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Activities of the Centre 

 
1.     Bring the experimentalists and the theorists working in the area of 

Quantum Information, Quantum Computation and Foundations of 

Quantum Mechanics together. We have already organized about a dozen 

lectures (nearly one per month). 

                       

2. Exchange of information, collaboration and cross-fertilization of ideas 

leading to consolidation of efforts in this important area. 

 

3. Invite National and International experts and have colloquia, seminars 

and lectures, with the aim of exchanging information, ideas and 

collaboration. We have provision for Visiting Scientists, Post-Docs and 

Project Assistants positions. 

 

4. Organize schools and workshops to train young researchers in the field. 

 

5. Channelize/assist/expedite/inspire and focus research in different 

experimental areas of Quantum Information and Computation,  such as 

(a) quantum dots, (b) NMR, (c) superconducting devices, (d) lasers and         

(e) trapped ions, with added experimental facilities. 

 



The Centre for QIQC has the unique feature of 

combining experimental and theoretical work 

under one umbrella. 

The various areas in which the Centre is 

consolidating its efforts are: 

 



1. Nuclear Magnetic Resonance: 

 Prof. Anil Kumar and Prof. K.V. Ramanathan 

 

2. Ion Trap: 

   Prof. Vasant Natarajan 

 
3. Superconducting Qubits:  
   Dr. P.S. Anil Kumar 
 
4. Quantum Dots: 
   Dr. Arindam Ghosh 

 

Experimental Investigations 



Theoretical Investigations 

 

1. Quantum Algorithms:     

  Prof. Apoorva Patel 

2. Study of entanglement in quantum many body 

systems: 

Prof. Rahul Pandit and Dr. Subroto Mukerjee 

3. Theoretical support to experimental efforts:                   

Prof. H.R. Krishnamurthy 

4. Foundational aspects of quantum theory:  

 Prof. Hari Dass 

5. Computer science effort: 

 Prof. Veni Madhavan 

 



Liquid-State Room-Temperature NMR:  

Using spins in molecules as qubits:  

--  Pseudo-Pure States (PPS) 

--  One qubit Gates 

--  Multiqubit Gates 

--  Implementation of DJ and Grover’s Algorithms 

--  How to increase the number of Qubits 

 --  Quadrupolar Nuclei as multiqubits 

   -- Spin 1 as qudit 

 --  Dipolar Coupled spin ½ Nuclei- up to 8 qubits 

--  Geometric Phase and its use in Quantum Algorithms 

--  Quantum Games 

--  Adiabatic Algorithms 
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Introduction to QC/QIP 



What is Special about Quantum Systems? 

Classical 

bit 

0 1 

Qubit 

c1|0  + c2|1  

Coherent Superposition 

New Possibilities 

EPR States:2(-1/2)(00+ 11) NOT 

resolvable into tensor product of 

individual particles (01+ 11) 

(02+ 12) 

Entanglement 

Teleportation Quantum 

Computation 

|0  |1  

All present day computers (classical computers) use binary (0,1) 

logic, and all computations follow this Yes/No answer.  

 Feynman (1982) suggested that it might be possible to simulate the 

evolution of quantum systems efficiently, using a quantum simulator 



Quantum Algorithms 

1.  PRIME FACTORIZATION 

                  1010years   (Age of the Universe)                

Classically      : 

exp [2(ln c)1/3(ln ln c)2/3] 

               400 digit 

  

Shor‟s algorithm  : (1994) 

(ln c)3 
                    3 years 

2.   SEARCHING  „UNSORTED‟  DATA-BASE 

Classically                              :                           N/2   operations 

Grover‟s Search Algorithm :  (1997)                 N        operations 

3. DISTINGUISH CONSTANT  AND BALANCED  FUNCTIONS: 

Classically                                  :               ( 2N-1 + 1) steps 

Deutsch-Jozsa(DJ) Algorithm : (1992) . 1 step 

4. Quantum Algorithm for  Linear System of Equation: 

 A.W.  Harrow,  A. Hassidim and Seth Lloyd; PRL, 103,  150502 (2009). 

                                                                      Exponential speed-up 



5. Simulating a Molecule: Using Aspuru-Guzik Algorithm 

 

 
 (i)  J.Du, et. al,     Phys. Rev. letters 104, 030502 (2010).  

 

 Used a 2-qubit NMR System ( 13CHCl3 ) to calculated the 

ground state energy of Hydrogen Molecule up to 45 bit accuracy. 

 

 

 (ii) Lanyon et. al,     Nature Chemistry 2, 106 (2010). 

 

 Used Photonic system to calculate the energies of the ground 

and a few excited states up to 20 bit precision. 

Recent Developments 



Experimental Techniques for Quantum Computation: 

1. Trapped Ions                        

4. Quantum Dots 

3. Cavity Quantum  

    Electrodynamics (QED) 

 

        6. NMR 

Ion Trap:Ion Trap:

Linear Paul-Trap

~
16 MHz

1kV

1kV

http://heart-c704.uibk.ac.at/linear_paul_trap.html

Laser

Cooled

Ions

T ~ mK

7. Josephson junction qubits 

8. Fullerence based ESR quantum computer 

5. Cold Atoms 

2. Polarized Photons         

 Lasers 



Introduction to NMR QIP 



0 

1. Nuclear spins have small magnetic 

moments (I) and behave as tiny 

quantum magnets. 

2. When placed in a large magnetic 

field B0 , they oriented either along 

the field (|0 state) or opposite to the 

field (|1 state) . 

