Spin-Disordered States: An Overview

Indrani Bose Department of Physics Bose Institute

Interacting spin systems: spins interact via Heisenberg exchange interaction

Heisenberg Exchange Interaction Hamiltonian:

$$H = \sum_{(i,j)} J_{ij} S_i S_j S = 1/2, 1, ...$$

Lattice dimensionality: d Spin dimensionality: n Ising model (n =1) XY model (n =2) Heisenberg model (n =3) Interaction: may be ferromagnetic or antiferromagnetic

Fully anisotropic Heisenberg Hamiltonian in 1d:

$$H_{XYZ} = \sum_{i=1}^{N} \left[J_x S_i^x S_{i+1}^x + J_y S_i^y S_{i+1}^y + J_z S_i^z S_{i+1}^z \right]$$

In most cases, ground state and lowlying excitation spectrum are known

Ferromagnetic ground state: simple, all spins parallel Excitations: spin waves Linear chain Heisenberg ferromagnet: $\rightarrow \rightarrow$

$$H = -J \sum_{i} S_{i} \cdot S_{i+1}$$
$$H = -J \sum_{i=1}^{N} \left[S_{i}^{Z} \cdot S_{i+1}^{Z} + \frac{1}{2} \left(S_{i}^{+} \cdot S_{i+1}^{-} + S_{i}^{-} \cdot S_{i+1}^{+} \right) \right]$$

$$S^{Z} | \alpha \rangle = \frac{1}{2} | \alpha \rangle, S^{Z} | \beta \rangle = -\frac{1}{2} | \beta \rangle$$

$$S^{+}|\alpha\rangle = 0, S^{+}|\beta\rangle = |\alpha\rangle, S^{-}|\alpha\rangle = |\beta\rangle, S^{-}|\beta\rangle = 0$$

Eigenvalue problem: $H|\psi\rangle = E|\psi\rangle$

 $\varepsilon = E + \frac{JN}{4}$, energy of excited state measured with respect to ground state energy $E_g = -\frac{JN}{4}$ $\varepsilon = J (1 - \cos(k))$ $k = 2\pi \frac{\lambda}{N}, \lambda = 0, 1, 2, ..., N$

Antiferromagnetic ground state: more complex, exact state known using the Bethe Ansatz

Exact ground state energy = $NJ (-ln2 + \frac{1}{4})$

Two-spin correlation function in the ground state:

$$\langle 0|\boldsymbol{S}_n\cdot\boldsymbol{S}_0|0
angle \propto (-1)^n \frac{1}{(2\pi)^{\frac{3}{2}}} \frac{\sqrt{\ln n}}{n}.$$

(No long range order)

Ground state: spin disordered

Ground states likely to be spindisordered in low dimensions and in the presence of frustrating interactions

In low d: the effect of quantum fluctuations prominent, melting of spin order

Frustration arises due to conflict in the minimization of spin-spin interaction energies

Valence bonds (VBs) provide a pictorial representation of spin disordered states

Valence Bond state (frozen VBs):

Shastry-Sutherland model

VBs along dimers for J'/J < 0.7At the critical point transition from gapful disordered state to AFM ordered gapless state

SrCu₂(BO₃)₂ : magnetic properties captured by the SS model Consider a square plaquette of spins interacting via the AFM Heisenberg exchange interaction

Ground states: resonating valence bond (RVB) states

Spin Liquids?

 Anderson: proposed RVB states of quantum antiferromagnets

CaV₄O₉

Plaquette spins in RVB states

S = $\frac{1}{2}$ HAFM on kagomé lattice: a singlet-triplet gap (numerical simulations) Large number of low-lying singlets within gap ~ (1.15)^N Possible explanation: low-lying singlets are RVB states, linear combinations of singlet dimer coverings

Singlet excitations could lead to powerlaw dependence $C_v \sim T^{\alpha}$ Candidate ground state: VB crystal or spin liquid (RVB)

Herbertsmithite $ZnCu_3(OH)_6$: a possible physical realization

Majumdar – Ghosh chain:

Prototype of frustrated model in 1d Competition between different couplings leads to frustration

$$H = J \sum_{i=1}^{N} \left[\vec{S}_{i} \cdot \vec{S}_{i+1} + \alpha \vec{S}_{i} \cdot \vec{S}_{i+2} \right]$$

