H = GS′ . �

(4) Corollary of (2): For S ′ ⊆ S, GS′ ∩S = S ′. Consequently, the map S → GS′ from the

power set P(S) of all the subsets of S to S(G) is an isomorphism of posets with inclusion

as partial order in both P(S) and S(G).

Proof. For s ∈ GS′ ∩ S, Ss = {s}. By (2), s ∈ S ′ and so Gs′ ∩ S ⊆ S ′. Thus, for

S ′ ⊆ S ′′ ⊆ S, GS′ ⊆ GS′′ (respectively, GS′ = GS′′) if, and only if, S ′ ⊆ S ′′ (respectively

S ′ = S). So, the isomorphism of posets follows. �

(5) For g ∈ GS′, S
′ ⊆ S, lS′(g) = lS(g).

Proof. If s1 . . . sk, si ∈ S, is a reduced expression for g ∈ GS′ , then, by (1), lS′(g) ≤
lS(g) = k. But g can not be written as a product of fewer than k elements of S ′. So,

lS′(g) = lS(g). �

Thus, for each g ∈ GS′ , the terms ’reduced expression of g in S’ and ’the reduced

expression in S ′’ are the same.

(6) For any subset S ′ of S, (GS′ , S
′) is a Coxeter system of type MS′ , where MS′ is the

restriction of M to S ′ × S ′.

Proof. Elements of S ′ are of order 2 and generate GS′ . Let s ∈ S ′ and g ∈ GS′ be such

that lS′(sg) ≤ lS′(g). By (5), lS(sg) ≤ lS(g) and, if g = s1 . . . sk is a reduced expression of

g in S, then si ∈ S ′ by (1) and it is a reduced expression in S ′ also. Since (G,S) satisfies

(E), sg = ss1 . . . ŝi . . . sk for some i ∈ [1, k]. But this means that (E) holds for (GS′ , S
′)

also. So (GS′ , S
′) is a Coxeter system of type M ′, by Theorem 2.32.

�

(7) For g ∈ G, define ∆(g) = {s ∈ S : l(sg) ≤ l(w)}. Then, ∆(g) is finite.

Proof. Since (G,S) satisfies (E), g has a reduced expression in S starting from s. Since

the number of reduced expression of g in S is finite, ∆(g) is finite. �
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The following consequence of the condition (E) leads to the important notion of Chavelley-

Bruhat order (or just Bruhat order on G, as it is usually referred to in the literature). For

g ∈ G, let s1 . . . sk, si ∈ G, be a reduced expression for g in S and let

B(g) = {si1 . . . sik : 1 ≤ i1 < . . . it ≤ k} ∪ {1G} ⊆ G.

(8) B(g) is independent of the choice of the reduced expression of g in S.

Proof. Let A be the monoid whose elements are the subsets of G with the monoid com-

position of X, Y ∈ A defined as XY = {xy : x ∈ X, y ∈ Y }. Then, the hypothesis of

Theorem 2.31 holds for the map θ from S to A taking s ∈ S to {1G, s} and (8) follows. �

Bruhat order on (G, S) satisfying (E): For g, g′ ∈ G, define g′ � g if g′ ∈ B(g).

Clearly 1G is the smallest element of G relative to this partial order. In any expression

of an element g of G as a product of elements of S, we can bring together elements of S

appearing in that expression in the same connected component of the Coxeter diagram

of (G,S) (see The0rem 2.32). Thus, the Bruhat order on G is the product of the Bruhat

orders on the subgroups of G defined by the connected components.

(9) Let S ′ ⊆ S, g ∈ GS′ and s ∈ S \ S ′. Then, l(sg) = l(g) + 1.

