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e Generic Definition
e Central Spin model and decoherence of the qubit

e Loschmidt echo close to a quantum critical point
Equilibrium situation

e Non-Equilibrium situation
a: Non-equilibrium initial state

b: Dynamics of the decoherence of the qubit:
universal scaling of decoherence factor



Generic Definition

Fight between J. Loschmidt and L. Boltmann

Second Law and time reversal invariance

o J. Loschmidt o L.Boltzmann

Source:Wikipedia



Loschmidt Echo
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The generic definition:

L(t) = [(tole™ e™ ™" |tho) |* = [(ole ™" [tho) |
(If |¢po) Eigenstate of Hi)

e Overlap between two states evolving from the same initial state
with different Hamiltonians.

e Sensitivity of the quantum evolution to external perturbation due
to coupling to the environment.
Acknowledgement: Scholarpedia



Generic properties of the Loschmidt echo

e Characterized by a short-time decay.
e Partial revivals

e Asymptotic saturation

How does the proximity to a Q critical point influence the LE?
Static Counterpart Fidelity: |{1o(\)[vo(A + 0))|?

decays exponentially with ¢ for a many-body system.

Finite system: Sharp dip at the QCP.

Fidelity susceptibility and fidelity in the thermodynamic limit:
Interesting scaling relations.



Quantum Phase Transitions

Phase transitions are driven by fluctuations

e Zero temperature transition due to non-commuting terms in the
Hamiltonian

e Driven by quantum fluctuations

simplest example: one dimensional Ising model in a transverse field

H:—Zoizaf—hZUf

<ij>

e h>1, (0%) = 0; paramagnetic phase
e h <1, (6%) # 0; ferromagnetic phase

e Quantum phase transition at h = 1.



Quantum Phase Transitions: Critical Exponents

Notion of Universality:

Symmetry, dimensionality and the nature of the fixed point
oed—(d+1)

e Diverging length scale: £ ~ |A|7Y; A=h—1

e Diverging time scale: £, ~ |A|7"% Vanishing gap

e v how one moves away from the critical point

e The dynamical exponent z associated with the critical point.



The model in consideration

Let us consider the Transverse XY spin chain
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o Critical Exponents for Ising transition v =z =1

o Exponents with the Multicritical point z;,c = 2 and
Vme = 1/2.



Two-Level System

Jordan-Wigner transformations: Spin-1/2's to Fermions

H=3 (d C_k>Hk<CCTk>7

k>0 —k

B —(Jx+ Jy)cos(ka) —h  i(Jx — Jy)sin(ka)
e =2 < —i(Jx — Jy)sin(ka)  (Jx+ Jy)cos(ka) + h > ’

Decoupled two level systems



The central spin model and decoherence of a qubit

e A qubit coupled to a quantum critical many body system

e "Qubit" — a single Spin-1/2

e Environment — Quantum XY Spin chain

e A global coupling

e LE: Loss of phase information of the Qubit close to the QCP.

Does a QCP influence the Loschmidt echo?



The Central Spin model

e A central spin globally coupled to an environment.

e We choose the environment to be Transverse XY spin chain
_ y_y
H= _JXZU?U?(H - JyZU,- Tiy1 — hzaiz
i i i
e and a global coupling =", 070%

e Qubit State: |¢s(t =0)) =c1| 1) + 2| |)
e The environment is in the ground state |¢e(t = 0)) = |¢g)

e Composite initial wave function:

[4(t =0)) = |os(t = 0)) @ |¢yg)

Quan et al, Phys. Rev. Lett. 96, 140604 (2006).



Coupling and Evolution of the environmental spin chain

e At a later time t, the composite wave function is given by

(1)) = al 1) @ o) + cof 1) @ [¢-).

|¢+) are the wavefunctions evolving with the environment
Hamiltonian Hg(h & §) given by the Schrodinger equation

i0/0t|¢) = H[h+ 8]|¢).
e The coupling ¢ essentially provides two channels of evolution of

the environmental wave function with the transverse field h 4§
and h — 0.



What happens to the central spin?

The reduced density matrix:

_ al®  acdi(t)
pS(t) = ( Cszd(t) |C2’2 .

e The decoherence factor (Loschmidt Echo)

L(t) = d*(£)d(t) = [(o+ () o—(1))I?

Overlap between two states evolved from the same initial state
with different Hamiltonian

e L(t) =1, pure state. L(t) =0 Complete Mixing

e Coupling to the environment may lead to Complete loss of
coherence



Loschmidt Echo and quantum criticality

We are interested in the small § limit

Equilibrium Situation:

e No explicit time dependence in the Hamiltonian.

