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Overview of Talk

• Information is represented and communicated as quantum states.

• Any physical system (process) is subjected to the effects of its environment,

responsible for the phenomenon of decoherence, dissipation and it is

essential to understand the functioning of the process in the presence of

these.

• After a brief discussion of open quantum systems and some measures of

quantum information, I will talk about the dynamics of quantum correlations

and holonomic quantum computation in a number of models motivated

from quantum optics.

• In the end, diverting somewhat from the main theme, I will briefly talk about

geometric phase in a frustrated spin system which also brings out an

interesting connection with Parrondo’s effect.
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Quantum Information: Fundamental Goals

• Identify elementary classes of static resources in quantum mechanics:

example...qubit. Another example is a Bell state shared between two distant

parties (entanglement).

• Identify elementary classes of dynamic resources in quantum mechanics:

example...quantum information transmission between two parties and

process of protecting quantum information processing against the effects of

noise, a natural consequence of open systems.

• Quantify resource tradeoffs incurred performing elementary dynamical

processes: example: what are minimal resources required to reliably transfer

quantum information between two parties using a noisy communications

channel?
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Open Quantum Systems: A Brief Preview and Mo-
tivation

• The theory of open quantum systems addresses the problems of damping

and dephasing in quantum systems by the assertion that all real systems of

interest are ‘open’ systems, surrounded by their environments [U. Weiss:

(1999); H. -P. Breuer and F. Petruccione: (2002)].

• Quantum optics provided one of the first testing grounds for the application

of the formalism of open quantum systems [W. H. Louisell: (1973)]. Application

to other areas was intensified by the works of [Caldeira and Leggett: (1983)]

and [Zurek: (1993)], among others.

• The recent upsurge of interest in the problem of open quantum systems is

because of the spectacular progress in manipulation of quantum states of

matter, encoding, transmission and processing of quantum information, for all

of which understanding and control of the environmental impact are

essential [Turchette et al.: (2000); Myatt et al.: (2000); Haroche group: (1996)].

This increases the relevance of open system ideas to quantum computation

and quantum information.
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Open Quantum Systems: continued...

• Hamiltonian of the total (closed system):

H = HS +HR +HSR.

• S- system, R- reservoir (bath), S −R-interaction between them.

• System-reservoir complex evolves unitarily by:

ρ(t) = e−
i
h̄
Htρ(0)e

i
h̄
Ht.

• We are interested in the reduced dynamics of the system S, taking into

account the influence of its environment. This is done by taking a trace over

the reservoir degrees of freedom, making the reduced dynamics non-unitary:

ρs(t) = TrR(ρ(t)) = TrR

[

e−
i

h̄
Htρ(0)e

i

h̄
Ht
]

.
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Open Quantum Systems: continued...

• Open quantum systems can be broadly classified into two categories:

(A). Quantum non-demolition (QND), where [HS , HSR] = 0 resulting in

decoherence without any dissipation [Braginsky et al.: (1975), (1980); Caves

et al.: (1980); G. Gangopadhyay, S. M. Kumar and S. Duttagupta: (2001); SB

and R. Ghosh: (2007)] and

(B). Quantum dissipative systems, where [HS , HSR] 6= 0 resulting in

decoherence with dissipation [Caldeira and Leggett: (1983); H. Grabert, P.

Schramm and G-L. Ingold: (1988); SB and R. Ghosh: (2003), (2007)].

• Open system ideas have been applied extensively in quantum optics [W. H.

Louisell: (1973); F. Haake: (1973); G. S. Agarwal: (1974)].

• These ideas have been used in quantum information theoretic processes [SB

and R. Srikanth: (2007)].

• Ideas developed by R. Landauer: (1961) and C. H. Bennett: (1988),

established a deep connection between information and thermodynamics.

• In the parlance of quantum information theory, the noise generated by a

QND open system would be a “phase damping channel”, while that

generated by a dissipative (Lindblad) evolution would be a “(generalized)

amplitude damping channel”.
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Connection to quantum noise processes

• Interpret our results in terms of familiar noisy channels. How these

environmental effects can affect quantum computing.

In operator-sum representation, action of superoperator E due to

environmental interaction

ρ −→ E(ρ) =
∑

k

〈ek|U(ρ⊗ |f0〉〈f0|)U†|ek〉 =
∑

j

EjρE
†
j ,

unitary operator U represents free evolution of system, environment, as well

as the interaction between the two; |f0〉: environment’s initial state; {|ek〉} a

basis for the environment.

• environment-system assumed to start in a separable state.

• Ej ≡ 〈ek|U |f0〉 are the Kraus operators; partition of unity:
∑

j
E†

jEj = I. Any
transformation representatable as operator-sum is a completely positive (CP)

map.
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Connection to quantum noise processes
continued ...

• Some examples of noisy channels useful in quantum informatiom are:

• quantum phase damping channel: uniquely non-classical quantum

mechanical noise process, describing the loss of quantum information

without the loss of energy. [SB and R. Ghosh: (2007)]

• squeezed generalized amplitude damping channel: allows for dissipation

along with decoherence and accounts for finite bath squeezing. [R. Srikanth

and SB: (2007)]
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Bloch representation of Noisy Channels
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continued ...

