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  1. Preparation of 

 Pseudo-Pure States 

  2. Quantum Logic Gates 

  3. Deutsch-Jozsa Algorithm 

  4. Grover’s Algorithm 

  5. Hogg’s algorithm 

  6. Berstein-Vazirani parity algorithm 

  7. Quantum  Games 

  8. Creation of EPR and GHZ states  

  9. Entanglement transfer 

Achievements of NMR - QIP 

 

 

 

10. Quantum State Tomography 

11. Geometric Phase in QC 

12. Adiabatic Algorithms 

13.  Bell-State discrimination 

14. Error correction  

15. Teleportation 

16. Quantum Simulation 

17. Quantum Cloning 

18. Shor’s Algorithm 

19.  No-Hiding Theorem 

 

 

 

 

 

 

 

 

 

 

 

Maximum number of qubits achieved in our lab:  8 

 Also performed in our Lab. 

 



Liquid-State Room-Temperature NMR:  

Using spins in molecules as qubits:  

--  Pseudo-Pure States (PPS) 

--  One qubit Gates 

--  Multiqubit Gates 

--  Implementation of DJ and Grover’s Algorithms 

--  How to increase the number of Qubits 

 --  Quadrupolar Nuclei as multiqubits 

   -- Spin 1 as qudit 

 --  Dipolar Coupled spin ½ Nuclei- up to 8 qubits 

--  Geometric Phase and its use in Quantum Algorithms 

--  Quantum Games 

--  Adiabatic Algorithms 

 



Recent Developments in our Laboratory 

 

 

1. Experimental Proof of No-Hiding theorem. 

 

2.   Non-Destructive discrimination of Bell States. 

 

3. Non-destructive discrimination of arbitrary set of 

orthogonal quantum States by phase estimation. 

 

4.   Use of Nearest Neighbour Heisenberg XY 

interaction for creation of entanglement on end 

qubits in a linear chain of 3-qubit system. 

 



Experimental Proof of Quantum No-Hiding Theorem# 

Jharana Rani Samal*, Arun K. Pati and Anil Kumar,  

(PRL- Accepted). 

  

Also available in arXiv:quant-ph.1004.5073v1, 28 April 2010 

 

            * Deceased 12 November 2009 
#This paper is dedicated to the memory of Ms. Jharana Rani Samal 

NMR Experimental verification of 

No-Hiding Theorem is described 

here. 



No-Hiding Theorem 
S.L. Braunstein & A.K. Pati, PRL 98, 080502 (2007). 

Any physical process that bleaches out the original information is called 

“Hiding”. If we start with a pure state, this bleaching process will yield a 

“mixed state” and hence the bleaching process in Non-Unitary”. However, in 

an enlarged Hilbert space,  this process can be represented as a “unitary”.  The 

No-Hiding Theorem demonstrates that the initial pure state, after the bleaching 

process,  resides in the ancilla qubits from which, under local unitary 

operations, is completely transformed to one of the ancilla qubits. 

The above paper shows that for a 1-qubit pure state, “quantum state 

randomization” (QSR), which yields a completely mixed state, can be 

performed with an “ancilla” of  2-qubits. In such a case the “randomization 

process is a “Unitary” and the “missing information resides “completely in the 

ancilla qubits, from where it can be transformed to one of the qubits using only 

“local Unitary” operations. 

 In the end; the first two qubits are in Bell states and the 

initial pure state is transferred from 1st to the 3rd qubit. 



Quantum Circuit for Test of No-Hiding Theorem using State 

Randomization (operator U).  

H represents Hadamard Gate and dot and circle represent 

CNOT gates. 

After randomization the state |ψ> is transferred to the second 

Ancilla qubit proving the No-Hiding Theorem. 

(S.L. Braunstein, A.K. Pati, PRL 98, 080502 (2007). 



|0>)1    
(θφ)1 

Ψ = Cos (θ/2) |0>)1+ e[i(φ - π/2)] Sin (θ/2) |1>)1  

|00>2,3  
(π/2)2,3 

|A2,3> = [|(0 + 1)>]2  O   [(0  + 1)>]3 X 

Creation of ψ and Hadamard Gates after preparation of  |000> PPS  



• The randomization operator is given by, 

 

  Are Pauli Matrices 

With this randomization operator it can be shown that any 
pure state  is reduced to completely mixed state if the ancilla 
qubits are traced out. 
 
