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PART I

Thermal stability of self-correcting
Kitaev-like models



Fault tolerant quantum computing

Threshold theorem:
Let p be error rate (probability that a gate is faulty). If it satisfies

Then any function can be computed with accuracy ε
with polylogarythmic overhead in time and space. 
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Property: if a single physical error hits the box, the state remains correctable.



Fault tolerant quantum computing
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If every box received at most single fault x then the state of either of logical qubits
will have always no more than two errors  fl There is no logical error

- fault received by a box

- error inherited from a previous box

- error resulting from propagation of x and x
Remark: the state
will almost never
belong to  the code.
Most time, it will 
have some errors. 



Threshold result

Thus, the logical fault can occur only if two physical faults occur in a single box.

where c is number of pairs of locations.

We concatenate the scheme: 

Aharonov Ben-Or, 
Knill, Laflamme, Zurek,
Kitaev]



High fidelity FT scheme

In FT scheme, we never have a pure state. 

Can we say, that we can preserve a state with high fidelity?  

YES: one has to single out a proper SUBSYSTEM. A qubit on the subsystem
will be preserved with arbitrarily high fidelity.

How to find the relevant subsystem? 

To define qubit subsystem, it is enough to fix two observables X and Z.

Note: XL and ZL act only on a code, we need observables acting on the whole space.

� Ps is projector onto syndrom s

� Corr (s) is correction
procedure, which returns erronous
states to the code subspace

[Alicki, Horodeckis, OSID 2010] 



Main assumptions of original threshold theorem:

1. Phenomenological model of noise (not Hamiltonian one).

2. Active error correction realized by special circuits. 

Problem [Loss & DiVincenzo 1998, Alicki & Horodeckis 2004]: 

In Hamiltonian description of decoherence the noise is not independent

Threshold result within Hamiltonian description

Partial progress: [Tehral & Burkard 2005]

Arbitrary long computing is possible, provided that

Here:
� t0 is time duration of gate,  
� λ0 is norm of Hamiltonian of interaction with the bath.

Open problem:
- λ0 is area below
spectral density
(big, in principle
infinite)



Topological protection

Topological codes seem more physical: 
- the correction can be performed by  the system itself, as magnetization
is maintained in Ising 2D model. 

- Qubits are situated on edges
- code is a ground state of the
Hamiltonian:

s – star, p – plaquette

2D Kitaev code on torus:

Long path of errors corresponds to error on logical qubit

= σx = σz

[Kitaev]



Is 2D Kitaev code self-correcting against thermal noise?

Prob (long path) = # pairs x  Prob(a pair makes long path)

N – average number of pairs
p – probability that a pair makes a long path

N ~ volume
p ~ volume -1

diffusion

Prob (long path) ~ const

fl Kitaev 2D model is not self-correcting for T>0



Rigorous proof of instability of Kitaev 2D model

- runs over qubits, - operators of environment

� Use weak coupling approximation leading to Davies generator: 

� Terms [H, . ] and L commute fl it is enough to consider:

Properties of L

� Hermitian in
scalar product:

� positive

� for our coupling,
L has single 
„ground state”

� L is frustration free:� L is of the form

[Alicki, Fannes, 
MH J. Phys. A 2009]



Rigorous proof of instability of Kitaev 2D model

Thermal instability is related to gap of L:

Theorem: Spectral gap of dissipative generator L for Kitaev 2D model satisfies

Proof: Boring, technical. Using techiques for estimating gaps, but also
explicit calculations of eigenvalues. 

[Alicki, Fannes, 
MH J. Phys. A 2009]



Thermal stability of Kitaev 4D model

In 2D model:
- defects are particles (point-like)
- error form paths
- spreading of errors does not cause increase of energy

fl thermal fluctuations easily produce logical error
(non-trivial loop)

In 4D model, 
- errors are situated on surfaces, 
- defects are strings (boundaries of error surfaces)
- energy is proportional to length of the strings

fl One can try follow Peierls argument for 2D Ising model 
and it should give thermal stability

Problem:
- find topological analogue of magnetization,
- prove that it is stable. 

[Alicki, Fannes, 
MH J. Phys. A 2009]



Thermal stability of Kitaev 4D model

Observables: „dressed” or „error corrected” observables X and Z 
mentioned before

Useful inequality:

Fidelity of logical qubit:

Main result: for 4D Kitaev model we have - linear size of torus

- depends
only on dimension d

and type of lattice

[Alicki, Horodeckis, 
OSID 2010]



Independent/further resutls on instability of stabilizer models

1) No-go results for 2D stabilizer codes
- Terhal & Bravyi, New J. Phys. 11 (2009) 043029 
- Kay

2)  Some general estimates:
[Chesi, Loss, Bravyi. Terhal,  New J. Phys. 12, 025013 (2010)]

3) Analysis of topological models, which allow for universal computing
[H. Bombin, R. Chhajlany, M. H. & M.-A. Martin-Delgado, arXiv:0907.5228]



Summary of PART I

Problems:
• The famous threshold result for fault-tolerant QC assumes phenomenological,
independent noise. Hamiltonian description, the noise is not iid anymore.