Fig.1 : Effect of QND and dissipative interactions on the Bloch sphere: (A) the full

Bloch sphere; (B) the Bloch sphere after time t = 20, with γ0 = 0.2, T = 0, ω = 1,

ωc = 40ω and the environmental squeezing parameter r = a = 0.5, evolved

under a QND interaction ; (C) and (D) the effect of the Born-Markov type of

dissipative interaction with γ0 = 0.6 and temperature T = 5, on the Bloch sphere

– the x and y axes are interchanged to present the effect of squeezing more

clearly. (C) corresponds to r = 0.4, Φ = 0 and t = 0.15 while (D) corresponds to

r = 0.4, Φ = 1.5 and t = 0.15.

[SB and R. Ghosh: (2007)]
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Quantum Correlations

Entanglement

• What is entanglement and what is its use?

• Separability versus entanglement: that which is not separable is entangled.

• A pure state is separable if it can be expressed as a tensor product of

subsystem states: |ψ〉 = |a〉 ⊗ |b〉.
• Examples for pure states:

(a). separable states: |00〉, |11〉
(b). entangled states: |Φ±〉 = 1√

2
(|00〉 ± |11〉); |Ψ±〉 = 1√

2
(|01〉 ± |10〉): Bell

states.
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Entanglement continued...

• A mixed state is separable if it can be represented as a mixture of product

states: ρ =
∑

i

pi|ai〉〈ai| ⊗ |bi〉〈bi|. Correlations between different subsystems

due to incomplete knowledge of quantum states completely characterized

by classical probabilities pi.

• Examples for mixed states:

(a). separable state: ρ = 1
2
(|00〉〈00|+ |11〉〈11|)

(b). entangled state: ρW = (1− p) 1
4
I + p|Φ+〉〈Φ+|, where 1/3 < p ≤ 1:

Werner state.
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Entanglement continued...

• Entanglement can be used to perform tasks not possible classically. E.g.:

Using entanglement it is possible to teleport a qubit in state |χ〉 = α|0〉+ β|1〉
using a shared entangled state |Φ+〉.

• Thus entanglement is a resource in quantum communication and

information.
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Concurrence

• For a pair of qubits there exists a general formula for the entanglement of

formation: Ef : based on the quantity “CONCURRENCE”. [W. K. Wootters:

(1998)]

• Consider pure state |Φ〉 of a pair of qubits. Concurrence

C(Φ) = |〈Φ|Φ̃〉|

, where |Φ̃〉 = (σy ⊗ σy)|Φ∗〉, σy is the Pauli operator, |Φ∗〉 is the complex

conjugate of |Φ〉.
• Spin flip operation, via σy , when applied to a pure product state, takes the

state of each qubit to the orthogonal state, i.e., state diametrically opposite

on the Bloch sphere resulting in zero concurrence. A completely entangled

state is left invariant by a spin flip, resulting in C taking the maximum value 1.
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Concurrence continued...

• E(C) is monotonically increasing for 0 ≤ C ≤ 1 implying that concurrence

can be regarded as a measure of entanglement in its own right.

• Concurrence of a mixed state of two qubits is: [W. K. Wootters: (1998)]

C(ρ) = max

{

0, λ1 − λ2 − λ3 − λ4

}

,

where λi are the square roots of the eigenvalues of ρρ̃ in descending order

and ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy).
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Quantum Correlations

Discord

• Correlation between two random variables X and Y is: ‘Mutual Information’

J(X : Y ) = H(X)−H(X|Y ).

• Here H(X|Y ) is the conditional entropy of X given that Y has already

occured and H(X) is the Shannon entropy of the random variable X.

• H(X|Y ) = H(X,Y )−H(Y ): an alternative expression for mutual information

I(X : Y ) = H(X) +H(Y )−H(X,Y ).

• Classically: no ambiguity between these two expressions of mutual

information and they are same.
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Discord continued...

• Situation different in quantum regime [H. Ollivier and W. H. Zurek:(2001); L.

Henderson and V. Vedral:(2001); S. Luo: (2008)].

• Consider a bipartite state ρXY : where ρX and ρY are the states of the

individual subsystems.

• Shannon entropies H(X), H(Y ) are replaced by von-Neumann entropies

(e.g: H(X) = S(ρX) = −TrXρXLog(ρX)).

• Conditional entropy S(X|Y ) requires a specification of the state of X given

the state of Y .

• Such a statement in quantum theory is ambiguous until the to-be-measured

set of states of Y are selected.

• Focus on perfect measurements of Y defined by a set of one dimensional

projectors {πY
j }. The subscript j is used for indexing different outcomes of this

measurement.
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Discord continued...

• The state of X, after the measurement is given by

ρX|πY
j

=
πY
j ρXY π

Y
j

Tr(πY
j ρXY )

,

with probability pj = Tr(πY
j ρXY ).

• S(ρX|πY
j
) is the von-Neumann entropy of the system in the state ρX , given

that projective measurement is carried out on system Y .

• The conditional entropy of X, given the complete set of measurements {πY
j }

on Y is: S(X|{πY
j }) =

∑

j
pjS(ρX|πY

j
).

• The quantum analogue of J(X : Y ) is thus

J(X : Y ) = S(X)− S(X|{πY
j }),

where a supremum is taken over all {πY
j }.
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Discord continued...

• I(X : Y ) is similar to its classical counterpart

I(X : Y ) = S(X) + S(Y )− S(X,Y ).

• It is clearly evident that these two expressions are not identical in quantum

theory. Quantum discord is the difference between these two generalizations

of classical mutual information,

D(X : Y ) = I(X : Y )− J(X : Y ).

• Quantum discord aims to quantify the amount of quantum correlation that

remains in the system and also points out that classicality and separability are

not synonymous. In other words, it actually reveals the quantum advantage

over the classical correlation.