4. Spins  are coupled to other spins by indirect spin-spin (J) coupling, and 

controlled (C-NOT) operations can be performed using  J-coupling.                 

                 Multi-qubit gates 

Nuclear Magnetic Resonance (NMR) 

3. A transverse radiofrequency  field  (B1) tuned at the Larmor frequency of 

spins can cause transition from |0 to |1  (NOT  Gate by a 1800 pulse).          

Or put them in coherent superposition (Hadamard Gate by a 900 pulse).                           

   Single qubit gates. 

SPINS ARE QUBITS 

B1 



NMR sample has ~ 1018 spins. 

Do we have 1018 qubits? 

 

No - because, all the spins can‟t be 

individually addressed. 

Spins having different Larmor frequencies can be 

individually addressed  in the Frequency Space.  

  

As many Larmor Frequencies           as many “qubits” 

Progress so far 

One needs resolved couplings between the spins  

in order to encode information as qubits. 



NMR Hamiltonian 

   H = HZeeman  + HJ-coupling   

     

       =  wi Izi  +   Jij Ii  Ij 

   
i i < j 

Weak coupling Approximation 

wi - wj>> Jij 

Two Spin System (AM) 

A2 A1 M2 M1 

wA wM 

M1= |0A  

M2= |1A  

A1= |0M  

A2= |1M  

|aa = |00  

|bb = |11  

|ab = |01  |ba = |10  

H  =  wi Izi  +   Jij Izi  Izj 

Under this approximation all spins 

having same Larmor Frequency can be 

treated as one Qubit.  

 

Different Larmor frequencies  

= Different Qubits 

 

i i < j 

Spin Product States are Eigenstates 



13CHFBr2 

An example of a three qubit system. 

 

 A molecule having three different nuclear spins having 

different Larmor frequencies  all coupled to each other 

 

 forming a 3-qubit system 

1H =  500 MHz 13C = 125 MHz 
19F = 470 MHz 



1 Qubit 

00 

01 10 

11 

0 

1 

CHCl3 

000 

001 010 

011 

100 

101 110 

111 

2 Qubits 
3 Qubits 

Homo-nuclear spins having different Chemical shifts 

(Larmor frequencies) also form multi-qubit systems 

 



  1. Preparation of 

 Pseudo-Pure States 

  2. Quantum Logic Gates 

  3. Deutsch-Jozsa Algorithm 

  4. Grover‟s Algorithm 

  5. Hogg‟s algorithm 

  6. Berstein-Vazirani parity algorithm 

  7. Quantum  Games 

  8. Creation of EPR and GHZ states  

  9. Entanglement transfer 

Achievements of NMR - QIP 

 

 

 

10. Quantum State Tomography 

11. Geometric Phase in QC 

12. Adiabatic Algorithms 

13.  Bell-State discrimination 

14. Error correction  

15. Teleportation 

16. Quantum Simulation 

17. Quantum Cloning 

18. Shor‟s Algorithm 

19.  No-Hiding Theorem 

 

 

 

 

 

 

 

 

 

 

 

Maximum number of qubits achieved in our lab:  8 

 Also performed in our Lab. 

 



The two methods 

Coupling (J) Evolution Transition-selective 

Pulses 
Examples 

I1 

I2 

y x 

1/4J 1/4J 

00 

01 10 

11 
p 

XOR 

I1 

I2 

NOT1 

00 

01 10 

11 

p 

p 

I1z+I2z 

I1z+I2x 

I1z+2I1zI2y 

I1z+2I1zI2z 

y 

(1/2J) 

x 



I1 

I2 

y x -y 

y x -y 

00 

01 10 

11 

p1 

SWAP 

I1 

I2 

y y -x -x 

I3 

Toffoli 

000 

001 010 

011 

100 

101 110 

111 

I1 

I2 

y y -x  x 

I3 

OR/NOR 

000 

001 010 

011 

100 

101 110 

111 non-selective p pulse 

 + a p on 000  001 

p2 
p3 

p 

p 



Pseudo-Pure States 

Pure States: 

Tr(ρ ) = Tr ( ρ2 ) = 1 

For a diagonal density matrix, this condition requires 

that all energy levels except one have zero populations. 

Such a state is difficult to create in NMR 

We create a state in which all levels except one have 

EQUAL populations. Such a state mimics a pure state. 

ρ = 1/N ( α1 - Δρ )  

Under High Temperature Approximation 

Here  α = 105  and U 1 U-1 = 1 



Pseudo-Pure State 

In a two-qubit Homo-nuclear system: 

 

(i) Equilibrium: 

          ρ  =  105 +  Δρ = {2, 1, 1, 0} 

 

   (ii) Pseudo-Pure 

 

       Δρ = {4, 0, 0, 0} 

0 
| 11 

1 
| 10 

2 
| 00 

1 
| 01 

0 
| 11 

0 
| 10 

4 
| 00 

0 
| 01 



 
 
• Spatial Averaging 
 
• Logical Labeling 
 
 

• Temporal Averaging 
 
 
• Pairs of Pure States (POPS) 
 
  
• Spatially Averaged Logical Labeling  Technique (SALLT) 

Cory, Price, Havel,  PNAS, 94, 1634 (1997) 

E. Knill et al., PRA, 57, 3348 (1998) 

N. Gershenfeld et al, Science, 275, 350 (1997) 

Kavita, Arvind, Anil Kumar, PRA 61, 042306 (2000) 

B.M. Fung, Phys. Rev. A 63, 022304 (2001) 

T. S. Mahesh and Anil Kumar, PRA 64, 012307 (2001) 

Preparation of Pseudo-pure states 

Using long lived Singlet States 

   S.S. Roy and T.S. Mahesh, PRA, (in press) 2010. 

