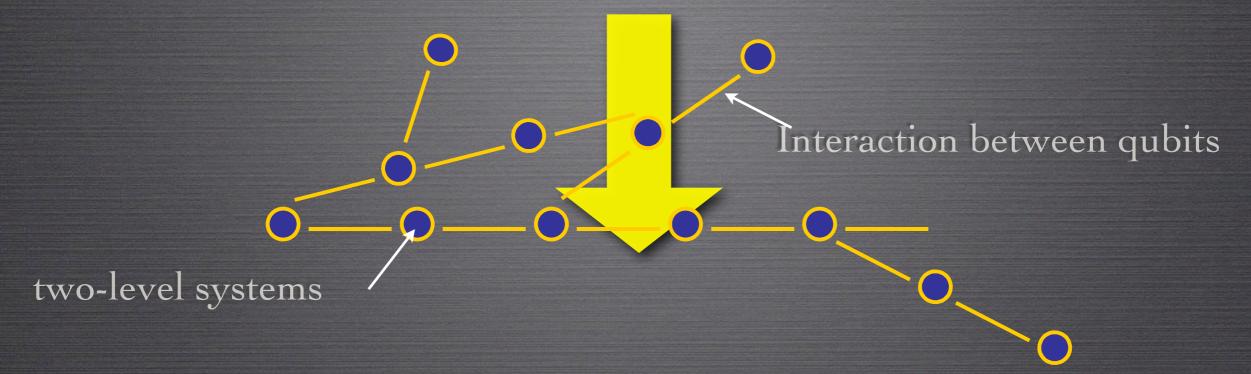
Many-Body physics meets Quantum Information

Rosario Fazio

Scuola Normale Superiore, Pisa & NEST, Istituto di Nanoscienze - CNR, Pisa

Quantum Computers



Many-Body Systems

Controlled in the ...

- preparation
- evolution
- measurement

Links between Quantum Information & Statistical Mechanics

- Quantum Information tools in Condensed Matter
- New methods to study Many-Body problems
- Adiabatic quantum comp. vs Kibble-Zurek mechanism

Links between Quantum Information & Statistical Mechanics

- Quantum Information tools in Condensed Matter
- New methods to study Many-Body problems
- Adiabatic quantum comp. vs Kibble-Zurek mechanism

Review: L. Amico, et al Rev.Mod.Phys. 80, 517 (2008) If

$$|\Psi\rangle_{ab}\neq|\psi\rangle_{a}|\chi\rangle_{b}$$

then the state is entangled

ENTANGLEMENT as a RESOURCE

It is believed to be the main ingredient of computational speed-up in quantum information protocols

Entanglement in Condensed Matter

- Spin Systems
- Superconductivity
- Quantum Hall Effect

•....

- Characterization of condensed phases
- Collective phenomena in Quantum Information and Quantum Communication

How to measure entanglement

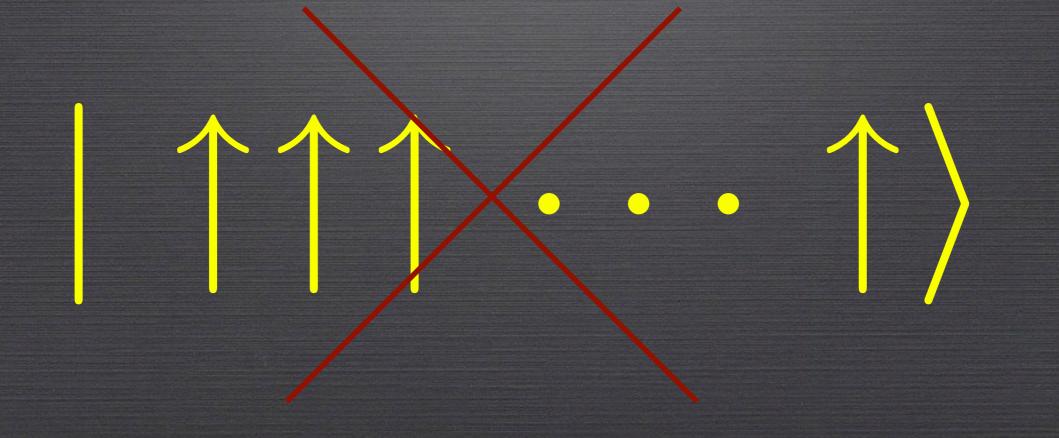
- Entanglement between two spins in the network (bipartite)
- Multipartite entanglement
- Block entropy
- Localizable entanglement

- ...

