Mirta Rodríguez, IEM CSIC, Madrid SPAIN TUNABLE PARTICLE CURRENT WITH A FLASHING PERIODIC POTENTIAL

Motivation: ratchet phenomena

- In general, a time-dependent potential with non-zero average results in a directed current.
- It is normally expected that the opposite case i.e. a timedependent field with zero mean may not lead to a directed current.
- This is however not the case: ratchet phenomena.
- In a ratchet system a directed current is generated along a periodic structure without using a biased field, i.e. using a time dependent field of zero mean.
- Unidirectional motion in some biological systems

Classical ratchet: flashing sawtooth potential

Picture from T. Salger et al Science 326,2009

One obtains a directed current from a stochastic force with zero average

- On: particles role down a potential hill.
- Off: Stochastic Brownian motion redistributes particles.
 When the potential is off, particles are able to jump over the potential barrier.
- Thus particles move to the left even if on average the potential is zero.

Symmetries underlying classical ratchet dynamics

S. Flach, O. Yevtushenko, Y Zolotaryuk, PRL 84 (2000)

- Classical trajectory: $X(t,X_0,P_0) = P(t,X_0,P_0)$
 - $\mathbf{S}_{t} \quad \forall (t+\varsigma) = \forall (-t+\varsigma) \qquad t \rightarrow -t + 2\varsigma$
 - $X(-t+2\zeta, X_0, P_0)$ -P(-t+2 ζ, X_0, P_0)
 - $\mathbf{S}_{\mathbf{x}} \quad V(t) = -V(t+T/2), \qquad V(x+\chi) = -V(-x+\chi)$
 - $t \rightarrow t + T/2$ $x \rightarrow -x + 2\chi$

$$-X(t+T/2,X_0,P_0+2\chi) -P(t+T/2,X_0,P_0)$$

ergodic theorem \rightarrow average momentum zero

If either S_x or S_t symmetries are fulfilled, there is no ratchet current

Quantum ratchets follow a similar principle and both symmetries S_t and S_x need to be broken in order to induce a directed current.

Hänggi et al, Flach et al

Evolution in a periodic time-dependent field

$$H(t) = H_0 + V(t) \qquad H_0 = -J \sum_{l} \left(b_l^{\dagger} b_{l+1} + b_{l+1}^{\dagger} b_l \right)$$
$$V(l,t) = Kf(t)V(l) \qquad f(t) = f(t+T)$$
$$V(l) = V(l+L)$$

$$H(t) | \psi(t) \rangle = i \frac{\partial}{\partial t} | \psi(t) \rangle$$

Initial state $|\psi(t_0)
angle$ with zero momentum

Floquet theory for time-periodic potentials

$$\begin{split} H^{F} &= H(t) - i\frac{\partial}{\partial t} \qquad H(t) = H(t+T) \\ H^{F} |\phi_{\alpha}(t)\rangle &= \varepsilon_{\alpha} |\phi_{\alpha}(t)\rangle \qquad |\phi_{\alpha}(t)\rangle = |\phi_{\alpha}(t+T)\rangle \\ \text{quasienergies} \qquad \text{cyclic states} \end{split}$$

One can expand the wave function in the cyclic state basis with the corresponding quasienergies .

The initial state is the zero momentum eigenstate of H_0 .

$$|\psi(t)\rangle = \sum_{j} e^{-i\varepsilon_{j}t} c_{j} |\phi_{j}(t)\rangle$$
$$c_{j} = \langle \phi_{j}(0) |\psi(0)\rangle,$$

Current

The momentum of the particle at any time t is given by

$$\langle p(t) \rangle = \sum_{j,j'} c_j c_{j'}^* e^{-it(\varepsilon_j - \varepsilon_j')} \langle \phi_{j'}(t) | p | \phi_j(t) \rangle$$