•   



1 Spatial Averaging:     Cory, Price, Havel,  PNAS, 94, 1634 (1997) 

 

 

  

(p/3)
X

(2)
 (p/4)

X

(1)
 

p 

1/2J 

2 4 5 6 1 3 

Gx 

(p/4)
Y

(1)
 

I1z + I2z + 2I1zI2z = 1/2  

3  0  0  0 

0 -1  0  0 

0  0 -1  0 

0  0  0 -1 

Pseudo-pure  

state 

I1z  = 1/2 

1 0  0  0 

0  1  0  0 

0  0 -1  0 

0  0  0 -1 

I2z  = 1/2 

1  0  0  0 

0 -1  0  0 

0  0  1  0 

0  0  0 -1 

2I1z I2z = 1/2 

1 0  0  0 

0 -1  0  0 

0  0 -1  0 

0  0  0  1 

Eq.= I1z+I2z  
I1z + I2z + 2I1zI2z 



2. Logical Labeling 

•N. Gershenfeld et al, 

  Science, 

1997, 275, 350 

 

Kavita, Arvind, 

and Anil Kumar 

  Phys. Rev. A, 

  2000, 61, 042306 
DRX-500 

SIF 



3. Temporal Averaging 

1 
| 11 

1 
| 10 

2 
| 00 

0 
| 01 

0 
| 11 

1 
| 10 

2 
| 00 

1 
| 01 

1 
| 11 

0 
| 10 

2 
| 00 

1 
| 01 

2 
| 11 

2 
| 10 

6 
| 00 

2 
| 01 

+ + 

= 
Pseudo-pure 

state 

p p 

E. Knill et al., PRA, 57, 3348 (1998) 



Subsystem 

Pseudo-pure 

states of  

2 qubits 

T. S. Mahesh  

and Anil Kumar,  

PRA 64, 012307 (2001) 

4. Pseudo Pure State by SALLT: 

(Spatially Averaged Logical Labeling Technique) 

This method does not scale with number of qubits 



3 

-1 

-1 

-1 

1 

1 -3 

1 

1 

-3 1 

1 

1 

1 1 

-3 

Relaxation of Pseudopure states 

Arindam Ghosh and Anil Kumar, J. Magn. Reson., 173, 125  (2005). 

Open circles 00; Filled circles 11 PPS 

Cross Correlations  

retard the relaxation 

of some PPS 



Logic Gates 

 using NMR 



NOT gate Hadamard gate Phase shift gate 

Single qubit gates 

Single qubit gates can be obtained by applying qubit selective pulses (spin selective pulses). 

Composit z-pulse 



Multi-qubit gates 

Quantum computing also requires the implementation of unitary operators on a qubit controlled  

to the states of other qubits, such gates are called multi-qubit gates.  

 

These gates can be implemented by, 

                                                   (i)  J-evolution method  

                                                   (ii)  Trnasition selective pulses 

J-evolution method:  The evolution of J-couplings and RF pulses are used. 

The Hamiltonian of J-coupling, 

x -y 



Logic Gates 

XOR2 

(Exclusive OR or C-NOT) 

e1 , e2    e1 , e1  e2  

UXOR2   

NOT1 

e1 , e2    e1 , e2  

UNOT1    

0 0 

0 1 

1 0 

1 1 

0 0 

0 1 

1 1 

1 0 

INPUT OUTPUT 

p 

0 

1 1 

2 

11 

10 

00 

01 

p 

00 

0 

1 1 

2 

11 

10 01 
p 

p 0 0 

0 1 

1 0 

1 1 

1 0 

1 1 

0 0 

0 1 

INPUT OUTPUT 

p 

p 

e1 

e2 

e1 

e2 

e1 

e2 

e1 

e2 

N 



Logic Gates 

Using 1D NMR 

NOT(I1) 

XOR2 

XOR1 

Kavita Dorai, PhD Thesis, IISc, 2000. 

 

 

 



Logical SWAP 

Kavita, Arvind, and Anil Kumar 

Phys. Rev. A, 2000, 61, 042306 

0 0 

0 1 

1 0 

1 1 

0 0 

1 0 

0 1 

1 1 

INPUT OUTPUT 

p 

XOR+SWAP 

0 

| 11 

1 

| 10 

2 

| 00 

1 

| 01 
p

2 
p1 

p3 

p 

e1 , e2    e2 , e1 

e1 

e2 



Kavita Dorai, PhD Thesis, IISc, 2000. 

Toffoli Gate = C2-NOT 

e1 , e2 , e3     

 

 

e1 , e2 ,  e3  (e1   e2) 

 Input Output 
 

 000 000 

 001 001 

 010 010 

 011 111 

 100      100 

 101      101         

 110      110 

 111      011 

AND 

NAND 
p 

^ 

e1 

e3 

e2 

Eqlbm. 