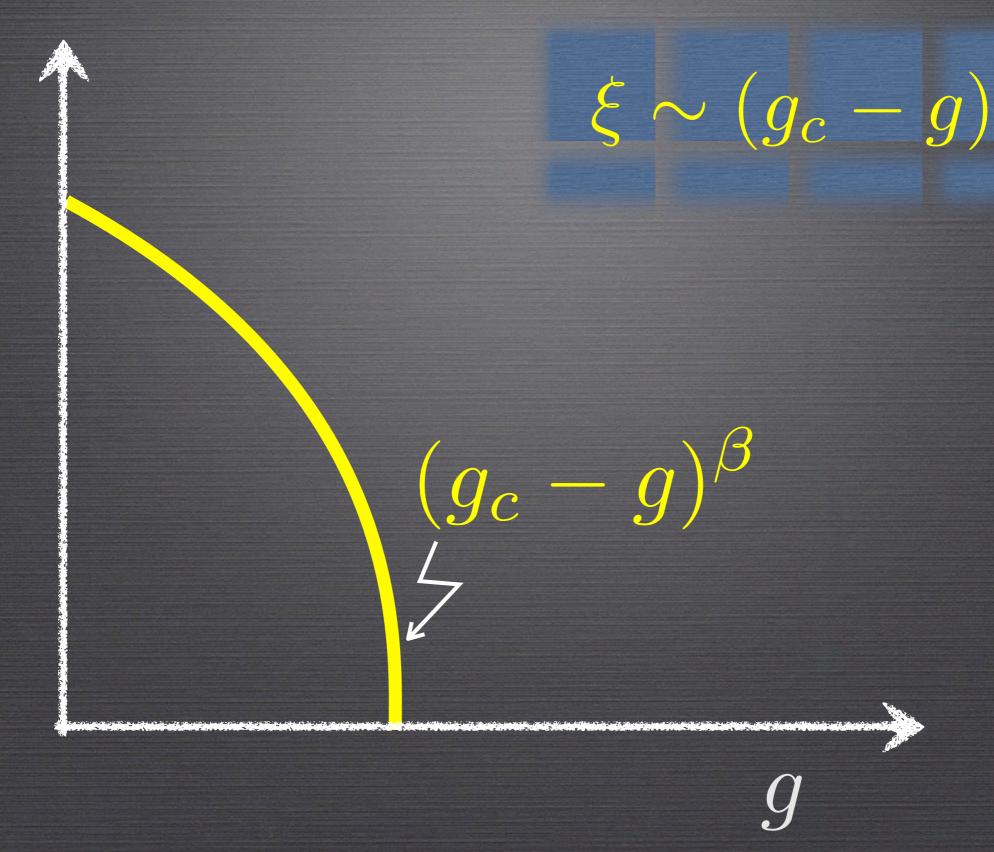
BIPARTITE ENTANGLEMENT \neq CORRELATION

ho(i,j)

THE STATE OF THE TWO SELECTED SPINS IS MIXED



ORDER PARAMETER



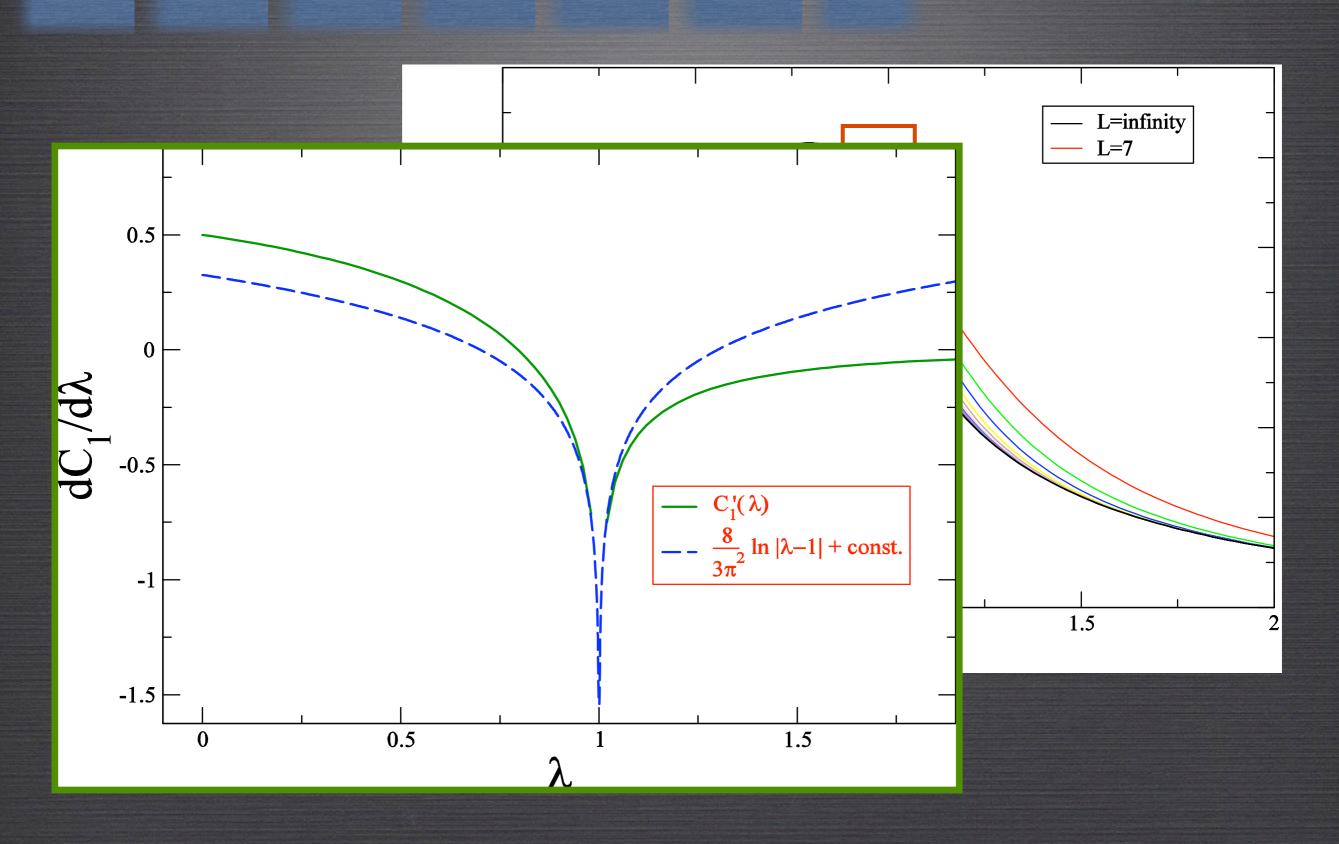
ISING CHAIN IN A TRANSVERSE FIELD

$$H = -\frac{J}{2} \sum_{i=1}^{N} (1 - \gamma) \sigma_i^x \sigma_{i+1}^x + (1 + \gamma) \sigma_i^y \sigma_{i+1}^y - h \sum_{i=1}^{N} \sigma_i^z$$

