QUANTUM CLONING AND BEYOND

Chiara Macchiavello

University of Pavia

IN CLASSICAL INFORMATION

Computing with bits (0 and 1)

FANOUT and NAND are universal gates for classical computation

Measurements: bits can be measured perfectly

IN QUANTUM INFORMATION

Qubits:
$$|\psi\rangle = a |0\rangle + b |1\rangle$$
 $|a|^2 + |b|^2 = 1$

NO CLONING THEOREM:

an unknown quantum state cannot be perfectly cloned

NO CLONING THEOREM

PERFECT CLONING TRANSFORMATION: U (14>10>10>10>) = 14>14>14> V (10>10>10>) = 10>10>100) LO.12 NORM UNITARITY OF Q. MECHANICAL TRANSFORMATIONS: < 4, 0, a 1 \$, 0, a> = < 4, 4, a+ 1\$, \$, a+> > < 410> = < 410>2 (0+10+) OK IF (410)=0,1 OTHERWISE: 2414>= 1 IMPOSSIBLE

CONTROLLED NOT

Universal gate for quantum computation (with single qubit transformations)

With B=0 perfect cloning for a classical bit, but:

 $(\mathbf{a} |\mathbf{0}\rangle + \mathbf{b} |\mathbf{1}\rangle) |\mathbf{0}\rangle \longrightarrow \mathbf{a} |\mathbf{0}\rangle |\mathbf{0}\rangle + \mathbf{b} |\mathbf{1}\rangle |\mathbf{1}\rangle \neq |\psi\rangle |\psi\rangle$

NO CLONING THEOREM

Fundamental theorem in quantum information, with consequences for:

Quantum measurements Quantum error correction Superluminal communications Secure communications

• • • • • • • • • • • • • •

QUANTUM MEASUREMENTS

No cloning

No perfect measurability of a single quantum system

QUANTUM MEASUREMENTS

Perfect measurements

Perfect cloning

How well can we approximate perfect cloning?

It depends on the form of the input states we wish to clone

- Universal cloning
- Phase covariant cloning
- State dependent cloning

Universal cloning

• MAXIMISING F: $F_{max} = \frac{5}{6} \qquad 2max = \frac{2}{3}$

• OPTIMAL TRANSFORMATION :

UNIVERSAL CLONING AND STATE ESTIMATION

LINK:

OPTIMAL UNIVERSAL CLONING

UNIVERSAL CLONING AND STATE ESTIMATION IN d>2

PHASE COVARIANT CLONING

STATE DEPENDENT CLONING

STATE DEPENDENT CLONING

COMPARISON

Fidelity increases by restricting the class of input states

PPC = two pairs of orthogonal states for Pi/8, related to eavesdroppiung strategies in the BB84 cryptographic scheme

SUPERLUMINAL COMMUNICATIONS

Perfect cloning would allow superluminal communications:

Information encoded into the type of measurement

QUESTIONS:

Does approximate cloning lead to superluminal communications?

What properties are needed in order to have no-signalling?

ENTANGLEMENT SCHEME

CONDITIONAL PROBABILITY : p(reim) = Tre [10Tre (Am@B(PAB))] = TRO [TTR (BTRA [Am @1] (PAB)]]] = The [The (B The (PAD))] = p(z)INDEPENDENT OF THE ENCODED MESSAGE "M"

GUARANTEE THE IMPOSSIBILITY OF SUPERLUM. COMM.

EXAMPLE

It is always fulfilled.

Any (cloning) transformation compatible with quantum mechanics does not allow superluminal communications

CLONING versus BROADCASTING

 $\rho_0 \rho_1 \neq 0$

Cloning is a particular form of broadcasting: Pure states: CLONING=BROADCASTING Mixed states: Broadcasting is more general

BROADCASTING MIXED STATES

BROADCASTING MIXED STATES

No-broadcasting theorem:

Two noncommuting states cannot be perfectly broadcast onto two quantum systems (Barnum et al., 96)

Extension of the *no cloning theorem* to mixed states for N=1 and M=2

UNIVERSAL SUPERBROADCASTING

Input: N mixed qubits $\rho^{\otimes N}$ (e.g. after depolarising noise)

Symmetry: invariance under permutation of input and output qubits

Universality: quality of the map independent of the orientation of the input Bloch vector (covariance under all qubit transformations)

Universal single qubit broadcasting transformations:

p(r): scaling factor, not necessarily <1 Maximise p(r)! Equivalent to maximise the purity: $Tr[\rho_{out}^2] = [1+r^2 p(r)^2]/2$

UNIVERSAL SUPERBROADCASTING

It is possible to have p(r)>1 for N≥4, i.e.

BROADCASTING+PURIFICATION = SUPERBROADCASTING!!

The local purity is increased by introducing correlations among the output qubits

The optimal superbroadcasting map is independent of the input state

UNIVERSAL SUPERBROADCASTING

It is possible to superbroadcast up to certain values of r

For N=M superbroadcasting is possible for any value of r

IDEAL BROADCASTING

Whenever p(r)>1 we can achieve a final $p_f(r)=1$ for N≥4 by adding depolarising noise

The ideal broadcasting map depends explicitly on the value of r!