Using Eqs (1) and (2),  the U is given by, 
  

Eq. (1) 

Eq. (2) 

where 



|000> |001> |010> |011> |100> |101> |110> 111> 

|000> 1 

|001> 1 

|010> 1 

|011> 1 

|100> 1 

|101> 1 

|110> -1 

|111> -1 

U = 

The Randomization Operator is obtained as  

Blanks = 0 

Local unitary for transforming information to one of the ancilla qubits 

This shows that the first two qubits 

are in Bell State and the  ׀‌ψ> has 

been transferred to the 3rd qubit. 

0 0 0 0 0 0 0 



Conversion of the U-matrix into an NMR Pulse sequence has 

been achieved here by a Novel Algorithmic Technique, 

developed in our laboratory by Ajoy et. al (to be published). 

This method uses Graphs of a complete set of Basis operators 

and develops an algorithmic technique for efficient 

decomposition of a given Unitary into Basis Operators and their 

equivalent Pulse sequences. 

The equivalent pulse sequence for the U-Matrix is obtained as 



NMR Pulse sequence for the Proof of No-Hiding Theorem 

The initial State  ψ is 

prepared  for different 

values of θ and φ 

Jharana et al 



Three qubit 

Energy Level 

Diagram 

Equilibrium 

Spectra of 

three qubits 

Spectra 

corresponding 

to |000> PPS 

13CHFBr2 



Experimental Result for the No-Hiding Theorem.  
The state ψ is completely transferred from first qubit to the third qubit 

325 experiments have been performed by varying  θ  and  φ in steps of 15o  

All Experiments were carried out by Jharana (Dedicated to her memory) 

PRL-Accepted 

Input State 

Output State 

s 

s 

S = Integral of real part of the signal for each spin 



Tomography of first two qubits showing that they are in 

Bell-States. 
PRL-Accepted 

 



 Non-destructive discrimination of 

Bell States 

Bell States are Maximally Entangled 2-qubit states.  

There are 4 Bell States 

|Φ
+

> = (|00> + |11>)/√2 |Φ-> = (|00> - |11>)/√2 

 
|ψ+> = (|01> + |10>) √2 

 
|ψ-> = (|01> - |10>)√2 

 

Bell states play an important role in teleportation protocols 



*This paper is dedicated to the memory of Ms. Jharana Rani Samal 

 Non-destructive Discrimination of Bell States 

Jharana has experimentally implemented the above protocol, using 

one ancilla and two measurements. 

*Deceased 12 November 2009 

Jharana Rani Samal*, Manu Gupta, P. Panigrahi and Anil Kumar, 

J. Phys. B, 43, 095508 (2010). 

Manu Gupta and P. Panigrahi (quant-ph/0504183v) 

Have given a Quantum circuit for non destructive discrimination of Bell States by 

using two ancilla qubits and making phase and parity measurements on each ancilla.  

__________________ 



 

  

 

Panigrahi Circuit 

Jharana Circuits 

For Phase Measurement 

For Parity Measurement 





NMR Pulse Sequence for Discrimination of Bell States 

using one Ancilla Qubit 

Jharana et al, J.Phys. B., 43, 095508 (2010) 

For Parity measurement the Hadamard gates are removed  

and the CNOT Gates are reversed 



Created Bell States 

(|00> + |11>)HF |0>C 
(|00> - |11>)HF |0>C 

(|01> + |10>)HF |0>C (|01> - |10>)HF |0>C 

1 = |000>; 7 = |110>; 3 = |010>; 5 = |100> 

|Φ
+

> 
|Φ-

> 

|ψ+> |ψ-> 



Population Spectra of   13C 

|Φ+> 

|Φ-> 

|ψ+> 

|ψ-> 

Phase      Parity 

0               0 

 1               0 

 0               1 

 1               1 



Tomograph of the real part of the Density matrix confirming the 

Phase and Parity measurement. 

