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PLAN

1. Entanglement in quantum gravity

2. Entanglement from quantum gravity

I shall use natural units:

~ = 1, c = 1, kBoltzmann = 1



Entanglement in quantum gravity

In ordinary quantum mechanics entanglement arises
when the system naturally has two or more parts.

We divide the system into two parts and if the
wave-function is not a product of the wave-functions
supported on the two parts, we call this an entangled
state, e.g.

|Ψ〉 = Maβ|a〉1 ⊗ |β〉2
(Repeated indices a and β are summed over.)



|Ψ〉 = Maβ|a〉1 ⊗ |β〉2
If we perform measurement over system 1 only, we
can trace over the states in system 2 and assign a
density matrix to system 1

ρentangle = Tr2|Ψ〉〈Ψ| = MaβM∗
bβ|a〉〈b|

The corresponding entanglement entropy

Sentangle = −Tr(ρ ln ρ)

measures the degree to which |Ψ〉 fails to behave as a
pure state if we restrict our measurements to system
1 only.



Thus the entanglement entropy reflects our
unwillingness to perform measurement over the
second system, just as the thermal entropy reflects
our unwillingness to describe the precise quantum
state of a many body system.

As in the case of thermal system, we have no problem
in principle to describe the state as a pure quantum
state by including both components 1 and 2.



This changes in a theory of gravity.

There are some systems, known as black holes, for
which it is impossible to make measurement over the
full system.

A black hole describes a compact massive object so
heavy that not even light can escape a black hole.

Horizon

An imaginary surface surrounding the black hole,
known as the event horizon, acts as a one way
membrane, preventing an outside observer to
determine the state of the system inside the black
hole.



The presence of event horizon can be seen most
easily in a two dimensional representation of the
space-time known as the Penrose diagram.

Example: Minkowski space

r: radial distance from a fixed origin

t: time coordinate

Introduce new coordinates

T± R = 2 tan−1(t± r)

The region −∞ < t <∞, 0 ≤ r <∞ is mapped to a
finite region in T-R space.



Penrose diagram of Minkowski space:

T

R

i+

In this diagram signals travel at an angle ≤ 45
degrees with T-axis.

A static observer reaches the point i+ at t =∞ and
can receive signal from every point of the Minkowski
space.



Contrast this with the Penrose diagram of an
uncharged black hole

A static observer outside the black hole reaches the
point i+ at infinite time and can receive signal only
from the right of the event horizon.



Due to the presence of the event horizon, an observer
sitting outside the blackhole cannot perform
measurement over the part of the system inside the
horizon.

As a result such an observer must describe the
system by a density matrix ρ.

For a quantum field theory in such a background
geometry one can calculate the density matrix for an
observer staying outside the event horizon.

Result: Israel

ρentangle ∝
∑

n

e−En/TH |n〉〈n|

TH: determined in terms of geometric parameters of
the black hole.



ρentangle ∝
∑

n

e−En/TH|n〉〈n|

– identical to the density matrix of a thermal system
at temperature TH.

Thus to an outside observer a quantum field theory in
a black hole background appears as a thermal
system.



A crude analogy:

The black hole is like a reservoir and the individual
quantum field theories are smaller systems, and we
try to guess the properties of the reservoir from the
knowledge of how the smaller systems behave when
in contact with the reservoir.

Since the quantum field theories acquire a
temperature TH in the presence of a black hole, we
expect that the black hole itself has a temperature TH.

Indeed black holes are known to ‘Hawking radiate’ at
a temperature of TH.



In an apparently independent study one finds that
black holes obey a classical law which relates the
change of the energy / mass of the black hole to the
change of the area AH of the event horizon.

δE =
1

4GN
TH δAH

GN: Newton’s gravitational constant.

This looks like the first law of thermodynamics if we
identify the entropy carried by the black hole as

SBH =
AH

4GN

Bekenstein, Hawking



Question: What is the interpretation of this entropy?

Can we regard this as ln Ω where Ω is the number of
quantum states of the black hole?