$$\langle \sigma_x
angle
eq 0$$
 $\lambda = \frac{J}{2h}$

EXACT SOLUTION - FREE FERMIONS

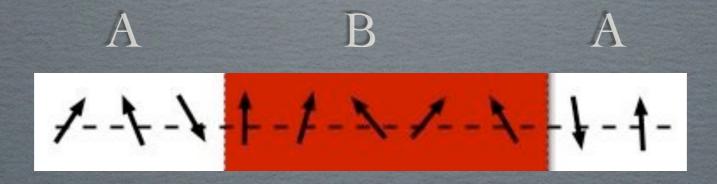
NEXT NEIGHBOR ENTANGLEMENT



Block entropy

Ground State:

$$|\Psi_{GS}\rangle$$



L sites

$$S(\rho_L) \equiv -tr(\rho_L log \rho_L)$$

$$\rho_L = tr_{N-L}(|\Psi_{GS}\rangle\langle\Psi_{GS}|)$$

Block entropy

$$S(\rho_L) \equiv -tr(\rho_L log \rho_L)$$

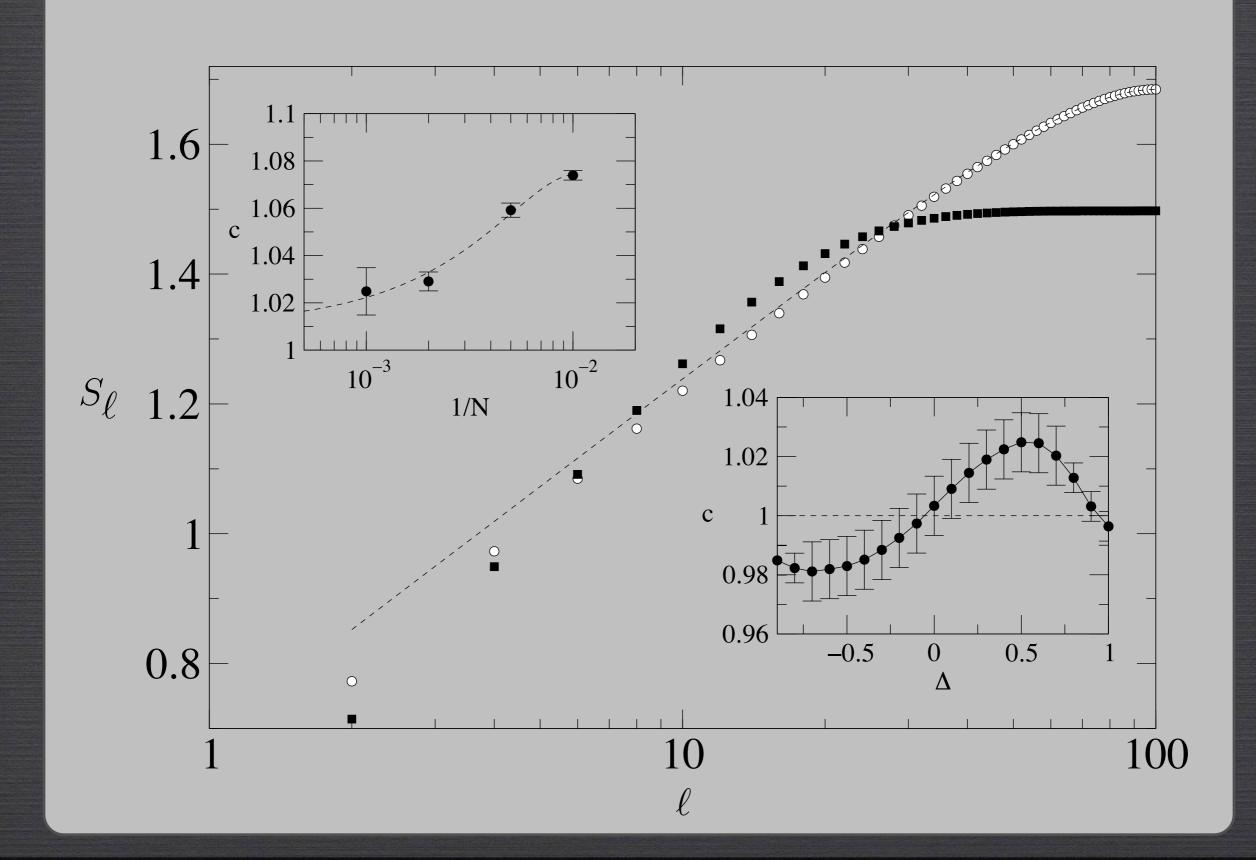
$$S_L \sim \frac{c}{6} \log_2 L$$
 critical chain

$$S_L \sim \frac{c}{6} \log_2 \xi$$
 non-critical chain

Area's law in d dim

$$S_B \sim L^{d-1}$$

ENTROPY SCALING



Links between Quantum Information & Statistical Mechanics

- Quantum Information tools in Condensed Matter
- New methods to study Many-Body problems
- Adiabatic quantum comp. vs Kibble-Zurek mechanism

Reviews:

