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Mundaka-Upanishad (<1000 B.C):  

 

“Which is that, when known, ALL becomes known?” 
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Plan: 

 

Main Result:  Einstein Locality  is valid in the physics of Spatially Separated Systems 

– EPR Systems – and Correlations result from  Classical Conservation Laws 

encoded in a Shared variable at Source. 

1)  The EPR argument  regarding SSS, according to Einstein (and not EPR) 

 

2) SSS  treated  in local hidden variable theories, by Bell: the deviation 

 

3)  Rigorous logical  Implications of experimental results 

 

4) Quantum correlations and Classical Conservation Laws – an insightful result 

 

5) Going beyond Bell  and Proof of perfect Einstein locality  in quantum 

correlations (or how nature does it preserving Einstein locality)  
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Spatially separated Systems: (SSS) 

The case of two „spin-half‟ particles: 
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EPR argument as described by Einstein? 
Excerpts from Einstein‟s letter to Popper (reproduced in Logic of Scientific Discovery) 

explaining his view that the wave-function description is incomplete: 

 

“Should we regard the wave-function whose time dependent changes are, according to 

Schrödinger equation, deterministic, as a complete description of physical reality,…? 

The answer at which we arrive is the wave-function should not be regarded as a complete 

description of the physical state of the system. 

We consider a composite system, consisting of the partial systems A and B which interact for 

a short time only. 

We assume that we know the wave-function of the composite system before the interaction 

– a collision of two free particles, for example – has taken place. Then Schrodinger 

equation will give us the wave-function for the composite system after the interaction. 

Assume that now (after the interaction) an optimal measurement is carried out upon the partial 

system A, which may be done in various ways, however depending on the variables which one 

wants to measure precisely – for example, the momentum or the position co-ordinate. Quantum 

mechanics will then give us the wave-function for the partial system B, and it will give us 

various wave-functions that differ, according to the kind of measurement which we have chosen 

to carry out upon A.  
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Now it is unreasonable to assume that the physical state of B may depend upon 

some measurement carried out upon a system A which by now is separated from 

B (so that it no longer interacts with B); and this means that the two different 

wave-functions belong to one and the same physical state of B. Since a complete 

description of a physical state must necessarily be an unambiguous description 

(apart from superficialities such as units, choice of the co-ordinates etc.) it is 

therefore not possible to regard the wave-function as the complete description of 

the state of the system.” 

Anything beyond this in the EPR Phys. Rev. paper is superfluous and irrelevant 

as far as Einstein‟s point is concerned. 

 

In particular there is no reference or wish regarding a possible completion of QM 

using some classical statistical hidden variables.  

It will also be completely wrong to think that the EPR or anybody who understood 

core of QM for that matter, argued for a theory in which  the main feature of QM  

- superposition of states – is thrown out and replaced by classical Newtonian 

mechanics applied to some ensemble:  

 

Then how did we end up with this mess called Local Hidden Variable Theories  ?! 
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The case of two „spin-half‟ particles: 
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Quantum Mechanics: ( , ) cosP a b a b     

Important input 
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correlation

angle
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( , ) ( , ) ( , ) ( )BellP a b A a h B b h h dh 
The essence of Bell‟s theorem is that these two correlation functions have 

distinctly different dependences on the angle between the settings of the 

apparatus (difference of about 30% at specific angles). 
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Bell‟s inequalities and theories of correlations 

 

 

Do experimental results indicate (let alone „prove‟) nonlocality? 

Entanglement=Nonlocality?! 

Beliefs: 

 

1) Experimental results prove that there is nonlocality (violation of Einstein locality) 

 

2) Local Hidden Variable Theories are theoretically valid (no inconsistencies with 

known physical principles)  

“Now it is unreasonable to assume that the physical state of B may depend upon some 

measurement carried out upon a system A which by now is separated from B”  
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So, what does the experimental confirmation of the violation of Bell‟s inequality 

imply as valid theoretical statements that are logically rigorous? 

