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Outline of the talk

✤ Local Realism and Bell inequalities

✤ Monogamy of Bell inequalities violations 

PART I

PART II

✤ Classicality of macroscopic correlations   
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PART I
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Local Realism

Extremely orthodox point of view: quantum theory is about 
correlations 

Quantum correlations are “strange”

Father founders of QM were clearly bothered

Some of them even wrote papers about it

Shroedinger 30’s: concept of entanglement

Einstein, Podolsky, Rosen 30’s: concept of local realism
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Local Realism

Generic experiment testing quantum correlations 

ρ

a

A

b

B

p(A,B|a, b)

Alice Bob

random inputs/settings
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Local Realism

Correlation function

local interpretation of outcomes

Remark: correlation function contains less information then probabilities 

| ⊗

E(ab) =
�

A,B

f(A)f(B)p(A,B|a, b)
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Local Realism

Quantum mechanics predicts

Projectors

|

pQM (A,B|a, b) = Tr(ρP (A, a)⊗ P (B, b))
�

�

EQM (a, b) = Tr(ρA(a)⊗B(b))

⊗

A(a) =
�

A

f(A)P (A, a)
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Local Realism 

Local Realism (LR) assumes that 

1. Outcomes of measurements exist before the act of measurement

2. Relativistic locality holds

LR is a very intuitive/common sense view of Nature

All reasonable classical physical theories are LR
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Local Realism

LR implies the following �

pLR(A,B|a, b) =
�

dλµ(λ)p(A|a,λ)p(B|b,λ)
�

|
�

| |

ELR(a, b) =

�
dλµ(λ)I(a,λ)J(b,λ)

Local response functions�

min
A

f(A) ≤ I(a,λ) ≤ max
A

f(A)
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Bell inequalities

However intuitive LR is, it does not agree with QM (Bell 1964)

CHSH inequality for two qubits (a,b=0,1; f(A/B)=-1,+1)
≤ ≤

|ELR(0, 0) + ELR(0, 1) + ELR(1, 0)− ELR(1, 1)| ≤ 2

QM gives for a maximally entangled state
| − | ≤

|EQM (0, 0) + EQM (0, 1) + EQM (1, 0)− EQM (1, 1)| = 2
√
2
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Bell inequalities

Multi-partite, higher dimensional versions of Bell inequalities exist

Such Bell inequalities are violated by QM and are more robust with 
the increasing number of particles and/or their dimension

is “less” LR than

| ↓ ↓� | ↓ ↓�

| ↑�A| ↓�B + | ↓�A| ↑�B
D�

s=0

|s�A|s�B
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Monogamy relations

Consider three parties: Alice, Bob1 and Bob2 

a

A

Alice

b1

B1

Bob1

b2

B2

Bob2

ρ

ρ

1

is a three-partite qubit state
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Monogamy relations

Probabilities in this experiment
±

pQM (AB1B2|ab1b2)|

pQM (AB1|ab1)|

pQM (AB2|ab2)

Here: A,B1,B2,a,b1,b2=0,1 and f(A/B)=-1,+1
|

EQM (abk) =
�

A,Bk

f(A)f(Bk)pQM (ABk|abk)
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Monogamy relations

Can Alice and Bob1 violate CHSH inequality together with 
Alice and Bob2?

The answer is NO!

The proof is very simple but we need a trivial observation first
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Monogamy relations 

Consider a set of mutually anti-commuting hermitian operators 

ρ

p(A,B|a, b)

pQM (A,B|a, b) = Tr(ρP (A, a)⊗ P (B, b))

E(ab) =
�

A,B

f(A)f(B)p(A,B|a, b)

EQM (a, b) = Tr(ρA(a)⊗B(b))

A(a) =
�

A

f(A)P (A, a)

pLR(A,B|a, b) =
�

dλµ(λ)p(A|a,λ)p(B|b,λ)

ELR(a, b) =

�
dλµ(λ)I(a,λ)J(b,λ)

min
A

f(A) ≤ I(a,λ) ≤ max
A

f(A)

|ELR(0, 0) + ELR(0, 1) + ELR(1, 0)− ELR(1, 1)| ≤ 2

|EQM (0, 0) + EQM (0, 1) + EQM (1, 0)− EQM (1, 1)| = 2
√
2

ρ =
1

8

�

a,b1,b2

Tr(σa ⊗ σb1⊗)

EQM (ab1b2) =
�

A,B1,B2

f(A)f(B1)f(B2)pQM (AB1B2|ab1b2)

±1

pQM (AB1B2|ab1b2)

pQM (AB1|ab1)

pQM (AB2|ab2)

EQM (abk) =
�

A,Bk

f(A)f(Bk)pQM (ABk|abk)

Ai

1

�

i

var(F ) = �F 2� − �F �2 ≥ 0

�F 2� =
�

i

�Ai�2�A2
i �

�

max
k

�A2
k� ≥

�

i

�Ai�2

F =
�

i

�Ai�Ai

⊗

{Ai, Aj} = 0because
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Monogamy relations