The interesting quantity is the average current after n cycles which is the average of the average current during period m

$$\mathcal{I}(nT) = \frac{1}{n} \sum_{m=1}^{n} \mathcal{I}_m$$

$$\mathcal{I}_m = \frac{1}{T} \int_{(m-1)T}^{mT} \langle p(t') \rangle dt'.$$

asymptotic current & symmetries

$$\mathcal{I}(nT) = \frac{1}{n} \sum_{j,j'} c_j c_{j'}^* \langle p \rangle_{jj'} \frac{1 - e^{-inT(\varepsilon_j - \varepsilon_j')}}{1 - e^{iT(\varepsilon_j - \varepsilon_j')}}$$

$$\langle p \rangle_{jj'} \equiv \frac{1}{T} \int_0^T \langle \phi_j(t) \, | \, p \, | \, \phi_{j'}(t) \rangle \, e^{-it(\varepsilon_j - \varepsilon'_j)} dt.$$

• If S_t and S_x are broken, then $\langle p \rangle_{ii}$ non zero \rightarrow ratchet

$$\mathcal{I}(\infty) = \sum_{j} |c_j|^2 \langle p \rangle_{jj}$$

• If either of the symmetries is preserved $\langle p \rangle_{ii} = 0 \rightarrow$ no asymptotic current

S.Denisov, L. Morales-Molina. S. Flach, P. Hanggi, PRA 75,063242 (2007)

Unless one exploits some resonance in the system

Ultracold atomic samples \rightarrow experimental realization of a quantum ratchet

pics from I. Bloch's group

pics from S. Franke-Arnold et al OE 2007

Experimental realization of a non-dissipative quantum ratchet

$$V(x,t) = A(t)[V_1 \cos(2kx) + V_2 \cos(4kx + \phi)]$$

$$A(t) = A_1 \sin^2(\omega t/2) + A_2 \sin^2(\omega t + \theta/2)$$

$$\int -\pi/2 = 0 + \pi/2$$

$$\phi = \pi/2$$

T. Salger , S. King, T. Hecking, C. Geckeler, L. Morales-Molina, M. Weitz, Science 326, 2009

Quantum effects:

Dependence on initial time

Quantum beatings

T. Salger et al Science 326,2009

cyclic eigenstates

T. Salger et al Science 326,2009

ring+resonant weak driving force

$$H(t) = H_0 + V(t)$$

$$H_0 = -J \sum_{i=1}^{L} |i\rangle \langle i+1| + |i+1\rangle \langle i|$$

$$V(i,t) = V \sin(\omega t) [\sin(Mx_i) + \alpha \sin(2Mx_i + \phi)]$$

M integer < (L-1)/2 L system size

- On resonance
- Weak driving V/J<1

flashing potential does not break the temporal symmetry \rightarrow no ratchet current

$$V(x)=\sin(x)+\alpha \sin(2x+\phi)$$

- α=0, φ=0
- α non-zero, $\phi=0$
- α, φ non-zero

V(t)=sin(ω t)+ β sin(2 ω t) • β =0

β non-zero

 $V(x)=[sin(x)+\alpha sin(2x+\phi)] sin(\omega t)$ breaks the spatial but not the temporal symmetry

C E Creffield and F. Sols, Phys Rev. Lett 103, 200601 (2009)

average current (blue line) and average current per cycle a) M=5, L=41, ω =J, V/J =0.1 , α =1.2 , ϕ = π /4 b) V/J=0.1, sqrt(10)10⁻²,10⁻³

no asymptotic current current changes sign with ϕ and is 0 for $\phi=0$ maximum average current M tunable time-scale for the maximum current

$$\begin{array}{c} |k = \pm 2\rangle & & \\ & \omega & \\ |\phi_{k,n}(t)\rangle = |k\rangle |n\rangle = |k\rangle e^{-in\omega t} \\ |\phi_{-2,2}\rangle & |\phi_{0,0}\rangle & |\phi_{2,2}\rangle \\ |k = 0\rangle & & \end{array}$$

