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Introduction

Cooperative interactions between spin-like degrees of freedom
can describe the order-disorder transition in many systems

Transverse Ising Model (TIM) successfully describes a class of
such systems

A specific example being the ferro-electric ordering in
Pottasium Dihydrogen Phosphate (KDP)

TIM is essentially a quantum model; it incorporates zero
temperature fluctuations

TIM in d-dimension corresponds to Ising model in (d + 1)
dimension.
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Pseudo-spin picture

In KDP, in each site the oxygen atom creates a double well
and the proton resides in one of them

Jij

σi
z=+1 σi

z=-1 σj
z=+1 σj

z=-1

Γσi
x Γσj

x

In Pseudo-spin picture, the proton residing in left or right well
can be represented by the states | ↑> and | ↓> respectively.

Dipolar interactions between nearest neighbor sites form the
cooperative (exchange-interaction) term.

Proton being a quantum object, a tunneling term is required
to study the system’s behavior.
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Pseudo-spin picture Contd.

In formulating the tunneling term, note that

σx | ↑〉 = | ↓〉 and σx | ↓〉 = | ↑〉,

A transverse field will correctly represent the tunneling term

Therefore, the Hamiltonian of the system can be written as

H = −
∑

〈i ,j〉
Jijσ

z
i σ

z
j − Γ

∑

i

σx
i ,

where, σα’s → Pauli spin matrices,
Jij → cooperative interactions and
Γ → tunneling integral, which depends on width and height of
the barrier, particle mass etc.
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Pseudo spin picture Contd.

Spin 1/2 case: σz has two eigen values ±1, which corresponds
to a spin being parallel on anti-parallel with z− axis.

If we take

| ↑〉 ⇔
(

1
0

)

and

| ↓〉 ⇔
(

0
1

)

,

then taking these two eigen-vectors as basis, the Pauli
matrices have the following representation

σx =

(

0 1
1 0

)

, σy =

(

0 −i

i 0

)

, σz =

(

1 0
0 −1

)

.
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Mean Field Theory for TIM

T = 0

One can make the non-commuting parts of the Hamiltonian
commuting, by assuming

σz
i = |~σ| cos θ, and σx

i = |~σ| sin θ,

The energy of the semi-classical system reduces to

E = −σΓ sin θ − 1

2
σ2J(0) cos2 θ,

J(0) = Ji (0) =
∑

(ij)

Jij , where j denotes the j-th nearest

neighbor.

Average values of the spin components are 〈σx〉 = cos θ and
〈σz〉 = sin θ.
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MFT for TIM

Minimisation of the energy function gives sin θ = Γ/J(0) or,
cos θ = 0.

Thus following cases may occur

Γ /J(0)

<σ
  >z

0 1

1

For Γ = 0, 〈σx〉 = 0 and
order parameter 〈σz〉 = 1

If Γ < J(0), then both
〈σx〉 6= 0 and 〈σz〉 6= 0.

When Γ ≤ J(0), then we
must have cos θ = 0,
implying 〈σz〉 = 0 i.e., full
disorder.

So, even in the absence of thermal fluctuation, only quantum
fluctuation can lead to an order-disorder phase transition of
the system as Γ increases from 0 to J(0).
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MFT for TIM

One can write the Hamiltonian as

H = −
∑

i

~hi .~σi .

where, ~hi = Γx̂ +
(

1
2

∑

j Jij〈σz
j 〉
)

ẑ , and ~σi = σx
i x̂ + σz

i ẑ ,

Under MF approximation one can replace ~hi by
~h = Γx̂ + 〈σz〉J(0)ẑ .
Implying ~σ = tanh(β|~h|). ~h|~h| and |~h| =

√

Γ2 + (J(0)〈σz〉)2.

Therefore, 〈σz〉 = [tanh(β|~h|)]
(

J(0)〈σz 〉
|~h|

)

, and

〈σx〉 = [tanh(β|~h|)] Γ

|~h| .
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MFT for TIM

Γ = 0

Here, 〈σz〉 = tanh
(

J(0)〈σz 〉
kBT

)

and 〈σx〉 = 0.

Graphical solution gives 〈σz〉 6= 0 for kBT < J(0)
〈σz〉 = 0 for kBT > J(0).

