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Interacting spin systems: spins interact 

via Heisenberg exchange interaction 

 

Heisenberg Exchange Interaction 

Hamiltonian: 

 

 
Lattice dimensionality: d 

Spin dimensionality: n 

Ising model (n =1) 

XY model (n =2) 

Heisenberg model (n =3) 

 

H=∑(i,j) Jij Si.Sj    S=1/2,1,… 



Interaction: may be ferromagnetic or 

antiferromagnetic 

 

Fully anisotropic Heisenberg 

Hamiltonian in 1d: 
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In most cases,  ground state and low-

lying excitation spectrum are known 

 

Ferromagnetic ground state: simple, all 

spins parallel 

Excitations: spin waves 

Linear chain Heisenberg ferromagnet: 
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Eigenvalue problem: ψψ EH =  
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JN
E +=ε  , energy of excited state 

measured with respect to ground state 

energy 
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Antiferromagnetic ground state: more 

complex, exact state known using the 

Bethe Ansatz 

Exact ground state energy =  

NJ (- ln2 + ¼) 

 

Two-spin correlation function in the 

ground state: 



 
(No long range order)  

 

Ground state: spin disordered 

 

Ground states likely to be spin-

disordered in low dimensions and in 

the presence of frustrating interactions 

 

In low d: the effect of quantum 

fluctuations prominent, melting of spin 

order 

 

Frustration arises due to conflict in the 

minimization of  spin-spin interaction 

energies 

 



 
 

Valence bonds  (VBs) provide a 

pictorial representation of spin 

disordered states 

 

Valence Bond  state (frozen VBs): 
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Shastry-Sutherland model 

 

 
VBs along dimers for JJ /′ < 0.7 

At the critical point transition from 

gapful disordered state to AFM ordered 

gapless state 
 
              

SrCu2(BO3)2 : magnetic properties 

captured by the SS model 

 



Consider a square plaquette of spins 

interacting via  the AFM  Heisenberg 

exchange interaction 

 
Ground states: resonating valence bond 

(RVB) states 

 

 
 



 
 

 
 

Plaquette spins in RVB states 

 

 

1/5 depleted 
CaV4O9  



S = ½ HAFM on kagomé lattice: a 

singlet-triplet gap (numerical 

simulations) 

Large number of low-lying singlets 

within gap ~ (1.15)
N
 

Possible explanation: low-lying singlets 

are RVB states, linear combinations of 

singlet dimer coverings 

 

 
Singlet excitations could lead to power-

law dependence Cv ~ T
α
  

Candidate ground state: VB crystal or 

spin liquid  (RVB) 

 

Herbertsmithite ZnCu3(OH)6 : a possible 

physical realization 



 

Majumdar – Ghosh chain: 

 

Prototype of frustrated model in 1d 

Competition between different couplings 

leads to frustration 
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α = ½ : ground state known exactly, 

doubly degenerate VB states 

 
 

Translationally symmetric ground states: 

RVB states 

 

AKLT model (1987): ground state 

known exactly, valence bond solid state 



 

A chain with spin S = 1 at each site 

Each spin-1 is a symmetric combination 

of two spin-1/2’s 

 

 
S = 1 states: 

↑↑=+= ++ψ,1Z
S  

↓↓=−= −−ψ,1Z
S  
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VBS state: each spin-1/2 forms a singlet 

(valence bond) with a spin-1/2 at a 

neighbouring site. 

Antisymmetric tensor 
αβε : 

 

1,0 =−=== +−−+−−++ εεεε  



Singlet state: βαε βα
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VBSψ : contains configurations which 

look like (in the Z
S representation)  

……0 + 0…..0 – 0…0 + 0….0 – 0 

(each + followed by a – with an arbitrary 

number of zero states in between ), 

floating Néel order 

 

VBS ground state does not have 

conventional LRO but long range string 

order (quantum paramagnet) 

String operator 

αααα πσ j
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String order parameter:  

zyxO ijjistring ,,,lim == ∞→− ασ αα
 

             = 4/9 in the AKLT state 

 > 0  in the Haldane phase 

AKLT Hamiltonian:  
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P2: projection operator onto spin 2 for a 

pair of n. n. spins 

Total spin of each pair cannot be two 

 

AKLT (VBS) state: exact ground state of  

AKLT Hamiltonian with energy zero 

Projection operator  (j = 2) 
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AKLT model smoothly connected to 

spin-1 Heisenberg chain (same physical 

properties) 

Examples of spin-1 AFMs: 

CsNiCl3, RbNiCl3, 

Ni(C2H8N2)2NO2(ClO4) (NENP), 

Y2BaNiO5 etc. 

