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   Classical information  
Classical bit: ‘0’ or ‘1’ 

Usually implemented by voltage of either ‘0’ or ‘V’ across a 

capacitor. 

Classical information is encoded as strings of bits 

‘01001101001110001111010010111111’ 

Quantum information 

Unit of Quantum information is ‘Quantum bit’ or ‘Qubit’ 

Qubit: Vector in 2-dim Hilbert space spanned by basis vector 

Qubit is physically represented by two-level quantum system 

state as a superposition of basis vectors in the form, 



   BLOCH SPHERE 

Bloch sphere representation of qubit, (Left): an 

arbitrary qubit       can be parameterized with two real 

numbers θ and φ corresponding to polar and azimuthal 

angles in polar spherical coordinate system as  
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(right): Bloch representations of two frequently used 

qubit states          corresponding to spin-up and spin-

down eigenvectors along z-axis 
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Quantum Entanglement 
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Quantum Entanglement:  Concurrence 

For pure states : 
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For Mixed states :   
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[ W.K Wooters, Phys. Rev. Lett. 80, 2245 (1998) ] 
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Bell state measurement 
(r )

B  

Particle 
      1  

Particle               Particle 
  2                              3 

 
Information 

State, 
1

I  

 

Results of Bell State 
Measurement, r=1, 2, 3, 4, 

communicated 

BOB 

Unitary transformation  
(r )

z x x zU : I, σ , σ , σ σ  

 

 
   Replica 
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Basis States 

Product states: 00 , 01 , 10 , 11  

Bell States ( ) 1 1 1 1
: [ 00 11 ], [ 00 11 ], [ 01 10 ], [ 01 10 ]
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AN EXAMPLE 

• Information state  

• Entangled state 

• Bell States 

• Combined State 

 

• If result of BSM is r=3, for example 

     

   state of Bob is 

 

• Unitary transformation   then gives 

     

     

• Quality of Teleportation: Fidelity, F= 

1 1 1
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The  experimental  set-up:  A  pulse of ultra- 

violet radiation passing  through a nonlinear 

crystal creates the ancillary pair of photons 

2 and 3. After retroflection during its second 

passage  through the  crystal  the ultraviolet 

pulse  creates another  pair of photons, one 

of  which will be  prepared in the initial state 

of  photon 1 to  be teleported,  the other one 

serving as a  trigger indicating that a photon 

to  be  teleported  is  under  way. Alice  then 

looks for  coincidences  after a beam splitter 

BS  where  the initial  photon and one of the 

ancillaries   are   superposed.    Bob,    after 

[ Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter & 

Anton Zeilinger, Nature 390,575 (1997)] 

Experimental Quantum Teleportation 

(Institut fu¨r Experimentalphysik, Universita¨t Innsbruck) 

receiving   classical  Information   that  Alice obtained   coincidence  count in detectors f1 

and f2 identifying         Bell state, knows that his photon 3 is in the initial state of photon 

1 which he then can check using polarization analysis  with  polarizing  beam splitter 

PBS  and detectors d1 and d2. The detector p provides Information that photon 1is 

under way. 
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Principle schematic of quantum teleportation with a complete BSM. 

Nonlinear interactions (SFG) are used to perform the BSM.    and    

represent the respective horizontal and vertical orientations of the 

optic axes of the crystals. 



Experimental Quantum Teleportation with a Complete Bell 

State Measurement using Nonlinear Interaction 

[Yoon-Ho Kim, Sergei P. Kulik, and Yanhua Shih, Phys. Rev. Lett. 86, 1370 (2001)] 



BSM is based on nonlinear interactions:  

optical sum frequency generation (SFG) (or “up-conversion”). 
 

First type-I SFG crystal: 

 

Second type-I SFG crystal: 

 

First type-II SFG crystal: 

 

Second type-II SFG crystal: 
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   Van Enk & Hirota Scheme of QT 
 

Entangled coherent states are stronger than standard bi-photonic 

states against possible photon transfer to reservoir modes 

QT of one qubit : superposed coherent state,

    Glauber's coherent states  are defined as eigenstate

    of annihilation operator with eigenvalue .





Entangled coherent state,
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Figure 1 shows our scheme of quantum 
teleportation. Entangled state contains two 
modes 1 and 2, one of which (mode 2) goes to 
Bob directly We let Alice pass her part of the 
entangled state (mode 1) to pass through a 
phase shifter P.S.I which converts state in 
mode 1 to state in mode 3. Now Alice mixes 
state 3 with the state to be teleported (mode 
0) by using a 50:50 beam splitter, modifies 
one of the two outputs (mode 5) by passing it 
through a phase-shifter P.S.II which changes 
the state 5 to 6, and then performs photon 
counting in the two final outputs 4 and 6. 
This result is then passed to Bob, which helps 
him to retrieve the information state by 
performing unitary transformation on the 
state 2. 
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•Van Enk & Hirota noted that  

One of the counts is always 0. 

If the other counts are odd, teleportation is successful. 

If the other counts are even, teleportation fails. 

Success of teleportation is ½. 



  

  

  

  

  

 Our Scheme differs from the above  

We divide counts in to: 

              Zero, nonzero even and odd 

 

             Zero counts gives failure 

 

             Odd counts gives perfect QT 

 

             Nonzero even counts gives almost perfect QT 

 

For |α|² = 1, 2 or 5 minimum average fidelity = 0.73, 0.9987, 

0.9999 respectively 
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One of the modes 4 and 6 is      and Hence one of the count is always zero 0

For count in the other mode Van Enk & Hirota wrote 

    α2,ODDx1α2,EVENx1α2
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   x12/0x2,NZE 

For photon counting modes 4 & 6 and Bob’s mode 2 
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Information ( i.e.,  A Aand )  -  arbitrary 

Consider MASFI (Minimum Assured Fidelity), the minimum of F for 

variation of  A

 41 x (MASFI)
III II,

0 (MASFI)
I 1 (MASFI)

V IV,

If Pi is probability for occurrence of case I,  we will define average fidelity as 
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This has minimum value, which we call minimum average fidelity (MAVFI), 

1xfor          1  ≈x)x1(2-1MAVFI
2-22 

For  lyrespective 0.9999,  0.9987,  0.73,MAVFI 5,or    2  ,  1α
2





Teleportation with non-maximally entangled coherent state 

Recently H. Prakash and Manoj K. Mishra noted a very interesting thing that MAVFI  

increases on decreasing entanglement. 