It shows that without quantum fluctuation, thermal
fluctuation can drive the system to complete disorder beyond
Tc = J(0).

kBT = 0

Here, 〈σz〉 = J(0)〈σz 〉√
(Γ)2+(J(0)〈σz 〉)2

Phase boundary: 〈σz〉 → 0 1 = J(0)
Γc

⇒ Γc = J(0) as obtained
earlier.

kBT finite

Phase boundary: 〈σz〉 → 0.

〈σz〉 = tanh
(

Γc
kBT

)

J(0)〈σz 〉
Γ or, tanh

(

Γc
kBT

)

= Γc
J(0) .
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MFT for TIM

The phase boundary is as follows
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BCS theory of Superconductivity

The cooperative Hamiltonian in the BCS theory of
superconductivity has the following form
H =

∑

k ǫ
0
k(c

†
kck + c

†
−kc−k)− V

∑

kk ′ c
†
k ′c

†
−k ′c−kck

In terms of the number operator n̂k = c
†
kck , the above

Hamiltonian reduces to (
∑

k

ǫk = 0)

H = −∑

k ǫ
0
k(1− n̂k − n̂−k)− V

∑

kk ′ c
†
k ′c

†
−k ′c−kck .

Considering the low-lying spectra containing the pair of
electrons in state (k ,−k), the relevant states are pair
occupied (denoted by |1k1−k〉) or pair unoccupied (denoted
by |0k0−k〉).
Then
(1− n̂k − n̂−k)|1k1−k〉 = (1− 1− 1)|1k1−k〉 = −|1k1−k〉, and
(1− n̂k − n̂−k)|0k0−k〉 = (1− 0− 0)|0k0−k〉 = |0k0−k〉
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BCS theory Contd.

The correspondence to the pseudo-spin picture can be made
by noting
|1k1−k〉 ⇔ | ↓〉k , |0k0−k〉 ⇔ | ↑〉k , and(1− nk − n−k) ⇔ σz

k .

Since c
†
kc

†
−k | ↑〉k = | ↓〉k , c

†
kc

†
−k | ↓〉k = 0

& c−kck | ↓〉k = | ↑〉k , c−kck | ↑〉k = 0, and:

σ− = σx − iσy =

(

0 0
2 0

)

; σ+ =

(

0 2
0 0

)

.

One can identify

c
†
kc

†
−k = 1

2σ
−
k , c−kck = 1

2σ
†
k .
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BCS theory Contd.

With the above identifications, the Hamiltonian can be
written as H = −∑

k ǫ
0
kσ

z
k − 1

4V
∑

kk ′ σ
−
k ′σ

+
k .

Further, the term
∑

kk ′(σx
k ′σ

y
k − σy

k ′σx
k ) vanishes due to

symmetric summing done over k and k ′.

Hence the pseudo-spin BCS Hamiltonian reads
H = −∑

k ǫ
0
kσ

z
k − 1

4V
∑

kk ′(σx
k ′σx

k + σy
k ′σ

y
k ).

As before, the Hamiltonian can be written as
H = −∑

k
~hk .~σk , with ~hk = ǫ0k ẑ +

1
4V

∑

k ′(〈σx
k ′〉x̂ + 〈σy

k ′〉ŷ)
Using 〈σx

k 〉 = 〈σy
k 〉, ~hk = ǫ0k ẑ +

1
2V

∑

k ′〈σx
k ′〉x̂

If

tan θk =
hxk
hzk

=
1
2V

∑

k ′〈σx
k ′〉

ǫ0k
≡ ∆

ǫ0k

then sin θk = ∆√
∆2+ǫ0

k
2
and cos θk =

ǫ0
k√

∆2+ǫ0
k
2
.
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BCS theory: Excitation spectra at T = 0

∆ = 1
2V

∑

k ′〈σx
k ′〉 = 1

2V
∑

k ′

sin θk ′ = 1
2

∑

k ′

∆√
∆2+ǫ0

k
2
.

With ρF as the density of states near the Fermi level, the
above equation gives

1 =
1

2
V ρF

∫ ωD

−ωD

dǫ√
∆2 + ǫ2

= V ρF sinh−1(ωD/∆).

here ωD is Debye frequency.