J. Dziarmaga, Adv. Phys. **59**, 1063 (2010) A. Dutta et al, Rev. Mod Phys. (2011)

ADIABATIC QUANTUM COMPUTATION

E. FAHRI, J. GOLDSTONE AND S.

GUTMANN '00

THE GROUND STATE MAY
STILL
BE VERY DIFFICULT TO

FIND

$$\mathcal{H}_f$$

"EASY" TO WRITE

$$\sigma_1 = \sigma_2 = -\sigma_3$$

$$\sigma_{25} = \sigma_{32} = -\sigma_{12}$$

$$\sigma_{16} = \sigma_{44} = -\sigma_1$$

$$h_{ijk} = \sigma_i^z \sigma_j^z \sigma_k^z + \cdots$$

ADIABATIC QUANTUM COMPUTATION

 \mathcal{H}_i

E. FAHRI, J. GOLDSTONE AND S.
GUTMANN 'OO
THE GROUND STATE IS KNOWN

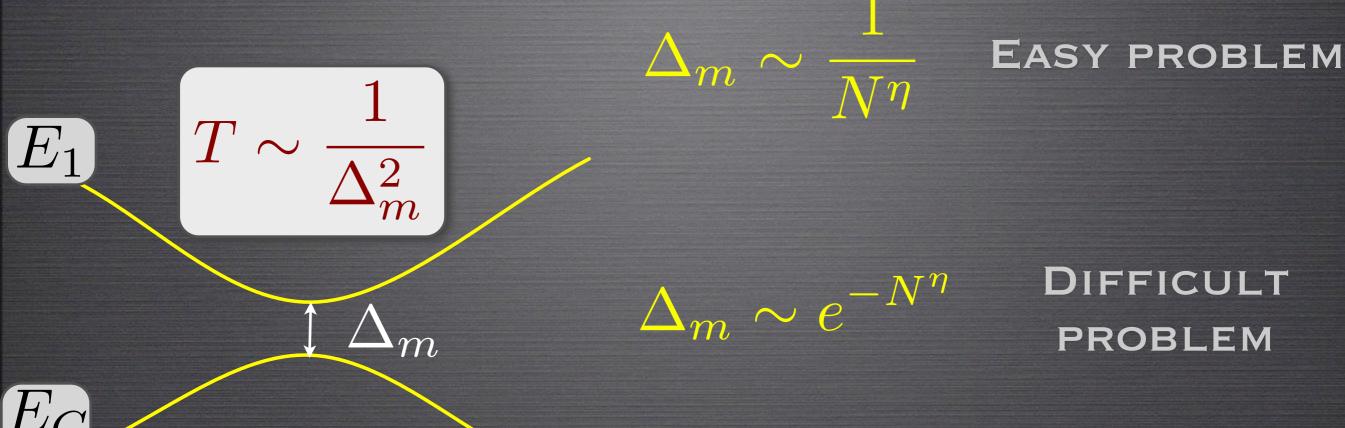
 \mathcal{H}_f

THE GROUND STATE IS THE SOLUTION TO OUR PROBLEM

ADIABATIC EVOLUTION

$$\mathcal{H}(t) = \frac{T - t}{T} \mathcal{H}_i + \frac{t}{T} \mathcal{H}_f$$

ADIABATIC QUANTUM COMPUTATION



DIFFICULT **PROBLEM**

QUANTUM SPEED UP QUANTUM CRITICAL POINT

TOPOLOGICAL DEFECT FORMATION

Signatures of phase transitions which have occurred in the early universe by determining the density of defects left in the broken symmetry phase as a function of the rate of quench.

TOPOLOGICAL DEFECT FORMATION

Simulation of phase transitions in the early universe in condensed matter systems (superfluids and Josephson junctions)

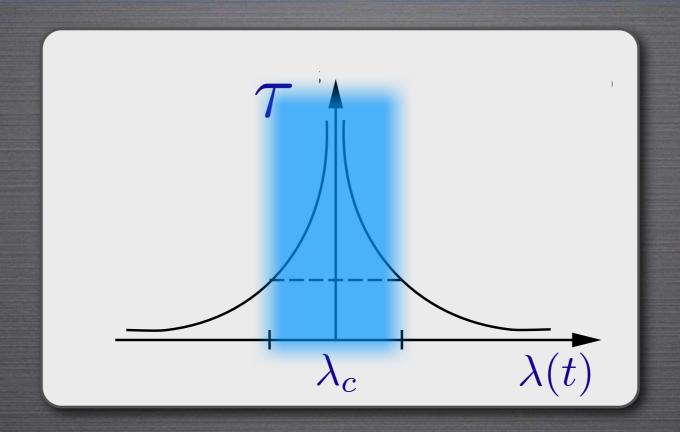
TH: ZUREK '85-'88

EXPS:BAUERLE ET AL '96, RUUTU ET AL'96}

Extension to quantum phase transitions

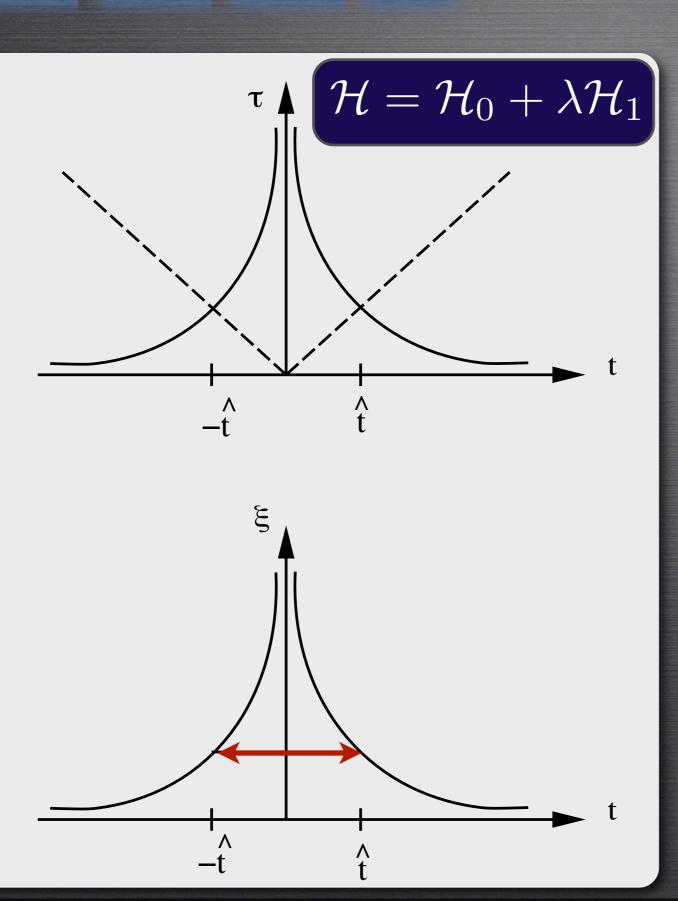
ZUREK, DORNER, ZOLLER '05
POLKOVNIKOV '05

