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What is RMT?

Definition: Matrices with entries drawn randomly from various probability distributions

Three classical ensembles of random matrices: GOE, GUE, and GSE

GOE: Ensemble of real symmetric matrices (O = Orthogonal)

GUE: Ensemble of complex Hermitian matrices (U = Unitary)

GSE: Complex self-adjoint quaternion matrices (S = Symplectic)

Elements of these matrices are independent, normally distributed, mean zero and the
variances are adjusted to ensure the invariance of its joint probability distribution under
similarity transformations (Orthogonal, Unitary, Symplectic)

Ensemble of unitary matrices having the same invariance properties form another
important classes of RM ensemble: COE, CUE, and CSE (C = Circular).

Eigenvalues of circular ensembles are restricted on the unit circle in the complex plane
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Why RMT?

Origin of RMT could be traced back to work of Wishart (in 1928) in the field of statistics

He constructed an ensemble of random matrices of the form W = ATA, where the
elements of A are sample data points. The eigenvectors of W are the Principal
Components (correlated variables into a set of values of linearly uncorrelated variables)
of the data set

In Physics, RMT got its importance into the study of Excitation spectrum of heavy nuclei
(eg. U238. This data was available in plenty during 1950’s from the neutron scattering
experiment

Protons and neutrons in the nucleus of U238 interact with each other in a complicated
way. The Hamiltonian is too complex. Its spectrum is difficult to compute either
theoretically or by simulation.
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Why RMT?

Wigner suggested that the fluctuations in the excitation spectrum can be described in
terms of statistical properties of the eigenspectrum of very large real symmetric random
matrices.

RMT is a ‘new’ kind of statistical theory. In statistical mechanics, we do not ask the
question about the exact state of the system. In RMT, we renounce the knowledge
about the nature of the system itself.

Its basic assumption is that, for complete lack knowledge about the system
(Hamiltonian), it is wise to treat the system as a ‘black box’ and adopt a kind of statistical
description.

The input for this theory should be very general properties of underlying generic
Hamiltonians, eg. Hermiticity, time-reversal symmetry, any other symmetries, etc.
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Developments of RMT (1950-2000)
Study revealed an important feature of nuclear energy levels, that is “level repulsion" -
absence of two very close energy levels

Eigenvalues of Hermitian random matrices whose elements are Gaussian distributed
random numbers also show the similar “level repulsion"

In 1985, Bohigas et al identified the similar “level repulsion" property in quantum chaotic
spectrum

The level repulsion property reflects in the fluctuations of the energy levels which is
observed in the distribution of the nearest neighbor spacing s between two energy
levels:

P (s) = Asβ exp(−Bs2) with P (0) = 0 (level repulsion)

In case of non-chaotic or regular system, the level repulsion is absent and the spacing
distribution is Poisson:

P (s) = exp(−s) with P (0) = 1.0 (level clustering)

– p. 7



RMT in different scenarios
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Recent developments in RMT (its Applications)
....and “my encounter” with it

Entanglement in quantum chaotic systems

Spectra of complex network

Spectra of critical systems
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Entanglement in Quantum Chaotic Systems : Motivation

Quantum Computer (QC) : a collection of many particles (qubits)

The energy between the two states of the qubits may fluctuate from one qubit to another

An interaction between the qubits is necessary to implement two-qubit gates

This interaction is switched on and off to use the gates, but this cannot be done with
perfect accuracy and there will be residual random couplings that act permanently on
the system

Georgeot and Shepelyansky modelled a quantum computer with residual random
coupling by

H =
∑

i

Γiσi +
∑

i<j

Jijσiσj

The nearest neighbor interaction strength Jij are random uniform in [−J, J ]; Γi is
random [∆− δ/2,∆+ δ/2], where ∆ is the average energy difference between two
states of one qubit
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Georgeot and Shepelyansky showed : There exists a critical value of the interaction
strength J = Jc, where Jc ∼ δ/nq , the quantum computer model shows quantum chaos

Entanglement is probably the most crucial property of quantum computer

Georgeot and Shepelyansky showed the presence of quantum chaos in quantum
computer

The above facts link "Entanglement" and "Quantum Chaos"
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Entanglement production in coupled chaotic system

k = 1 (solid), k = 2 (dotted), k = 3 (dashed), k = 6 (dashed-dot)

Entanglement measure : von-Neumann entropy

SV = −Trρ ln ρ = −
N
∑

m=1

λm lnλm

Important results :

In general, presence of chaos in a system produces more entanglement

There exists a typical upper bound on entanglement which is a function Hilbert
space dimensions of the systems [von-Neumann entropy : SV = ln(0.6N)]

This bound is universal : shown by many different quantum chaotic systems
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We pointed out, from RMT, the eigenvalue distribution of Reduced Density matrix (when
the total system is bipartite and its overall state is pure):

f(λ) =
1

2π

√

4− λ

λ

The RDM for this case is identical to the Wishart matrix, i.e., ρ = ATA or ρ = A†A.