 $\alpha = \frac{1}{2}$: ground state known exactly, doubly degenerate VB states

Translationally symmetric ground states: RVB states

AKLT model (1987): ground state known exactly, valence bond solid state

A chain with spin S = 1 at each site Each spin-1 is a symmetric combination of two spin-1/2's

$$-\Theta - \Theta - \Theta - \Theta$$

S = 1 states:

$$S^{Z} = +1, |\psi_{++}\rangle = |\uparrow\uparrow\rangle$$

$$S^{Z} = -1, |\psi_{--}\rangle = |\downarrow\downarrow\rangle$$

$$S^{Z} = 0, |\psi_{+-}\rangle = |\psi_{-+}\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)$$

VBS state: each spin-1/2 forms a singlet (valence bond) with a spin-1/2 at a neighbouring site.

Antisymmetric tensor $\mathcal{E}^{\alpha\beta}$:

$$\mathcal{E}^{++} = \mathcal{E}^{--} = 0, \mathcal{E}^{+-} = -\mathcal{E}^{-+} = 1$$

Singlet state: $\frac{1}{\sqrt{2}} \varepsilon^{\alpha\beta} |\alpha\beta\rangle$, summation over repeated indices

$$\left|\psi_{VBS}\right\rangle = 2^{-\frac{N}{2}} \psi_{\alpha_{1}\beta_{1}} \varepsilon^{\beta_{1}\alpha_{2}} \psi_{\alpha_{2}\beta_{2}} \varepsilon^{\beta_{2}\alpha_{3}} \dots \psi_{\alpha_{N}\beta_{N}} \varepsilon^{\beta_{N}\alpha_{1}}$$

 $|\Psi_{VBS}\rangle$: contains configurations which look like (in the *S*^{*z*} representation)0+0....0-0...0+0....0-0 (each + followed by a – with an arbitrary number of zero states in between), floating Néel order

VBS ground state does not have conventional LRO but long range string order (quantum paramagnet) String operator

$$\sigma_{ij}^{\alpha} = -S_i^{\alpha} \exp\left(i\pi \sum_{l=i+1}^{j-1} S_l^{\alpha}\right) S_j^{\alpha}$$

String order parameter:

$$O_{string}^{\alpha} = \lim_{|i-j| \to \infty} \left\langle \sigma_{ij}^{\alpha} \right\rangle, \alpha = x, y, z$$

= 4/9 in the AKLT state

> 0 in the Haldane phase AKLT Hamiltonian:

$$H_{AKLT} = \sum_{i} P_2 \left(\vec{S}_i + \vec{S}_{i+1} \right)$$

P₂: projection operator onto spin 2 for a pair of n. n. spins Total spin of each pair cannot be two

AKLT (VBS) state: exact ground state of AKLT Hamiltonian with energy zero Projection operator (j = 2)

$$P_{j}\left(\overrightarrow{S_{i}} + \overrightarrow{S_{i+1}}\right) = \prod_{l=0,1} \frac{\left[l(l+1) - \overrightarrow{S}\right]}{\left[l(l+1) - j(j+1)\right]}$$

$$\overrightarrow{S} = \overrightarrow{S_i} + \overrightarrow{S_{i+1}}$$

$$H_{AKLT} = \sum_{i} \left[\frac{1}{2} \stackrel{\rightarrow}{S_i} \stackrel{\rightarrow}{S_{i+1}} + \frac{1}{6} \left(\stackrel{\rightarrow}{S_i} \stackrel{\rightarrow}{S_{i+1}} \right)^2 + \frac{1}{3} \right]$$

AKLT model smoothly connected to spin-1 Heisenberg chain (same physical properties) Examples of spin-1 AFMs: C_{sNiCl_3} , $RbNiCl_3$, $Ni(C_2H_8N_2)_2NO_2(ClO_4)$ (NENP), Y_2BaNiO_5 etc.