ADIABATIC DYNAMICS CLOSE TO A CRITICAL POINT



- How effective is it to execute a given computational task by slowly varying in time the Hamiltonian of a quantum system?
- Is it possible to find the ground state of a classical system by slowly annealing away its quantum fluctuations?
- What is the density of defects left over after a passage through a continuous (quantum) phase transition?

DEFECT DENSITY



W. Zurek '85 W. Zurek, U. Dorner and P. Zoller '05

A. POLKOVNIKOV '05

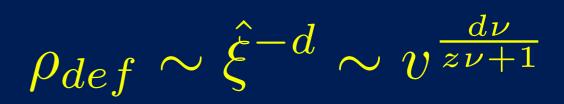
$$\lambda - \lambda_c = vt$$

THE ADIABATIC

APPROXIMATION

BREAKS DOWN WHEN

$$rac{\dot{\lambda}}{\lambda} \sim au$$



 $\mathcal{E}_{res} \sim J \rho_{def}$

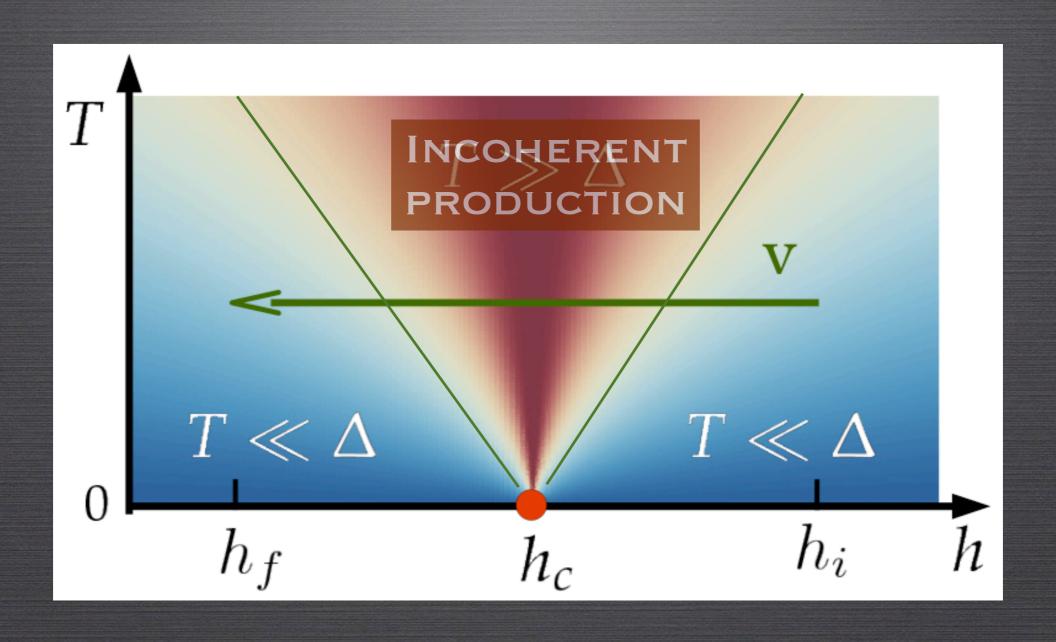
1D ISING MODEL

$$H = -\frac{J}{2} \sum_{j}^{N} \left\{ \sigma_{j}^{x} \sigma_{j+1}^{x} + h(t) \sigma_{j}^{z} \right\}$$

$$h_c = 1$$

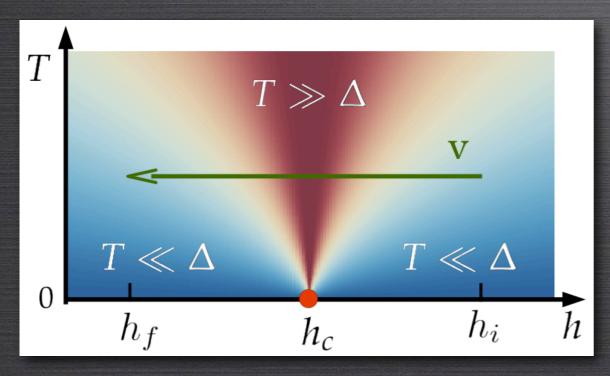
$$\mathcal{E}_{res} \sim \sqrt{v}$$

QUANTUM CRITICAL REGION



"INCOHERENT" DEFECTS

- \checkmark Density of defects $\mathcal{E} \simeq \mathcal{E}_{KZ} + \mathcal{E}_{inc}$
- \checkmark The bath does not influence the system for $T \ll \Delta$
- \checkmark Relaxation in the critical region $au_r^{-1} \propto lpha T^{ heta}$



$$t_{QC} = 2T^{1/\nu z}v^{-1}$$

$$\mathcal{E} = \int \frac{d^d k}{(2\pi)^d} \mathcal{P}_k$$
$$\frac{d}{dt} \mathcal{P}_k = -\frac{1}{\tau} \left[\mathcal{P}_k - \mathcal{P}_k^{th} (h_c) \right]$$