Weak driving V/J<1</p>

$$\mathcal{T}(\epsilon) = V + VG_0(\epsilon)\mathcal{T}$$
$$G_0(\epsilon) = \sum_j \frac{|j\rangle\langle j|}{\epsilon - \varepsilon_j^0} \ \varepsilon_j^0 \equiv E_k - n\omega$$

$$\mathcal{T}(\varepsilon_{0}^{0}) \simeq VG_{0}(\varepsilon_{0}^{0})V$$

$$\langle 0, 0 | T | 0, 0 \rangle = \sum_{j} \frac{|\langle j | \hat{V} | 00 \rangle|^{2}}{\varepsilon_{0} - E_{j}}$$

$$\langle 0, 0 | T | 0, 0 \rangle = \frac{V^{2}}{8} \left(\frac{1}{\varepsilon_{0} - E_{11}} + \frac{1}{\varepsilon_{0} - E_{1,-1}}\right) + \frac{V^{2}\alpha^{2}}{8} \left(\frac{1}{\varepsilon_{0} - E_{21}} + \frac{1}{\varepsilon_{0} - E_{2,-1}}\right)$$

Effective matrix Hamiltonian

$$\mathcal{T} \simeq \frac{V^2}{4} \begin{pmatrix} \delta_{2M}^s(\alpha, \phi) & \Omega_M & \Omega_{2M}(\alpha, \phi) \\ \Omega_M & \delta_M^0 + \delta_{2M}^s(\alpha) & 0 \\ \Omega_{2M}^*(\alpha, \phi) & 0 & \delta_{2M}^a(\alpha, \phi) \end{pmatrix}$$

Effective 3-level model $\mathcal{T}(\varepsilon_0^0) \simeq VG_0(\varepsilon_0^0)V$

$$\mathcal{I}(nT) = \frac{1}{n} \sum_{j,j'} c_j c_{j'}^* \langle p \rangle_{jj'} \frac{1 - e^{-inT(\varepsilon_j - \varepsilon_j')}}{1 - e^{iT(\varepsilon_j - \varepsilon_j')}}$$

Optimal parameters $V(x)=V[sin(Mx)+\alpha sin(2Mx+\phi)] sin(\omega t)$

 $\odot \alpha \sim 1$

• $\Phi \sim \pi/4$

• $2M = k_{max}/2$

Independent of V/J
 → time scale

 $\begin{array}{l} \Omega_{2M}(\pmb{\Phi}) & \sim \text{Cos } 2\pmb{\Phi} \\ [\delta^a{}_{2M}\text{-} \delta^s{}_{2M}](\pmb{\Phi}) & \sim \text{Sin } 2\pmb{\Phi} \end{array}$

Current

 $\mathcal{I}_m = \mathcal{C}(\alpha, \phi) \sum \sin(mT\Delta\varepsilon_{jj'}),$ $j \leq j'$

Amplitude of the current C/4M

• Quasienergies V^2/ω

Resonance ($\omega = J$) Weak coupling (V/J = 0.1) M=5 L=41

Current

a) Φ /π=0.25
 b) Φ /π=0.1

resonance $\omega = J$ weak coupling V/J = 0.1 $\alpha = 1.2$ M = 5 L = 41 $2M = k_{max}/2$ one can obtain tunable strong average currents

- H₀ sets the length L and energy scale J
- Tune driving to resonance ω =J
- Tune α , ϕ to the optimal values
- We obtain an average current $M = k_{max}/4$
- The time scale can be tuned t_e=11.5J/V² by controlling the driving strength.

One can control the state and the average energy in the system

State in the momentum basis

Average
 energy in the system

Robustness

Weak coupling condition
 a) V/ω=0.5

Resonance condition

b) V/ω=0.2 ω=1.01J

● Average current
 Blue → out of resonance
 Red→ stronger coupling
 Green→ gaussian wave
 packet with zero
 momentum

Summary

- One can obtain strong long-lasting average currents using a weakly coupled on-resonant flashing potential
- The potential does not break the time reversal symmetry and it is therefore not a ratchet
- The current is tunable to experimentally relevant times and robust.

J.Santos, R.Molina, J. Ortigoso and MR, arXiv:1010.4523