Thus ∆ = ∆(T = 0) = ωD

sinh(1/VρF )
∼= 2ωDe

−1/VρF ,

(if ρFV << 1)

at first approximation, the excitation spectrum is obtained as the
energy ǫk to reverse a pseudo- spin in the field h̃k , i.e.,

ǫk = 2|h̃k | = 2
(

ǫ0k
2 +∆2

)1/2
. Minimum excitation energy is 2∆,

i.e. ∆ gives the energy gap in the excitation spectrum.
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BCS theory: Estimating transition temperature

For T = 0, 〈σz
k〉 = tanh

(

β|~hk |
)

.

Hence, tan θk =
hx
k

hz
k
= V

2ǫ0
k

∑

k

〈σz
k ′〉

=
(

V
2ǫ0

k

)

∑

k ′ tanh
(

β|~hk ′ |
)

sin θk ′ ≡ ∆(T )
ǫk

.

The superconducting transition is characterised by vanishing of the
gap ∆. Hence, as T → Tc , ∆ → 0.

Hence: 1 = V
2

∑

k ′

1
ǫ0
k′
tanh

(

ǫ0
k′

Tc

)

. or,

2
VρF

=
∫ ωD

−ωD

dǫ
ǫ tanh

(

ǫ
2Tc

)

= 2
∫ ωD/2Tc

0
tanh x

x
dx .

Solution: Tc = 1.14ωDe
−1/VρF . ⇒ 2∆(T = 0) ≃ 3.5Tc .

This is consistent with experimental results for a number of
materials (ex: Al, Pb, Cd).
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Real space renormalization for Transverse Ising chain

Real space block renormalization can be applied to transverse
Ising chain.

Consider the 1D Hamiltonian

H = −Γ

N
∑

i=1

σz
i − J

N−1
∑

i=1

σx
i σ

x
i+1

= HB +HIB (say).

Here

HB =

N/b
∑

p=1

Hp ; Hp = −
b

∑

i=1

Γσz
i ,p −

b−1
∑

i−1

Jσx
i ,pσ

x
i+1,p

and HIB =
∑N/(b−1)

p=1 Hp,p+1 ; Hp,p+1 = −Jσx
b,pσ

x
1,p+1.
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RSRG Contd.

The above rearrangement of the Hamiltonian recasts the
picture of N spins with nearest-neighbour interaction into one
in which there are N/(b − 1) blocks, each consisting of b
number of spins.

Consider b = 2:

Ηp

Ηp,p+1

p-th Block (p+1)th Block-

σ1,p σ2,p σ2,p+1σ1,p+1

The 4 eigen states of Hp can be expressed as the linear
combinations of the eigen states of σz

1,p ⊗ σz
2,p; namely,

| ↑↑〉, | ↓↓〉, | ↑↓〉, and | ↓↑〉.
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RSRG Contd.

The (orthonormal) eigen states of Hp are:

|0〉 =
1√

1 + a2
(| ↑↑〉+ a| ↓↓〉)

|1〉 =
1√
2
(| ↑↓〉+ | ↓↑〉)

|2〉 =
1√
2
(| ↑↓〉 − | ↓↑〉)

|3〉 =
1√

1 + a2
(a| ↑↑〉 − | ↓↓〉).

Check: HP |0〉 = −(2Γ+ Ja) 1√
1+a2

[

| ↑↑〉+
(

−2Γ−J/a
2Γ+Ja

)

a| ↓↓〉
]

⇒ 2Γ−J/a
2Γ+Ja

= −1 ⇒ a =
√
4Γ2+J2−2Γ

J
.
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RSRG Contd.

Hp|0〉 = E0|0〉, E0 = −
√

4Γ2 + J2

Hp|1〉 = E1|1〉, E1 = −J

Hp|2〉 = E2|2〉, E2 = +J

Hp|3〉 = E3|3〉, E3 = +
√

4Γ2 + J2.

We take |0〉 and |1〉 as the renormalized eigen states of the
renormalized spins σ′ where 〈0|σ′x |1〉 = 1+a√

2(1+a2)
, giving

J ′ = J
(1+a)2

2(1+a2)
.