Toffoli 

e2 

e3 

e1 



CNOT GATE 

1 

2 
y










2

p

x










2

pp

p

z 

x 

y 

2

2

1

1 zzeq II r +

2

2

1

12 xz II r +=

 21

2

1

13 2 yzz III -+= r

 21

2

1

14 2 zzz III r +=

IN   OUT 

|00> |00> 

|01> |01> 

|10> |11> 

|11> |10> 

( )21
2

1
 +

( )21
2

1
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( )21
2

1
 --

( )21
2

1
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( )21
2

1
 +

( )21
2

1
 --

( )21
2

1
 -

( )21
2

1
 +-

eqr
4r
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2 
y










2

p

x










2

pp

p
x






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2
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p

p
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
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

2

p

y-






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

2

p

y










2

p

1 2 3 4 5 

11 

01 

00 

10 

( )21
2

1
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( )21
2

1
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2

1
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( )21
2

1
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2

2

1

1 zzeq II r +

1 

SWAP GATE 

2 

2

2

1

11 xx II r +=

   21

2

21

12 22 zyzy IIII -+-= r

   21

2

21

13 22 yzyz IIII -+= r

   1

2

2

14 xx II r +=

1

2

2

15 zz II r +=

3 

4 

2,1

2 x








 p

J 

2,1

2 x-








 p

|00> 

|01> 

|10> 

|11> 

( )21
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1
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5 Cory et al., ~1997 



Logic Gates 

         By 2D NMR 



2D NMR Quantum Computing Scheme 

Preparation Evolution Mixing Detection 

  
y 

           

-y                     y 

    t 1   t 2 

 I  1  , I     2    etc. 

 G  z 

Creation of 
Initial States 

Labeling 
of the 
initial 
states 

Computation 
Reading 
output 
states 

Computation 

I  0 

 Ernst  & co-workers, J. Chem. Phys., 109, 10603 (1998). 



Transitions of I0 are  

labeled by the  

 states of I1 and I2 

00   01   10   11 

I0 I1 I2 

         H   H 
 
Br    C    C    COOH 
 
         H   Br   

I1 I0 

I2 

I0 

Three-spin system: 



T. S. Mahesh, 

Kavita Dorai, 

Arvind and 

Anil Kumar, 

JMR, 

148, 95, (2001) 

A complete  

set of 24  

Reversible, 

One-to-one, 

2-qubit  

Gates 

Two-Dimensional Gates 



T. S. Mahesh,et al, 

JMR,148, 95, 2001 

Three-qubit 2D-Gates: 

000 
001 
010 
011 

100 
101 
110 
111 

0
0

0
 

0
0

1
 

0
1

0
 

0
1
1

 

1
0

0
 

1
0

1
 

11
0

 
111

 

NOT1 

TOFFOLI OR/NOR IN
P

U
T

 

w1 

OUTPUT w2 

NOP 

0
0

0
 

0
0

1
 

0
1

0
 

0
1
1

 

1
0

0
 

1
0

1
 

11
0

 
111

 

000 
001 
010 
011 

100 
101 
110 
111 

I0 

I1 

I2 

I3 



Quantum Algorithms 

 

(a)  DJ 

 

(b)  Grover’s Search 



DJ algorithm on ONE qubit with one work bit: 

Constant Balanced 

x f 1 (x) f 2 (x) f 3 (x) f 4 (x) 

0 0 1 0 1 

1 0 1 1 0 

    U f 
|x   |y            |x   |y    f(x)  

|x   is input qubit   and  |y   is work qubit 
O/P I/P 

Constant Balanced 

x y f 1 (x) y  f 1 (x) f 2 (x) y  f 2 (x) f 3 (x) y  f 3 (x) f 4 (x) y  f 4 (x) 

0 0 0 0 1 1 0 0 1 1 

0 1 0 1 1 0 0 1 1 0 

1 0 0 0 1 1 1 1 0 0 

1 1 0 1 1 0 1 0 0 1 

O
p

er
a

to
r
 

U f 

1  0  0  0 

0   1  0  0 

0   0  1  0 

0  0  0  1 

0   1  0  0 

1   0  0  0 

0   0  0  1 

0  0  1  0 

1   0  0  0 

0   1  0  0 

0   0  0  1 

0  0  1  0 

0   1  0  0 

1   0  0  0 

0   0  1  0 

0  0  0  1 

  

Cleve Version 

Uf 1 NOT-2 C-NOT-1,2 C-NOT-2,1 



Kavita, Arvind, Anil Kumar, 

Phys. Rev. A 61, 042306 (2000) 

Deutsch-Jozsa Algorithm 

Experiment One qubit DJ  Two qubit DJ 

Eq 



Grover‟s Algorithm 
Steps: 

Pure State 

Superposition 

Avg 

Inversion about 

Average 

Measure 

Selective  

Phase Inversion 

|00..0 

Grover 

iteration 

N times 



(N,N-dimethyl formamide) 

13C : T1=15s ; 1H: T1= 5s 

Grover‟s search algorithm by Tomography of the 

Density Matrix using 2D NMR 

(eq)-Equilibrium spectra. 

(a)  - PPS (00). 

(c),(d) -Uniform superposition. 

(f),(g) – Conditional state flip. 

(i) – Searched state (11).  

2-qubitComputer 

13C 

O 

N 

H3C 

H3C 

H 

Das et al, Phys. Rev A 67, 062304 (2003) 

Das et al, Chem Phys. Lett., 369, 8 (2003)   



Grover search algorithm using 2D NMR 

Ranabir Das and Anil Kumar, J. Chem. Phys. 121, 7603(2004) 



2 qubits 

3 qubits 

4 qubits 

5 qubits 

Marx et al, 

Phys. Rev. A 

62, 012310 (2000) 

Knill et al, Nature, 

404, 368 (2000) 

Typical systems used for NMR-QIP using J-Couplings 

7 qubits 

7 qubits 

Chuang et al, 

quant-ph/0007017 

6 
7 



How to increase the 

number of qubits? 

