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Introduction

Introduction

For a long time, it was believed that quantum mechanical
framework was well understood except some philosophical
issues which may or may not be taken seriously.

About twenty years ago, it began to change. To use
guantum systems to carry out information processing tasks
including computing and communication optimally, one had
to improve the understanding of the nature and
guantification of the quantum correlations.

We understand how to quantify the correlations of a
bipartite system in a pure state. However, there are open
issues in understanding the correlations of any mixed
state, or a multipartite state.

For a two-qubit system, Quantum Discord was introduced
by Ollivier and Zurek to quantify the correlations.



Introduction

Introduction

¢ We have generalized this concept to a multipartite sytem,
in particular to a tripartite system. This generalization is
based on three-variable mutual information.

¢ Classically, mutual information quantifies the correlation of
three random variables. So, it is quite natural to generalize
it to quantum domain to understand the correlations.

e This work has been done in collaboration with Indranil
Chakrabarty and Arun Pati.
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Quantum Discord

Mutual Information

Discord was introduced by Olivier and Zurek (2002) as a
measure of the “ quantumness of correlations”. It is defined in
terms of mutual information which is a measure of amount of
information one random variable possesses about another.
Classically, one can write mutual information in two alternate
ways,

I(X:Y) = H(X)=H(X|Y),
JX:Y) = HX)+H(Y)—H(X,Y).

Here H(X),H(X,Y) and H(X|Y) are the entropy, joint entropy,
and conditional entropy for the random variables X and Y. The
Joint entropy and conditional entropy are related by the chain

rule,
H(X]Y)=H(X,Y) —H(Y).



Quantum Discord

Quantum Domain
These expressions for the entropies can be generalized to the
guantum domain by substituting random variables by density
matrices and Shannon entropies by von Neumann entropies.
For example,

H(X) = H(px) = —Tr[px log(px)]-

One has to be careful in generalizing conditional entropy to
guantum domain. With a specific generalization, the mutual
information can be written as,

(X :Y)=H(X)-HX|{x"}).

7Y pxy Y
HX[{xY}) =Y PiH (ox ) P = Trj(:?;x\]() (where p; is the
probability of obtaining the j th outcome). Here, H(X \{ij}) is
the von Neumann entropy of the qubit X, when the projective
measurement is done on Y.




Quantum Discord

Definition of Quantum Discord

The quantum discord is then defined as,

D(X:Y)=J—1=H(Y)=H(X,Y)+HX|{r"}).

This is to be minimized over all sets of one dimensional
projectors {r }.
e |t was found that the Werner state has non-zero discord in

the domain of the mixing parameter where the
entanglement was known to vanish.

e For a pure bipartite state, it reduces to the measure of von
Neumann entropy.
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Quantum Dissension

Quantum Dissension

We are generalizing the discord to a multipartite system. To do
so we consider three-variable mutual information and take it to
quantum domain. For a multipartite system, we can make not
only one-particle measurement, but also multiparticle
measurements. Different types of measurements may probe
different aspects of correlations. So, the correlations will be
characterized by multiple numbers. These multiple
measurements can be used to define quantities which are
being called “Quantum Dissension”.

In particular, for a three-qubit system, one can consider
one-particle and two-particle measurements. We have chosen
to adopt two different definitions - in one case we only make
one-particle measurements while in the second case we only
consider two-particle measurements.



Quantum Dissension

Three-Variable Mutual Information

Three-variable mutual information is defined as,

(XY :Z)=1(X:Y)=1(X,Y|2).

Here I(X, Y |Z) is the conditional mutual information,
[(X,Y|Z) =H(X|Z)+H(Y|Z) - H(X,Y|Z).

Both I(X : Y ) and I(X,Y |Z) are non-negative. However, there
may exist a situation, when the conditional mutual information is
greater than the mutual information. It happens when knowing
the variable Z enhances the correlation between X and Y. In
such a case, the three variable mutual information is negative.
This happens quite generally, as we shall see in the case of
GHZ and W-states.



Quantum Dissension

Classically Equivalent Expressions

First expression can be obtained which has all possible
conditional entropies with respect to one variable only. Its
generalization to quantum domain will involve only one-particle
measurement. This is,

I(X 1Y :Z)=H(X,Y)=H(Y|X) = H(X]Y)
—H(X|Z) —H(Y|Z)+H(X,Y|Z).
One can convert the above expression that involves conditional
entropies to that contains only entropies and joint entropies.
We obtain,
IJX:Y:Z)=[HX)+H(Y)+H(Z)]-[HX,Y)+H(X,Z)
+H(Y,Z)]+H(X,Y,Z).