Proof. Let g = s1 . . . sk, si ∈ S, be a reduced expression of g in S. Suppose that l(sg) ≤
l(g). Then, by (E), g = ss1 . . . ŝi . . . sk for some i ∈ [1, k] and this is also a reduced

expression of g in S. So, by (1), s ∈ S ′, a contradiction. So, l(sg) > l(g) and (9)

follows. �

(10) Generalized exchange condition: For g ∈ G, let ∆(g) = {s ∈ S : l(sg) < l(g)} as

in (7). Then, every reduced expression of an element G∆(G) appears as the initial segment

of a reduced expression of g in S. Hence,

(2.7) l(g′g) = l(g)− l(g′)

for each g′ ∈ G∆(g). In particular, the length function lS is bounded on G∆(g).

Proof. Let s′1 . . . s
′
t, s
′
i ∈ ∆(g), be a reduced expression of some element g′ of G∆(g). By

induction hypothesis, we may assume that

g = s′2 . . . s
′
ts1 . . . sk, si ∈ S,
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is a reduced expression of g in S. Since l(s′g) < l(g), by the exchange condition (E), we

can get a reduced expression for g in S from this expression by putting s′1 in the front and

removing some s′i or sj. The removed term can not be an s′i because s′1 . . . s
′
t is a reduced

expression. So, we get a reduced expression for g in S with s′1 . . . s
′
t as the initial segment.

The equality (2.7) follows by getting a reduced expression for g with g′−1 as the initial

segment. Finally, by (2.7), the length function on G∆(g) is bounded by l(g). �

(11) G∆(g) is a finite group for each g ∈ G.

Proof. ∆(g) is finite by (8) and the length function lS is bounded on G∆(G) by (10). So,

G∆(g) is finite. �

(12) G is finite if, and only if, it has an element g0 such that l(sg0) ≤ l(g0) for each s ∈ S.

In this case, g0 is the unique element of G of maximum length and is of order 2. Further,

(2.8) l(gg0) = l(g0)− l(g)

for each g ∈ G.

Proof. If G is finite, it clearly has an element g0 of maximal length and l(sg0) ≤ l(g0) for

each s ∈ S.

Conversely, if l(sg0) ≤ l(g0), for each s ∈ S, then, by remarks preceeding Proposition

2.23, l(sg0) < l(g0) and, by (6) and (10) G is finite. Taking g to be g−1 in (2.8), we see

that g2
0 = 1. Taking g 6= g0 in (2.8), we see that g0 is the unique element of maximum

length. �

2.13. Equivalence of reduced words in S and Tits Theorem.

(a) M-homotopy and M-equivalance in S∗: Let M be a Coxeter matrix over a

set S. Interchanging a word f = f1Pm(s, s′)f2 ∈ S∗, f1, f2 ∈ S∗, s, s′ ∈ S with

m = ms,s′ 6= ∞, with the word f ′ = f1Pm(s′, s)f2 is called an M-elementary homotopy.

We say that f, f ′ ∈ S∗ are M-homotopic if there is a finite sequence (f = f0, . . . , ft = f ′)

of elements of S∗ such that fi−1 and fi are M-elementary homotopic for each i ∈ [1, n].

Note that M-homotopy of words in S neither changes the length of the word nor the

set of the elements of S appearing in it. Replacing a word f = f1ssf2, f1, f2 ∈ S∗, s ∈
S (respectively, g1g2, g1, g2 ∈ S∗) with f1f2(respectively, g1ssg2, s ∈ S) is called an

elementary contraction (respectively, elementary expansion). Two words f, f ′ ∈ S are

said to be M-equivalent if there is a finite sequence (f = f0, ..., ft = f ′) of words in S
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such that, for each i ∈ [1, t], there is either an M -elementary homotopy, a contraction

or an expansion between fi−1 and fi. A word in S is said to be M- reduced if it is not

M -equivalent to a word in S of shorter length.

Lemma 2.33. Let (W, S) be Coxeter system of type M . Then two words f, f ′ in S are

M-equivalent if, and only if, rf = rf ′.

Proof. Since s2 = 1W and rpm(s,s′) = rpm(s,s′) for all s, s′ ∈ S and m = ms,s′ 6= ∞ are the

only relations in the presentation of W , the lemma follows. �

(b) For a pre-Coxeter system (G,S) of type M , the following theorem due to Tits describes

the elements of G in terms of the matrix M , solving Dehn’s word problem for Coxeter

groups.