 

Use Molecules Partially Oriented (~ 10-3)  

        in Liquid Crystal Matrices 

 

(i) Quadrupolar Nuclei (spin >1/2). Reduced 

Quadrupolar Couplings 

(ii) Spin =1/2 Nuclei. Reduced Intramolecular 

Dipolar Couplings  



Quadrupolar  

    Systems 



Neeraj Sinha,T. S. Mahesh, K. V. Ramanathan, 
and Anil Kumar, JCP, 114, 4415 (2001). 

Using spin-3/2 (7Li) oriented 

system  as 2-qubit system 
Pseudo-pure states 



2-qubit Gates 

using 7Li 

oriented system 

Neeraj Sinha, 

T. S. Mahesh, 

K. V. Ramanathan, 

and Anil Kumar, 

JCP, 114, 4415 (2001). 



133Cs system – spin 7/2 system 

Optimal Labeling 

[Cs pentadeca-fluoro- 

octonate + D2O] 

Half-Adder 

p(5,6,5,7,6) 

5-pulses 

 

Subtractor 

p(3,2,3,5,4,3,2,5,7) 

9-pulses 

7 

6 

5 

4 

3 

2 

1 

111 

110 

101 

100 

011 

010 

001 

000 

-7/2 

-5/2 

-3/2 

-1/2 

 1/2 

 3/2 

 5/2 

 7/2 

7 

6 

5 

4 

3 

2 

1 

000 

010 

011 

001 

101 

110 

111 

100 

-7/2 

-5/2 

-3/2 

-1/2 

 1/2 

 3/2 

 5/2 

 7/2 

Half-Adder 

p(1,3,2) 

3-pulses 

 

Subtractor 

p(6,4,2) 

3-pulses 

Half-Adder Subtractor Equilibrium 

Conventional Labeling 

Murali et.al. 
Phys. Rev. A. 
022313 (2003) 

 
R. Das et al, PRA 

012314 (2004) 



Collins version of 3-qubit DJ implemented on the 7/2 spin of Cs-133. 

There are 2 constant 

and 70 Balanced 

functions. Half differ 

in phase of the 

Unitary transform. 

 

12 are shown here.     

 

1-Constant  and  11- 

Balanced  

C B B 

B B B 

B 

B 

B 

B B B 

Gopinath and Anil Kumar,  

JMR, 193, 163 (2008) 



Dipolar 

    Systems 



      Advantages of Oriented Molecules 
 

• Large Dipolar coupling  - ease of selectivity - smaller Gate time  

• Long-range coupling - more qubits  

    Disadvantage  
     For Homo-nuclear spin system 

 

 

 

 

     Spins become Strongly coupled 

  A spin can not be identified  as a qubit 

 

 

 2N energy levels are collectively treated as an N-qubit system 

Solution 

Weak coupling Approximation 

wi - wj>> Dij 



3-Qubit Strongly Dipolar Coupled Spin System  

 Z-COSY (90-t1-10-τm-10-t2) was 

used to label  the various transitions 

GHZ  state  (|000+ |111)   

C2-NOT gate 

POPS  

(|000 000| -     

  |001 001| ) 

populations 
coherences 

(|110   |111) 

T.S. Mahesh et.al., Current Science 85, 932 (2003). 

Bromo-di-chloro-benzene 



5-qubit system 

(in liquid crystal) 

Eqlbm 

HET-Z-COSY spectrum for labeling  

E-level diagram 

Proton transitions Fluorine transitions 



Starting from 4-qubit PPS 

prepared by SAALT: 

Entanglement transfer 
|0 

|0 

|0 

|0 

H 

 T
ra

n
sf

er
 

|0000+ |0110 |0000+ |1001 

Entanglement between 2nd and 3rd qubit Entanglement between 1st and 4th qubit 

w
2

+
 w

2
7

 

w
2
+

 w
4

0
 

(p)27(p)40

(p)27 

 

Ranabir Das , Rangeet Bhattacharya and Anil Kumar, JMR. 170, 310-321 (2004). 



Equilibrium spectrum 1H spectrum 

19F spectrum 

F 

Molecule: 1-floro naphthalene   

(in liquid crystal ZLI1132) 

8-qubit system 

(1-512) 

(513-630) 

H 

H 

H 

H 

H 

H 

H 



HET-Z-COSY spectrum 

R. Das, R 

Bhattacharyya 

and Anil 

Kumar, 

Quantum 

Computing – 

Back Action, 

AIP Proc.,  

864, 313 (2006) 



Energy-level diagram 

(256 levels) 

19F transitions 



Proton transitions 

in B domain 



C7-NOT [p1] 

POPS(1) [Eq- p1] 

POPS(40) [Eq- p40] 

POPS(1)+C6SWAPPOPS(40) 

R. Das, R Bhattacharyya and Anil Kumar, Quantum Computing – Back 

Action, AIP Proceedings 864, 313 (2006) 



Geometric Quantum Computing  

 

• Geometrical phase is robust, since it depends only on the 

solid-angle enclosed by the path  and is independent of 

the details. 

 

• This fact can be used to perform  fault-tolerant    

Quantum Information Processing 

 



What is Geometric Phase ? 

• When a vector is parallel transported on a curved surface, it acquires a 

phase. A part of the acquired phase depends on the geometry of the path.  

• A state in a two-level quantum system is a vector which can be 

transported on a Bloch sphere. The geometrical part of the acquired 

phase depends on the solid angle subtended by the path at the centre of 

the Bloch sphere and not on the details of the path. 