Non-Equilibrium Situation:

e |1)o) is an eigenstate of Hp; but there is a sudden quenching

e Explicit time dependence in the Hamiltonian



Equilibrium situation: the LE transverse Ising chain

L(t) = |{¢o| exp (iH.t) exp (—iH-t) |¢0)|* = [(¢+ (1) o (1)

h=4 6+ cosk sin k
+r\
Hk(t)_2< sin k —(hié—l—cosk))

Two sets of Bogoliubov transformations

£(t) =[] Fe = [1 — 25in®(201) sin (e (1 )1)]
k>0

20t = (0k(hy) — Ok(h=)) and tan Oy (hy) = h;-:—nclo(sk




Equilibrium case: h independent of time

The decay of Loschmidt Echo close to QCP at a fixed t
Sum over modes close to the critical modes

52
(1 — h)2N2
The scaling: t — t/p, N — N/p or 6 — pd

L(t) = exp(—at?); a~

e Sharp dip at the quantum critical point

e Complete loss of coherence of the qubit



The collapse and revival at the QCP h+96 =1
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Quasi-periodicity Scales with the system size L



Non-equilibrium initial state

e The initial state: not an eigenstate of uncoupled Hamiltonian Hg

e HE is generated through a sudden quench H;(h;) — Hg(hs).

HF(A) =Ho+ AV +gVg

Lq(A t.8) = |(G(\. g = 0)[erO&)e O G () g = 0))[2

What happens to the temporal evolution of L7

Early time decay £(t) ~ exp(—at?)

(-

e Independent of g
o~ A2 > LYY and o~ 2LV < L)

1
o =

-2 3 = SIVR) — (V)2







When is the quenching relevant

0Ly(N\, g, t
g q(g)

A g, t)~ t
£q( >g’ ) E()"Oa )+ ag

‘g=0

LGN, g, t)/0g|g=0 ~ g1 ~ L1/¥, where v, is the correlation

length exponent.

gk L=1/7 the correction due to quenching becomes irrelevant

For a fixed time t = 20 and § = 0.025

A 0.0003,

L

0.0002

0.0001

T T
hi=1-9/2,k =1+g/2
hj =1+g/2,f =1-g/2--%---

0.0



Variation with £ with time: is there a revival
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e faster decay in comparison to the equilibrium case.

e Partial revival when quenched to the QCP, hf + 6 = 1.



What happens when the environmental spin chain is

driven?

Different Quenching paths:

h-quenching

o \\ FMy oM

B A

h |1
FMy | 3# 3| multicritical quenching

gapless quenching

aniso+quenching

Assume h(t) =1 — t/7, driven spin chain

I h(t) &6 + cos k ysin k
Hk(t)_2< ysin k —(h(t) £ 6 +cosk) )

B. Damski, Quan and Zurek, Phys. Rev. A 83, 062104 (2011).



The decoherence factor L(t)

6% (t) Hwi =[] [t (0)10) + viE (1) [k, —k)] -

k>0

i0/ot (uf(t), viE(e)) T = HE (1) (ui(e), vid (1)

with TT, Fic(t) =TT, [ (h(t) + )| ok (h(t) — 0)) 2,

£(t) = exp [Q’T /Oﬁ dk In Fk} (1)

where Fj can be written in terms of uf and vf.



Motivation: Kibble-Zurek Scaling

e Quenching through a QCP: Defect generation in the final state

e Universal scaling of the defect density: n ~ 1/779/(v2+1)

Different Quenching paths:

h-quenching

Critical point h=t/7; n ~ 172

Multicritical point

Quench Jy = t/7 with h = 2J,; cross the MCP when J, = J,
We find Defect density: n~ 7 /0

Quenching through the gapless critical line v = t/7:n ~ 7~
A. Dutta, et. al., arxiv:1012.0653

1/3




The question we address:

We assume 6 — 0 and and work within the appropriate range of
time;
A is the driving parameter.

One finds

(i) In L(t) ~ (—t?f(7)), if QCPisat A =10

(ii) In L(t) ~ {—(t — Xo7)?f(7)}, if QCP is at o
What is the scaling of this function f(7)?

e Is that identical to the scaling of the defect density?

Not necessarily! Even for this integrable system!



How to Calculate £(t)?

Use the integrable two-level nature of the environmental
Hamiltonian.
Far away from the QCP (|h(t)[>1 (t — +o0))

dk(h + 6)) = uk]0) + viee "2k, —k)

|6k(h — 8)) = ui|0) + €72 Fvielk, —k)

AT =4,/(h+ 6+ 1)2 +42sin k2
A~ =4,/(h—6+1)2+~2sin k2,

are the energy of two excitations in |k, —k) when the transverse
field is equal to h+ & and h — §, respectively.