 

Spin Ladders: 

 

 



 
Examples: Cu2(C5H12N2)2Cl4 

                  (C5H12N)2CuBr4 

                  (5IAP)2CuBr4.2H2O 

Excitation spectrum is gapped  

Family of ladder compounds 

Srn-1Cun+1O2n planes of weakly-coupled 

ladders of (n + 1)/2 chains 

Odd-even effect : 

Excitation spectrum gapped (gapless) for 

n even (odd) 

Doped ladder models: toy models of 

strongly correlated systems 

Ladder compound: Sr14-xCaxCu24O41, 

exhibits superconductivity under 

pressure (hole doped) 

Tc ~ 12 K at a pressure of 3 GPa 



 

Spin-disordered states: quantum 

paramagnets, characterized by the 

existence of novel order parameters 

MG model: 

No LRO in the two-spin correlation 

function in the ground state 

 

K
2
 ( i, j) = < Si

Z
 Sj

Z
 > = ¼ δij – 1/8 δ|i-j|,1 

Four-spin correlation function has 

ODLRO 

 

K
4
 ( ij, lm) = < Si

x
 Sj

x
 Sl

y
 Sm

y
 > 

 

=  K
2
 ( i, j) K

2
 ( l,m)  

+ 1/64 δ|i-j|,1 δ|l-m|,1 exp (iπ((i + j)/2 – 

(l+m)/2))  

 

 Quantum information theoretic (QIT) 

concepts and tools provide new ways to 

characterize the states 



 



  



 



 



 



 



 



 



 



 



 



 



 



 
 



 



When χx =  χy =  χz = χ , 

 

separability criterion for a single cluster 

of N spins is 

 

χ  ≥ [(gµB )
2
 /kBT ] N/6 

 

More general inequality: 

 

χx  +  χy +  χz ≥ NS / kBT  

 

Brukner et al. (2004, 2006) analysed 

susceptibility data of cupric nitrate 

trihydrate with TC ~ 5 K 

 

Tribedi and Bose ( 2005): for 

polyoxovanadate compound 

TC ~ 25.4  K 

 

Vértesi and Bene (2006): for NaV3O7,  

TC ~ 365 K! 



 
 

Christensen et al., PNAS (2007) 

 

Neutron scattering cross-section: 

 
2

2

iSf
dEd

Q

d

≈
Ω

σ

 

 

Structure factor   
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Entanglement properties of spin- 

disordered states: 

 

For rotationally invariant states, reduced 

density matrix of two spins describes a 

Werner state: 

  

Ipp 4/)1(2 −+= −− ψψρ  

 ( - 1/3 ≤ p ≤ 1) 

Concurrence  

)2/12/3,0(max)( 2 −= pC ρ  
 

Two-site von Neumann entropy 

 

∑−=
j

jjS λλρ log)( 2
 

 

   = 2 – ( 1 + 3p)/4 log ( 1 + 3p) 

      -3 ( 1 – p )/4 log ( 1 – p ) 

 



Examples of rotationally-invariant states: 

 

Ground state of MG chain, RVB states 

 

Ground state of MG chain: the VB spins 

are maximally entangled, concurrence 

has non-zero value only if the two spins 

form a singlet 

One-site, two-site von Neumann 

entropies can be calculated 

 

RVB state on a bipartite lattice: 
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Chandran et al. (PRL 2007): 

 

RVB states are genuine multipartite 

entangled with a negligible amount of 

two-site entanglement 

 



Dhar and Sen (De) (2010) : RVB state on 

a spin ladder, bipartite entanglement on 

rungs (chains) significant (not 

substantial) 

Genuine multipartite entanglement 

negligible 

 

Sen (De), Sen et al., PRL (2010) 

Area law: 

 

Block entanglement in a gapped ground 

state is proportional to the area of block 

boundary 

 

At criticality: more complex relations 

 

Highly frustrated systems: area law not 

obeyed 

 

AKLT VBS state: 

 



Single-site von Neumann entropy has 

maximum possible value log 3 

 

Two-site von Neumann entropy has 

maximum value in the AKLT state for a 

one-parameter family of S = 1 

Hamiltonians (Tribedi + Bose, PRA 

2007) 

 
a = 2 corresponds to AKLT model 

 

Signatures of quantum phase transitions 

in spin systems using QIT measures: 

 

Quantum phase transitions (QPTs) in 

many body systems: occur at T = 0, 

brought about by tuning a non-thermal 



parameter (pressure, chemical 

composition, magnetic field etc.) 

 

QPTs: first order, second order…. 