Theorem 2.34 (Tits, see [1], Exc 1.13). Let (G,S) be a pre-Coxeter system of type M

satisfying the condition (E). Let f = (s1, ..., sd) and f ′ = (s′1, .., s
′
d) be words in S.

(a) If rf and rf ′ are reduced expressions in S for elements of G, then f and f ′ are

M-homotopic if, and only if, rf = rf ′.

(b) If rf is not a reduced expression in S of an element of W , then f is M-homotopic

to a word of the form f1ssf2, where f1, f2 ∈ S∗ and s ∈ S.

(c) The word f is reduced in S if, and only if, it is M-reduced.

Proof. (a) By the proof of Lemma 2.33, if f and f ′ are M -homotopic, then rf = rf ′ .

Now, assume that rf = rf ′(=: g ∈ G, say). We show, by induction on l(f) = d, that f

and f ′ are M -homotopic. Write s1 = s and s′1 = s′.

If s = s′, the M -homotopy of f and f ′ follows by induction hypothesis. So, let s 6= s′.

Then, l(sg) < l(g) and l(s′g) < l(g). By (2.11)(6), m = m(s, t) is finite and g has

a reduced expression in S of the form g = rpm(s, s′)rf1 , for some f1 ∈ S∗ of length

l(f) −m. By the previous case, f and pm(s, s′)f1 are M -homotopic, and also so are f ′

and pm(s, s′)f1. So, f and f ′ are M-homotopic.

(b) We prove (b) by induction on l(f) = d. Assume that rf is not a reduced expression

in S. Let f1 = (s2, . . . , sd) ∈ S∗ and g1 = rf1 . By induction hypothesis, we may assume

that rf1 is a reduced expression of g1 in S. Since l(s1g1) ≤ l(g1) by (E), g1 = rf2 for some

f2 = (s1, tn, ...td−2) ∈ S∗ . Since rf2 is also a reduced expression of g1, by (a), f1 and f2

are M -homotopic. So, f and (s1, s1, t2, . . . , td−2) are M -homotopic.

(c) follows from (a) and (b). �
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Corollary 2.35. If (G,S) is pre-Coxeter system of type M , then G has a presentation

G = 〈S|(ss′)ms,s′ = 1〉,

where there is only one relation for each pair s, s′ with ms,s′ 6=∞.

Proof. Let W be the Coxeter group defined by the presentation above. Consider the

canonical homomorphism η from W onto G. By Theorem 2.34, an element w in the

kernel of η can be represented by a word f that is M -equivalent to the empty word. But

M -equivalent words in S represent the same element of W . So, w = 1W and η is an

isomorphism. �

Corollary 2.36. Let (G,S) satisfy the exchange condition (E). Let g ∈ G and s ∈ S \Sg
satisfy l(sgs) < l(g) + 2. Then, s commutes with each element of Sg.

Proof. Since s /∈ Sg, by (2.11) (8), l(sg) = l(g)+1 = l(gs). By the condition (F), l(sgs) <

l(g) + 2 implies sg = gs. We show, by induction on k = l(g), that s commutes with all

elements of Sg. If g = s1 . . . sk is reduced expression of g, since l(sg) = l(g) + 1 = l(gs),

ss1 . . . sk and s1 . . . sks are reduced expression in S of the same element sg and so by

Theorem 2.34 (a), the first can be converetd to the second by a finite sequences of M -

homotopies. One these opereations involves s. Prior to this operation, we have a word

of the form ss′1 . . . s
′
k, where s′1 . . . s

′
k also is a reduced expression for g ∈ S and s′i 6= s

for each i. This operation is possible only if ms,s′ = 2, i.e, s and s′ commute. Now, s

commute with s′1w = s′2 . . . s
′
k and the induction hypothesis implies the proof. �
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