"INCOHERENT" DEFECTS

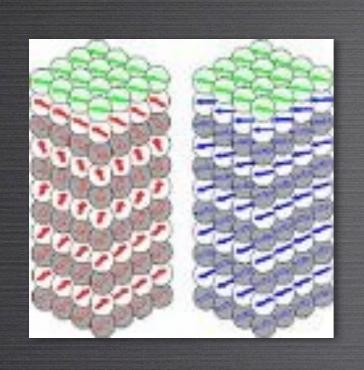
$$\mathcal{E}_{inc} \propto \alpha v^{-1} T^{\theta + \frac{d\nu + 1}{\nu z}}$$

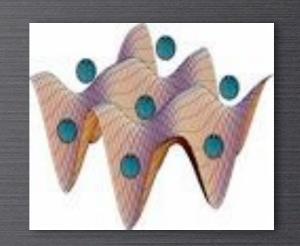
$$v_{cross} \propto \alpha^{\frac{\nu z+1}{\nu(z+d)+1}} T^{\left(1+\frac{(\theta-1)\nu z}{\nu(z+d)+1}\right)\left(1+\frac{1}{\nu z}\right)}$$

Links between Quantum Information & Statistical Mechanics

- Quantum Information tools in Condensed Matter
- New methods to study Many-Body problems
- Adiabatic quantum comp. vs. Kibble-Zurek mechanism

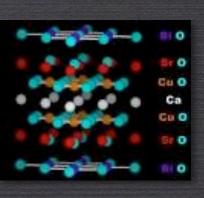
Review:
J.I. Cirac and F. Verstraete, J. Phys. A: Math. Theor. 42, 504004 (2009)





$$|\Psi>=\sum_{\{i_{lpha}\}}C(i_{1},i_{2},\ldots,i_{N})|i_{1},i_{2},\cdots.i_{N}>$$

Exponential Number of Parameters!



VARIATIONAL APPROACH

Educated guess of the ground state wavefunction

EXAMPLE:

Gutzwiller approximation of the Bose-Hubbard Model

$$\mathcal{H} = U \sum_{i} n_i (n_i - 1) - \mu \sum_{i} n_i - t \sum_{\langle ij \rangle} a_i^{\dagger} a_j$$

$$|\Psi>=\prod_{i}\left(\sum_{n_{i}}e^{-k(n_{i}-\bar{n})}|n_{i}>\right)$$

VARIATIONAL ANSATZS & QUANTUM INFORMATION

Briegel, Cirac,
Eisert, Hastings,
Latorre, Plenio,
Verstraete, Vidal,

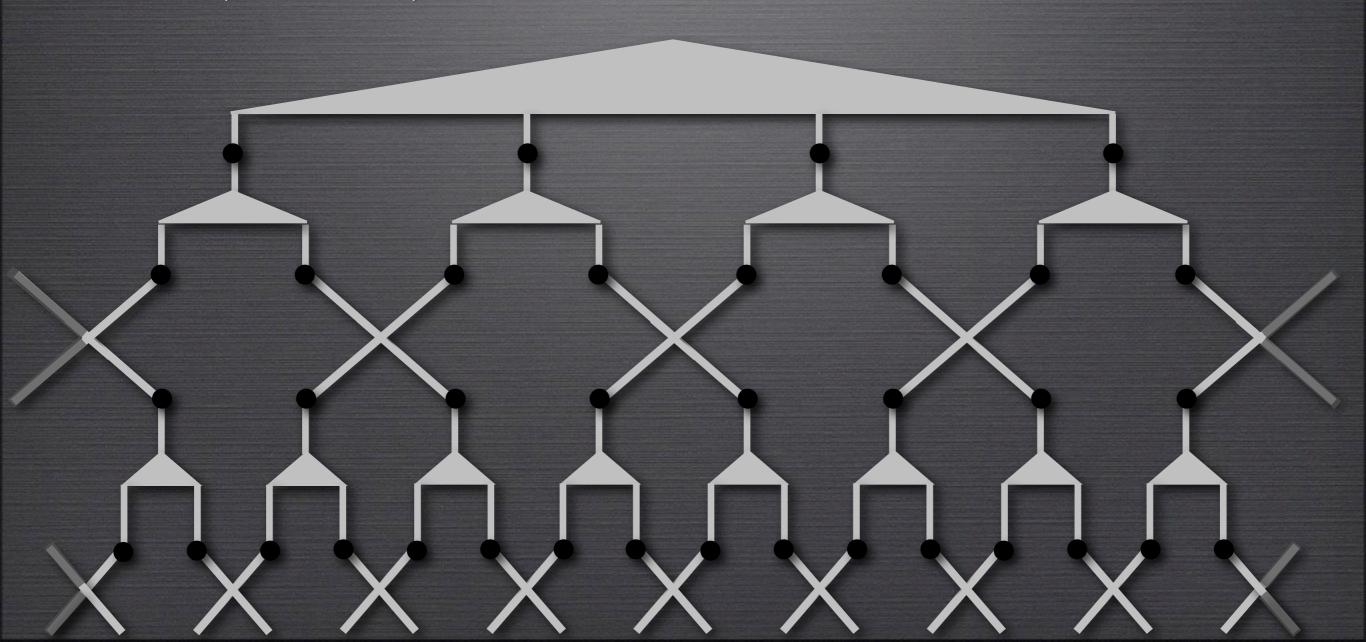
New insight on variational wave-functions from Quantum Information