 

Classical critical point: thermal 

fluctuations, scale invariance, divergent 

correlation length. Free energy is a non-

analytic function at T =Tc 

 

Quantum critical point: quantum 

fluctuations at T = 0, scale invariance, 

divergent correlation length. 

Ground state energy: non-analytic 

function of tuning parameter g = gc 

 

Quantum Information Theoretic (QIT) 

measures like entanglement and fidelity 

provide signatures of QPTs 

 



First order QPT: discontinuity in first 

derivative of ground state energy 

Discontinuity in bipartite entanglement 

measure (Bose et al 2002, Wu et al 2004) 

 

Second order QPT: 

discontinuity/divergence in second 

derivative of ground state energy 

Discontinuity/divergence in first 

derivative of  bipartite entanglement 

measure 

 

How does entanglement evolve at a  

QPT ? 

 

Osterloh et al. Nature (2002) 

Osborne et al. PRA (2002) 
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 γ = 0: isotropic XY model 

 



γ = 1: transverse Ising model 

QCP at λc = 1 

Order parameter: <S
x
 > ≠ 0 for λ > λc  

                                       = 0 for λ ≤ λc 

<S
z
 > ≠ 0 for any value of  λ 

 

Is entanglement between distinct 

subsystems extended over macroscopic 

regions ? 

Concurrence: measure of pairwise 

entanglement 

Transverse Ising model: at λc = 1, 

C(n) = 0 for n > 2 

Pairwise entanglement is not long-ranged 

 

( ) .1ln
3

8
1

2
constC +−=∂ λ

πλ  

 



 
(Osterloh et al., Nature 2002) 

 

First derivative of concurrence: non-

analytic at QCP 

Vidal et al. PRL (2003): consider 

entanglement between a block of spins 

(length L) and rest of the system 

 

Von Neumann entropy: 

 

SL = (c1+ c2)/6 log2 L + k 

(diverges logarithmically with L) 

 

First derivative of  )( iS and  ),( jiS  w.r.t.  



λ diverges at QCP λc = 1 (Chen 2007) 

 

Generalised global entanglement (GGE): 

measure of multipartite entanglement 

 

 
GGE maximal at critical point 

Entanglement length (EL) diverges at 

critical point  

EL is half the correlation length 

 

Another QIT measure: Fidelity F  

 
(Modulus of overlap of normalized 

ground state wave functions) 

 

Reduced Fidelity (RF): refers to a 

subsystem 



 
(Overlap between reduced density 

matrices )(hρρ ≡  and )(
~

δρρ +≡ h  ) 

Fidelity and RF drop sharply at a QCP 

Fidelity susceptibility diverges  

 

 



 
 

We use QIT measures to study QPTs in 

two-chain spin ladders 

  

 
Ladder Hamiltonian: 

 



 
Organic ladder compounds exhibit QPTs 

by varying an external magnetic field H 

Examples: Cu2(C5H12N2)2Cl4 

                  (C5H12N)2CuBr4 

                  (5IAP)2CuBr4.2H2O 

Two QCPs: at HC1 and HC2  

Generic Phase Diagram 

 

 



 

0 < H < HC1: spin gap phase (∆ = 

magnitude of spin gap) 

Zeeman splitting of triplet excitation 

spectrum 

 

 
 

At H = HC1 = ∆, gap closes and QPT 

occurs to Luttinger Liquid (LL) phase 

with gapless excitation spectrum 

 



At H = HC2, another QPT to the fully 

polarized ferromagnetic (FM) state 

occurs 

Do QIT measures provide signatures of 

QPTs at H = HC1 and HC2 ? 

 

Our work (Tribedi and Bose, PRA 2009) 

 

Single-site von Neumann entropy: 

)(log)()( 2 iiTriS ρρ−=  
ρ (i) = single-site reduced density matrix 
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λi (i = 1, 2): diagonal elements of ρ (i) 

 

dH

idS )(
 diverges only near HC2 



 
Two-site entanglement: 

),(log),(),( 2 jijiTrjiS ρρ−=  
 

             
εi’s: eigenvalues of ρ (i , j) 

Again, first derivative of S(i, j) w.r.t. H 

diverges at H = HC2 but not at H = HC1 



 
Similar result is obtained for first 

derivative of nearest-neighbour 

concurrence w.r.t. magnetic field 

 

Can other QIT measures detect both the 

QCPs ? 

 

 

Reduced Fidelity (RF): 

 
Consider one-site RF 



One-site reduced density matrix is 
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Another measure: RF susceptibility 

(RFS) 

 

 
m(H) = 

z

iS  known close to QCPs 

 

 
 

RF drops to zero at both QCPs 

RFS diverges at both QCPS 

 



 

 
A new measure of quantum correlations: 

Quantum Discord 
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