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A number of molecular magnets are
represented by weakly-interacting small
spin clusters

(Haraldsen et al., PRB 71 064403
(2005), Bose and Tribedi, PRA 72
022314 (2005))



Spin Trimer

A recently engineered molecular complex
Cr7Ni-Cu2+-Cr7Ni serves as a three-qubit
system (Timco et al. Nature
Nanotechnology 4 173 (2009))



Suggestion: microwave pulse sequences
can be used to generate maximally
entangled states 1n such molecules

Our objective: to quantify quantum
correlations in the ground and thermal



states of spin trimers and tetramers 1n

terms of a new measure, quantum
discord (QD), different from
entanglement

Certain separable mixed states have zero
entanglement but non-zero discord

Quantum mutual information I(pag):
measures total correlations (quantum +
classical) in a bipartite quantum system

I(pa) =S (pa) + S (p) = S (paB)

pa): reduced density matrix of
subsystem A (B)

pap: density matrix of total system

S(p) =-Tr (p log, p) 1s von Neumann
entropy



Quantum discord (QD):

Q (paB) =1 (pas) —C (paB)

C (pap ) measures classical correlations
Q (pag) measures quantum correlations
How does one quantity Q (pag)?
Classical information theory

Shannon entropy quantifies uncertainty
about random variable A before we learn
its value

H (A)==-) p(a)log p(a)

Correlation between two random
variables A, B, measured by mutual
information

I(A,B)=H (A)+ H(B) - H(A, B)
Alternative definition:
J(A,B)=H(A)-H (A | B)



H (A | B): conditional entropy, quantifies

uncertainty about A given knowledge of
B

H (A, B)= —Zp(a,b)logp(a,b)

H(A|B=-)  p(a, b)log p(a|b)

Since p(a,b)=p(b)p(alb)
H(A,B)=-Y  p(a,b)log{ p (b) p(a|b)}
a,b

H(A,B)=-) p(b)logp(b)

—> p(a, b)log p(a|b)

=H(B)+H(A|B)




Thus,
I(A,B)=J (A, B)
Quantum Information Theory:

Consider a bipartite system with parties
A and B

Quantum Mutual Information:

I(pa) =S (pa)+S(ps)—S (pas)
J(Pa) =S (pa)—S(palps)

S (pa ) =-tr pa log pa (von Neumann
entropy)

Are I ( pag ) and J (pag ) 1dentical?

Quantum generalization of classical
mutual information:

Replace



Classical probability distributions by
density matrices

Shannon entropy by von Neumann
entropy

What about J ( pag )?
Quantum conditional entropy S ( pa | ps )
depends on type of measurement

Different measurement choices yield
different results, so

I (pa)#J (pa)

von Neumann measurement for party B
can be written as

Bi=VIL V", k=0,1
I, = [k (k|



where V 1s a unitary operator with unit
determinant

Projectors By: represent an arbitrary local
measurement on B

Parametrize V as

cosg sin 4 exp(—ig)
V= 2 2
singex (i9) —cosg
2 P 2

0, ¢: azimuthal and polar angles of a
qubit over the Bloch sphere



We consider Von Neumann-type measurements on B defined in terms of a
complete set of orthogonal projectors {”;}= corresponding to the set of possible

outcomes /2]

After measurement :

o=loripgartp,  [*5Pe ')'prs(p '*)

(| B, B\ " " -
where P,:“' (. (I® ”,‘ .]pAB{-I® ”,‘ )) ggﬁgﬁtg ([32<]Jnd|t|onal Entropy: Alternative

J(pABH”;B]’ =3l Pa l:)_S(ipAB‘ ”rB] )

. . Quantum Mutual Information ; Alternative
A measure of classical correlation [2,3] definition [2]

The difference between the total
correlations /{p,) and the classical Qp,)=1p,) - Clp, )
correlations C{p,,) defines the QD [2]




QD can be quantified
analytically/numerically for two-qubit
states

For spin Hamiltonians with specific
features the two-spin reduced density
matrix has the form

[a 0 0 f)
BN
PI=10 2 by 0

\ /0 0 d

The eigenvalues of p;; are:



with
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Mutual information:



3
I'{pag)=5(pa)+5S(pn)+ z Aa logy A

=[]

where
o (Me), (T4e) (I-e),  (1-cs)
S(Pﬂ) - = ) lﬂnﬁ ) - ) luni' )
(1+¢y (14+e) (1-g 1 —¢y
S(pp) = - 7 }lﬂg:r 3 ) 3 ]lﬂg:r{ 5 }
a 00 f
0 b =z 0
PI=1 0 2 by 0
fo0 0 d

When =0, a=d and b; =b,, the
maximization procedure for calculating
the classical correlations can be carried
out analytically
-9

Clpap) = ——logy(1 -] 4

- -

(140

logy(1 +¢)



where

c = max (|c1], |ea|, |e3])

Qpan) =1 (pap) - Clpap)

l
= ll-a-0-a)logl-q-0-e)+(1-a +ata)lgl-a+a+o)

e -eyteg)og(l+e-e+e) +(1 4 +o-o)log(l +e+e-0)
- 14

-0 -yl (1)



Spin Trimer

The Hamiltonian describing the trimer of spin-1/2

3 3
H=J) SiS +61) (S'S! +8/S))
=1 =1

¥+~ el

In the AFM region J > 0, the value of the ground
state QD I1s 0.125 whereas entanglement, as
measured by concurrence, is zero in this case.