Spin Ladders:

$$\mathcal{H} = \sum_{j=1}^{L} [J_{\parallel}(S_{1,j} \cdot S_{1,j+1} + S_{2,j} \cdot S_{2,j+1}) + J_{\perp}S_{1,j} \cdot S_{2,j}]$$

$$-\mathcal{H} \sum_{j=1}^{L} (S_{1,j}^{t} + S_{2,j}^{t}),$$
Examples: $Cu_{2}(C_{5}H_{12}N_{2})_{2}Cl_{4}$

$$(C_{5}H_{12}N)_{2}CuBr_{4}$$

$$(5IAP)_{2}CuBr_{4}.2H_{2}O$$
Excitation spectrum is gapped
Family of ladder compounds
$$Sr_{n-1}Cu_{n+1}O_{2n} \text{ planes of weakly-coupled ladders of (n + 1)/2 chains } Odd-even effect : Excitation spectrum gapped (gapless) for n even (odd) \\ Doped ladder models: toy models of$$

strongly correlated systems

Ladder compound: $Sr_{14-x}Ca_{x}Cu_{24}O_{41}$,

exhibits superconductivity under

pressure (hole doped)

 $T_c \sim 12$ K at a pressure of 3 GPa

Spin-disordered states: quantum paramagnets, characterized by the existence of novel order parameters MG model: No LRO in the two-spin correlation function in the ground state

$$\begin{split} &K^2 \ (\ i, j) = < S_i^{\ Z} \ S_j^{\ Z} > = \frac{1}{4} \ \delta_{ij} - \frac{1}{8} \ \delta_{\text{li-jl},1} \\ & \text{Four-spin correlation function has} \\ & \text{ODLRO} \end{split}$$

$$K^{4}(ij, lm) = \langle S_{i}^{x} S_{j}^{x} S_{l}^{y} S_{m}^{y} \rangle$$

=
$$K^{2}$$
 (i, j) K^{2} (l,m)
+ 1/64 $\delta_{\text{li-jl},1} \delta_{\text{ll-ml},1} \exp(i\pi((i + j)/2 - (l+m)/2))$

Quantum information theoretic (QIT) concepts and tools provide new ways to characterize the states

$$rac{1}{\sqrt{2}}\left(\!\left|0
ight
angle\!\left|1
ight
angle\!-\!\left|1
ight
angle\!\left|0
ight
angle\!
ight
angle
ight)$$

Cannot be written as a product of individual qubit states

$$\frac{1}{\sqrt{2}} (|0\rangle |0\rangle + |0\rangle |1\rangle) : \text{ unentangled, i.e.,}$$
separable state

More general definitions: Quantum states: pure or mixed

Pure state: can be described by a single ket vector or a sum of basis states

$$|\Psi_{1}\rangle = |a\rangle, |\Psi_{2}\rangle = \frac{1}{\sqrt{2}}|a\rangle + \frac{1}{\sqrt{2}}|b\rangle$$

Mixed state: statistical mixture of pure states

Represented by density operator $\rho = \sum_{k} p_{k} |\Psi_{k}\rangle \langle \Psi_{k}|$

 p_k : probability that the system is in state $|\Psi_k\rangle, \sum_k p_k = 1$ Pure state: $\rho = |\Psi\rangle\langle\Psi|$

Pure state: $tr(\rho^2)=1$ Mixed state: $tr(\rho^2)<1$

Mean value of observable A: $\langle A \rangle = Tr \ (\rho \ A)$

Pure state: $|\Psi\rangle = |\Phi_1\rangle |\Phi_2\rangle |\Phi_3\rangle |\Phi_N\rangle \Rightarrow \text{ separable}$ $|\Psi\rangle \text{ cannot be written in product form}$ $\Rightarrow \text{ entangled}$

Mixed state: $\rho = \sum_{k} p_{k} |\Psi_{k}\rangle \langle \Psi_{k}|$ Separable: if each $|\Psi|$

Separable: if each $|\Psi_k\rangle$ can be written in product form

Entangled: non-separable

Ground states of quantum many body states: entangled

Entanglement can be

created destroyed manipulated quantified

Entanglement acts as a resource in quantum computation, teleportation and cryptography protocols Can be of different types Bipartite: between two subsystems Multipartite: between more than two subsystems Localizable, zero temperature, finite temperature etc. Appropriate quantification measures are available in some cases Magnetic solids: interacting spin systems Ground and thermal states are entangled Amount of entanglement: can be changed by changing temperature T and external magnetic field h

Measures of Entanglement

N identical $S = \frac{1}{2}$ spins on a lattice

State $|\Psi\rangle \rightarrow$ density matrix $\rho = |\Psi\rangle\langle\Psi|$ One-body reduced density matrix