2) Generalizations of threshold result to Hamiltonian dynamics exist.
- not quite satisfactory (assume small norm of Hamiltonian of interaction
with the bath)

Self-correcting models: more physical, Hamiltonian description more natural
1) 2D Kitaev model thermally instable (though by logarythmic scaling

temperature, one can prolong time of protection)

2)  4D Kitaev model is thermally stable (though in 3D requires non-local
interaction)

3)  There are more general resutls for stabilizer codes. 



PART II

Quantum communication and cryptography
over EPR networks



Quantum communication over EPR networks: basic scheme

[Acin, Cirac, Lewenstein
Nat. Phys. 2006]

EPR network:
- nodes: EPR pairs
- vertices: labs

Alice

Bob
Alice and Bob 
want to share
EPR pair

Condition: constant number of operations in each vertex

Noiseless case:
- perform Bell measurement
on a chosen path.

- send the resutls to Bob 
- Bob applies a unitary depending
on some function of the outcomes

Bob

Alice

i1

i2

i3
i4 i5



Noisy networks and fault-tolerance

Problem: 
- Can Alice and Bob share an EPR pair over a noisy network?

Equivalently: 
- Can Alice send to Bob an unknown state ? 

- Can Alice and Bob perform BB84 protocol? 
i.e. send each of the four states |0Ú, |1Ú, |+Ú, |-Ú

Solution: given in Perseguers, Jiang, Schuch, Verstraete, Lukin, Cirac, 
Vollbrecht, PRA 78, 062324 (2008). 

YES: there exists a protocol over 2D EPR network, which allows quantum 
communication. It uses scheme for quantum fault-tolerant computing. 

We like this solution, but think it is incomplete.



� since FT QC allows to transmit qubit in time, the network version will transmit
qubit in space
� combining QC forward in time, and backward in time, will allow to 

share e-bit in space

� consider fault tolerant quantum computing (FT QC) on line with local gates
� translate it into teleportation protocol in two-dimensional array

t=0

t=1

t=0

t=1

Two teleportations transport quantum 
computer between time t=0 and t=1

Two qubit gates can be applied to 
neighboring qubits



Noisy networks and fault-tolerance: 
remaining problem

Fault tolerant threshold theorem says that we can have fidelity
arbitrarily close to 1. 

However, this is the fidelity of an apriori known state. 

How to deal with unknown state?  

Computation on line: to our knowledge there is no explicit estimate in
literature, what is the fidelity of storing a qubit in unknown state. 

Proposition: Suppose that error rate p0 satisfies

Then it is possible to maintain a qubit in unknown state with fidelity

vpN eFOFF 0
00                         ))2(1( −− ≥−≥ where

N - number of qubits, 
v – volume of physical encoding circuit (a constant) 



3D networks with quantum communication

The 1D fault-tolerant quantum computing is extremely complicated. 
Much simpler scheme is one based on 2D Kitaev model. 

Quantum communication in 3D  = maintaining qubit in 2D. 

How to protect a qubit in unknown state in 2D?

� Encode a qubit in an unknown state
� Protect the encoded state
� Decode the qubit

encoding decodingprotection

loss of fidelity loss of fidelityarb. small. loss

space

time



Encoding, Protecting, Decoding

Protecting encoded state: 
- measure repeatedly syndrom (i.e. the star and plaquette operators)
- collect outcomes

Encoding/Decoding a qubit: 
- Dennis et al. provided a procedure of enlarging/diminishing code

Problems:
- encoding is in a form of circuit
- decoding is just a reverse of the circuit

Our goal: provide
- Unify the encoding stage with protecting stage

fl encodigng by measuring star Xs and plaquette Zp operators
- Provide single shot decoding. 

Grudka et al. arXiv/????.????



Planar Kitaev code

Torus is not so practical. Here is planar version of toric code encodes one logical qubit.

- qubits are situated on edges
- code is given by all Xs and Zp
equal to +1

s – star, p – plaquette

= σx = σz

Codewords:

Trivial bit 
conf. :

Non-trivial
bit  conf. :

Here:

[Dennis et al. 2001]



Encoding known state in absence of noise

Encoding

� Prepare every qubit in |0Ò state

� Measure all Xs

�Anihilate defects by joining
them with phase-flips in arbitrary way

� Prepare every qubit in |+Ò state

� Measure all Zs

�Anihilate defects by joining
them with bit-flips in arbitrary way

Encoding



Encoding unknown state in absence of noise

• prepare: • measure:

all Zp touching green qubits

all Xs touching red qubits

0

+

10 ba +

• anihilate defects:

Z-type defects move right

X-type defects move up



Encoding unknown state as teleportation

• Prepare a code without our qubit we want to encode
• Attach the qubit and measure the only left Xs and Zp:

But: 

Bell measurement

on 



Summary of Part II

� Important problem: communicate quantum information
over EPR networks with constant complexity for each node

� Previous result: Fault tolerant quantum computing in dimension d fl
quantum communication over EPR networks of dimension d+1

� Problem: One element was lacking – encoding unknown state

Our resutls:
� we have provided explicit estimate for fidelity of encoding a qubit :

within standard FT scheme

� we proposed an encoding scheme for Kitaev code, basing
on measuring star and plaquette operators in ideal case

Work in progress:
� currently we are making simulations of our encoding for noisy case