In the FM region J < 0, the value of the ground state QD is 0.333 and
the concurrence Is zero.

% QD has a lower value in the AFM region than the FM region

% In both the cases, value of C(pAB) 5 0.082

( Amit Kumar Pal, Indrani Bose, J. Phys.
B (2011)
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Variation of quantum discord (QD) and classical correlation C(pAB) (inset) as a function

of the anisotropy parameter ¢ for different temperatures in the (a) AFM and (b) FM cases
with |J] = 1.

# Inboth the AFM and the FM cases, the QD increases with €.

it At a fixed value of ¢, the QD decreases with increasing T in the
AFM region though non-monotonic behaviour is observed in the
FM case.

% Clp,,) Increases slowly with ¢ for  fixed value of T in the AFM

region whereas in FM case, it decreases with ¢.
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Variation of quantum discord (QD) and classical correlation C(p AB] (Inset) as a function of

temperature T for different values of the anisotropy parameter ¢ in the (a) AFM and (b)
FM cases with [J] = 1.

% QD goes to zero asymptotically with temperature in both the AFM
and the FM cases.

% In the FM case, for low value of ¢, the QD first increases with T
reaches a maximum value and then decreases. For high value of
¢, the variation is similar to that in the AFM case.



Spin Trimer With External Magnetic Field
Now we introduce an external magnetic field in the +z direction.
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Variation of quantum discord (QD) with
magnetic field h at T= 0. The QD remains
constantinthe range 0 S h < 3J/2 . Ath =
3J12 , the value of QD is 0.0838764. When
his>3J2 , the QD is zero.

%t Discontinuous jump of the
QD at 1* order QPT point

Variation of quantum discord (QD) as a

function of temperature for different values
of hand (|| = 1.0) in the AFM and FM

(inset) cases.

% The QD decays asymptotically
with temperature.



Spin Tetramer

At J; =1J,, afirst order QPT separates
two RVB ground states

QD has a discontinuity at the transition
point

(Bose and Chattopadhyay PRA 66
062320 (2002), Wu et al., PRL 93
250404 (2004))
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Variation of n.n. quantum discord (QD), concurrence (CN) and classical correlation
(CC) as functions of temperature for (a) J1 > J2 (J¢ = 2J2 =1.0) and (b) Jf < J2 (2J1 = JQ

=1.0).

% When J1 > Jz, both the CN and QD decreases with temperature

but QD has non-zero values at temperature much higher than

~ the value at which CN goes to zero.
* When | . <J,, CN has zero value at all temperatures. The QD is

zero at T=0, then it increases with T to reach a maximum value
after which It decreases with temperature.



Quantum Correlation under Decoherence

Interaction of a quantum

system with its environment =P DECOHERENCE

We consider interaction of qubits with their local environments.

In the Kraus Operator representation [6]

where E, ,=E,(X)E, Is the Kraus operator

For a Dephasing channel

0),0), — 0,0, Eoz(l e )

I, 0 'xlT}f 10 VY
100, = NID O Y 111, "
with y=1-¢

Using Wemer state p(0) = (1-a)l/4 +aly ") (¢ | (where a €0, 1]and |¢* =
12 (|01) - |10)), spin singlet state) as the initial state, one gets p(t)



_ = QD .
“-'55‘ — CN(pAB) =0(312-y)- %
010 .\"-M |
o [ Qup,,) = % (F(a+b)+F(a-b)} - Fa)2
00— | here F(x) = xlog, x
y a=(1+a),b=2a(1-y)

% The QD vanishes asymptotically
with time in both the cases (in
agreement with Ref. [6]), but not
the CN. CN goes to zero at a
finite time for the tetramer and Is
zero at all t for the trimer.

The variation of the quantum discord (QD) and the concurrence (CN) with v for the
AFM ground state of the trimer (top, a = 1/3) and the tetramer (bottom, o = 2/3).



Conclusions

1]
% 0 in the case of the spin trimer.
2]
3

We find that the QD has a non-zero value for both T=0and T

The QD jumps in magnitude at the first-order QPT point.
The QD goes to zero only asymptotically with T in both the

cases of the trimer and the tetramer which indicates that thermal
fluctuations cannot kil the quantum correlations though the latter
are reduced in amplitude with higher temperatures.

[4] The two-qubit reduced density matrices at T = 0 for the trimer
and the tetramer have the form of Wemer states. The QD
vanishes asymptotically with time when an initial Werner state is
subjected to a dephasing channel.



Sudden Transition Between Classical and

Quantum Decoherence (Mazzola et al., Phys.
Rev. Lett. 104 200401 (2010)

Experimental detection with an all-optical setup
(Xu et al., Nat. Commun. 1 7 (2010))

FIG. 1 (color online). Dynamics of mutual information (green
dotted line), classical correlations (red dashed line), and quan-
tum discord (blue solid line) as a function of ¢ for ¢;(0) = 1,
¢>2(0) = —¢3, and ¢;3 = 0.6. CD and QD stand for the classical
decoherence and quantum decoherence regimes, respectively. In
the inset we plot the eigenvalues Ay, (blue solid line), Ay, (green
dash-dotted line), Ag (red dashed line), and Ay (violet dotted
line) as a function of y¢ for the same parameters.

First evidence of a quantum property completely
unaffected by presence of the environment

Evidence for frozen discord in molecular
magnets”?
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