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Introduction

@ Cooperative interactions between spin-like degrees of freedom
can describe the order-disorder transition in many systems

@ Transverse Ising Model (TIM) successfully describes a class of
such systems

@ A specific example being the ferro-electric ordering in
Pottasium Dihydrogen Phosphate (KDP)

@ TIM is essentially a quantum model; it incorporates zero
temperature fluctuations

@ TIM in d-dimension corresponds to Ising model in (d + 1)
dimension.
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Pseudo-spin picture

@ In KDP, in each site the oxygen atom creates a double well

and the proton resides in one of them

Jjj

TN
/ e /e

@ ()
of=+1 o=-1 off=+1 of=-1
@ In Pseudo-spin picture, the proton residing in left or right well
can be represented by the states | 1> and | | > respectively.
@ Dipolar interactions between nearest neighbor sites form the
cooperative (exchange-interaction) term.
@ Proton being a quantum object, a tunneling term is required
to study the system's behavior.
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Pseudo-spin picture Contd.

@ In formulating the tunneling term, note that

| 1) =14 and o*[1)=[1),

@ A transverse field will correctly represent the tunneling term
@ Therefore, the Hamiltonian of the system can be written as
H=— J,-J-a,-zajz—rzgf,
(i) i
where, 0%'s — Pauli spin matrices,
Jjj — cooperative interactions and

I — tunneling integral, which depends on width and height of
the barrier, particle mass etc.
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Pseudo spin picture Contd.

@ Spin 1/2 case: 0% has two eigen values +1, which corresponds
to a spin being parallel on anti-parallel with z— axis.

e ()
e (7).

then taking these two eigen-vectors as basis, the Pauli
matrices have the following representation

< (01 , (0 —i , (1 0
T \10)7" i o) 7 Vo -1 )
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Mean Field Theory for TIM

T=0
@ One can make the non-commuting parts of the Hamiltonian
commuting, by assuming

of =|0|cosf, and of =|d|siné,

@ The energy of the semi-classical system reduces to
- L 5 2
E=—olsinf — 50 J(0) cos= 0,

J(0) = Ji(0) = > Jjj, where j denotes the j-th nearest
(if)
neighbor.
@ Average values of the spin components are (o) = cosf and
(0%) =sind.
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MFT for TIM

@ Minimisation of the energy function gives sin = I'/J(0) or,
cosf = 0.

@ Thus following cases may occur
@ For =0, (¢*) =0 and

order parameter (%) =1
1
o If I < J(0), then both
(%) # 0 and (07) # 0.
@ When I < J(0), then we
must have cosf = 0,
0 I 13(0) 1 implying (o%) =0 i.e., full

disorder.
@ So, even in the absence of thermal fluctuation, only quantum

fluctuation can lead to an order-disorder phase transition of
the system as [ increases from 0 to J(0).
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MFT for TIM

@ One can write the Hamiltonian as
H=-> h.d
i

where, b; = % + (% ¥ J,-J-<af)) 2, and & = 0¥% + 072,

° gnder MF approximation one can replace h; by
h=Tr%+ (c7)J(0)z.
o Implying & = tanh(3|h|). &

m h and lh| = VT2 + (J(0){o?))2.

o Therefore, {o?) = [tanh(3|h])] (J(°|>I1ﬁ|”z>) , and
(o) = [tanh(B]h])] -

|’
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MFT for TIM

Fr=0
@ Here, (0%) = tanh (%) and (o*) = 0.
@ Graphical solution gives (o%) # 0 for  kgT < J(0)
(0%) =0 for kg T > J(0).
@ It shows that without quantum fluctuation, thermal
fluctuation can drive the system to complete disorder beyond

T. = J(0).
keT =0
o Here, (0°) = oo
@ Phase boundary: (¢%) - 01 = #(:) = . = J(0) as obtained
earlier.
kg T finite

@ Phase boundary: (o%) — 0.
z\ _ . \ J(0){c* re T
(0%) = tanh (kBT> ( )r< ) or, tanh (kBT> = 76
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MFT for TIM

The phase boundary is as follows

—_

<6”>=0

I'/J(0)

<6’> £ 0
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BCS theory of Superconductivity

@ The cooperative Hamiltonian in the BCS theory of
superconductivity has the following form

H = z:kez(clck‘+'CikC—k)‘— V’E:kkfclfcikfc—kck
@ In terms of the number operator i, = clck, the above

Hamiltonian reduces to (D ex = 0)
3

H=— Zk 62(1 - ﬁk - ﬁ_k) - VZkk’ CI,Cik,C_ka.