Quantum Information: From the Perspective of Quantum Optics – p.19/66



Quantum Correlations

Bell’s Inequality

• Bell’s inequality: one of the first tools used to detect entanglement. [J. Bell:

(1965;1971)]: It is not possible for a local, realistic theory to reproduce all the

statistical predictions of quantum mechanics.

• An important step in this direction is the Clauser-Horne-Shimony-Holt

inequality [J. F. Clauser and A. Shimony: (1978)], derived on the premises of a

local realistic theory.

• Interestingly, it can be seen that in standard quantum theory, it is always

possible to design experiments for which this inequality gets violated [A.

Aspect, P. Grangier and G. Roger: (1981)]. This shows that quantum physics

can violate local realism.
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Bell’s Inequality continued...

• One can express the most general form of Bell-CHSH inequality for the

two-qubit mixed state

ρ = 1
4
[I ⊗ I + (r.σ)⊗ I + I ⊗ (s.σ) +

∑3

n,m=1
tmn(σm ⊗ σn)]

asM(ρ) < 1,

whereM(ρ) = max(ui + uj), and ui, uj are the eigenvalues of the matrix T †T
(where the elements of the correlation matrix T is given by,

tmn = Tr[ρ(σm ⊗ σn)]) [Horodecki’s: (1995)].

• Violation of Bell’s inequality for a given quantum state indicates that the state

is entangled. But at the same time, there are certain entangled states which

do not violate Bell’s inequality.
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Quantum Correlations

Teleportation Fidelity

• In addition to all these measures of quantum correlation one could also

attempt to quantify them in terms of an application, for e.g., fidelity of

teleportation [C. H. Bennett et al.: (1993)].

• The basic idea is to use a pair of particles in a singlet state shared by sender

(Alice) and receiver (Bob). Pairs in a mixed state could be still useful for

(imperfect) teleportation [S. Popescu: (1994)].

• The general mixed state of a two-qubit system :

ρ =
1

4
[I ⊗ I + (r.σ)⊗ I

+ I ⊗ (s.σ) +

3
∑

n,m=1

tmn(σm ⊗ σn)].

• The quantities tnm = Tr[ρ(σn ⊗ σm)] are the coefficients of a real matrix

denoted by T. This representation is most convenient when one talks about

the inseparability of mixed states. In fact, all the parameters fall into two

different classes: those that describe the local behaviour of the state, i.e., (r

and s), and those responsible for correlations (T matrix).
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Teleportation Fidelity continued...

• In the standard teleportation scheme a mixed state ρ acts as a quantum

channel.

• The maximum teleportation F was shown by [Horodecki : (1996)] to be

Fmax =
1

2
(1 +

1

3
N(ρ))

=
1

2
(1 +

1

3
[
√
u1 +

√
u2 +

√
u3]).

Here ui and uj are the eigenvalues of U = T †(ρ)T (ρ), where

T (ρ) = [Tij ], Tij = Tr[ρ(σi ⊗ σj)] and T
† implies the Hermitian conjugate of

T . The classicial fidelity of teleportation in the absence of entanglement is

obtained as 2
3
. Thus whenever Fmax >

2
3
(N(ρ) > 1), teleportation is possible.

• At this point it is interesting to note that there is a non-trivial interplay between

Bell’s inequality and teleportation fidelity. This is because bothM(ρ), N(ρ) are

dependent on the correlation matrix T. The relationship between these two

quantities is the inequality N(ρ) > M(ρ). Hence, it is clear that states which

do violate Bell’s inequality are always useful for teleportation. However, this

does not rule out the possibility of existence of entangled states that do not

violate Bell’s inequality, but can still be useful for teleportation.
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Quantum Correlations

Measurement Induced Disturbance (MID)

• Given a bipartite state ρ living in the Hilbert space HA ⊗HB , and the

reduced density matrices being denoted by ρA and ρB , a reasonable

measure of total correlations between systems A and B is the mutual

information:

I(ρ) = S(ρA) + S(ρB)− S(ρ),

where S(·) denotes von Neumann entropy.
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MID continued...

• If ρA =
∑

i
piAΠi

A and ρB =
∑

i
piBΠi

B , then the measurement induced by

the spectral resolution of the reduced states is

Π(ρ) ≡
∑

j,k

Πj
A ⊗Πk

BρΠ
j
A ⊗Πk

B .

• The state Π(ρ) may be considered classical in the sense that there is a

(unique) local measurement strategy, namely Π, that leaves Π(ρ)

unchanged. This strategy is special in that it produces a classical state in ρ

while keeping the reduced states invariant.

• If we accept that I[Π(ρ)] is a good measure of classical correlations in ρ, then

one may consider MID, given by

Q(ρ) = I(ρ)− I[Π(ρ)],

as a reasonable measure of quantum correlation [S Luo: (2008)].
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Dynamics of the Reduced Density Matrix
for two-qubit Dissipative system

[SB, V. Ravishankar and R. Srikanth: (2009)]

• Hamiltonian, describing the dissipative, position dependent, interaction of

two qubits with bath (modelled as a 3-D electromagnetic field (EMF)) via

dipole interaction as:

H = HS +HR +HSR

=

N=2
∑

n=1

h̄ωnS
z
n +
∑

~ks

h̄ωk(b
†
~ks
b~ks + 1/2)− ih̄

∑

~ks

N
∑

n=1

[~µn.~g~ks(~rn)(S
+
n + S−

n )b~ks − h.c.].

