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Electrons and atoms in the quantum world form many
different states of matter - crystals, magnets,
superconductors, etc

Classification of all these quantum states is through
principle of spontaneous symmetry breaking - e.g., crystal
breaks translational symmetry, ferromagnet breaks spin
symmetry, superconductivity breaks gauge symmetry, etc

Recent years, new way of classifying phases depending on
topological quantum numbers
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Quantum Hall effect

Quantum Hall effect discovered in eighties Hall
conductance quantised σxy = ne2/h
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Problem is of electrons moving on a 2-dim surface in the
presence of a magnetic field in the perpendicular direction
- no electron-electron interactions

Solved in quantum mechanics course -

H =
∑

i

(pi − eAi)
2

2m

leads to degenerate single particle Landau levels -
degeneracy is finite for a given area

When the degenerate states at a given Landau level are
filled, gap to next level
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Actually, the solution of the equations only give the
conductance at the points where the bands are filled
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To understand the plateaux, one needs to understand how
the levels are broadened by disorder

The extra-ordinary accuracy in the presence of disorder is
a surprise!
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What does this mean for conduction of electrons through
the sample?

Semi-classical picture - closed orbits in the interior of the
sample and hopping orbits at the edge of the sample

Electrons at the edges carry current
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Uni-directional flow dictated by the sign of the magnetic
field
Upper edge supports forward movers and lower edge
backward movers
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Because of spatial separation of forward and backward
movers, no possibility of back-scattering due to impurities
Explains robustness and accuracy of the quantisation of
the Hall current - impervious to disorder or impurity
scattering

Well-understood phenomenon by now
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Yet another way of understanding quantisation of current -
Physically measured current is related to a ‘topological
invariant’

Topological invariant = quantity that does not change
under continuous deformation (change of some parameter)
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Topological quantum numbers

Small aside on topological quantum numbers

Simplest case - winding numbers

Winding number is a topological invariant
Depends only on the winding around the point and not on
details such as how the winding is done
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Topological quantum numbers
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Topological quantum numbers

Explains why the quantisation of Hall current is so
accurate, even in the presence of disorder
Can be related to a topological invariant
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Berry phases

Small aside on Berry phase

Consider Hamiltonian that depends on time through
parameter R(t)

H = H(R),R = R(t)

Interested in adiabatic evolution of the system as R(t)
moves slowly along a path C in parameter space

H(R)|n(R) >= εn(R)|n(R) >

where |n(R) > = basis function
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Berry phases

State at time t is given by

ψn(t) = eiγn(t) exp[
i
~

∫ t

0
dt ′εn(R(t ′))] |n(R(t)) >

Second exponential is the dynamical phase factor

But the eigen value equation allows arbitrary R dependent
phase of |n(R) > given by eiγn(t)
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Berry phases

But γn(t) is also important
Using

i~
∂

∂t
|ψn(t) >= H(R)|ψn(t) >

and multiplying on left by < n(R(t))|, find

γn =

∫
C

dR · An(R)

where
An(R) = i < n(R)| ∂

∂R
|n(R) >

An(R) = Berry connection or Berry vector potential
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Berry phases

Can also define Berry curvature

Bn(R) = ∇R × An(R)

and define the Berry phase as

γn =

∫
S

dS · Bn(R)

For closed paths C , Berry phase becomes gauge invariant
physical quantity
Berry curvature is itself gauge invariant

Berry curvature integrated over closed manifold =
topological invariant = 2πn = first Chern number
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Berry phases

IQHE quantisation related to integral over Berry curvature

For electrons in periodic solid, electron momentum
provides natural parameter space
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Berry phases

Berry connection and Berry curvature defined as

ψ(r) = eik·ruk(r), A =< uk| − i∇k |uk >, B = ∇× A

σH =
e2

~
×
∫

FB

d2k
(2π)2 B =

e2

h
n

where FB is a filled Landau band, n = integer
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Berry phases

Thus, each plateau was related to a topological invariant

Can argue that where the system evolves from IQHE to
ordinary insulator, the system cannot remain insulating
Else, the topological invariant cannot change
Hence, it implies conducting edge states
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Berry phases

Hence, understand how edge states and topology are
related

Started the idea of classifying phases of matter through
topology
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Two dimensional topological insulators

Natural question
Can one achieve separation of chiral modes (left and right
moving modes) or equivalently, can one achieve non-trivial
topological phases without magnetic fields, or without
time reversal symmetry breaking?