Jharna et al J.Phys.B 43, 095508 (2010) 

0    0 

 1     0 

 0    1 

1    1 



Non-Destructive Discrimination of Arbitrary set of 
Orthogonal Quantum states by NMR using 

Quantum Phase Estimation. 

V. S. Manu and Anil Kumar, PRA, Submitted 

 We present here an algorithm for Non-destructive 

discrimination of a set of Orthogonal Quantum States 

using ONLY Phase estimation. 

For this algorithm, the states need not have definite PARITY 

(and can even be in a coherent superposition state).  

 

This algorithm is thus more general than the just described 

Bell-State Discrimination. 



For a given eigen-vector |φ> of a Unitary Operator U, Phase Estimation 

Circuit, can be used for finding the eigen-value of  |φ>. 

 

 Conversely, with defined eigen-values, the Phase Estimation can be 

used for discriminating eigenvectors. 

 By logically defining the operators with preferred eigen-values, 

the discrimination, as shown here, can be done with certainty.  

Quantum Phase Estimation 
 

Suppose a unitary operation U has a eigen vector |u> with eigen 

 value e-iφ. 

 

 The goal of the Phase Estimation Algorithm is to estimate φ. 
 

As the state is the eigen-state,  the evolution under the 

Hamiltonian during phase estimation  will preserve the state. 



Finding the n Operators Uj 

 

Let M
j

 be the diagonal matrix formed by eigen-value  

array  {ei}j of Uj.  
 

    And 

 

V is the matrix formed by the column vectors   {|φk>},   
 

Uj = V-1 × Mj × V 

 
Forming Eigen-value arrays 

1. Eigen-value arrays { ei } should contain equal number of +1 and -1 

 
 2. 1st eigen value array can have any order of +1 and -1. 

 

3. 2nd onwards should also contain equal number of +1 and -1, but    

should not be equal to earlier arrays or their complements. 



The General Procedure (n-qubit case) 
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Quantum state Discrimination Using NMR 28 

U1 and U2 can be shown as, 

Experimental  implementation of this case is performed here by NMR  

………‌(3) 

Two Qubit Case 

A complete set of orthogonal States, which are not Bell states. 

 Here the 1st qubit in state |0> or ‌ 1׀> and the 2nd qubit in a superposed State ( ‌ 1׀‌  ± <0׀>) 

Consider the following  set of orthogonal 2-qubit states 

States having no 

definite parity 

Eigen Value Arrays, 

 



Quantum state Discrimination Using NMR 29 

For the operators  U1 and U2  described in Eqn. (3) 

Since various terms in H1 and H2 commute each other, we can write, 

In terms of NMR Product Operators The Hamiltonians are given by 



30 Quantum state Discrimination Using NMR 

Thin pulses are π/2 and broad pulses are π pulses. Phase of pulses on top 



31 

Non-destructive Discrimination of two-qubit orthonormal 
states. 

 
 

Quantum state Discrimination Using NMR 

Original Circuit 

Needing 2-ancilla 

qubits 

Split Circuit needing 

1-ancilla qubit 



Quantum state Discrimination Using NMR 32 

A1     +ve signal  |0> state. 

A2     +ve signal  |0> state. 
 

     (1/√2) (|00> + |01>) 

 
A1     +ve signal  |0> state. 

A2     -ve signal   |1> state. 
 

     (1/√2) (|10> + |11>) 

 

A1     -ve signal   |1> state. 

A2     +ve signal  |0> state. 
 

     (1/√2) (|10> - |11>) 

 
A1     -ve signal  |1> state. 

A2     -ve signal  |1> state. 
 

     (1/√2) (|00> - |01>) 

 

Results for Ancilla measurements 

Complete density matrix tomography has done to 

 

1.  Show the state is preserved                   2.  Compute fidelity of the experiment. 

φ1 φ2 φ3 φ4 



Quantum state Discrimination Using NMR 33 
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Conclusions of the State Discrimination 

 A general scalable method for quantum state 
discrimination using quantum phase estimation 
algorithm is discussed, and experimentally 
implemented for a two qubit case by NMR. 

