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Open system quantum dynamics stands on four pillars:

� Structure of the initial state of a composite system 
evolving unitarily (initial state: direct product, 
separable, entangled etc)

� Subsystem evolution – completely positive (CP) and 
not-completely  positive (NCP) maps 
� Memory of the initial state in the evolved state –

Markov and non-Markov avataras
� Master equation for subsystem evolution (?)

(defining equation for subsystem evolution)



These issues will be discussed based on our recent works:

[1] Kraus representation of quantum evolution and fidelity 
as manifestations of Markovian and non-Markovian
forms, (AKR, A.R.Usha Devi, and R.W.Rendell),  PRA 
82, 042107 (2010)); ArXiv: 1007.4498 (quant-ph)

[2] Open system quantum dynamics with correlated initial 
states,not completely positive maps and non-
Markovianity, (A.R.Usha Devi, AKR, and Sudha), To 
appear in PRA, ArXiv: 1011.0621

… and our ongoing work. 



Given Initial State Evolved State

``Subdynamics’’

Map: Sudarshan et.al



Given and what can we say 

about in relation with 

One can ask: How much of              is remembered, 
after evolution, in             ? 
Many approaches to this question – Breuer, Plenio,…

We use (1) Fidelity:                                      (Propensity)

(2) Relative Entropy: 

(Distinguishability)



Part A: 

(a) Which                 and             will lead to completely positive 
(CP ) maps? 

Necessary and Sufficient Conditions:

(Separable states with zero discord) 

(b) Master equation for                exists  (Stinespring, ECGS
Kraus..)

LGKS master equation 

Markov (t-independent 
coefficients in LGKS) 

Non-Markov (t-dependent 
coefficients in LGKS)
(Kossakowski et al)



Part B:

(a) Which                 and             will lead to Not-completely 
positive (NCP ) maps?

Entangled pure state

Entangled mixed state

General separable state

(b) Nature of memory  -- all Non-Markovian!  (Determined 
from fidelity and relative entropy)

(c) No master equation: (Rodriguez & ECGS, quant-ph arxiv
0803.1183)

(d) Examples: Ref. [2] ARU, AKR, S, Phys. Rev. A. (To 
appear).



Remarks

Initial state plays a crucial role in open system dynamics. 
Whether memory of an initial state is retained or not depends 
on  the CP/NCP nature of the subdynamics map. This is a 
fascinating area yet to be explored 



Mapping ideas: 
Physics based – Sudarshan et al (1961) 

continues till today!
Kraus (1971)

Mapping theorems 
Mathematics based -- – Stinespring (1955)

Choi (1972,1977)

General math-phys considerations leading to 
semigroup evolution of the system  

(NOT SUBDYNAMICS)--
Lindblad (1976), 

Gorini, Kossakowski, Sudarshan, (1976) 

Time independent operators
See also Banks, Suskind & Peskins (1984)

( ) ( )[ ] ( )� �
�

�
�
�

� +−+=
∂

∂ +++

i
iiiiii LLLLLLtH

t
t

i ρρρρρ
2
1

,

{ }→iL

Short-time analysis (1998) 
Preskill, 

Sudarshan and Rodriguez
(subdynamics)

Kossakowski et al
(2006 to present date)

Time dependent 
and variations thereof 

{ }iL

Relates 

to ME of 
{ }iL

intH



General theory showing A – map in canonical form 
leading to the representation

Here the C-operators are t-dependent and the eigenvalues are constants. 
The second relation here expresses the normalization            for all
times.
From this to obtain the following LGKS operator structure

This equation has the appearance of the LGKS equation except the
left hand side is NOT time derivative!