~µn : transition dipole moments, dependent on the different atomic positions

~rn

S+
n = |en〉〈gn|, S−

n = |gn〉〈en| :

dipole raising and lowering operators satisfying the usual commutation

relations

Sz
n =

1

2
(|en〉〈en| − |gn〉〈gn|) :

energy operator of the nth atom
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Dynamics of the Reduced Density Matrix
continued...

b†
~ks

, b~ks: creation and annihilation operators of the field mode (bath) ~ks with the

wave vector ~k, frequency ωk and polarization index s = 1, 2

• System-Reservoir (S-R) coupling constant:

~g~ks(~rn) = (
ωk

2εh̄V
)1/2~e~kse

i~k.rn .

V : the normalization volume and ~e~ks: unit polarization vector of the field.

• S-R coupling constant: dependent on the atomic position rn.

This leads to a number of interesting dynamical aspects.
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Dynamics of the Reduced Density Matrix
continued...

• Assuming separable initial conditions, and taking a trace over the bath the

reduced density matrix of the qubit system in the interaction picture and in

the usual Born-Markov, rotating wave approximation (RWA) is obtained as

dρ

dt
= − i

h̄
[HS̃ , ρ]−

1

2

2
∑

i,j=1

Γij [1 + Ñ ](ρS+
i S

−
j + S+

i S
−
j ρ− 2S−

j ρS
+
i )

− 1

2

2
∑

i,j=1

ΓijÑ(ρS−
i S

+
j + S−

i S
+
j ρ− 2S+

j ρS
−
i )

+
1

2

2
∑

i,j=1

ΓijM̃(ρS+
i S

+
j + S+

i S
+
j ρ− 2S+

j ρS
+
i )

+
1

2

2
∑

i,j=1

ΓijM̃∗(ρS−
i S

−
j + S−

i S
−
j ρ− 2S−

j ρS
−
i ).
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Dynamics of the Reduced Density Matrix
continued...

Ñ = Nth(cosh
2(r) + sinh2(r)) + sinh2(r),

M̃ = −1

2
sinh(2r)eiΦ(2Nth + 1) ≡ ReiΦ(ω0),

with

ω0 =
ω1 + ω2

2
,

and

Nth =
1

e
h̄ω

kBT − 1

.

• Here Nth is the Planck distribution giving the number of thermal photons at

the frequency ω and r, Φ are squeezing parameters. The analogous case of

a thermal bath without squeezing can be obtained from the above

expressions by setting these squeezing parameters to zero, while setting the

temperature (T ) to zero one recovers the case of the vacuum bath.
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Dynamics of the Reduced Density Matrix
continued...

HS̃ = h̄

2
∑

n=1

ωnS
z
n + h̄

2
∑

i,j

(i 6=j)

ΩijS
+
i S

−
j ,

where

Ωij =
3

4

√

ΓiΓj

[

−[1− (µ̂.r̂ij)
2]
cos(k0rij)

k0rij
+ [1− 3(µ̂.r̂ij)

2]

× [
sin(k0rij)

(k0rij)2
+

cos(k0rij)

(k0rij)3
]

]

.

µ̂ = µ̂1 = µ̂2 and r̂ij are unit vectors along the atomic transition dipole moments

and ~rij = ~ri − ~rj , respectively.

k0 = ω0/c, rij = |~rij |.
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Dynamics of the Reduced Density Matrix
continued...

• Wavevector k0 = 2π/λ0, λ0 being the resonant wavelength, occuring in the

term k0rij sets up a length scale into the problem depending upon the ratio

rij/λ0. This is thus the ratio between the interatomic distance and the

resonant wavelength, allowing for a discussion of the dynamics in two

regimes:

(a). localized decoherence: where k0.rij ∼ rij
λ0

≥ 1

and

(b). collective decoherence: where k0.rij ∼ rij
λ0

→ 0.

• Collective decoherence would arise when the qubits are close enough for

them to feel the bath collectively or when the bath has a long correlation

length (set by the resonant wavelength λ0) in comparison to the interqubit

separation rij .
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Dynamics of the Reduced Density Matrix
continued...

• Ωij : a collective coherent effect due to the multi-qubit interaction and is

mediated via the bath through the terms

Γi =
ω3
i µ

2
i

3πεh̄c3
.

• The term Γi is present even in the case of single-qubit dissipative system bath

interaction and is the spontaneous emission rate, while

Γij = Γji =
√

ΓiΓjF (k0rij),

where i 6= j with

F (k0rij) =
3

2

[

[1− (µ̂.r̂ij)
2]
sin(k0rij)

k0rij
+ [1− 3(µ̂.r̂ij)

2]

× [
cos(k0rij)

(k0rij)2
− sin(k0rij)

(k0rij)3
]

]

.

• Γij : collective incoherent effect due to the dissipative multi-qubit interaction

with the bath. For the case of identical qubits, as considered here,

Ω12 = Ω21, Γ12 = Γ21 and Γ1 = Γ2 = Γ.
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Dynamics of Entanglement

Dissipative Evolution
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t
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Figs. 2 & 3 : Concurrence C as a function of time of evolution t. Figure (2) deals

with the case of vacuum bath (T = r = 0), while figure (3) considers concurrence

in the two-qubit system interacting with a squeezed thermal bath, for a tempera-

ture T = 1 and and bath squeezing parameter r equal to 0.1. In both the figures

the bold curve depicts the collective decoherence model (kr12 = 0.05), while

the dashed curve represents the independent decoherence model (kr12 = 1.1).

In figure (3) for the given settings, the concurrence for the independent decoher-

ence model is negligible and is thus not seen.
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Dynamics of Entanglement continued...