 

 

1) Quantum mechanics is validated as a good theory of correlations… 

 

2) OR…a classical hidden variable theory in which statistically distributed valued 

of the HV determine measurement outcomes is validated as a good theory of 

correlations  to replace QM provided there is violation of Einstein locality. 

The  common mistake is to mix the two and claim that experiments prove nonlocality or 

that Experiments prove QM is nonlocal !  
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If nonlocal influence are allowed then any classical theory (of the coin tossing 

type) can be made to reproduce whatever correlations one demands!  

 

Hence the strict logical implication of the experimental results is that a 

classical theory of the type Bell considered can be a valid theory of 

microscopic phenomena, replacing QM,  IF one allows nonlocality as an 

additional feature.  

 

This then takes away the uniqueness of quantum theory, contrary to the 

common belief. 
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Entanglement = Nonlocality ? 

 

If one describes phenomena involving entanglement using a naïve 

classical statistical theory, then one needs nonlocality (influence 

outside the light cone – violation of Einstein locality).  
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A look at what Bell did to get the inequalities, to spot a deviation from the 

grand plan  of „completing  quantum mechanics‟: 
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Simultaneous definite values for quantum mechanically non-commuting 

observables 

 

 

Clearly not part of a program to complete QM by adding additional features 

to QM. 

 

A physically correct program of completing QM should never have 

simultaneous values for „conjugate‟ observables before measurement – that 

is not consistent with even basic wave-particle duality.   

( , ) ( ) ( , ) ( , ), ( ) 1
B
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CSU, Proc. SPIE Photonics 2007 
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Quantum correlations and Classical Conservation Laws 

Assumption: Fundamental conservation laws related to space-time symmetries 

are valid on the average over the quantum ensemble and measurements are 

made  with finite number of discrete outcomes.  (conservation  check  is not 

possible event-wise) 

 

Result:  Unique two-particle and multi-particle correlation  functions can be derived 

from the assumption of validity of conservation laws alone. Interestingly, they are 

identical  to the ones derived using formal quantum mechanics with appropriate 

operators and states.   

 

In particular the quantum correlation functions relevant for experiments have been 

derived from classical conservation law for angular momentum valid over the 

ensemble. 

 

CSU,  Europhys. Lett, 2005, Pramana-J.Phys (2006) 
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What are the AVERAGE angular momenta at B for 

the two sub-ensembles? 
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 ( 1 ( 1( , ) / 2 cos( )CL B A B AP a b L L     

This is the causally necessary consequence of the conservation law. 

We have the theory independent correlation function. 

A correlation function with a different functional form is incompatible with the 

conservation laws: they can be physically realized only by violating a 

fundamental conservation law! 

QM i

Fundamental Conservation Laws {F(p,q,s...)=0}

Quantum Mechanical Correlation Functions {C ( )}


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1) Correlation functions of quantum mechanics are direct consequence of the 

CLASSICAL conservation laws arising in space-time symmetries (fundamental 

conservation laws), applied to ensembles.  

 

2) Any theory that has a correlation function different from the ones in QM is 

incompatible with the fundamental conservation laws and space-time symmetries, 

and therefore it is unphysical. Local hidden variable theories fall in this class. 

Bell‟s inequalities can be obeyed (in the general case) only by violating a 

fundamental conservation law, making them redundant in physics. 

 

CSU,  Europhys. Lett, 2006, Pramana-J.Phys (2006) 

1) No less, no more 

 

2) Closing loopholes will improve agreement with QM!  

  (better tally with conservation principle) 
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1) No experiment to date  proves   violation of Einstein locality 

 

2) Quantum correlations functions are direct consequence of conservation 

laws,  just as in the case of classical correlations. 

 

Now I  prove the key result that the observed correlations of microscopic  

physical systems (like the spin-1/2 singlet in QM) are realized in nature 

preserving strictly Einstein locality. 

