

Rabi oscillations

Schrödinger Equation $\begin{pmatrix} \dot{c}_S \\ \dot{c}_D \end{pmatrix} = -i \begin{pmatrix} 0 & \Omega/2 \\ \Omega/2 & \Delta \end{pmatrix} \begin{pmatrix} c_S \\ c_D \end{pmatrix}$

Simplest case $\Delta = 0$, "on resonance", $c_S(t=0) = 1$, $c_D(t=0) = 0$:

Solution $c_S(t) = \cos(\frac{\Omega}{2}t)$, $c_D(t) = -i\sin(\frac{\Omega}{2}t)$

Level populations $|c_{S,D}(t)|^2$ = probability of finding atom in state $|S\rangle, |D\rangle$ after excitation for time t show **Rabi oscillations**.

$$|c_S(t)|^2 = \cos^2(t)$$
, $|c_D(t)|^2 = \sin^2(t)$

Note: in a single-atom experiment, the outcome of an individual experiment will be either $|S\rangle$ or $|D\rangle$. The populations are found by repeating the measurement (initial preparation, excitation, state determination) many times and doing statistics over the outcomes.

Rabi oscillations cont'd.

Special cases of coherent time evolution with excitation pulse of duration T:

$$\begin{split} \Omega T &= 2\pi \ , \quad "2\pi\text{-pulse", populations are unchanged} \\ \Omega T &= \pi \ , \quad "\pi\text{-pulse", populations are inverted} \\ \Omega T &= \pi/2 \ , \quad "\pi/2\text{-pulse", populations converted to superpositions and vice versa} \end{split}$$

Examples for $\pi/2$ -pulse: $|S\rangle \to \frac{1}{\sqrt{2}}(|S\rangle - i|D\rangle)$, $|D\rangle \to \frac{1}{\sqrt{2}}(-i|S\rangle + |D\rangle)$

Note: the periodicity of the populations is with Ω , but the periodicity of the wave function is with $\Omega/2$, i.e. a 2π -pulse leaves the populations unchanged but it transforms $|\psi\rangle \rightarrow -|\psi\rangle$; only a 4π -pulse reproduces the original state. This is an important ingredient in quantum logical operations.

Note: a measurement of the state of the qubit in the basis of superpositions $|\pm\rangle = \frac{1}{\sqrt{2}}(|S\rangle \pm |D\rangle)$ (phase factors omitted) corresponds to a $\pi/2$ -pulse followed by a state determination in the $|S,D\rangle$ basis.

Motion and motional qubit

Quantum gates