Since E1 − E0 = 2Γ′ (was 2Γ for unrenormalized state)
Γ′ = J

2 [
√
4λ2 + 1 + 1]

The fixed points of the recurrence relations are λ⋆ = 0
λ⋆ → ∞ and λ⋆ ≃ 1.277 with λ = Γ

J

TIM



RSRG Contd.

If correlation length ξ ∼ (λ− λc)
−ν , then in the renormalized

system ξ′ ∼ (λ′ − λc)
−ν .

ξ′/ξ = b =
(

λ′−λc

λ−λc

)−ν
⇒ dλ′

dλ

∣

∣

∣

λ=λc≡λ⋆

= b−1/ν ⇒ ν ≈ 1.47

(compare with 2d exact result ν = 1).

Similarly, z ≈ 0.55 (compare with z = 1 in 2d) and
s = νz ≈ 0.81
(compare with s = 1 for 2d).

Results improve rapidly for larger b values.
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Classical correspondence of TIM: Suzuki-Trotter formalism

Suzuki-Trotter formalism is essentially a method to transform
a d-dimensional quantum Hamiltonian into a
(d+1)-dimensional effective classical Hamiltonian giving the
same canonical partition function.

Consider the Hamiltonian

H = −Γ
N
∑

i=1

σx
i −

∑

(i ,j)

Jijσ
z
i σ

z
j

≡ H0 + V

Trotter formula:
exp (A1 + A2) = limM→∞ [expA1/M expA2/M]M , even when
[A1,A2] 6= 0 ⇒
Partition function Z = Tre−βH =

limM→∞ Tr
∏M

k=1〈σ1,k ...σN,k | exp
(

−βH0

M

)

exp
(

−βV
M

)

|σ1,k ...σN,k〉.
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Suzuki-Trotter Contd.

Now
∏M

k=1〈σ1,k ...σN,k | exp
(

β
M

∑

i ,j σ
z
i σ

z
j

)

|σ1,k+1...σN,k+1〉=

exp
[

∑N
i ,j=1

∑M
k=1

βJij
M

σi ,kσj ,k

]

Also,

M
∏

k=1

〈σ1,k ...σN,k | exp
[

βΓ

M

∑

i

σx
i

]

|σ1,k+1...σN,k+1〉

=

(

1

2
sinh

[

2βΓ

M

])
NM
2

exp

[

1

2
ln coth

(

βΓ

M

) N
∑

i=1

M
∑

k=1

σi ,kσi ,k+1

]

.

since: eaσ
x
= e−i(iaσx ) = cos (iaσx)− i sin (iaσx) =

cosh (a) + σx sinh (a), ⇒
〈σ|eaσx |σ′〉 =

[

1
2 sinh (2a)

]1/2
exp [(σσ′/2) ln coth (a)],
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since 〈↑ |eaσx | ↑〉 = 〈↓ |eaσx | ↓〉 = cosh (a) =
[

1
2 sinh (2a). coth (a)

]1/2
and 〈↑ |eaσx | ↓〉 = 〈↓ |eaσx | ↑〉 =

sinh (a) =
[

1
2 sinh (2a)/ coth (a)

]1/2
.

Thus the partition function reads

Z = C
NM
2 Trσ(−βHeff [σ]) ; C =

1

2
sinh

2βΓ

M

Where the effective classical Hamiltonian is

Heff (σ) =
N
∑

(i ,j)

M
∑

k=1

[

−Jij

M
σikσjk −

δij
2β

ln coth

(

βΓ

M

)

σikσik+1

]

.
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The Hamiltonian Heff is a classical one, since the variables
σi ,k ’s involved are merely the eigen-values of σz , and hence
there is no non-commuting part in Heff .
M should be at the order of ~β (we have taken ~ = 1 in the
calculation) for a meaningful comparison of the interaction in
the Trotter direction with that in the original Hamiltonian.

σ1 σ2 σi σi+1 σN

J

T
ro

tte
r 

D
ire

ct
io

n

σ1,1 σ2,1 σi,1 σi+1,1 σN,1

σ1,2

σ2,2
σi,2 σi+1,2 σN,2

σ1,j σ2,j σi,j σi+1,j σN,j

σ1,j+1 σ2,j+1 σi,j+1 σi+1,j+1 σN,j+1

σ1,M σ2,M σi,M σi+1,M σN,M

(j-th- 

Trotter-

Slice)

J

J’
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