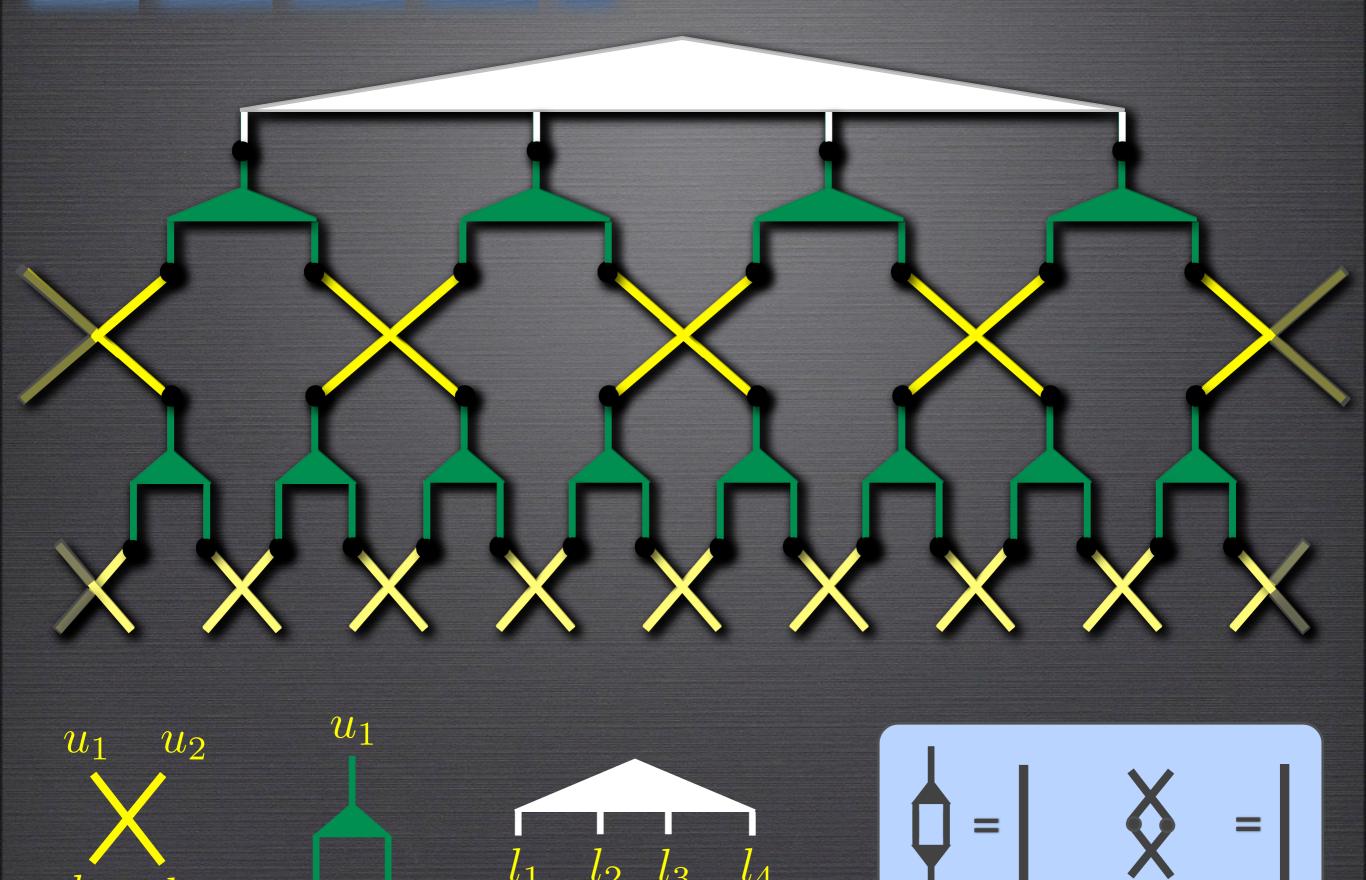
- General schemes for efficient computation of a variational functions (MPS, PEPS, MERA, ...)
- Account for entanglement properties (crucial for critical systems)
- Extensions to time-dependent situations, finite temperatures,...

MULTISCALE ENTANGLEMENT RENORMALIZATION ANSATZ

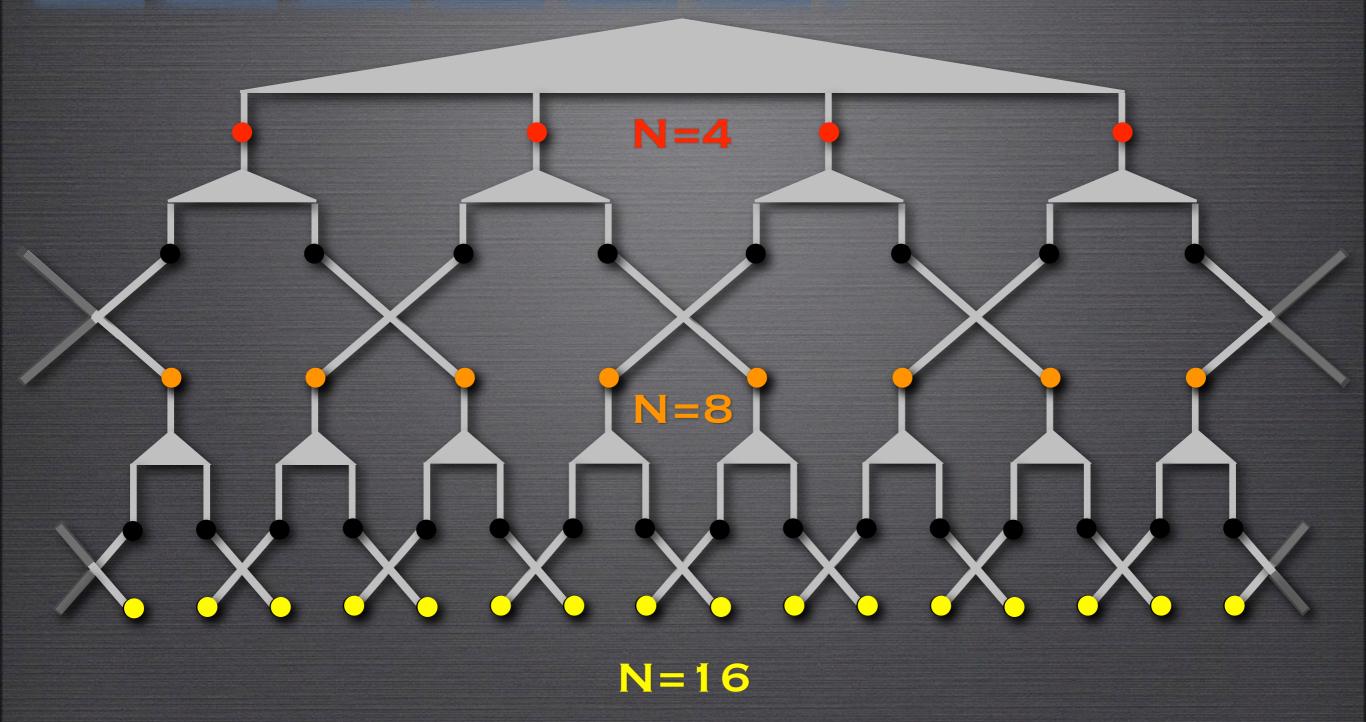
$$|\Psi> = \sum_{\{i_{lpha}\}} C(i_{1}, i_{2}, \ldots, i_{N}) |i_{1}, i_{2}, \cdots .i_{N}>$$