 $\boldsymbol{\rho}_{i}^{(1)} = Tr_{j\neq i}\boldsymbol{\rho}$

 λ_1, λ_2 : eigenvalues of $\rho_i^{(1)}$

Von-Neumann entropy

$$E = -\lambda_1 \log \lambda_1 - \lambda_2 \log \lambda_2$$

One-tangle $\tau_1 = 4 \det \rho_i^{(1)} = 4 \lambda_1 \lambda_2$

E, τ_1 : measure the entanglement of the *i*-th particle with the rest (measure of global entanglement)

 $E = \tau_1 = 0$ (for each particle *i*) $\Leftrightarrow |\Psi\rangle$ is a factorised state, i.e., separable

PAIRWISE ENTANGLEMENT

Two – body reduced density matrix $\rho_{ij}^{(2)} = Tr_{k\neq i,j} \rho$ $\rho_{ij}^{(2)}$: 4×4 matrix

$$R = \boldsymbol{\rho}_{ij}^{(2)} \left(\boldsymbol{\sigma}_{i}^{y} \otimes \boldsymbol{\sigma}_{j}^{y} \right) \boldsymbol{\rho}_{ij}^{(2)*} \left(\boldsymbol{\sigma}_{i}^{y} \otimes \boldsymbol{\sigma}_{j}^{y} \right)$$

 $\lambda_1, \lambda_2, \lambda_3, \lambda_4$: decreasing eigenvalues of *R*

CONCURRENCE: $C_{ij} = 2 \max (\lambda_1 - \lambda_2 - \lambda_3 - \lambda_4, 0)$

CKW inequality for three particles $\tau_1 \ge \tau_2 = \sum_{j \neq i} C_{ij}^2$

$$\boldsymbol{\tau}_{A(BC)} = C_{AB}^2 + C_{AC}^2 + \boldsymbol{\tau}_{ABC}$$

Pairwise entanglement does not exhaust the global entanglement

OUR TOOLS TO STUDY ENTANGLEMENT T = 0: one tangle τ_1 , concurrence C_{ii}

Some idea of *n*-wise entanglement through CKW conjecture

T > 0 : concurrence C_{ij} only Good news: τ_1, C_{ij} are easy to calculate

Experimental demonstrations of entanglement : mostly confined to the microworld

Ghosh, Rosenbaum, Aeppli and Coppersmith (Nature 425, 48 (2003) : Entanglement can affect the magnetic properties of solids

Macroscopic properties of $LiHo_{0.045}Y_{0.955}F_4$ showing effects of entanglement

Thermodynamic properties can serve as macroscopic entanglement witnesses Brukner, Vedral, Zeilinger (2004): Susceptibility as enanglement witness in antiferromagnetic spin dimer system Thermal entanglement properties of small spin clusters (Bose + Tribedi, Phys. Rev. A 72, 022314 (2005))

Molecular and nanomagnets: dominant interactions are confined to small spin clusters like dimers, trimers, tetramers etc.

Examples:

Dimers $(S = \frac{1}{2})$: Cu(NO₃)₂ 2.5 D₂O, VO (HPO₄).0.5 H₂)

Symmetric trimers $(S = \frac{1}{2})$: Na₉ [Cu₃Na₃(H₂O)₉ (α - AsW₉ O₃₃)₂].26H₂O [Cu₃(cpse)₃ (H₂O)₃].8.5 H₂O

Tetramer (S = $\frac{1}{2}$) Polyoxovanadate compound (NHEt)₃[V₈^{IV} V₄^V As₈O₄₀(H₂O)].H₂O Finite temperature entanglement properties:

Tetrahedron:

 $\frac{J_2}{J_1} = 0.5$, T_c : temperature above which entanglement as measured by concurrence is zero Calculation of C_{ij} 's : requires knowledge of both eigenvalues and eigenvectors of Hamiltonian Macroscopic thermodynamic observables can serve as EWs Experimental data can provide evidence for entanglement

Entanglement witness Z_{EW} : ρ is entangled $\Rightarrow tr(Z_{EW} \rho) < 0$ ρ is separable $\Rightarrow tr(Z_{EW} \rho) \ge 0$ Internal energy U, Magnetization M, Susceptibility χ : serve as Ews