 

 

 As the direct  measurements are performed only 
on the ancilla, the discriminated states are 
preserved. 

 

 

35 Quantum state Discrimination Using NMR 



Use of nearest neighbour 

Heisenberg-XY interaction. 



Solution 

Use Nearest Neighbour Interactions 

Until recently we have been looking for qubit systems, in 

which all qubits are coupled to each other with unequal 

couplings, so that all transitions are resolved and we have a 

complete access to the full Hilbert space. 

However it is clear that such systems are not scalable, 

since remote spins will not be coupled. 



Creation of Bell states between end qubits and a W-state 

using nearest neighbour Heisenberg-XY interactions  

in a 3-spin NMR quantum computer 

Rama K. Koteswara Rao and Anil Kumar, PRA, to be submitted 

Heisenberg XY interaction is normally not present in 

liquid state NMR: We have only ZZ interaction available. 

We create the XY interaction by transforming the ZZ 

interaction into XY interaction by the use of 900 RF pulses. 



Heisenberg-interaction 
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Linear Chain: Nearest Neighbour Interaction 
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Divide the HXY into two commuting parts 

Consider a linear Chain of 3 spins with equal couplings 

Jingfu Zhang et al.,  Physical Review A, 72, 012331(2005) 
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Experiments using nearest neighbour interactions  

in a 3-spin system 

1. Pseudo-Pure States. 

 

2. Bell states on end qubits. 

 

3. W-state. 

13CHFBr2 

JHC = 224.5 Hz, JCF = -310.9 Hz and JHF = 49.7 Hz. 

Energy Level Diagram 
Equilibrium spectra 

1H 

13C 

19F 
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Pseudo-Pure States using only nearest neighbour interactions 

Rama K. Koteswara Rao 
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Pseudo-Pure States: 

Rama K. Koteswara Rao. 
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Bell state on end qubits: 

Starting from 010 pps the U yields Bell 

states in which the Middle qubit in state 0 

 

Starting from 101 pps the U yields Bell 

states in which the Middle qubit in state 1 
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Pulse sequence for implementing the unitary operator U(t) 

Bell state on end qubits: 
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Experiment Simulated 

Real Part 

Imaginary Part 

Bell state on end qubits: 

Starting from 010 pps 

Middle qubit is in state 0 
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Experiment Simulated 

Real Part 

Imaginary Part 

Bell state on end qubits: 

Starting from 101 pps 

Middle bit in state 1 
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Future Directions: 

(i) Use Collective Modes of linear chains. 

 

(ii) Backbone of a C-13, N-15 labeled protein forming a linear chain:   

 

          Lucio Frydman: Using nearest neighbour Heisenberg XY 

Interaction has performed State transfer using C-13 of the side-

chain of Leucine forming a six qubit system:  

                      

                      Phys. Rev. A 81, 060302 (2010)  
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Single Qubit Case 

 

 

  

      

 {|φ1> = ( |0> +β|1>), |φ2> = ( |0> -β|1>)} 

 

    with | |2 +|β|2=1 



59 

Two Qubit Case 
Consider a set of orthogonal states :  

Eigen Value Arrays, 

Where  ……..‌(2) 



60 Quantum state Discrimination Using NMR 

The Ancilla Measurement Results can be Tabulated as, 

States Ancilla -1 Ancilla-2 

|φ1> = ( |00> + β|01>) |0> |0> 

|φ2> = ( |10> + β|11>) |0> |1> 

|φ3> =  (β|10> - |11>) |1> |0> 

|φ4> =  (β|00> - |01>) |1> |1> 
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Simulating the 3-spin XY chain using liquid state NMR 

X 

Y 

Z 

Jingfu Zhang et al.,  Physical Review A, 72, 012331. 

Define Such that 
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Converting 3-spin operators to 2-spin operators using J-evolution 
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Generating NMR pulse sequence 