Haldane (1988) had a toy model which had quantum Hall
physics without magnetic fields, due to non-trivial
topology of Brillouin zone

Haldane, 1988
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Generalise the edge states to have two species at each
edge
One going forwards and one backward, but with different
spins

Overall time-reversal symmetry not broken, but states of
unique chirality for each spin
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Spatial separation of the edge states implies no
back-scattering unless spin can change

Kane and Mele, 2005, Zhang and Bernevig 2006



Introduction Quantum Hall 2D top insulators 3D top insulators Fractional stats and braiding Our work Conclusion

First predicted for graphene with spin-orbit coupling ( to
make it an insulator), but gap is very small and hence,
requires very low temperatures

Kane and Mele
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Hence, in absence of spin-flip scattering, expect the same
physics as for quantum Hall systems
called quantum spin Hall insulator

But no strong magnetic fields here - time-reversal invariant
Hence, achieved edge states without strong magnetic
fields
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Zhang et al studied time-reversal invariant systems with
half-integer spin,
Kramer’s theorem implies all states are doubly degenerate
Realised that a single Kramers pair is topologically
protected
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Kramers degeneracy means that at time-reversal invariant
points k = 0, π, the spectrum should be double degenerate
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Realised that all time-reversal invariant insulators can be
classified into 2 classes, depending on whether they have
even or odd number of edge states
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Protected against back-scattering even when impurity can
change spin (spin-orbit coupling) as long as time-reversal
symmetry unbroken

Another way of understanding
No mass term ( or gap term) can be added without
breaking time-reveral symmetry for one pair of edge
states, whereas it can be added for even number of pairs

Hence all time-reversal invariant insulators can be
classified into 2 classes, depending on whether they have
even or odd number of Kramers pairs of edge states

Bernevig, Zhang and Hughes
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Relation to topology
Oddness or evenness of edge states cannot be removed
under any continuous deformation of band structure, so
long as time reversal symmetry exists
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Insulators with odd number of (pairs of) edge states
belong to different topological class than those of ordinary
insulators

But doubling number of edge states implies
back-scattering allowed and edge states no longer
topologically protected to be massless

Unlike quantum Hall effect, where topological quantum
number was integer, for topological insulators, topological
quantum number is Chern parity - it is only a Z2 invariant
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To find real materials that are topological insulators
Need to look at its band structure

If its band structure has odd number of edge states in the
gap, it is a topological insulator
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Zhang et al argued that materials where ordering of
conduction and valence bands get inverted by spin-orbit
coupling, will be topological insulators

Technically, described by model with negative Dirac mass.
Hence guessed that at the edges between positive and
negative masses, there needs to exist a domain wall, and
hence they would be in a different topological class

Zhang, Bernevig and Hughes
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By explicitly solving for the band structure of Mercury
Telluride HgTe quantum well, they showed that for
thickness greater than some dc(= 6.3nm), the bands are
inverted and HgTe is a topological insulator

Amazingly, HgTe was first predicted and then found to be a
topological insulator
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Finding new topological class of matter or new phase of
matter is like finding new particles in HEP

Just like in HEP, symmetries of standard model predicted
top quark which was then found, here, using symmetry
and topological consideration, new phase of matter was
predicted and then found

Very unusual in condensed matter physics
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No magnetic field required. Opposite spin excitations
move in opposite directions
No Hall current, but net ordinary two-terminal current,
because one spin species at each edge contributes
Experimentally measured 2e2/h Hall plateau in zero
magnetic field

Konig et al, Science, 2007
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Three dimensional topological insulators

Idea of Z2 topological invariant generalised to 3
dimensions

4 independent Z2 invariants can be defined
3 of them ηi are just the generalisations of the 2D Z2 to the
3 surfaces in 3D
The 4th one η3D is a new Z2 index

Weak topological insulator, one or more ηi = −1, η3D = +1

Strong topological insulator, η3D = −1
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Once again, materials (BixSb1−x , Bi2Se3, Bi2Te3, Sb2Te3)
first predicted and then found to be topological insulators

Fu and Kane, R. Roy, Moore and Balents
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Bulk states are fully gapped, but topologically protected
gapless surface states

Surface states consist of single massless Dirac fermions
(helical, with spin perpendicular to momentum) and
dispersion forms Dirac cone
similar to Dirac electrons in graphene, but without the
valley and spin degeneracies
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Using ARPES measurements, surface states were actually
seen in Bi2Se3

Dirac cone seen in what would have been a gap for a
normal insulator

Hasan group, 2008
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Electromagnetic properties

Break time reversal symmetry on the surface and not in the
bulk
Leads to topological magneto-electric effect or axion
electrodynamics

Unlike usual polarisation of a dielectric leading to image
charge, here one has image magnetic charge as well
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Charge-monopole composites or dyons behave like
anyons - i.e., have fractional statistics
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Connection to topological field theories