Suceptibility χ_{α} along direction α $\alpha = x, y, z$:

$$\boldsymbol{\chi}_{\alpha} = \frac{(g\boldsymbol{\mu}_{B})^{2}}{k_{B}T} \left[\left\langle (M_{\alpha})^{2} \right\rangle - \left\langle M_{\alpha} \right\rangle^{2} \right]$$

$$M_{\alpha} = \sum_{j} S_{j}^{\alpha}$$

Magnetic field = zero $\Rightarrow \langle M_{\alpha} \rangle = 0$
Isotropy $\Rightarrow \chi_{x} = \chi_{y} = \chi_{z} = \chi$
 $\chi = \frac{(g\mu_{B})^{2}}{k_{B}T} \left[\frac{N}{4} + \frac{2}{3} \sum_{i < j} \langle S_{i} . S_{j} \rangle \right]$

N = number of interacting spins

 $\sum_{i < j} \langle S_i . S_j \rangle = \langle H_s \rangle, \text{ where } H_s \text{ is}$ Hamiltonian with all-to-all spin couplings

 $\langle H_s \rangle < 0$ because of AFM correlations

For separable states, $\langle H_s \rangle_{min} =$ ground state energy of equivaent classical Hamiltonian

$$N=4, \langle H_s \rangle_{\min} = -\frac{1}{2}$$

Susceptibility curve for V12

$$\frac{J_1}{k_B} \approx 17.6 K$$
, $T_C \approx 25.4 K$: the critical

entanglement temperature (lower bound)

below which entanglement is present in V12 T_{c}^{pair} : critical temperature for pairwise entanglement $\approx 15.2 K$

 $T_C > T_C^{pair} \Rightarrow$ entanglement other than pairwise entanglement present for $T_C^{pair} < T < T_C$

Result for tetrahedron:

When $\chi_x = \chi_y = \chi_z = \chi$,

separability criterion for a single cluster of N spins is

 $\chi \ge \left[\left(g\mu_B\right)^2/k_BT\right] N/6$

More general inequality:

 $\chi_x + \chi_y + \chi_z \ge NS / k_BT$

Brukner et al. (2004, 2006) analysed susceptibility data of cupric nitrate trihydrate with $T_C \sim 5 \text{ K}$

Tribedi and Bose (2005): for polyoxovanadate compound $T_C \sim 25.4$ K

Vértesi and Bene (2006): for NaV₃O₇, $T_C \sim 365$ K!

Christensen et al., PNAS (2007)

Neutron scattering cross-section:

$$\frac{d^{2} \sigma}{d \Omega \ dE} \approx \left| \left\langle f \right| S_{Q} \ \left| i \right\rangle \right|^{2}$$

Structure factor $S_Q = \sum_j S_j \exp(iQ.r_j)$ Entanglement properties of spindisordered states:

For rotationally invariant states, reduced density matrix of two spins describes a Werner state:

$$\rho_{2} = p \left| \psi^{-} \right\rangle \left\langle \psi^{-} \right| + (1-p)/4I$$

$$(-1/3 \le p \le 1)$$
Concurrence
$$C(\rho_{2}) = \max(0, 3/2p - 1/2)$$

Two-site von Neumann entropy

$$S(\rho_2) = -\sum_j \lambda_j \log \lambda_j$$

$$= 2 - (1 + 3p)/4 \log (1 + 3p)$$

-3 (1 - p)/4 log (1 - p)

Examples of rotationally-invariant states:

Ground state of MG chain, RVB states

Ground state of MG chain: the VB spins are maximally entangled, concurrence has non-zero value only if the two spins form a singlet One-site, two-site von Neumann entropies can be calculated

RVB state on a bipartite lattice:

 $|\Psi\rangle = \sum h(i_1, ..., i_N, j_1, ..., j_N) |(i_1, j_1)..., (i_N, j_N)\rangle$ Chandran et al. (PRL 2007):

RVB states are genuine multipartite entangled with a negligible amount of two-site entanglement Dhar and Sen (De) (2010) : RVB state on a spin ladder, bipartite entanglement on rungs (chains) significant (not substantial) Genuine multipartite entanglement negligible

Sen (De), Sen et al., PRL (2010) Area law:

Block entanglement in a gapped ground state is proportional to the area of block boundary

At criticality: more complex relations

Highly frustrated systems: area law not obeyed

AKLT VBS state:

Single-site von Neumann entropy has maximum possible value log 3

Two-site von Neumann entropy has maximum value in the AKLT state for a one-parameter family of S = 1Hamiltonians (Tribedi + Bose, PRA 2007)

a = 2 corresponds to AKLT model

Signatures of quantum phase transitions in spin systems using QIT measures:

Quantum phase transitions (QPTs) in many body systems: occur at T = 0, brought about by tuning a non-thermal parameter (pressure, chemical composition, magnetic field etc.)