Adiabatic Geometric Phase 
M. V. Berry, Quantum phase factors accompanying adiabatic changes, 

 Proc. R. Soc. Lond. A, 392, 45 (1984) 

When a quantum system, prepared in one of the eigenstates of 

the Hamiltonian, is subjected to a change adiabatically, the 

system remains in the eigenstate of the instantaneous 

Hamiltonian and acquires a phase at the end of the cycle.    

The phase has two parts. The dynamical and the geometric part.    

)/exp( iEtD -= (Dynamical Phase)    

)exp(  ig = (Geometric Phase)    

gD  += (Total Phase)    

Pancharatnam, S.  

Proc. Ind. Acad. Sci. A 44 , pp. 247-262 (1956).  



Y. Aharonov and J. Anandan, Phase change during Cyclic Quantum Evolution, 

Phys. Rev. Lett. 58(16), 1593 (1987) 

Aharovov and Anandan later showed that adiabaticity is not a 

necessary condition. When the density matrix corresponding to 

a quantum system completes a cyclic path, in the density 

operator space through different intermediate stages, the system 

acquires the same geometric phase depending upon the 

geometry of the path.      

Non-Adiabatic Geometric Phase 



Non-adiabatic Geometric phases in  

NMR QIP using transition selective pulses 

1.   Geometric phases using slice & triangular circuits. 
        - Use of above in DJ & Grover algorithms. 

   Ranabir Das et al, J. Magn. Reson., 177, 318  (2005). 

 

2. Experimental measurement of mixed state geometric phase by  

      quantum interferometry using NMR. 

                        Ghosh et al, Physics Letters A 349, 27  (2005).  

 

3. Geometric phases in strongly dipolar coupled spins. 
        - Fictitious spin- ½ subspaces. 

        - Geometric phase gates in dipolar coupled 13CH3CN. 

        - Collins version of 2-qubit DJ algorithm. 

        - Qubit-Qutrit parity algorithm.  

   Gopinath et al, Phys. Rev A 73, 022326  (2006).    



Geometric phase acquired by a slice circuit 

The state vector of the two level sub space cuts a slice on the Bloch  

sphere. 

The slice circuit can be achieved  

by two transition selective pulses   

 

 

The resulting path encloses a solid  

angle W = 2 . 

 

A spin echo sequence t-p-t is applied  

to refocus the evolution under internal 

Hamiltonian (the dynamic phase). 

 
Second (p) pulse is applied to restore the 

state of the first qubit altered by the (p) pulse.  

(p)x (p)-x 

(p)
q

 
10 11 

(p)
q+p+

 
10 11 . A.B = 

z 



Unitary operator associated with the slice circuit: 

A.B =  
( ) ( ) 010010 . iBA e++

Solid angle W = 2. 

13C Spectra  of 13CHCl3 

Ranabir Das et al, J. Magn. Reson., 177, 318  (2005). 



Grover search algorithm using geometric phases (by slice circuit): 

Using Geometric phase gates 

H 

H 

H 

H 

H 
Cij C00 

|0 

|0 

| i 

| j 

Superpo

sition 

Pseudo

pure 

state 

Selective  

Inversion 
Inversion about 

Average 

Measure 

H 

Inversion about Average C00 = H U00 H 

 

U00 = C00(p) 

Selective Inversion: 

 = p 

Ranabir Das et al, J. Magn. Reson., 177, 318  (2005). 

00=x

01=x

10=x

11=x



Deutsch-Jozsa algorithm using geometric phases (by slice circuit): 

Uf(00)  is identity matrix 

Uf(11) is achieved by applying   

p pulse on the second qubit 

= 

Constant 

Constant 

Balanced 

Balanced 

Ranabir Das et al, J. Magn. Reson., 

177, 318  (2005). 

 

1H           13C     of   13CHCl3 



Creation of  |00      PPS        

Experimental Measurement of Mixed State Geometric Phase by NMR 

   

Preparation of Mixed state by the a 

degree pulse and a gradient.        

Implementation of Slice circuit to 

introduce Geometric Phase.        

Measurement        



The shift of the interference pattern as a function of W and r.          
















 W
-= -

2
tantan 1 r

The shift directly gives the geometric phase acquired by the spin qubit.          

Results:   
Geometric Phase (Shift) 

Ghosh et al, Physics Letters A 349, 27  (2005).  



 Quantum Games 



    Von Neumann and Morgenstern 

     “Theory of games and Economic behaviour” 

        (Princeton University Press, 1947) 

 John F. Nash (Princeton University) 

 Nobel Prize in Economics (1994) 

 Robert  Aumann (Hebrew University) 

 Nobel Prize in Economics (2005) 

Game Theory 

Evolutionary Games Nash Equilibrium 



 Quantum Games by NMR 

 

 (i)    Ulam‟s Quantum Game – Guessing a number 

 

 

(ii)   Three player Dilamma Game- Optimum strategy for     

 going to a Bar with two stool.  

          

   Avik Mitra et al.; J. Magn. Reson., 187, 306-313 (2007).  

 

 

(iii)   Battle of Sexes Game – Should Bob and Alice together 

 watch TV or go to a football game.  
    

   Avik Mitra Thesis IISc 2007 



 Two player game 

 Bob thinks of a number between 1 and 2n  

 Alice tries to find out the number  in minimum number of queries. 

Classical: n queries 

Quantum: 1 Query 

Ulam’sGame 



 Classical Algorithm 

Ulam’sGame 

1010 001 

Bob 
Alice 

Total number of queries = log22
n  = n 

  



Bob  performs a unitary transform and stores the result in register B. 