Dissipative Evolution
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Figs. 4 & 5 : Concurrence C with respect to inter-qubit distance r12. Figure (4)

deals with the case of vacuum bath (T = r = 0), while figure (5) considers con-

currence in the two-qubit system interacting with a squeezed thermal bath, for

T = 1, evolution time t = 1 and bath squeezing parameter r equal to 0.1. In

figure (4) the oscillatory behavior of concurrence is stronger in the collective de-

coherence regime, in comparison with the independent decoherence regime

(kr12 ≥ 1). In figure (5), the effect of finite bath squeezing and T has the effect of

diminishing the concurrence to a great extent in comparison to the vacuum bath

case. Here the concurrence for the localized decoherence regime is negligible,

in agreement with the previous figure. Quantum Information: From the Perspective of Quantum Optics – p.34/66



Dynamics of Quantum Correlations

• We made a comparative study, on states generated by our open system

two-qubit models: [SB, V. Ravishankar and R. Srikanth: (2009), (2010)], of

various features of quantum correlations like teleportation fidelity (Fmax),

violation of Bell’s inequalityM(ρ) (violation takes place forM(ρ) ≥ 1),

concurrence C(ρ) and discord with respect to various experimental

parameters like, bath squeezing parameter r, inter-qubit spacing r12,

temperature T and time of evolution t [I. Chakrabarty, SB, N. Siddharth:

(2011)].

• A basic motivation of this work is to have realistic open system models that

generate entangled states which can be useful for teleportation, but at the

same time, not violate Bell’s inequality. We provide below some examples of

such states. Interestingly, we also find examples of states with positive discord,

but zero entanglement, reiterating the fact that entanglement is a subset of

quantum correlations.
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Dynamics of Quantum Correlations: Dissipative
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Dynamics of Quantum Correlations: Dissipative
continued...

Fig. 6 : Quantum correlations in a two-qubit system undergoing a dissipative

evolution. The Figs. (a), (b), (c) and (d) represent the evolution of concurrence,

maximum teleportation fidelity Fmax, test of Bell’s inequality M(ρ), discord as a

function of inter-qubit distance r12. Here temperature T = 300, evolution time t is

0.1 and bath squeezing parameter r = −1. From Fig. (6 (a)), we find that the two

qubit density matrix is entangled with a positive concurrence except at the point

0.133 (approx) and for r12 ≥ 0.4. Figure 65 (b)) illustrates that Fmax > 2
3
, for all

values of r12 except where there is no entanglement. However, from Fig. (6 (c))

we find that M(ρ) < 1 for all values of r12, clearly demonstrating that the states

can be useful for teleportation despite the fact that they satisfy Bell’s inequality.

Moreover, from Fig. (6 (d)), a positive discord is seen for the complete range of

r12, even in the range where there is no entanglement. As a function of the inter-

qubit distance, the various correlation measures exhibit oscillatory behavior, in

the collective regime of the model, but flatten out subsequently to attain almost

constant values in the independent regime of the model. This oscillatory behavior

is due to the strong collective behavior exhibited by the dynamics due to the

relatively close proximity of the qubits in the collective regime.
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Dynamics of Quantum Correlations: Quantum
Optical Model

• The use of generic quantum optical models, such as semiclassical three-level

atomic systems, that can be experimentally implemented and observed,

can serve as an important tool to generate, investigate, verify and control

nonclassical correlations and their features [H. Dhar, SB, A. Chatterjee, R.

Ghosh (2013)].

• We study the nonclassical correlation properties of the photon states emitted

from a three-level atomic system interacting with two classical driving fields.

The interactions generate two-mode single photon states, arising from two

controlled coherent transitions connecting the three levels, under the single

photon approximation (SPA) [B. R. Mollow (1975)].

• The system can be set up in three different configurations, Ξ, Λ and V. We

establish a qualitative relation between the two different theoretical classes

of correlation measures, entanglement and the measurement-based

correlations such as MID, QD and WD and Dynamics of Quantum

Correlations: Quantum Optically. The control parameters in the system

enable us to define specific regimes where certain correlations are

enhanced based on the nature of the output photon states.
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Dynamics of Quantum Correlations: Quantum
Optical continued...

Fig. 7 : A three-level atom in the (a) Ξ, (b) Λ, and (c) V configuration. Γ1 and Γ2

are the decay constants (numbers shown in units of MHz) of the levels |2〉 and |3〉.
ν1, ν2, and Ω1, Ω2 are the optical frequencies and the Rabi frequencies of the

two near-resonant driving fields. ω1 and ω2 are the two atomic transition

frequencies. ∆1 and ∆2 are the field detunings, set to zero here.Quantum Information: From the Perspective of Quantum Optics – p.39/66



Dynamics of Quantum Correlations: Quantum
Optical continued...

• A three-level atom can be used in three different configurations, namely, Ξ, Λ

and V, for example, we focus on a gas of rubidium (Rb) atoms [J.

G-Banacloche et al. (1995)].

• The energy levels 5S1/2, 5P3/2 and 5D5/2 of Rb can be suitably used to

generate each of the three configurations.

• Level 5S1/2 is the ground state and does not decay. Level 5D5/2 is

metastable, with a decay rate of about 1.0 MHz. while 5P3/2 has a decay

rate of ≈ 6.0 MHz.
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Dynamics of Quantum Correlations: Quantum
Optical continued...