G. Vidal (2005-2009)



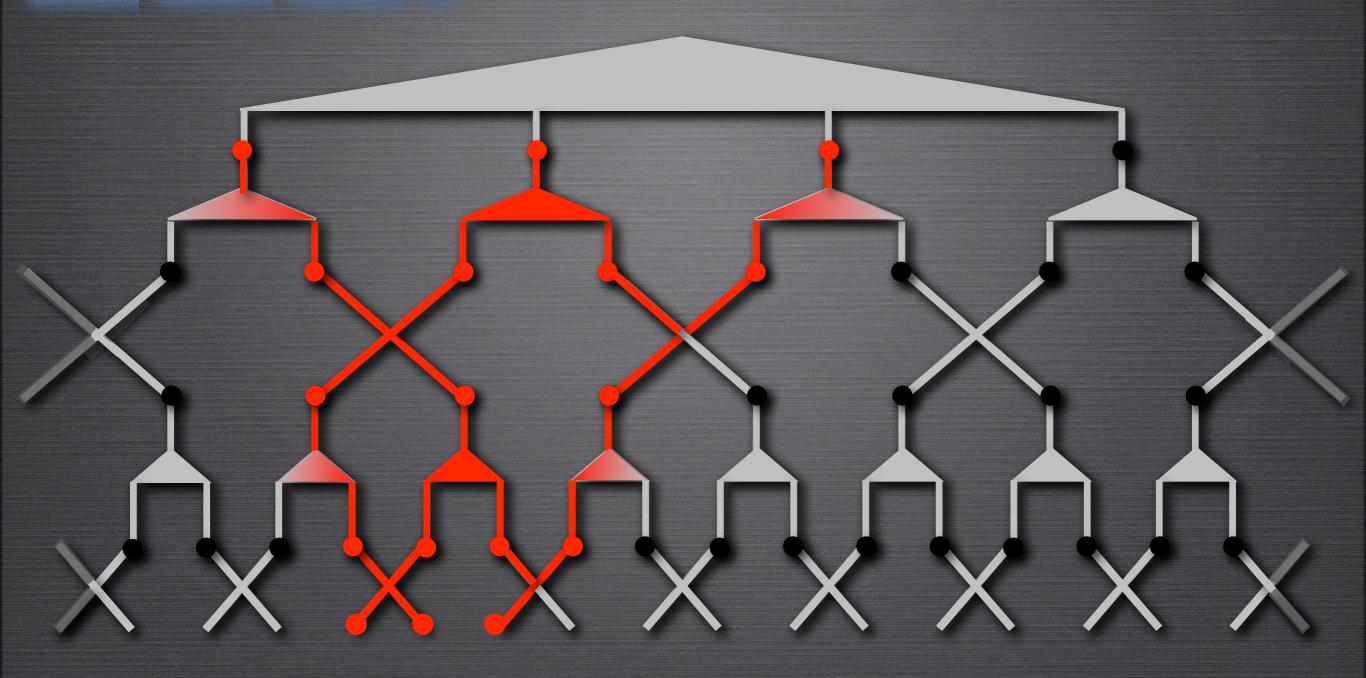


REAL SPACE RENORMALIZATION



$$|\Psi_{i_M}(M \text{ sites})\rangle \rightarrow |\Psi_{i_M+1}(M/2 \text{ sites})\rangle$$

CAUSAL CONE



CRITICAL EXPONENTS ISING MODEL

$$H = \sum_{j} J\sigma_{j}^{x} \sigma_{j+1}^{x} + \sum_{j} B \sigma_{j}^{z}$$

$$<\sigma_{\alpha}\sigma_{\alpha}>-<\sigma_{\alpha}><\sigma_{\alpha}>$$

α	$ u_{lpha}^{exact}$	$ u_{lpha}^{num}$	arepsilon
x	0.25	0.2509	0.36 %
$\mid y \mid$	2.25	2.2544	0.19 %
z	2	2.0939	4.48 %

Links between Quantum Information & Statistical Mechanics

- Quantum Information tools in Condensed Matter
- New methods to study Many-Body problems
- Adiabatic quantum comp. vs Kibble-Zurek mechanism