This is a much more difficult question since this time
we are asking for a counting of states of the
‘reservoir’ produced by quantum gravity and for this
we need a full fledged quantum theory of gravity.



For a spacial class of black holes, string theory can
identify and count the quantum states describing a
black hole and their number Ω is consistent with the
relation Strominger, Vafa

SBH = ln Ω

This analysis indicates that we should interpret black
hole entropy as a thermal entropy.

– accounts for a large number of quantum states
underlying a black hole.

However this analysis is somewhat indirect since the
counting of states is done by ‘switching off gravity’.

With the help of supersymmetry one can show that
the ‘switching off gravity’ does not change the
number of quantum states.



Can we also interpret the black hole entropy as an
entanglement entropy? Srednicki

It turns that that this is possible in some cases, but
the entanglement is in a quantum field theory rather
than in quantum gravity.

– comes via ‘AdS/CFT’ correspondence: Maldacena

A theory of quantum gravity in d+2 dimensional anti
de Sitter (AdS) space-time is equivalent to a d+1
dimensional conformal field theory (CFT) living at the
boundary of AdS space-time.



Penrose diagram of a black hole in AdSd+2:
1. Introduction
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III

IV

2 1

R x SD-1
D-1R x S

Fig. 1: Penrose diagram of the extended AdS Schwarzschild geometry. Region I

covers the region that is outside the horizon from the point of view of an observer on

the right boundary. Region II is an identical copy and includes a second boundary.

Regions III and IV contain spacelike singularities. The diagram shows the time

and radial directions, over each point there is a sphere Sd−1. This sphere shrinks

as we approach the singularities.

An eternal black hole has an extended Penrose diagram which is depicted in fig. 1.

This Penrose diagram has two asymptotically AdS regions. From the point of view of

each of these regions the other region is behind the horizon. It is a time dependent

spacetime since there is no global timelike isometry. The regions close to the spacelike

singularities can be viewed as big-bang or big-crunch cosmologies (which are homogeneous

but not isotropic). We will propose that this spacetime can be holographically described by

considering two identical, non-interacting copies of the conformal field theory and picking

a particular entangled state. This point of view is based on Israel’s description of eternal

black holes [1]. A similar observation in the context of AdS/CFT was made in [2,3,4] 1.

Here we will emphasize that by including both copies we naturally get a description of the

interior region of black holes, including the region near the singularities. This holographic

description can be viewed as a resolution of the initial and final singularities.

Using this correspondence we can study some aspects of the information loss paradox.

We will formulate a precise calculation on the eternal black hole spacetime of fig. 1. The

result of this calculation shows information loss. We will show that information can be

preserved after summing over geometries.

1 In [3] the formula for the entangled state as a function of the temperature is off by a factor

of 2. It seems to be the related to the factor of 2 that led to the claim [5] that the black hole

temperature is twice what Hawking originally computed.

Note: This has two boundaries represented by the
two vertical edges.

– must be described by a state living on two copies of
the dual CFT.



Following the rules of AdS/CFT correspondence one
can determine which state of CFT the black hole
represents.

Result: ∑

n

e−En/2TH|n〉1 ⊗ |n〉2

– an entangled state in the CFT.

For an observer staying at the boundary 1, the
desnity matrix is

ρentangle ∝
∑

n

e−En/TH|n〉 ⊗ 〈n|

– a thermal density matrix with temperature TH!
Maldacena



So far we have tried to describe the states of the
black hole either by switching off gravity, or using the
dual description as a CFT where we do not see
gravity explicitly.

Can we identify the quantum states of the black hole
directly as states in quantum gravity?

–requires constructing the wave-functions of these
states in quantum gravity.

For uncharged black holes this seems difficult since
any observer who could conceivably explore both
sides of the horizon end up in the singularity.

The situation changes when we add some charge.



Penrose diagram of a charged black hole:

An observer moving along the central vertical axis
could live forever and collect data from both sides of
the horizon.



The situation is even better in the zero temperature
limit in which the singularity recedes away.

σ=0 σ=π

This in fact describes a two dimensional AdS space.

Now an observer moving up the central vertical axis
can see the entire space-time.