Using this distribution, we estimated the von Neumann entropy

SV = lnN − 1

2
= ln(γN) with γ = 1/

√
e = 0.6065

References:

JNB and A. Lakshminarayan, Phys. Rev. Lett. 89, 060402 (2002)

JNB and A. Lakshminarayan, Phys. Rev. E 69, 016201 (2004)
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Spectra of complex network
Many complex systems can be viewed as a distributed system of many interrelated
parts, and the system can be represented in terms of (complex) networks

Complex network consists of two things:

Nodes = A collection of entities which have properties that are somehow related to
each other (e.g., people, rivers, proteins, webpages,...)

Links = Connections between nodes

may be real and fixed (rivers)
real and dynamic (airline routes)
abstract with physical impact (hyperlinks)
Links may be directed or undirected (A can influence B, but not the vice versa)
Links may be binary or weighted

Binary: either connected or not connected
Weighted: how much strength of the connections

Adjacency matrix: a graph or network is represented by a matrix A with link weight aij
for nodes i and j in entry (i, j)

A =















0 1 1 1

0 0 1 0

1 0 0 0

0 1 0 0















Binary and Directed
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We study the statistical properties of the eigenvalues of the adjacency matrix
representing binary and undirected network: Artificially (computer) generated scale-free
network and Real world network

We studied Strogatz algorithm for the generation of Small-World network
Small-world network: most nodes are not neighbors of one another, but most nodes can
be reached from every other by a small number of steps.

For Strogatz algorithm, we observed that eigen-spectrum of Adjacency matrix makes
transition from Poisson to GOE exactly at the point where SW transition takes place
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References:

JNB and S. Jalan, Phys. Rev. E 76, 026109 (2007)

S. Jalan and JNB, Phys. Rev. E 76, 046107 (2007)

S. Jalan and JNB, EPL 87, 48010 (2009)
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RMT and QIP

Generation of pseudo-random numbers:

The fundamental role of random numbers in classical information theory, is played
by random unitary operators

Emerson et al proposed a method to generate pseudo-random unitary operators
that can reproduce those statistical properties of random unitary operators most
relevant to quantum information tasks.

This method requires exponentially fewer resources, and hence enables the
practical application of random unitary operators in quantum communication and
information processing protocols

Random unitary operators also allow the construction of more efficient data-hiding
schemes and provide a means to reduce the key length required for the
(approximate) encryption of quantum states

Very recently, random matrices are used for quantum data locking which is a uniquely
quantum protocol that allows for a small secret key to lock an exponentially longer
message by encoding it into a quantum state

Ref: J. Emerson et al, Science 302, 2098 (2003); C. Lupo, M. M. Wilde, S. Lloyd,
arXiv:1311.5212v1 [quant-ph]
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RMT and Quantum Critical system
The standard Anderson model on a 3D simple cubic lattice : a tight-binding Hamiltonian
with elements

Hij = ǫiδij + tij : i, j lattice sites

Site energies {ǫi} are randomly distributed within an interval −W
2

< ǫi <
W
2

.

Off-diagonal elements tij = 1 for the nearest neighbors and tij = 0 for otherwise.

Depends on W , eigenstates of the Anderson Hamiltonian make
delocalization-localization (metal-insulator) transition

Power-law Random Banded Matrix (PRBM) model:

Ensemble of random Hermitian matrices : {Hij} are independently distributed
Gaussian random numbers with 〈Hij〉 = 1 and the variance

σ2(Hij) =

[

1 +

( |i− j|
b

)2α
]−1

α = 1 is the critical point (delocalized or extended state ↔ localized state) and
0 < b < ∞ characterizes the ensemble

Interpretation: it describes an 1D sample with random long-range hopping and the
hopping amplitudes decay as |i− j|−1
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Time-dependent quantum critical system

Kicked Harper model:

Hamiltonian:
H(t) = L cos p+K cosx

∑

n

δ(t− n)

Classical Map :
pn+1 = pn +K sinxn, xn+1 = xn − L sin pn

Here K = L = 0.01, 2.0, 3.5, and 5.0

Time-evolution operator :

U = exp

[

−i
L

~
cos p

]

exp

[

−i
K

~
cos x

]
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~

Quasienergy spectrum [U |φ〉 = eiφ|φ〉] of the KHM is
(multi)fractal

Figures are plotted for different K = L = κ

Here underlying classical dynamics is chaotic, but the
spectrum does not follow Bohigas-Giannoni-Schmit
conjecture...interesting!!!
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Another example