Fig. 8 & 9 : The time evolution for correlation measures MID (red continuous),

discord (blue circles) and work deficit (green squares) along with the

entanglement measure concurrence (black dashed) for the cascade (Ξ)

configuration. The field detunings are ∆1 = ∆2 = 0, and the phases of the Rabi

frequencies are φ1 = φ2 = 0. The level decay rates are Γ1 = 6.0, Γ2 = 1.0. SPA for

this configuration requires that Ω1 < Γ1. The driving field strengths are Ω1 = 2.0,

Ω2 = 1.0, and Ω1 = 2.0, Ω2 = 5.0, in Figures (8) and (9), respectively. The inset shows

the evolution of population elements of the two-photon density matrix and its

purity.
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Dynamics of Quantum Correlations: Quantum
Optical continued...

Fig. 10 & 11 : Fixed time (t = 1.0) MID (red continuous), discord (blue circles),

work deficit (green squares), and concurrence (black dashed) in the Ξ

configuration as a function of the driving field strength Ω2. The field detunings are

∆1 = ∆2 = 0, and the phases of the Rabi frequencies are φ1 = φ2 = 0. The level

decay rates re Γ1 = 6.0, Γ2 = 1.0. SPA for this configuration requires that Ω1 < Γ1.

One driving field strength Ω1 is fixed at 1.5, and 3.5, in Figures (10) and (11),

respectively. The inset shows the variation of population elements of the

two-photon density matrix and its purity.
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Dynamics of Quantum Correlations: Quantum
Optical continued...

• Some general observations can be made that are consistent with known

results: MID always serves as an upper bound on the other measurement

based correlations, such as, QD and WD [Girolami, Paternostro and Adesso

(2010); B R Rao, R Srikanth, C M Chandrashekar and SB (2011)].

• In Fig. (8), for Ω1 > Ω2, MID forms a non-monotonic upper bound on

concurrence at times t > 1.0. For the field regime Ω1 < Ω2

(Ω1 = 2.0,Ω2 = 5.0), Fig. (9), concurrence forms a monotonic upper bound

on the measurement-based correlations. We observe that the behavior of

the correlations is closely related to the dynamics of the populations (inset of

Figures). The non-monotonic behavior of MID is associated with the

population difference in the two photon modes |00〉 and |11〉. It is clear from
the plots that the sudden increase in MID occurs when the populations of the

modes |00〉 and |11〉 are nearly equal. This could be due to the fact that the

non-optimization of the correlation measure in MID is skewed in these regions.

For cases where MID is monotonic with the other measurement based

measures, the population is distinctly unequal. Observing the purity in these

regimes, one can state that the monotonicity is observed at higher levels of

purity.
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Dynamics of Quantum Correlations: Quantum
Optical continued...

• A similar dichotomy in behavior can also be observed for fixed time dynamics

of the system if the interaction is allowed to vary across driving field strengths.

In Figures. (10) and (11), keeping the evolution time fixed and varying the two

classical driving field strengths, a similar behavior of the correlations is

observed. MID is greater than concurrence and non-monotonic at times

where the population levels are equal with significantly lower purity as

compared to regimes with unequal populations and higher purity where the

measurement based correlations are monotonic to concurrence. Hence, we

observe that the fixed time dynamics allows us to manipulate the correlation

hierarchy by changing the ground-state driving field strength, Ω1. The

generation of monotonic correlations can be controlled by using parameter

regions that allow higher purity in the output photon state.
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Dynamics of Quantum Correlations: Quantum
Optical continued...

Fig. 12 : Time evolutions of MID (red continuous), discord (blue circles), work

deficit (green squares) and concurrence (black dashed) for all the three

configurations, Ξ (top), Λ (middle) and V (bottom). The field detunings are ∆1 =

∆2 = 0, and the phases of the Rabi frequencies are φ1 = φ2 = 0. The chosen

driving field strengths of Ω1 = Ω2 = 2.0 (left panel) and Ω1 = Ω2 = 4.0 (right panel)

satisfy the SPA for all three configurations.
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Dynamics of Quantum Correlations: Quantum
Optical continued...

• The correlation behavior is observed to be configuration dependent. The

manipulation of control parameters in different configurations leads to

variations in the dynamic evolution of the correlations.

• The Ξ configuration produces photon states with relatively high correlation

even at low driving fields. The Ξ system can be suitably controlled using the

driving fields to generate correlations dominated both by MID or

concurrence and is ideally suited to experimentally study the temporal

evolution of the two measures with respect to the evolution of the system in

the Hilbert space.

• Λ and V systems are better suited for generating steady monotonic

correlations in both low and high strength driving field regimes. The Λ system

can be suitably tuned to generate steady correlations with either

entanglement or MID as an upper bound.

• V systems, however, can generate ideally pure correlated photons bounded

by concurrence at all field strength regimes. The absence of a metastable

state in the V system allows production of pure correlated output photon

states. The measurement-based correlations are all equal at steady values.

However, in the Λ and V systems, significant correlation is generated only for

high driving field strengths.
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Dynamics of Quantum Correlations: Quantum
Optical continued...

• Hence, specific regimes and configurations can be used to generate and

manipulate the correlations in the output two-photon state as desired. These

results may be useful in practical implementations with such interacting

photon states.
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Geometric Phase (GP) in OpenQuantum Systems

Brief history of GP

• Pancharatnam defined a phase characterizing the intereference of classical

light in distinct states of polarization (1956).

• Berry (1984) discovered that under cyclic adiabatic evolution, system

acquires extra phase over dynamical phase.

• Simon (1983) establised geometric nature of GP, linked to notion of parallel

transport, depends only on area covered by motion, independent of how

motion is executed.