Alice makes a superposition of all the qubits. 

Total number of queries = 1  

Alice again interferes the qubits and then performs a measurement. 

The quantum system consists of two registers. 

Register A 

• consists of n qubits 
Register B 

• consists of 1 qubit 

--S. Mancini and L. Maccone, quant-ph/0508156 

Quantum Version of Ulam’sGame 



Protocol 

Creation 

of 

PPS 

Application 

of 

Hadamard 

gate 

Unitary 

Transform 

of 

BOB 

Application 

of 

Hadamard 

gate 

M 

E 

A 

S 

U 

R 

E 



 Preparation of Pseudo-Pure state  -  PPS  

000 

110 101 

100 

011 

001 010 

111 

Experimental implementation  



Results 

000 

110 101 

100 

011 

001 010 

111 population 

coherence 

Avik et al., J. Indian Institute of Science; 89, 309-316 (2009).  

 

 



Adiabatic Quantum 
Algorithms 



 Adiabatic Quantum Computing 

 Based on “Adiabatic Theorem” of Quantum Mechanics: A quantum system in 

     its ground state will remain in its ground state provided that the Hamiltonian  

     H under which it is evolved is varied slowly enough. 

U 

i

f

s 


(s

) 


E

 

e


2

1s0

g

s0
dt

sdH
s1

min

;
)(

;max

The system evolves 

from Hi to Hf with a 

probability (1-e2) 

provided the evolution 

rate satisfies the 

condition 

Where e << 1  

Farhi et al, PRA, 65,012322 (2002), Science, 292, 

472 (2001), quant-ph/0001106; 0007071; 

0208135 



 Evolve the initial state under a slowly varying Hamiltonian so that it acts as  

    though a unitary transformation occurred on the initial state, bringing it to a  

    final state during some time T. 

H(s) = (1-s)HB + sHF 

HB  beginning Hamiltonian 

HF  Final Hamiltonian 

 Initialize register to desired input qubits. 

 

 Vary the Hamiltonian towards the final Hamiltonian whose eigenstates  

    encodes the desired final states. 

)exp(  ,
0

tiHUwhereU nni

N

n

nf -== 
=



 Adiabatic Quantum Computing 



Adiabatic Algorithms 
by   NMR 

  

(i) NMR Implementation of Locally Adiabatic Algorithms 

 

(a) Grover‟s search Algorithm 

(b) D-J Algorithm 

 

Avik Mitra et al., J. Magn. Reson. A 177 , 285-298 (2005).  

 

 

(ii)  Adiabatic Satisfy-ability problem using Strongly 

Modulated Pulses 

 
Avik Mitra, T.S. Mahesh and Anil Kumar, J. Chem. Phys. 128, 124110 (2008) .  

 

 



• CONSTANT OR BALANCED FUNCTIONS: 

Classically                  :   ( 2N-1 + 1) steps 

 

Deutsch-Jozsa            :     1 step 

(DJ) Algorithm 

 Deutsch-Jozsa Algorithm 

The Constant and Balanced functions of  two-qubit DJ 



 Adiabatic DJ Algorithm 

HI :  III -  11100100
2

1
I +++=where 

HF :  
FFI -  111001

3
00F +++=

b
awhere 

( ) ( ) ( ) ( )

22

11f10f01f00f

1

1111
4

1

ab

a

-=

-+-+-+-=
)()()()(

  Hamiltonian in terms of  spin operators 

2
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F IIII
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2
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3

1
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2
II2II

6

1
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Constant case Balanced case 

a=1  Constant function 

a=0  Balanced function 
 

Avik Mitra et al, JMR, 177, 285 (2005) 

 

S. Das et al, PRA, 042308 (2002) 

 



 Modification of Balanced case Hamiltonian 

 The balanced case Hamiltonian requires complicated pulse  

    sequence due to the presence of  zero and double quantum 

terms. 

 Hamiltonian diagonal in the computational basis are easy to 

     implement. 

( ) ( ) ( ) ( )2

x

1

z

2

z

1
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2
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1

z
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F IIII
3

2
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3

1
IIII

3

2
II2II

6

1
H +-++++++-=

 The terms contributing to the off  diagonal elements in balanced 

    case Hamiltonian are dropped. 
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1
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Avik Mitra et al, JMR, 177, 285 (2005) 

 



Eigenvalues with respect to the parameter ‘s’. 

Plot of  Parameter ‘s’ as a 

function of  t. 



Initial Hamiltonian 

2

x

1

x

2

x

1

xI II2IIH ++=

Final Hamiltonian 

2

z

1

z

2

z

1

z

C

F II2IIH ++=

Final Hamiltonian 

( )2

z

1

z

2

z

1

z

B

F II2IIH ++-= _ 

Constant Case 

Balanced Case 

The Balanced case Hamiltonian differs from the Constant case in 

the sign of  the Hamiltonian. This is sufficient to distinguish the 

two cases. 

Avik Mitra et al, JMR, 177, 285 (2005) 

 



 NMR Implementation. 

13C 

Cl 

Cl 

H 

Cl 

• Experiment carried out in DRX500 

 

• H and C has resonance frequency 

   500 MHz and 125 MHz. 

 

• JHC=  209 Hz 

• Sample 



 Pulse Scheme for the NMR Implementation 

• CONSTANT CASE 

Pulse sequence for  

Implementation of  HB 

  Beginning Hamiltonian 

  NMR Hamiltonian: 

2121 2 xxxxB IIIIH ++=

 

 

• Free evolution under the NMR Hamiltonian between two p/2 pulses 

  with appropriate phases for a time (T-t)/2. 