QPTs: first order, second order....

Classical critical point: thermal fluctuations, scale invariance, divergent correlation length. Free energy is a non-analytic function at $T = T_c$

Quantum critical point: quantum fluctuations at T = 0, scale invariance, divergent correlation length. Ground state energy: non-analytic function of tuning parameter $g = g_c$

Quantum Information Theoretic (QIT) measures like entanglement and fidelity provide signatures of QPTs First order QPT: discontinuity in first derivative of ground state energy Discontinuity in bipartite entanglement measure (Bose et al 2002, Wu et al 2004)

Second order QPT: discontinuity/divergence in second derivative of ground state energy Discontinuity/divergence in first derivative of bipartite entanglement measure

How does entanglement evolve at a QPT ?

Osterloh et al. Nature (2002) Osborne et al. PRA (2002)

$$H = -\lambda \sum_{i=1}^{N} (1+\gamma) S_{i}^{x} S_{i+1}^{x} + (1-\gamma) S_{i}^{y} S_{i+1}^{y} - \sum_{i=1}^{N} S_{i}^{z}$$

$$\gamma = 0: \text{ isotropic XY model}$$

 $\gamma = 0$: isotropic XY model

 $\begin{array}{l} \gamma = 1: \mbox{ transverse Ising model} \\ QCP \mbox{ at } \lambda_c = 1 \\ Order \mbox{ parameter: } <\!\!S^x > \neq 0 \mbox{ for } \lambda > \lambda_c \\ = 0 \mbox{ for } \lambda \leq \lambda_c \\ <\!\!S^z > \neq 0 \mbox{ for any value of } \lambda \end{array}$

Is entanglement between distinct subsystems extended over macroscopic regions ? Concurrence: measure of pairwise entanglement Transverse Ising model: at $\lambda_c = 1$, C(n) = 0 for n > 2Pairwise entanglement is not long-ranged

$$\partial_{\lambda} C(1) = \frac{8}{3\pi^2} \ln|\lambda - 1| + const.$$

(Osterloh et al., Nature 2002)

First derivative of concurrence: nonanalytic at QCP Vidal et al. PRL (2003): consider entanglement between a block of spins (length L) and rest of the system

Von Neumann entropy:

 $S_L = (c1+c2)/6 \log_2 L + k$ (diverges logarithmically with L)

First derivative of S(i) and S(i,j) w.r.t.

 λ diverges at QCP $\lambda_c = 1$ (Chen 2007)

Generalised global entanglement (GGE): measure of multipartite entanglement

$$G(2,n) = \frac{d}{d-1} \left[1 - \sum_{l,m=1}^{d^2} |[\rho(j,j+n)]_{lm}|^2 \right],$$

GGE maximal at critical point Entanglement length (EL) diverges at critical point EL is half the correlation length

Another QIT measure: Fidelity F $F(\lambda, \lambda + \delta \lambda) = |\langle \psi_0(\lambda) | \psi_0(\lambda + \delta \lambda) \rangle|.$

(Modulus of overlap of normalized ground state wave functions)

Reduced Fidelity (RF): refers to a subsystem

$$F_R(h, h + \delta) = \text{Tr}\sqrt{\rho^{1/2}\tilde{\rho}\rho^{1/2}}$$

(Overlap between reduced density matrices $\rho \equiv \rho(h)$ and $\rho \equiv \rho(h+\delta)$) Fidelity and RF drop sharply at a QCP Fidelity susceptibility diverges

Fidelity in the quantum XY chain

$$\hat{H}(\gamma,\lambda) = -\sum_{i=-M}^{M} \left(\frac{1+\gamma}{2} \hat{\sigma}_{i}^{x} \hat{\sigma}_{i+1}^{x} + \frac{1-\gamma}{2} \hat{\sigma}_{i}^{y} \hat{\sigma}_{i+1}^{y} + \frac{\lambda}{2} \hat{\sigma}_{i}^{z} \right)$$

• quantum phase transitions indicated by drop in fidelity. • Ising transition at $\lambda = \pm 1$. • Anisotropy transition at $\gamma = 0$. • critical exponents in agreement with scaling theory.