Quantum Dissension

Classically Equivalent Expressions

Using the chainrule H(X,Y,Z) =H(Y,Z) + H(X|Y,Z), we
can define three variable mutual information involving two
variable conditional entropies. This gives another equivalent
expression,

K(X:Y :Z)=[H(X)+H(Y)+H(Z)
—[HX,Y) + H(X,Z)] + H(X]Y, Z).

All these three expressions for the three variable mutual
information are classically equivalent, but not so in quantum
domain. The difference of the three definitions can capture
various aspects of the quantum correlations.



Quantum Dissension

One-Particle Measurement

Let us consider a three qubit state pxyz, where X, Y, Z refer to
the first, second and the third qubit. The extension of the
definition of J(X : Y : Z) is obtained by replacing the random
variables by the density matrices and the Shannon entropies by
the Von Neumann entropies. In the quantum case, the
expression for (X : Y : Z) is given by,

(X :Y :Z) =H(X,Y) = H(Y {x}) = HX|{n})
—HX{mf}) = H(Y {7 }) + HX Y {7 })
H(X |{7er} has been defined earlier. Similarly, one can write

down the equivalent expression for H(X|{r}),H(Y [{7}), and
H(Y {7 }).



Quantum Dissension
One-Particle Measurement
H(X,Y|{x2}) = 3 piH — I s the Von
(X, |{7Tj } = Zj Pj (Px,Y|7er)an7Y\7er = W
Neumann entropy of the subsystem pyy, when the projective
measurement is carried out on the qubit Z.

The dissension for one-particle measurement can be defined
as the difference of 1(X:Y:Z) and J(X:Y:Z),

Di(X:Y:Z)=I(X:Y:Z2)=-J(X:Y :2Z)
=HX, Y [{x7}) + [H(X,Z) + H(Y,2)
+2H(X, Y)] = H(X,Y,Z) — [H(X|{x"})
FHX A }) + HY {x }) + HY {7 })]
—[H(X)+H(Y)+H(2)].



Quantum Dissension

One-Particle Measurement

The projective measurement is done on the subsystem py in
the general basis

{|uz) = cos(t)[0) + sin(t)|1), |uz) = sin(t)[0) — cos(t)|1)}
(where t € [0, 27] ).

One minimizes this over all possible one-particle measurement
projectors. So mathematically the dissension is given by,

91 = min(Dy(X : Y : Z)). For single-particle measurements
there can be a number of classically equivalent expressions for
[(X :Y :Z), but the above expression is the most general one
in the sense that it includes all possible one-particle
measurements. As a consequence, the dissension ¢;, may
reveal the maximum possible quantum correlations.



Quantum Dissension

One-Particle Measurement

We note the following,

The dissension is not symmetric with respect to the
permutations of the subsystems X,Y and Z, as in the case
of discord.

For an arbitrary pure three-qubit state J(X : Y : Z) = 0.
Therefore, D1 = 1(X : Y : Z)

For an arbitrary pure three-qubit state,
H(X,Y|Z)=H(X,Z|Y)=H(Y,Z|X)=0.
Dissension and discord are related,

Dy(X:Y:Z) = D(X,Y:Z)—-D(X:Z)-D(Y :2)-
D(X :Y)—D(Y : X).



Quantum Dissension

Two-Particle Measurement

The quantum analogue of the classical mutual information
K(X:Y :2)is,

K(X:Y :Z)=[HX)+H(Y)+H(2)
~[H(X,Y) + H(X,Z)] + H(X[{m*}).

- Y% pxvzm'*
where H(X [{m?}) = 37 pH (px 2 ), x|z =

projective measurement is carried out on the subsystem pyz in
the general basis {|v1) = cos(t)|00) + sin(t)|11), |vo) =
—sin(t)|00) + cos(t)|11), |vg) = cos(t)|01) + sin(t)|10), |v4) =
—sin(t)[01) + cos(t)|10)} (where p; is the probability of
obtaining the j th outcome.). Here,
H(X),H(Y),H(Z),H(X,Y),H(X,Z) represents the VVon
Neumann entropies of the subsystems.



Quantum Dissension

Two-Particle Measurement

To define the dissension, we take

Do(X,Y,Z)=K(X,Y,Z)-J(X,Y,Z)
=HX[{m*}) + H(Y,Z) = H(X,Y,Z).

Like one-particle projective measurement case, we define
dissension as, d, = min(D2(X : Y : Z)). Furthermore, as in the
case of discord, this quantity is not symmetric under the
permutations of X,Y and Z. We note that in this case of three
qubits, D,(X, Y, Z) is nothing but discord with for the split of the
system in X and subsystem 'YZ'.