@ Considering the low-lying spectra containing the pair of
electrons in state (k, —k), the relevant states are pair
occupied (denoted by |141_k)) or pair unoccupied (denoted
by [0k0—k)).

@ Then
(L—hg —n_g)|lklk) = (1 —1—-1)[141_4) = —|1x1_k), and
(1 — Pk — n_k)|0k0_k) = (1 —0—0)|0k0_k) = [0k0_¢)
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BCS theory Contd.

@ The correspondence to the pseudo-spin picture can be made
by noting
‘1/(1_/() = ‘ ¢>k; |0k0—k> = | T>k, and(l — Nk — n_k) - (Tﬁ.

@ Since clcik\ P =1k, cicik| D=0
& coek| k=[N ckek| 1)k =0, and:

00 0 2
- _ X S . + _
o =0 IU—<2O>, J—(OO).

One can identify

el _—1.- B
CC = 505 C_kCx = 50 -
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BCS theory Contd.

o With the above identifications, the Hamiltonian can be
written as H = — >, €%0% — TV Y 00y
o Further, the term }° .,/ (05%,0) — 0},0%) vanishes due to
symmetric summing done over k and k’.
@ Hence the pseudo-spin BCS Hamiltonian reads
_ 0 1 y .y
H==2 k0% — 3V 2 iw(okog+opoy).
@ As before, the Hamiltonian can be written as
o LD ~ 1 ~ ~
H=—3 h.Gr, withhy =2+ 2V ((o5)& + (1))

o Using (03) = (o), hx=e2+ 1V (05

o If )
ant = i 1V wlor) A
u €k €k
then sinf, = —2—— and cosfy = L
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BCS theory: Excitation spectra at T =0

oA=LV, (o) = %V%;sinek/ = 22 \/m

@ With pfr as the density of states near the Fermi level, the
above equation gives

wp

1
1= §Vp,: . m
here wp is Debye frequency.
@ Thus A=A(T =0) =
(if prV <<1)
@ at first approximation, the excitation spectrum |~s obtained as the
energy €, to reverse a pseudo- spin in the field hy , i.e.,
e = 2lh| =2 (22 + A2)1/2. Minimum excitation energy is 2A,
i.e. A gives the energy gap in the excitation spectrum.

= Vprsinh™Hwp/A).

Wb @~ *1/Vp[:
Sh(1/Vpr) — 2wpDe ’
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BCS theory: Estimating transition temperature

@ For T =0, (o) = tanh (B\ﬁk\) .

@ Hence, tanfy = % = LZW?)
K

h : A(T
:(ﬁ) Zk/ tanh (B‘hk") sin ek’ = %
@ The superconducting transition is characterised by vanishing of the

gap A. Hence,as T — T.,, A — 0.
E0
@ Hence: 1 = %Zk/ étanh % . or,

2 _ (WD de € _ wp/2Tc tanh x
7VPF = fwa ?tanh <ﬁ) = 2]0 v dx.

@ Solution: T, = 1.14wpe Y/VPr. = 2A(T =0) ~3.5T,.

@ This is consistent with experimental results for a number of
materials (ex: Al, Pb, Cd).
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Real space renormalization for Transverse Ising chain

@ Real space block renormalization can be applied to transverse
Ising chain.

@ Consider the 1D Hamiltonian

N N—-1
H = —FE a,-Z—JE 0707
i=1 i=1

= Hp+Hip (say).

Here
N/b b b-1
He=) Hp + Hp=—) Tof,—> Joipofi,
p=1 i=1 i—1
N/(b—1
and Hig = 3,0 /( )Hp p+1 Hppt1 = —Jog 07 p i1
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RSRG Contd.