(Zanardi & Paunkovic, PRE 74, 031123 (2006).)

We use QIT measures to study QPTs in two-chain spin ladders

Ladder Hamiltonian:

$$\begin{aligned} \mathcal{H} &= \sum_{j=1}^{L} \left[J_{\parallel} (\mathbf{S}_{1,j} \cdot \mathbf{S}_{1,j+1} + \mathbf{S}_{2,j} \cdot \mathbf{S}_{2,j+1}) + J_{\perp} \mathbf{S}_{1,j} \cdot \mathbf{S}_{2,j} \right] \\ &- H \sum_{j=1}^{L} \left(S_{1,j}^{z} + S_{2,j}^{z} \right), \end{aligned}$$

Organic ladder compounds exhibit QPTs by varying an external magnetic field H Examples: $Cu_2(C_5H_{12}N_2)_2Cl_4$ $(C_5H_{12}N)_2CuBr_4$ $(5IAP)_2CuBr_4.2H_2O$ Two QCPs: at H_{C1} and H_{C2} Generic Phase Diagram

 $0 < H < H_{C1}$: spin gap phase (Δ = magnitude of spin gap) Zeeman splitting of triplet excitation spectrum

At $H = H_{C1} = \Delta$, gap closes and QPT occurs to Luttinger Liquid (LL) phase with gapless excitation spectrum At $H = H_{C2}$, another QPT to the fully polarized ferromagnetic (FM) state occurs Do QIT measures provide signatures of QPTs at $H = H_{C1}$ and H_{C2} ?

Our work (Tribedi and Bose, PRA 2009)

Single-site von Neumann entropy: $S(i) = -Tr \rho(i) \log_2 \rho(i)$ $\rho(i) =$ single-site reduced density matrix $\rho(i) = \begin{pmatrix} \frac{1}{2} + \langle S_i^z \rangle & 0 \\ 0 & \frac{1}{2} - \langle S_i^z \rangle \end{pmatrix}$ $S(i) = -\sum_i \lambda_i \log_2 \lambda_i$

 λ_i (i = 1, 2): diagonal elements of ρ (i)

 $\frac{dS(i)}{dH}$ diverges only near H_{C2}

Two-site entanglement: $S(i, j) = -Tr \rho(i, j) \log_2 \rho(i, j)$

$$= -\sum_{i} \epsilon_i \log_2 \epsilon_i$$

 ϵ_i 's: eigenvalues of ρ (i, j) Again, first derivative of S(i, j) w.r.t. H diverges at H = H_{C2} but not at H = H_{C1}

Similar result is obtained for first derivative of nearest-neighbour concurrence w.r.t. magnetic field

Can other QIT measures detect both the QCPs ?

Reduced Fidelity (RF):

$$F_R(h, h + \delta) = \text{Tr}\sqrt{\rho^{1/2}\tilde{\rho}\rho^{1/2}}.$$

Consider one-site RF

One-site reduced density matrix is

$$\rho(i) = \begin{pmatrix} \frac{1}{2} + \left\langle S_i^z \right\rangle & 0\\ 0 & \frac{1}{2} - \left\langle S_i^z \right\rangle \end{pmatrix}$$

Another measure: RF susceptibility (RFS)

$$\chi_R(H) = \lim_{\delta \to 0} \frac{-2 \ln \mathcal{F}_R(H, H + \delta)}{\delta^2}$$

m(H) = $\langle S_i^z \rangle$ known close to QCPs

$$m(H) \sim \frac{\sqrt{2}}{\pi} \sqrt{(H - H_{c1})/J_{\parallel}}, \quad H > H_{c1},$$

$$m(H) \sim 1 - \frac{\sqrt{2}}{\pi} \sqrt{(H_{c2} - H)/J_{\parallel}}, \quad H < H_{c2}.$$

RF drops to zero at both QCPs RFS diverges at both QCPS

Some References:

1. Lewenstein et al., Adv. Phys. 56, 243

(2007)

- 2. Amico et al., Rev. Mod. Phys. 80 517 (2008)
- 3. I. Bose, Current Science 88, 62 (2005)
- 4. Low-dimensional quantum spin systems by Indrani Bose in Field Theories in Condensed Matter Physics ed. by Sumathi Rao (Hindustan Book Agency 2001), page 359