2z1z122z21z1 IIJIIH +--= 

For v1 = v2= -  J12/2 and with two pi/2 pulses with appropriate phases   

 

Avik Mitra et al, JMR, 177, 285 (2005) 

 



• CONSTANT CASE 

Pulse sequence for  

Implementation of  HF 

  NMR Hamiltonian: 

  Final Hamiltonian 

2z1z2z1zF II2IIH ++= 

 

• Free evolution under the NMR Hamiltonian between two p- pulses 

  with appropriate phases for a time t. 

2z1z122z21z1 IIJIIH +--= 

Pulse sequence for Implementation of  HF 

 

 For v1 = v2= -  J12/2 

Avik Mitra et al, JMR, 177, 285 (2005) 

 



Experimental Result 

• The final state is |00 

Average absolute 

deviation 

5.28% 

Avik Mitra et al, JMR, 177, 285 (2005) 

 



 NMR Implementation 

• BALANCED CASE 

Pulse sequence for  

Implementation of  HF 
  NMR Hamiltonian: 

  Final Hamiltonian 

( )
2z1z2z1zF II2IIH ++-=

 

• Free evolution under the NMR Hamiltonian between two p- pulses 

  with appropriate phases for a time t. 

2z1z122z21z1 IIJIIH +--= 

 For v1 = v2= -  J12/2 

Avik Mitra et al, JMR, 177, 285 (2005) 

 



Experimental Result 

• Final state is (|01+|10+|11)/√3 

• Experiment does not match well with theoretical result. 

• Carbon: Short decoherence time  Significant effect of   

   decoherence in carbon. 

• T2 of  carbon was measured by CPMG sequence. 

• Simulation was repeated after including relaxation using Bloch 

    equations. 

x ~ 17% 

Avik Mitra et al, JMR, 177, 285 (2005) 

 



Experimental Result 

x ~ 8% 

Avik Mitra et al, JMR, 177, 285 (2005) 

 



Adiabatic  SAT 
Algorithm by Strongly 

Modulated Pulses 



In a Homonuclear spin systems 

spins are close 

(~ kHz) in frequency 

space 

Pulses are of 

longer duration 

Decoherence 

effects cannot 

be ignored 

 Strongly Modulated Pulses circumvents the above problems 



 Strongly Modulated Pulses. 

( ) ( ) ( ) lll
rf

l
effiH

l

1

z

l

llSMP eUU
twwt --= 

w
rf

 

 t 

 

  2

SMPT

N

UUTr
F


=

Nedler-Mead  

Simplex Algorithm  

(fminsearch) 



 k-SAT Problem 

1. Let B={x1,x2,….,xn} be a set of  ‘n’ Boolean variables. 

2. Let Ci be a disjunction of  ‘k’ elements of  B 

 

 

1. F is the Boolean function that is the conjunction of  m such 

clauses. 

m21 CCCF = ......

k21i xxxC = .......

Find out all the assignments of  Boolean variable in F that simultaneously 

satisfies all the clauses i.e. F=1. 

 Three variable 1-SAT problem 

•  B = {x1,x2,x3} , set of  three variable. 

 

•  Each clause (Ci) has one variable. 

 

•  e.g. F1= x1x2x3. 

Farhi et al, quant-ph/0001106 



 NMR Implementation, using a 3-qubit system. 

 The Sample. 

C C 

I F 

F F 

a 

b c 

Hz8128J

Hz948J

Hz168J

bc

ac

ab

 .

 .

 .

-=

=

=

 Equilibrium Specrum. 

Iodotrifluoroethylene(C2F3I) 



Step 1. Preparation of PPS 

PPS: ( )3
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Step 3. Implementation of  Adiabatic Evolution 
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3,2,1

zmb
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3,2,1

x

m

2 
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
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a

mth step of  the interpolating 

Hamiltonian . 
 

mth step of   

 evolution operator 

•Pulse sequence for adiabatic evolution 

• Total number of  iteration is 31 

•  time needed = 62 ms  
   (400s x 5 pulses x 31 repetitions) 

 

 



Using Concatenated SMPs 

Avik Mitra et al, JCP, 128, 124110 (2008)  

 

Duration: Max 5.8 ms,  Min. 4.7 ms 



Avik Mitra et al,  

JCP, 128, 124110 (2008)  
 

Results for all Boolean Formulae 



Conclusions: 

 

 



NMR QIP is at a Cross -Road 

Many Operations 

and Algorithms 

can be 

Implemented 

A Very Good 

Tool for 

Learning and 

Explorations 

Scaling is Difficult 
If 

All Spins are to be coupled to 

each other with non-

degenerate Transitions 

Possible to obtain high 

number of qubits 

If 

Only nearest neighbor 

couplings are sufficient  

Backbone of a C-13, N-15 labeled protein 

with side chain protons deuterated  
How to do QIP? 



Future Directions 

1. To increase the number of Qubits in NMR. 

  Synthesis molecules with several hetero-nuclei. 

   
2.  To use strongly modulated pulses (SMPs) and Control Theory 

for performing  

           Unitary operations in short times and accurately. 

            
3. To search for systems with large coherence times.  

  For example singlet states in equivalent spins or spins 

systems with symmetry with symmetry preserving relaxation. 

4.  Develop protocols which can be carried out using spins 

with nearest neighbor couplings. 

5.  To enhance nuclear polarization by transferring Electron 

polarization using DNP. 



Thank You 