– should be able to describe the quantum states of
the black hole in the zero temperature limit.



Since the geometry has an AdS2 factor we can use
the rules of AdS/CFT correspondence to guess what
these states will be. AS

– turns out to be states created by an appropriate
euclidean path integral over a semi-infinite strip (or a
half disk) with twisted boundary conditions.

w

fw

Some states have been constructed this way, but
much more work is needed to find all the symmetries
which can be used to generate the twists.



Entanglement from quantum gravity

AdS/CFT correspondence relates quantum gravity in
AdS space to a CFT living on its boundary.

In principle any question in quantum gravity in AdS
can be translated to a question in CFT and vice versa.

So far we have been using the insights from CFT to
address questions in quantum gravity.

But we can also turn it around and use quantum
gravity in AdS to answer questions in CFT.



Given our poor understanding of quantum gravity,
this seems a difficult problem.

But if we consider a limit of parameters in which the
quantum corrections to gravity are small and
classical gravity is a good approximation, then we
can make use of this correspondence.

Usually such a limit corresponds to a strongly
coupled CFT.

Thus classical gravity can be used to answer
questions in strongly coupled CFT!



Take a CFT in d+1 dimensional flat space-time and
divide the space into two regions A and B, separated
by a (d-1) dimensional boundary K.

If we restrict our measurements only to region B, then
we can take the trace over the states in region A and
generate a density matrix ρ for B.

Associated entanglement entropy:

Sentangle = −Tr(ρ ln ρ)

– usually very difficult to calculate in a strongly
coupled CFT.

Can we map this to a simple computation in the dual
gravity theory?



Proposal: In the dual gravity theory in AdSd+2 we first
find a d dimensional hypersurface of minimal area
whose boundary coincides with the boundary K
separating A and B.

Figure 3: The holographic calculation of entanglement entropy via AdS/CFT.

the deficit angle δ localized on a codimension two surface γA. This is clearly true in the

three-dimensional pure gravity as the solution to the Einstein equation should be locally

the same as AdS3. However, this is not trivially obvious in higher dimensions. Under this

assumption, the Ricci scalar behaves like a delta function

R = 4π(1 − n)δ(γA) + R(0) , (3.4)

where δ(γA) is the delta function localized on γA, δ(γA) = ∞ for x ∈ γA whereas δ(γA) = 0

otherwise, and R(0) is that of the pure AdSd+2. Then we plug this in the supergravity

action

SAdS = − 1

16πG
(d+2)
N

∫

M

dxd+2√g(R + Λ) + · · · , (3.5)

where we only make explicit the bulk Einstein-Hilbert action. This is because the other

parts omitted in the above such as kinetic terms of scalars, lead to extensive terms which

are proportional to n and are canceled in the ratio (2.20). Now the bulk to boundary

relation (3.2) equates the partition function of CFT with the one of AdS gravity. Thus

we can holographically calculate the entanglement entropy SA as follows

SA = − ∂

∂n
log Trρn

A|n=1 = − ∂

∂n

[
(1 − n)Area(γA)

4Gd+2
N

]

n=1

=
Area(γA)

4Gd+2
N

. (3.6)

The action principle in the gravity theory requires that γA is the minimal area surface. In

this way, we reproduced our holographic formula (3.3) [27]. Notice that the presence of

non-trivial minimal surfaces is an well-established property of asymptotically AdS spaces.
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If AH is the area of this hypersurface, then

Sentangle = AH/4GN

Ryu, Takayanagi



This converts a highly quantum problem in CFT to a
simple classical geometry problem.

This proposal has passed many tests where the
entanglement entropy in CFT can be computed
independently.

Recently this has been ‘proved’ for the special case
when the boundary is a sphere by relating this to a
black hole entropy.

Casini, Huerta, Myers

A deeper understanding of this prescription is still
awaited.



Conclusion

Entanglement is an essential feature of quantum
gravity.

It seems to geometrize entanglement by dividing
space-time into regions which cannot communicate.

A deeper understanding of quantum gravity is likely
to go hand in hand with a deeper understanding of
the role of entanglement in this theory.