(consequence of the holonomy in a line bundle over parameter space)

• Generalization of GP to non-adiabatic evolution (Aharonov and Anandan

1987) to non-cyclic evolution (Samuel and Bhandari 1988)

• GP as a consequence of quantum kinematics (Mukunda & Simon 1993).

• GP defined for nondegenerate density opertors undergoing unitary evolution

(Sjöqvist et al. 2000)

• Extended by Singh et al. (2003) to the case of degenerate density operators.

• Kinematic approach to define GP in mixed states undergoing nonunitary

evolution Tong et al. (2004) – which we use.
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Motivation

• The geometric nature of GP implies an inherent fault tolerance and would be

useful for quantum computers [Duan, Cirac, Zoller: (2001)].

• There have been proposals to observe GP in superconducting nanocircuits

[Falci, Fazio, Palma, et al.: (2000)]. Here the effect of the environment is never

negligible [Nakamura, Pashkin, Tsai: (1999)].

• The above points provide a strong motivation for studying GP in the context

of Open Quantum Systems. Work along these lines was initiated by [Whitney,

Gefen: (2003); Whitney, Makhlin, Shnirman, Gefen: (2005)].
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A. Geometric Phase (GP) in Two-Level
Open System

[SB and R. Srikanth: (2007)]

• System Hamiltonian

HS =
h̄ω

2
σz .

• System interacts with a squeezed-thermal bath via a QND or a dissipative

interaction.

• Use prescription of Tong et al. (2004)

ΦGP = arg

(

N
∑

k=1

√

λk(0)λk(τ)〈Ψk(0)|Ψk(τ)〉e
−
∫

τ

0

dt〈Ψk(t)|Ψ̇k(t)〉
)

.

• λk(τ), Ψk(τ): eigenvalues, eigenvectors of reduced density matrix.
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Geometric Phase (GP)... continued...
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Figs. 13 (A) & (B) : GP (in radians) as function of temperature (T ) for dissipa-

tive interaction with a bath of harmonic oscillators. Here ω = 1, θ0 = π/2,

the large-dashed, dot-dashed, small-dashed and solid curves, represent, γ0 =

0.005, 0.01, 0.03 and 0.05, respectively. Fig. 13(A) zero squeezing, Fig. 13(B):

squeezing non–vanishing, with r = 0.4 and Φ = 0. GP falls with T . Effect of

squeezing: GP varies more slowly with T , by broadening peaks and flattening

tails. Counteractive action of squeezing on influence of T on GP useful for practi-

cal implementation of GP phase gates.
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B. Geometric Phase (GP) in Three-Level Quantum
Optical System

[Sandhya and SB: (2011)]

• Holonomic quantum computation requires the evolution of qubits in

parameter space: by the control of parameters which are physically feasible.

• Atom photon interaction provides a rich ground for exploring geometric

phase with the added advantage of the existence of control parameters for

manipulating the photon states.

• We study the geometric phase of the two-photon state corresponding to the

two modes emitted by the two dipole transitions of three level cascade

system interacting with two driving fields. The two photon state is in general a

mixed state.

• The evolution in the state space is made by varying the control parameters

namely, the driving field strength and detuning.
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B. Geometric Phase (GP) in Three-
Level... continued...

Model

• The scheme considered here corresponds to a three level cascade system

interacting with two coherent fields which address the only two allowed

dipole transitions |i〉 ↔ |i+ 1〉, i = 1, 2 with energy separation given by ωi.

• Two counter propagating ( Doppler free geometry) driving fields of nearly

equal frequencies ωL1 and ωL2 and respective strengths Ω1 and Ω2 are

resonant with these two transitions.

• The decay constants of the energy levels |3〉 and |2〉 are indicated by Γ3 and

Γ2, respectively. The parameters ∆1, ∆2 refer to the detunings of the driving

fields.

• This scheme may be realized for example in 87Rb vapor with the

corresponding energy levels 5S1/2, 5P3/2 and 5D5/2 and has been used by

[Banacloche et al.: (1995)].

• We use the prescription given in [Tong et al. (2004)] to determine the

geometric phase of the two-photon mixed states emitted by the three level

system.
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B. Geometric Phase (GP) in Three-
Level... continued...
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Fig. 14 : Three level cascade system corresponding to the 87Rb atoms driven by

two fields ω1 and ω2.
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B. Geometric Phase (GP) in Three-
Level... continued...

Figs. 15 : Variation of the geometric phase with the rescaled detuning parameter

δ1 = (∆1 + 10.0)/20.0.
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B. Geometric Phase (GP) in Three-
Level... continued...
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Figs. 16 : Variation of the geometric phase and its derivative with the detuning

parameter∆1. Parameter values of figures 16 (a) and (b) are those corresponding

to the curve (a) of Figs. 15; figures 16 (c) and (d) correspond to curve (b) of Figs.

15. The parameter values of the curves are: (a) Ω1 = Ω2 = 6.0,∆2 = 0, (b)

Ω1 = 3.0,Ω2 = 6.0,∆2 = 0, (c) Ω1 = 6.0,Ω2 = 3.0,∆2 = 0, (d) Ω1,2 = 6.0,∆2 = 3.0

and (e) Ω1,2 = 6.0,∆2 = 6.0.
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B. Geometric Phase (GP) in Three-
Level... continued...

Model

• In Figs. 15, for the case of curve (a) γg does not change in the neighborhood

of δ1 = 0.5 which results in a smaller sweep while the variation of the angle is

uniformly slow in the case of curve (e).