WWZB 2001: CHSH is not violated iff a certain parameter L 
is not larger than 1

L*L is bounded by �

�

i,j=x,y

T 2
ij

�

Tij = Tr(σi ⊗ σjρ),

We have
⊗

L2
AB1

+ L2
AB2

≤
�

i,j

(TAB1
ij )2 +

�

i,k

(TAB2
ik )2
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Monogamy relations

Grouping 

� �

(XXI,XY I, Y IX, Y IY )
(Y XI, Y Y I,XIX,XIY )

In each group sum of the squares of average values is bounded by 1

Thus

L2
AB1

+ L2
AB2

≤ 2
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Monogamy relations

ρ

a=0,1

A

b=0,1

B

Alice Bob

B2

a=0,1

A

Alice

B1

Bob1

b2=1

Bob2

b1=0

ρ�
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Monogamy relations

TrB2(ρ
�) = ρ = TrB1(ρ

�)
symmetric extension

p(A0, B1, B2) = Tr(ρ�P (A0, a = 0)⊗ P (B0, b1 = 0)⊗ P (B1, b2 = 1))
⊗ ⊗

p(A1, B1, B2) = Tr(ρ�P (A1, a = 0)⊗ P (B0, b1 = 0)⊗ P (B1, b2 = 1))

{ }

p(Ak, B1) =
�

B2

p(Ak, B1, B2) = Tr(ρP (Ak, a = k)⊗ P (B1, b1 = 0))
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Monogamy relations

However, if symmetric extension exists

This joint probability is equivalent to LR

p(A0, A1, B0, B1) := p(A0, B0, B1)p(A1, B0, B1)/p(B0, B1)
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Monogamy relations

LR exists if symmetric extension exists to K Bobs  

ρ

a=0,1,...,M-1

A=1,...,D

b=0,1,...,K-1

B=1,...,D

Alice Bob

Moreover, Alice and Bob can measure POVM’s with D outcomes
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Monogamy relations

Symmetric extension vs monogamy

Consider two states 

A

B1

B2

ρAB1B2
ρeff =

1

2
(ρAB1 + ρAB2)

1

and

symmetric extension2

ρperm =
1

2
(ρAB1B2 + ρAB2B1)

If AB1 violates CHSH then AB2 can’t violate it

x

4-x
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PART II
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Macroscopic correlations

Macroscopic world appears LR regardless of the fact that the fabric of 
reality is quantum

Imagine two spatially separated regions containing many quantum 
particles

Can they be correlated in a non-
classical way?

??
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Macroscopic correlations

A B

i

j

directions the response functions IK(�n(i)
K ,λ) and the probability distribution

µ(λ) of the LHV may not reproduce all measured correlations anymore. One
would have to consider different Bell inequalities in such a case and check if the
LHV description is allowed.

The reason for the above result is monogamous nature of quantum correla-
tions that get ”diluted” in the effective two qubit state ρAB

eff = 1
4 (ρ11 + ρ12 +

ρ21 + ρ22), where the density matrices ρij are reduced states between fermion i

in the region A and fermion j in the region B. This state arises because of the
particular observables (magnetizations) we measure. This kind of observable
”sees” the whole quantum state ρ as an equal average over all possible pairs
of fermions between regions A and B. Now, if one particular pair, say, (12) is
highly non-classical, i.e., it violates maximally some two-setting Bell inequality
then, due to the monogamy, the pair (11) will not violate the same inequality.
To illustrate this beahviour, one can consider the following spin state of the
fermions:

|ψ� = |ψ−�A1B1 |ψ−�A2B2 , (15)

i.e., the state where fermions located at sites A1, B1 and A2, B2 maximally
violate the CHSH inequality. The effective state in this case reads

ρAB
eff =

1

4
(|ψ−��ψ−|A1B1 + |ψ−��ψ−|A2B2 +

IA1 ⊗ IB2

4
+

IA2 ⊗ IB1

4
).(16)

It is clear now that two of the reduced density matrices violate the CHSH
inequality maximally whereas the remaining two do not. As a result the whole
state does not violate the CHSH inequality.

Of course, one could measure a different observable that is coherent across
the fermions in A and B. An example is an observable that treats two spins in
each of the regions as a system with the total spin equal to one. Mathematically
this can be expressed, in the region A for instance, as

OA =
�

i=A1,i�=A2

�

α,α�=1,2,3

O
αα�

ii� σα ⊗ σα� . (17)

Measurements of such observables cannot be always simulated by the LHV if
the appropriate state is chosen. For instance, the state 1√

2

�
a=↑,↓ |aa�A|aa�B

will exhibit non-classical correlations for the projective measurements on the
states |ψ±

φK
� = 1√

2
(| ↑, ↑)�K ± exp (iφK)| ↓, ↓�K , where φK are local parameters

characterizing measurements. Observables OK(φK) = |ψ+
φK

��ψ+
φK

|−|ψ−
φK

��ψ−
φK

|
yield the correlation function EQM (φA,φB) = �OA(φA)⊗OB(φB)� = cos(φA +
φB) that maximally violates the CHSH inequality.