Quantum Dissension

Two-Particle Measurement

We note the following,

e For an arbitrary pure three-qubit system,
H(X|Y,Z)=H(Y|X,Z)=H(Z|X,Y) = 0. Therefore,
D, = H(X) and the dissension is given by the Von
Neumann entropy of the bipartite partition.

e The relation between the dissension and discord is
Do(X :Y :Z)=D(X:Y,2Z).

e These simple relations exist as we are considering only
three-qubit systems. If we go beyond three qubits, then D,
would not probe bipartite partition only.



Quantum Dissension

GHZ-state

Let us first of all consider pure three-qubit GHZ state

255 = 5{1000){000] + 000} (111]
+]111)(000] + |111)(111[}
For this state,
H(A) = H(B) = H(C) = H(AB) = H(BC) = H(CA) = 1 and

H(ABC) = 0. For conditional entropies, we find,
H(AB|{r}) = 0 and

H(A{7}) = H(A[{m"}) = H(B|{x}) = H(B|{'}) =

1 — cos(2t 1 — cos(2t
(-1 008(21)) g, 2= cOS(2)
1+ cos(2t) 1+ cos(2t)

—( 2 ) log, 2



Quantum Dissension

GHZ State

The expression for D1 is,

D=1+ 4[1 - cgs(Zt) l0g, 1-— cgs(Zt)
1+ cos(2t 1+ cos(2t
10052 1 1+ cos(20)

In the Figure 1 (i) D; is plotted as a function of t. Itis a
oscillating function which varies between [-3,1]. The
dissension §; = —3. The calculations here and below were
performed using the mathematica package QDENSITY. For
GHZ state, in case of two-particle measurement, the
conditional entropy is zero and the dissension reduces to the
bipartite entanglement present in the system and is equal to
one, i.e. 6, = 1.



Quantum Dissension

W-State

We now consider W-state,

W) 1100) + [010) + |001)}

1
ABC — \/§
For this state,

H(A) = H(B) = H(C) = H(AB) = H(BC) = H(CA) = 0.92 and
H(ABC) = 0. Also conditional entropy H(AB]{ij}) =0.

D, is given by,

D; = H(AB) — 4H(A|{n}})

The expression D; for the W state is plotted in Figure 1 (ii).
The dissension ¢, is —1.74.

For the two-particle projective measurements, the conditional
entropy is zero and the dissension 4, is equal to .92.
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Plots for Pure GHZ- and W-states

Dy D,

B (ii

)

Figure: D, for (i) three-qubit pure GHZ state and (ii) three-qubit pure
W state .



Quantum Dissension

Mixed GHZ-state
Let us consider a three qubit mixed GHZ state,
I
porz = (1 - a)g +alGHZ)(GHZ |

The reduced density matrices are,
1 [
PA = pPB = pC = E{’0><0\ +1)(1[} = >

l+a
pa = pec = pca = —,—1100){00] +|11){11[]

+¥[101><01y +]10)(10]]

D; and D, are plotted in Figures 2 (i), (ii). Note that for a = 1,
we get back the D, of the GHZ state. The dissensions ¢; and d»
are non zero for any non-zero values of a. This is like the
two-qubit Werner state. We also notice that D, is independent
of t and reduces to that of the pure GHZ state fora = 1.



Quantum Dissension

Mixed W-State

The mixed three-qubit W state we consider is,

pw = (1— )L +alW)(W|

8
The reduced density matrices are,
3+a 3—a
PA=pPB = pC = 0){0] + 11)(1]
6 6
3+a
pag = pac = pea = [~15-1100)(00] + [01)(01] +[10)(10]

HE 2 1) + S[01)(10] +]20) (01

In the Figures 3 (i) and (ii), we show D; and D, as a function of
the classical probability of mixing a as well as the angle t.
Figure 3 (i) for a = 1, gives Figure 1 (ii). Furthermore, D, is
independent of t and reduces to that of the pure W-state for
a=1.
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Plots for Mixed GHZ-state

Figure: D, and D for three-qubit Mixed GHZ state (figures (i), (i)



Plots for Mixed W-state

Figure: D; and D, for three-qubit Mixed W state (figures (i), (ii)).
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Conclusions

Conclusions

We have generalized discord to a tripartite system using
three-variable mutual information in quantum domain.

We have introduced dissensions §; and d, based on
one-particle and two-particle measurements.

01 can be negative. It reflects the fact that a measurement
on a subsystem can enhance the correlations of the rest of
the system.

Dissension is hon-zero for all non-zero values of the
classical mixing parameter for the mixed GHZ- and
W-states.

In future, one may like to relate dissension to the success
of various quantum information processing tasks.
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