UDKRM = exp

[

−i
(T − η)

2~
p2

]

exp

[

−i
K2

~
cos q

]

exp
[

−i
η

2~
p2

]

exp

[

−i
K1

~
cos q

]

A natural objective : to see how the criticality of the unitary operators different from the
critical Hermitian operators
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PRBUM: Algorithm
Generation of random matrix ensemble for critical Hermitian matrices (PRBM) was very
easy

A major obstacle for the Unitary version of that ensemble is how to generate

We use Mezzadri’s algorithm which was proposed to generate random unitary matrices
(both COE and CUE) from arbitrary complex random matrices

Our scheme :

We start with an ensemble of PRBM

Then apply Mezzadri’s algorithm to get random unitary matrices

Variance of the elements of these random matrices also roughly follows power-law :
hence the name ‘PRBUM’

Our scheme is successful : eigenstates of the ensemble of these unitary matrices
indeed show multifractality

We can tune the parameters α and b of the initial PRBM to generate critical random
unitary matrices with desired multifractal property

References:

JNB, J. Wang, J. B. Gong, Phys. Rev. E 81, 066212 (2010)

JNB and J. B. Gong, EPJB 85, 335 (2012)
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PRBUM vs PRBM
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PRBM : α Vs. D2

Here, ν is D2

Transition point of Extended State ↔ Localized State : α = 1.0

Ref. A. D. Mirlin et. al., PRE 54, 3221 (1996).
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PRBUM : α Vs. D2
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PRBM : Eigenstates

b = 1.0

Ref. A. D. Mirlin et. al., PRE 54, 3221 (1996).
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PRBUM : Eigenstates
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PRBM : D2 Vs. b at the critical point α = 1.0

From supersymmetry calculation :

b ≪ 1 : D2 = 2b

b ≫ 1 : D2 = 1− 1

πb

Ref. A. D. Mirlin & F. Evers, PRB 62, 7920 (2000).
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PRBUM : D2 Vs. b at α = 1.0
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From numerics :

b ≪ 1 : D2 ≃ 3b

b ≥ 1 : D2 ≃ 1
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Application of PRBUM

Sound propagation in ocean can be formulated as a wave guide with a weakly random
medium generating multiple scattering

About 20 years ago, this was recognized as a quantum chaos problem, and yet RMT
has never been introduced into the subject

The modes of the wave guide provide a representation for the propagation, which in the
parabolic approximation is unitary

Scattering induced by the ocean’s internal waves leads to a power-law random banded
unitary matrix ensemble for long-range deep ocean acoustic propagation

Many people are considering to extend the application of this ensemble to shallower
water, higher frequencies and surface/bottom scattering

Ref: K. C. Hegewisch and S. Tomsovic, EPL 97, 34002 (2012) – p. 30



Conclusion

We have given a short introduction of RMT

We have presented developments of RMT in last few decades

We have discussed about its recent various applications including quantum chaos,
complex networks, QIP, etc.

We then discuss about the random matrix model for quantum critical systems

We then discuss about time-dependent quantum critical system and introduced a new
random matrix ensemble that is PRBUM

In case of PRBUM ensemble, our numerics suggest strongly that α = 1.0 is the
transition point. However, we do not have any analytical understanding of this fact.

For PRBM, this ensemble has been mapped with nonlinear σ model, and from this
mapping, the critical point was analytically calculated as α = 1.0
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Topics which we could not discuss...

Applications of RMT in data analysis:

stock-market data

medical data (eg. ECG, EEG, etc,)

atmospheric data

Applications in Quantum graph/network

Applications in Quantum Chromodynamics

Applications in 2D Quantum Gravity

Relation between the spectrum of random matrices and 1/f noise

Ref. M. S. Santhanam and JNB, Phys. Rev. Lett. 95, 114101 (2005)

M. S. Santhanam, JNB, and D. Angom, Phys. Rev. E 73, 015201(R) (2006)
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Topics which we could not discuss...

Applications of RMT in data analysis:

stock-market data

medical data (eg. ECG, EEG, etc,)

atmospheric data

Applications in Quantum graph/network

Applications in Quantum Chromodynamics

Applications in 2D Quantum Gravity

Spectrum of random matrices can also be analyzed from time series analysis point of
view

Ref. M. S. Santhanam and JNB, Phys. Rev. Lett. 95, 114101 (2005)

M. S. Santhanam, JNB, and D. Angom, Phys. Rev. E 73, 015201(R) (2006)

Thank you!
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