Let us make a remark that if there are more than two fermions in each region
and local magnetizations are measured one still can talk about the effective
state ρAB

eff = 1
NANB

�
i∈A,j∈B ρij . Then the monogamous nature of quantum

correlations together with the theorem from the Ref. [3] implies that there
always is the LHV description of the measured correlations. The proof can be
found in the Appendix.

5

ρij�

1

Lattice of qubits

Alice and Bob measure 
correlations between 

magnetizations
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Macroscopic correlations

Magnetization operator in region K=A,B 

−

MK(�n) = �n ·
�

k∈K

�σk
�

∈

�MA(�n)⊗MB(�m)� = NANBTr(�n · �σ ⊗ �m · �σρeff )

⊗ � · ⊗

ρeff =
1

NANB

�

i∈A,j∈B

ρijnumber of qubits in A and B

reduced density operators
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Macroscopic correlations 
⊗ � · ⊗

ρeff =
1

NANB

�

i∈A,j∈B

ρij is a two-qubit state that has the 
following symmetric extension  

1
2

NA

1
2

NB
| ↑� | ↓� | ↓� | ↑�

ρ� =
1

NA!NB !

�

ΠA,ΠB

ΠA ⊗ΠBρΠ
†
A ⊗Π†

B
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Macroscopic correlations

ρeff has LR model as long as the number of settings for Alice 
and Bob is not more than NA,NB

�

�MA(�n)⊗MB(�m)� = NANB

�
dλµ(λ)I(a,λ)J(b,λ)

The above result can be generalized as follows

LARGE numbers!
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Macroscopic measurements

M (j)
s

�

∈

�

M (j)
s =

�

k∈j

�

l

f(l, s)E(j)
l,s

�

∈

�

�

l

E(j)
l,s = Ij

POVM for qudit

jth region

settings defining measurement; 
s<= number of qudits in jth 

region generalized “magnetization”
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Macroscopic measurements

�

i,j=x,y

T 2
ij

Tij = Tr(σi ⊗ σjρ)

L2
AB1

+ L2
AB2

≤
�

i,j

(TAB1
ij )2 +

�

i,k

(TAB2
ik )2

(XXI,XY I, Y IX, Y IY )

(Y XI, Y Y I,XIX,XIY )

L2
AB1

+ L2
AB2

≤ 2

ρ�

TrB2(ρ
�) = ρ = TrB1(ρ

�)

p(A0, A1, B0, B1) := p(A0, B0, B1)p(A1, B0, B1)/p(B0, B1)

ρAB1B2

ρeff =
1

2
(ρAB1 + ρAB2)

ρperm =
1

2
(ρAB1B2 + ρAB2B1)

2
√
2

4− 2
√
2

MK(�n) = �n ·
�

k∈K

�σk

�MA(�n)⊗MB(�m)� = NANBTr(�n · �σ ⊗ �m · �σρeff )

ρeff =
1

NANB

�

i∈A,j∈B

ρij

1

2

NA

NB

ρeff

M (j)
s

M2(i2)

Mj(ij)

Mj(ij) =
�

k∈j

�

l

f(ij |l)E(j)
ij ,l

2
jth 

�

l

ρeff =
1

NA . . . NK

�

a∈A,...,k∈K

ρa...k
�

∈ ∈

ρ� =
1

NA! . . . NK !

�

ΠA...ΠK

(ΠA ⊗ . . .⊗ΠK)ρ(Π†
A ⊗ . . .⊗Π†

K)

Permutations of particles

Symmetric extension
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Macroscopic correlations

Generalized multi-partite “magnetization”correlation measurements 
always have LR model (if number of settings does not exceed number of 

particles)

Important assumption: we considered only correlations between 
average values of “magnetizations” (one body operators) 

Can we do better than that?
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Macroscopic correlations

M (j)
s

jth region

If each region contains Avogadro 
number of particles we are unable 
to measure anything but average 

values of “magnetization”

Single measurement is always 
extremely close to the average 

value of “magnetization”
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Macroscopic correlations

Measurement of M-body observables is simply equivalent to reducing 
number of settings to N/M

�

O = O12 +O23 +O13

1
2
3

still LARGE number!
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Macroscopic measurements

ρeff = V |singlet��singlet|+ (1− V )
IA ⊗ IB

4�� |

V ≤ R+ 2

3R≤
3R

R = max (NA, NB)

For more than 7 particles in each region the effective state is LR for any 
number of POVM measurements

Moreover for a class of rotationally invariant qubit systems, LR 
description exists for any number of settings
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Conclusions

Monogamy of Bell ineq. violations
+

 Realistic measurements

Classicality of correlations between 
large quantum systems

Large number of particles
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Conclusions

Large number of particles

Non-LR correlations have a chance 
to appear if the number of settings  
is larger than number of particles 

Mezoscopic region
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