Excitations occur only in the vicinity of QCPs

F. Pollman et al, Phys. Rev. E 81 020101 (R) (2010).



Landau-Zener formula

E
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two approaching levels ++v/e2 + A? with e = t /7.
Probability of excitation P = exp(—7A27)

Gap protects from the excitation At the QCP , the gap for the
critical mode vanishes; Gap is small for other modes close it.

Zener, Proc. R. Soc. London Ser A 137 (1932) 696; Landau and Lifshitz,
Quantum Mechanics



How to Calculate £(t)?...

How does one know uy and v,?

e Use the Landau-Zener transition formula:
pr = |uk|? = exp(—2m7y% sin? k)

| (@K (h(t) + 6)|ox(h(t) — 8))[>

. N2
Juk? + [P A=A (2)

Fk(t)

In the vicinity of the quantum critical point at h =1
A= (AT —-A7)/2,

Fk(t) = 1- 4Pk(1 — pk)sinz(At)
= 1-4 [e*2”72k/2 — 6747”—72!(/2] sin2(46t) (3)

sin k has been expanded near the critical modes k = m, with
k' = m — k and we have taken the limit § — 0.



Large 6 and small ¢
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How to calculate £(t)?

Assume 6 — 0
N o0
L(t)(t) = — dk
(00 = ooy |
In |:1 o (ef27r‘r'yzk’2 _ ef4fr7"y2k’2> 64(521'2}
Finally £(t) is given by

L(t) ~ exp{—8(vV2 — 1)N&*t*/(vm/T)}.

o InL(t) ~ 7712

The same scaling as the defect density



Non-linear Quenching

Non-linear Quenching: h =1 — sgn(t)(t/7)*

The scaling form py = |uy|? = G(k?72/(o+1))

L(t) = exp(—CN§?¢2 /ro/(a+1))
o InL(t) ~ r—/(at1)
Quenching through a MCP

In £(t) ~ (t = Jy7)? /740 ~ (S = Jy)r1/0
e Quenching through Isolated critical points: In £(t)(7) ~ n

Is this scenario true in general?



Quenching through a critical line

Change v = t/7 with h = 1. Quenched through the MCP
Modified CSM with interaction:

Hse = —(0/2) Z(U;{Uﬁl - U?/Ul)';l)o-zs

i

The coupling ¢ provides two channels of the temporal evolution of
the environmental ground state with anisotropy v+ 0 and v — 4.
The appropriate two-level Hamiltonain

+ _ (y£0)sink h + cos k
He(t) = 2( h+cosk —(y£d)sink )

e The defect density in the final state n ~ 7—1/3*

Does that mean In £(t) ~ 71/37
* U. Divakaran et al, Phys. Rev. B 78, 144301 (2008).



A completely different Scaling

Fr=1- 4(e_7”k3/2 — e_”k3) sin?(4dkt)

e An Gaussian decay:

L(t) ~ exp{—2/3N6%t? /(377)}.

e Scaling of In £(t)(~ 771) is completely different!!



Numerical Justification

Non-linear Quenching

0.8

f
/
1
|

1.2
14
16
18

log A(W)

2.2
24
26

T T

. PR
34 36 38 4 42 44 46 48 5
log ©

Slope ~ —a/(a + 1)

Different Qubit-environment interactions

U N S
multicritical
05 - gapless —— |
ok anisotrgpie 4
= 05 e 1
E Y |
= -
2 ast Bl
a
2k o = 1
25 Loog B
T R R

444546474849 5 5152535455
log T

Fairly good agreement with analytical predictions.



Integrability versus non-integrability

Ising model in a skewed field:

H=-> ofof =Y of —g(of cos¢+ of sin¢)

<ij> !
Integrable ¢ =0, ¢
e Start from the ground state of g; ; Quench from g; — gr
e The final state |¢(gr, 7))

Look at the temporal evolution:

L(t) = |{¥(gr. ) exp(—iH(gr )t (gr. 7))|* = exp(—a(t)L)



Integrability versus non-integrability

(@) ¢=0,9=0.5- g=-0.5

wt
¢=132,9=05- g=-05

© \\// ~_ |

Integrable Case
1 o0
a(t) = 2/ dk log [1 + 4sin®(Art/2)Pe(1 — Py)]
T Jo

F. Pollman et al, Phys. Rev. E 81 020101 (R) (2010).
e Dynamical phase transitions

Heyl, Polkovnikov and Keherein, Phys. Rev. Lett (2013).



Concluding Comments:

e The LE shows interesting behavior close to a Quantum critical
point: small §; Universal Scaling?

e Non-equilbrium initial state Faster loss of coherence

e Scaling of the decoherence factor for a driven spin chain
e not necessarily identical to the scaling of the defect density.

e May be identical for quenching through isolated critical points.
e Clear deviation for quenching through critical lines.
e Dynamical Phase transitions

Points to ponder

e Integrable system reducible to two-level problems....

What happens beyond that?