• In Figs. 16, the details of the variation of the curves (a) and (b) in the

neighborhood of ∆1 = 0 are presented.

• Figs. 16 (a), (b) show the variation of γg and the rate of change of γg ,

respectively with ∆1 near ∆1 = 0 of the curve (a) of Figs. 15. γg is constant in

the region −0.25 < ∆1 < 0.25. This is substantiated by the vanishing of the

derivative in this region thus indicating that the geometric phase in this case

is stable under small perturbations in the neighborhood of ∆1 = 0.

• In contrast, in the case of Figs. 16 (c), (d) γg is never a constant even though

the rate of change of γg slows down.
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C. Geometric Phase (GP) in a Frustrated Spin Sys-
tem

[SB, C. M. Chandrashekar and A. K. Pati: (2013)]

• A practical implementation of GP would involve a qubit interacting with its

environment, resulting in its inhibition. This calls for the need to have settings

where the inhibition of GP, due to the ubiquitous environment, could be

arrested.

• Quantum frustration of decoherence (QFD), would be a potential candidate

for achieving this.

• QFD is the term ascribed to the general phenomena when a quantum

system coupled to two independent environments by canonically conjugate

operators results in an enhancement of quantum fluctuations, that is,

decoherence gets suppressed [E. Novais et al.: (2008)]. The reason for this is

attributable to the non-commuting nature of the conjugate coupling

operators that prevents the selection of an appropriate pointer basis to

which the quantum system could settle down to.
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C. Geometric Phase (GP) in a
Frustrated... continued...

Model

• It has been studied in various guises, such as an extension of the dissipative

two-level system problem where the two non-commuting spin operators of

the central spin system were coupled to independent harmonic oscillator

baths, or a harmonic oscillator, modelling a large spin impurity in a

ferromagnet, coupled to two independent oscillator baths via its position and

momentum operators [H. Kohler and F. Sols: (2008)].

• In each case, irrespective of the system of interest or the coupling operators,

QFD was observed.
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C. Geometric Phase (GP) in a
Frustrated... continued...

Model

• We study the influence of QFD on GP by taking up a simple model involving a

central spin, or a qubit which would be our system of interest, interacting with

two independent spin baths via two non-commuting spin operators

H = HS +HSR

= ω
σz

2
+ α1

σx

2
⊗ ΣN

k=1I
k
x + α2

σy

2
⊗ ΣN

l=1J
l
y ,(1)

where HS is the system (single qubit) Hamiltonian and HSR is the

system-reservoir interaction Hamiltonian. Here σi, i = x, y, z are the three

Pauli matrices for the central spin, Ikx and J l
y are the bath spin operators.

Also, α1, α2 are the two spin-bath coupling constants and ω comes from the

basic system Hamiltonian, representing the initial magnetic field.

• Such a model could be envisaged in solid state spin systems with dominant

spin-environment interactions, such as quantum dots.
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C. Geometric Phase (GP) in a
Frustrated... continued...

• The full form of the initial density matrix with an unpolarized initial bath state is

ρSR(0) = 1
22N

ρS(0)⊗ I2N ⊗ I2N , where N is the total number of spins present

in each bath.

• Here

ρS(0) = cos2
(

θ

2

)

| ↓〉〈↓ |+ sin2
(

θ

2

)

| ↑〉〈↑ |

+
i

2
sin(θ)eiφ

[

| ↑〉〈↓ | − e−i2φ| ↓〉〈↑ |
]

.(2)

Also, θ ∈ {0, π} and φ ∈ {0, 2π} are the polar and azimuthal angles,

respectively.

• After interaction, the reduced state of the central spin, in the Bloch vector

representation is

ρS(t) =
1

2

(

1 + 〈σz(t)〉 〈σx(t)〉 − i〈σy(t)
〈σx(t)〉+ i〈σy(t)〉 1− 〈σz(t)〉

)

,(3)

where 〈σi(t)〉 are the average polarizations of the central spin. [SB et al.:

(2013)]

• This is then used in the Tong et al. prescription to study the GP.
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C. Geometric Phase (GP) in a
Frustrated... continued...
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continued ...

Fig. 17 : GP [γg(τ)] with respect to θ and φ (a) when α1 = 1 and α2 = 0, that is,

for the case of a single bath, (b) when α1 = α2 = 1√
2
, (c) when α1 =

√
3

2
and

α2 = 1
2
(d) when α1 = α2 = 1

4
. Here ω = 2, and time t = 50. A comparison

between (a), (b), (c), and (d) reiterates the point that the decay of GP gets

frustrated when both the baths are acting and one of the best strategies is seen

to be the case where α1 = α2 = 1
4
.

[SB et al.: (2013)]
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C. Geometric Phase (GP) in a
Frustrated... continued...

Analogy to Parrondos Paradox

• The effect of frustration on GP could be thought of as a Parrondo’s game:

each game on its own is “a single qubit interacting with its bath; one with σx,

and with another σy”; this would result in decoherence and dissipation

leading to inhibition of GP. This would be the situation where each player

looses his game.

• However, when the two games are played in a synchronized fashion;

corresponding, here, to the case of “the qubit interacting with two

independent baths via non-commuting operators with coupling strengths α1

and α2”, then the decoherence and dissipation can get frustrated leading

to improvement in GP over some range of parameters.
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Conclusion

• Here we have discussed some aspects of Quantum Information with an

interface from Quantum Optics.

• We have made use of a number of aspects of Open Quantum Systems in our

analysis.
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Thank you!
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