 

Use of non-maximally entangled coherent state, 

 

      

in place of maximally entangled coherent state,  

      

      

gives, MASFI =0 for both zero count, F=1 for one 

nonzero even count and F≈1 for one odd count. 

 

Minimum average fidelity in this case is greater  

then that when maximally entangled state used 

by an amount,  

 

 

It is seen that this is important as there is a marked increase in MAVFI at low |α|,  

and it is difficult to generate superposed coherent states with large |α|. 
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Fig. Curve 1 and 2 shows minimum average 

fidelity when non-maximally and maximally 

entangled coherent states respectively, are 

used as quantum channel. Curve 3 shows 

variation difference D with |α|² 

 



  

  

  

  

  

•  Wang’s Teleportation of Bipartite State 

                                       Phys. Rev. A 64(2001)022302 

+ -
Information:  Φ =ε α,α +ε -α,-α

8

Entangled State

1
[ 2α,α,α - - 2α,-α,-α ]

2(1-x )

Wang followed the van Enk Hirota scheme and

reported success probability 1/2.

We modified the Wang's scheme and got near

 perfect teleportation.

H. Prakash, N. Chandra, R. Prakash & Shivani, Phys. Rev. 

A 75 (2007); also published in Virtual J. Q. Inf.



  

  

  

  

  
Our Scheme for QT of  Bipartite State 
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state 
 

PS-I 

 BS-I        PS-II BS-II       PS-III 

Figure 1. Numerals 1, 2, ..., 6 refers to modes. Entangled states of modes 1 and 2 are to be 

teleported to bob. Out of 
3,4,5

E , state in mode 3 goes to Alice while states in modes 4 and 5 

go to Bob. Alice (i) converts state 2 to state 6 by using phase shifter PS-I, (ii) mixes state 6 

with state 1 using a beam splitter BS-I, (iii) modifies output in 7 to state 9 using phase shifter 

PS-II, (iv) mixes state 9 with state 3 using beam splitter BS-II (v) modifies output in 10 to 

state 12 using phase shifter PS-III, and (vi) performs photon counting in mode 11 and 12. 

The results of photon counting, conveyed to Bob by a classical channel helps him construct 

the entangled state by making unitary transformation on state of mode 4 and 5 
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TELEPORTATION OF 2-QUBIT INFORMATION ENCRYPTED IN 

SINGLE MODE SUPERPOSED COHERENT STATE 

• Information:  

 

 

 

•               are superposed coherent states with 4n, 4n+1, 4n+2, 4n+3 photons 

respectively. 

 

• Entangled state: 

 

• Photon counting is done in four modes. 

 

• Almost perfect fidelity is obtained if three counts are nonzero and one count 

zero 

 

• Minimum average fidelity is  ≥ 0.99 for |α| ≥ 3.2 

   

0 1 2 3

0 0 1 1 2 2 3 3

I =ε α +ε iα +ε -α +ε -iα

=a α +a α +a α +a α

0,1,2,3α

E = α,α + iα,iα + -α,-α + -iα,-iα



SCHEME FOR TELEPORTATION OF 2-QUBIT INFORMATION 



• Taking Decoherence into Account 
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Figure 4: Variation of MAF with  
2||  for different values of  
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Case with Nonzero Even Counts 



Case with Odd Counts 

Figure 6: Variation of MAF with 
2||  for different values of  



Critical value of  = 0.738 



Figure7: Variation of average fidelity with  
2||  for different values of  

at   = 0.9.  



Entanglement Diversion 
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PS-II 

Figure 1. Numerals 1, 2, ..., 8 refers to modes. States in modes 1 and 2 are with Alice 

while state 3 and 4 are with Bob and Clair respectively. Alice (i) converts state 2 to state 5 

using phase shifter PS-I, (ii) mixes state 1 with state 5 using a beam splitter BS, (iii) 

modifies output in 7 to state 8 using phase shifter PS-II, and (iv) performs photon 

counting in modes 6 and 8. The result, conveyed to Bob helps him to perform a unitary 

transformation on state 3 and 4 and generate an exact replica of entangled state. 
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LONG DISTANCE QT WITH PERFECT FIDELITY  

AND AS GOOD SUCCESS AS DESIREED  

USING REPEATED ATTEMPTS 

 

• For QT using ECS 

    Photon-counting in two modes – one count always zero 

• Fidelity F = 0 when the other count is zero 

    F= 1 when other counts are  odd  

    MASFI ≈ 1 when other counts is nonzero-even and |α|2 is appreciable 

• In photon-counting information is destroyed and measurements cannot be 

    repeated to increase success 

• Repeated attempts can be possible only if the information is not destroyed 

    in measurements 

• We present another scheme of QT of state of a qubit with Alice on to a 

    qubit with Bob using 

    (i)   a light pulse in even coherent state,  

    (ii)  two light pulses in coherent state 

    (iii) Beam splitter assemblies and light detectors. 

• This suits long distance Quantum Teleportation serving as a link between 
two quantum processors at long distances the photons fly and the quantum 
state of qubit is teleported.  
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