Quantum Hall effect described by the effective
Chern-Simons field theory Seff = c1

4π

∫
d2x

∫
dtεµντAµ∂νAτ

Generalise to 4+1 dimensions

Seff =
c2

24π2

∫
d4x

∫
dtεµνρστAµ∂νAρ∂σAτ

Claim that this is the fundamental TFT from which effective
theory for topological insulators in 3+1 dimensions and
2+1 dimensions can be derived

Bernevig,Zhang, Hughes
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Quasi-particle excitations in topological insulators

Topological insulators in the proximity of a
superconductor have surface excitations which are like
Majorana particles ( particles which are their own
anti-particles) bound to vortices

Fu and Kane

Majorana particles expected to have ‘non-abelian’
statistics under exchange
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Short course on anyons and fractional statistics

Anyons are particles with ‘any’ statistics intermediate
between bosons and fermions

Consider statistics of 2 indistinguishable particles
(r1, r2) = (r2, r1) and assume r1 6= r2

In 3 dimensions, represent relative space of 2 particles as
a sphere as (R3 − origin)/Z2
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Consider possible phases of the wave-function picked up
when the particles are exchanged
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Only possible paths are single exchange or no exchange
Hence, phase η2 = 1, implies η = −1 denoting fermions or
η = +1 denoting bosons
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But in 2 dimensions, relative space is a circle with a point
removed

Can have multiple windings which are not deformable to
the trivial winding
Implies one can have any statistics -i.e. anyons
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Non-abelian anyons

When the particles are exchanged, instead of a phase, one
has a phase matrix
Implies multi-dimensional representations of the braid
group

Point that is important here that this implies degenerate
ground states
Important for topological quantum computation because
this degeneracy depends on topology and is very robust
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Currently, a race is on to find Majorana particles in
condensed matter systems experimentally
These excitations expected to obey non-abelian statistics
and expected to be relevant for quantum computation
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Computation of charge and spin fractionalisation in helical
Luttinger liquids
Proposed three terminal geometry

Sourin Das and S.R
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Choose spin quantisation axis of electrons in edge state to
be ẑ axis. Spin of electrons in polarized STM tip chosen in
x̂-ẑ plane, forming an angle θ with ẑ axis as shown. ŷ -axis
points out of screen

If spin of STM tip in tune with spin of edge electron, it
implies uni-directional injection locally
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In presence of electron-electron interactions, due to
scattering, both right and left-movers
But asymmetry survives, can be measured

Uni-directional injection of electrons possible and hence
left-right asymmetry of charge and spin currents
Leads to spin and charge fractionalisation and even a spin
amplification effect

If polarisation of STM tip at angle θ with spin projection of
edge electrons, specific computable θ dependence
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But with electron-electron interactions, also interaction
dependence parametrised by K

< ItR > =
(1 + K cos θ)

2
I0

< ItL > =
(1− K cos θ)

2
I0

I0 =
2e2

h
|t2| (T/Λ)ν

(~vF )2Γ(ν + 1)
× V

ν is the Luttinger tunneling exponent given by
ν = −1 + (K + K−1)/2, K = interaction parameter, T � TL,TV
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Expectation value of ṠY is zero, as expected

Spin current (vector) at right and left leads point in
different direction than injected current

_SR/L(θ) =

[
K ∓ cos θ
2K sin θ

Ẑ ± 1
2K

X̂
]

ItR/L(θ)

Non-linear function of K
Total spin current in direction of injected spin

〈 dS
dt
〉 = ( Ẑ cos θ + X̂ sin θ )

I0
2
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As if charge excitations with charge (1 + K )/2 and
(1− K )/2 moving to the left and right

Spin excitation with spin (1± K )/2K moving to left and
right, spin amplification at one end

But interpretation of fractional charge is different from that
of the e/3 charge of FQHE with filling fraction 1/3
Gapped system and also, charge is quantised in that case
Here, charges of (1± K )/2e interpreted as property of
electron injection
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Importance of the work - chiral injection which was difficult
with normal Luttinger liquids is easy here, because of the
spin polarisation

New feature - spin current and spin fractionalisation
Need more work to understand spin fractionalisation



Introduction Quantum Hall 2D top insulators 3D top insulators Fractional stats and braiding Our work Conclusion

New paradigm of classifying phases of matter in terms of
topological quantum numbers
Led to the discovery of new materials with interesting
properties

Described the relation between topology and gapless edge
states and consequently between topology and quantised
conductances

Ended with a discussion on fractional statistics and in
particular non-abelian statistics and why they are expected
to be relevant in quantum computation
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