 

 In other words, the correlations  arise from a  „quantum-compatible variable‟ 

that is shared between the particles during interaction or break-up  (at 

source), related to the relevant conservation law, analogous to the case in 

classical situation and differing in a crucial way. 
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Bell‟s scheme of trying to get correlations local realistically: 

a b 

Outcome: Sign( ) and Sign( )a b  

This  prescription will  reproduce P(a,b) for some angles, and the perfect 

correlation at zero relative angle.  But, this does not reproduce the QM 

correlation.   

2 2( , ), ( , ) : 1A A a B B b A B    
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What was missing in the LHV approach? 

 

 

1) Explicit discarding of features associated with „wave-particle duality‟ 

 

2) Incompatibility with fundamental conservation laws 

 

3) Trying to get perfect determinism  in individual local measurement when 

the EPR query did not criticize that aspect – (trying to solve the local 

quantum measurement problem as well!) 

 

4) In short LHV theories tried to reach the higher goals by working with an 

inferior theory! 

Outcome: Sign( ) and Sign( )a b  
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My approach to address the issues  (2000-2004): 

 

1) Notice that conservation constraints and wave-particle duality hold the key. 

 

2) Notice that the conservation constraint directly reflects as a phase constraint  

for multi-particle systems 

The assertion was that a local phase constraint (relative phase being fixed, while 

individual  phases are random)  at the source or interaction point determines the 

correlations, and that Einstein locality is preserved.  

 

But involved a prescription  for calculating the correlation function that was not 

rigorously justified.  

Unnikrishnan,  Current Science (2000), Found. Phys. Lett 15, 1-25 (2002), 

Ann. Fondation L. de Broglie (2002)… 

1 2 1 1 2 2Conservation law: 0 exp ( )
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Bell‟s scheme of trying to get correlations local realistically: 

a b 

Outcome: Sign( ) and Sign( )a b  

1 2 1 1 2 2Contrast with conservation law: s 0 exp ( )
i

s s s    
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a b 

Outcomes: A=( ) and B=( )a b   

Correct correlations with Einstein locality and free-will  

Correlation: ( ) ( )a b


   

( ) 1, ( ) 0d     
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2 2( ) ( ) 1a b    
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( ) 1 exp( )a b i a b Cos i n Sin i n             

This connects up the present proof with the earlier writing (Found. Phys. Lett, 

2002, for example) where I dealt with pure random phases associated with the 

individual particle, with a fixed relative phase arising from conservation 

constraint,  as nature‟s device for showing quantum correlations preserving 

Einstein locality.  
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Conclusions: 

 

1) Quantum correlations, Teleportation physics, Measures of entanglement, 

violations and decoherence etc. and all other entanglement related 

phenomena can be understood once it is formulated in terms of 

conservation constraints applied to a set of quantized observables. 

 

2) We have discovered Quantum Compatible  Shared -Variable vectors that 

generate the correct correlation while preserving perfect Einstein locality 

 

3) They are fully compatible with quantum mechanical notion and 

requirement of  of superposition and  they give random local measurement 

outcomes ±1 as well as the correct correlation.  

 

A simple, satisfactory, consistent and physically appealing solution to the 

grand puzzle originated in 1935 is now in hand.  

“Which is that, when known, IT becomes known?” 
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Higher Spins, Triplet state, GHZ etc… 

Spin-S singlet: 
, ( 1),...0,... ( 1),

are the possible values

S S S S     

2) For sub-ensemble with average (and individual) value (S-n), the average 

in the direction rotated at an angle is  
( )cosS n 

1) Create 2S+1 sub-ensembles at A 

3) Then the average angular momentum at B for the matching sub-ensemble is  
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(Same as the QM correlation function!) 
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( 1); S=1, with values of projection 1,0S S m  

Spin-1/2 triplet 

Consider the m=0 case: Classically, this means that the average angular 

momentum along the z axis is zero, and in any direction in the x-y plane is 1 

(aligned spins). 

Let SA be the average angular momentum of the +1 sub-ensemble at A. 

What is the average angular momentum of the correlated sub-ensemble at B? 
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1, 0( , ) cos( )S m A BP a b      

From the conservation law 

From quantum mechanics: 
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Conservation law implies the Quantum Mechanical Correlation Function 