When all the eigenvalues are non-negative, this map in CP, otherwise it 
is NCP
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Case (A): CP map is Markovian if it forms a one-parameter semi-group 
which  corresponds to

Consequences of semi-group property time evolution equation for the 
density matrix has the LGKS form:

where the operators are t-independent and arbitrary. 
This is a generalization of the celebrated Stone’s theorem for unitary 
group of time evolution for closed systems, where the L-terms in eq.(3) 
are absent.
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� The Kraus representation where the positive eigenvalues are 
absorbed into the C-operators in eq.(1). 
�Assuming the composite system is closed with the Hamiltonian 
containing interaction between system and environment, under weak 
coupling and short time regimes, one obtains LGKS form (Eq.(4)),
with the L-operators expressed in terms of matrix elements of 
interaction. 
� When the short time regime leads to time dependent LGKS form, it 
is an indication of non-Markof behavior. This provides an added 
signature of non-Makovianity -- but keeping the CP map structure.



� Conditions for CP map Initial state of the composite density 
matrix is a direct product of the density matrices of the system and its 
environment OR if the composite density matrix has zero discord

� Markov property means that there is memory of the initial state in 
the subsequent time evolved state. This is here stated in terms of 
Fidelity,                    ,   a measure of propensity of the evolved state                

in the initial state      . And the relative entropy,                          
, a measure of  distinguishability of the evolved state with 

the initial state. 
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Signature of Markovian dynamics: An important consequence 
of the semi-group property, the (CP) map, is it places a 
condition on both Fidelity and Relative entropy

Examples to examine these features based on several dynamical 
models where exact Kraus representations are available for 
which short time behavior can be evaluated and Markov and 
non-Markov processes could be discerned by the tests devised 
above. 

a) Markov model (Yu and Eberly, PRL 97, 140403 (2006)
b) Non-Markov model (Yu and Eberly, Opt. Commun. 283, 

676(2010)
c) Jaynes-Cummings model (version a la AKR et al, PLA 259, 

285 (1999); PRA 67, 062110 (2003); arXiv: 0709.1212)

( ) ( )[ ] ( ) ( )[ ] )6(,0, τρρτρρ FttF ≥+
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Yu and Eberly model for two qubits (Opt. Commun. 283, 676 (2010))

Kraus operators:   
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Two qubit density matrix at t=0: 
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Fidelity difference in the non-Markovian limit 1<<γ
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Non-Markovian limit
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Case B: NCP Dynamics

Necessary and sufficient conditions for NCP map: Initial 
state of the composite density matrix is correlated. 

We illustrate this with three examples of correlated initial 
states evolving under NCP as constructed by the same given 
Hamiltonian and use the criteria (6) and (7) to check the 
status of initial state memory at later times. This set of 
examples are different from the first set of examples, in that 
the unitary dynamics of the composite state is given, but the 
initial states chosen have different types of quantum 
correlations. This tells us the importance of the nature of the 
initial state is significant in the time evolution of the system.



Canonical structure of the A-map



The dynamical evolution is the one used by Jordan et al 
PRA 70, 052110 (2004):

where the second qubit acts as the environment on the first 
qubit. 
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the fixed initial system-environment parameters governing the 
dynamics  of the system qubit.

Initial correlations:



where   )sin(),cos(;21 tStCiaaa ωω ==+=

Dynamical A-map
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which is explicitly found to be

(9)

� the map does not have a semigroup structure except for small times

1<<itω

.



Dynamical A-map characterizing the two qubit
unitary dynamics of Jordan et al -- with intially
correlated states:

Eigenvalues:

negative                     NCP dynamics



Example: Two qubit Werner state

Evolution of the first qubit under this NCP dynamics with 
initial parameters:  )1(,0 21 xaa −==



Negative regions point towards non-Markovian evolution



Summary
� CP map, semi-group evolution, direct 

product/zero discord initial state, Kraus-
Sudarshan Rep., LGKS equation with no t-
dependence – Markov, with t-dep. nonMarkov.

�NCP map, no semi-group evolution, correlated 
initial state, canonical representation of 
dynamical A-map, no LGKS, non-Markov 
signatures. (All in the local time framework).                 
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