@ The above rearrangement of the Hamiltonian recasts the
picture of N spins with nearest-neighbour interaction into one
in which there are N/(b — 1) blocks, each consisting of b
number of spins.

o Consider b = 2:

0-1,p 02,p 01,p+1 02,p+1
\ 4 \ \
,,,,,,,,,,,,,, ® ° ° ° ° @
) ) ) ) ) )
p-th Block (p+1)th Block-

Hp,p+1
The 4 eigen states of H, can be expressed as the linear

combinations of the eigen states of of , ® 03 ,; namely,

1), 14D, 1), and [ 11).
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RSRG Contd.

@ The (orthonormal) eigen states of #,, are:

0 = (1t +al )
i \150 1+ 14))
2 = (-4
B = el T =)
o Check: Mp|0) = —(2F +Ja) 7tss || 1) + (~ 322 al 1]

r—Jja _ _ V4 F2+J or
= ortda 1:>a—7‘

J
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RSRG Contd.

°
Hpl0) = Eol0), Eg=—V4alr2+J2
Hpll) = E1), E=-J
Hpl2) = E2), Er=-+J
Hp|3> = E3‘3>, E3 =+ 4r2 4 J2.
@ We take |0) and |1) as the renormalized eigen states of the
renormalized spins o’ where (0]o™|1) = \/%, giving
J = J2((11T;;)22)-

@ Since E; — Eg = 2" (was 2l for unrenormalized state)
M= 3[VaX2+1+1]
@ The fixed points of the recurrence relations are \* =0
A —oo  and '~ 1277 with A =1
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RSRG Contd.

o If correlation length & ~ (A — A¢)™Y, then in the renormalized
system & ~ (N = Xo)7%.
=b"M = v 147

2y /
[+ / g b —= ()‘,_AC> = ﬂ
&/ A=de I Ia=ae=as

(compare with 2d exact result v = 1).

@ Similarly, z ~ 0.55 (compare with z =1 in 2d) and
s=vz~0.81
(compare with s = 1 for 2d).

@ Results improve rapidly for larger b values.
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Classical correspondence of TIM: Suzuki-Trotter formalism

@ Suzuki-Trotter formalism is essentially a method to transform
a d-dimensional quantum Hamiltonian into a
(d+1)-dimensional effective classical Hamiltonian giving the
same canonical partition function.

o Consider the Hamiltonian

H = —FZO' —ZJ,JO'

(iJ)
= Hp —l—V

@ Trotter formula:
exp (A1 + A2) = limpy_o0 [exp A1 /M exp Ay /M]M | even when
[Al, Az] 75 0=
Partition function Z = Tre™
iMmp—oo TF Hk 1{01 k--.ON k| exp ( ﬂHO) exp (—TLZV) |01 k---ON k)

BH _—
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Suzuki-Trotter Contd.

o Now Hy:1<017k...0,\/7k|exp (% ijOf07 )|01 K1 -ON k41)=

N M By
exp [ZiJ:l > k=1 Wjahkaj,k}

@ Also,

M Br
H<Ul’k”'aN’k| exp [M Z O'i(] ’01,k+1-~0'N,k+1>

k=1 i

= (; sinh [”J])Ny exp [1 In coth ( > ZZU, kO k+1]

i=1 k=1

since: €2 = e~(27") — cos (jac™) — isin (iac¥) =
cosh (a) 4+ o*sinh (a), =
(o] |0") = [Lsinh (2a)] "/ exp [(c0" /2) In coth (a)],
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o since (1 e[ 1) = (| [€*”| |) = cosh (a) =
[1 sinh (2a). coth (a)]*/? and (1 2| 1) = (| [e*| 1) =
sinh (a) = [1 sinh (2a)/ coth (a)] */* .

@ Thus the partition function reads

1
7= ¥ Ti(—fHerlol) ; C=sin h%r

@ Where the effective classical Hamiltonian is

Herr (0 ZZ [ TikTjk — 25 L n coth <ﬁl\;> ikO'ik+1:| ~

(ig) k=1
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@ The Hamiltonian Hes is a classical one, since the variables
o; k's involved are merely the eigen-values of 0%, and hence

there is no non-commuting part in Hef.

@ M should be at the order of /3 (we have taken i =1 in the
calculation) for a meaningful comparison of the interaction in
the Trotter direction with that in the original Hamiltonian.

01
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