Quantum Criticality, dynamics and Loschmidt echo

Amit Dutta

Indian Institute of Technology Kanpur, India

S. Sharma, V. Mukherjee and A. Dutta, EPJ B 85 143 (2012)
V. Mukherjee, S. Sharma and A. Dutta, PRB 86, 020301 (R) (2012).
T. Nag, U. Divakaran and A. Dutta, PRB 86, 020401(R) (2012).

QIPA, HRI, 4tth December, 2013.

Outline

- Generic Definition
- Central Spin model and decoherence of the qubit
- Loschmidt echo close to a quantum critical point Equilibrium situation
- Non-Equilibrium situation
- a: Non-equilibrium initial state
- b: Dynamics of the decoherence of the qubit: universal scaling of decoherence factor

Generic Definition

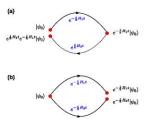
Fight between J. Loschmidt and L. Boltmann

Second Law and time reversal invariance

J. LoschmidtSource:Wikipedia

L.Boltzmann

Loschmidt Echo



The generic definition:

$$\mathcal{L}(t) = |\langle \psi_0 | e^{iH_1t} e^{-iH_2t} | \psi_0 \rangle|^2 = |\langle \psi_0 | e^{-iH_2t} | \psi_0 \rangle|^2$$
(If $|\psi_0\rangle$ Eigenstate of H_1)

- Overlap between two states evolving from the same initial state with different Hamiltonians.
- Sensitivity of the quantum evolution to external perturbation due to coupling to the environment.

Acknowledgement: Scholarpedia

Generic properties of the Loschmidt echo

- Characterized by a short-time decay.
- Partial revivals
- Asymptotic saturation

How does the proximity to a Q critical point influence the LE?

Static Counterpart Fidelity: $|\langle \psi_0(\lambda)|\psi_0(\lambda+\delta)\rangle|^2$

decays exponentially with δ for a many-body system.

Finite system: Sharp dip at the QCP.

Fidelity susceptibility and fidelity in the thermodynamic limit: Interesting scaling relations.

Quantum Phase Transitions

Phase transitions are driven by fluctuations

- Zero temperature transition due to non-commuting terms in the Hamiltonian
- Driven by quantum fluctuations
 simplest example: one dimensional Ising model in a transverse field

$$H = -\sum_{\langle ij \rangle} \sigma_i^z \sigma_j^z - h \sum_i \sigma_i^x$$

- h > 1, $\langle \sigma^z \rangle = 0$; paramagnetic phase
- h < 1, $\langle \sigma^z \rangle \neq 0$; ferromagnetic phase
- Quantum phase transition at h = 1.

Quantum Phase Transitions: Critical Exponents

Notion of Universality:

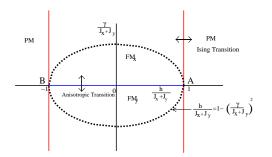
Symmetry, dimensionality and the nature of the fixed point

- $d \rightarrow (d+1)$
- Diverging length scale: $\xi \sim |\lambda|^{-\nu}$; $\lambda = h 1$
- Diverging time scale: $\xi_{\tau} \sim |\lambda|^{-\nu z}$ Vanishing gap
- ullet u how one moves away from the critical point
- The dynamical exponent z associated with the critical point.

The model in consideration

Let us consider the Transverse XY spin chain

$$H = -J_x \sum_{i} \sigma_i^x \sigma_{i+1}^x - J_y \sum_{i} \sigma_i^y \sigma_{i+1}^y - h \sum_{i} \sigma_i^z$$



- \circ Critical Exponents for Ising transition u=z=1
- Exponents with the Multicritical point $z_{mc}=2$ and $\nu_{mc}=1/2$.

Two-Level System

Jordan-Wigner transformations: Spin-1/2's to Fermions

$$H = \sum_{k>0} \left(c_k^{\dagger} c_{-k} \right) H_k \left(c_k^{\dagger} \right),$$

$$H_k = 2 \left(-(J_x + J_y) \cos(ka) - h \quad i(J_x - J_y) \sin(ka) - i(J_x - J_y) \sin(ka) \quad (J_x + J_y) \cos(ka) + h \right),$$

Decoupled two level systems

The central spin model and decoherence of a qubit



- A qubit coupled to a quantum critical many body system
- "Qubit" \rightarrow a single Spin-1/2
- Environment → Quantum XY Spin chain
- A global coupling
- LE: Loss of phase information of the Qubit close to the QCP.

Does a QCP influence the Loschmidt echo?

The Central Spin model

- A central spin globally coupled to an environment.
- We choose the environment to be Transverse XY spin chain

$$H = -J_x \sum_i \sigma_i^x \sigma_{i+1}^x - J_y \sum_i \sigma_i^y \sigma_{i+1}^y - h \sum_i \sigma_i^z$$

- \bullet and a global coupling $-\delta \sum_i \sigma_i^{\rm z} \sigma_S^{\rm z}$
- Qubit State: $|\phi_S(t=0)\rangle = c_1 |\uparrow\rangle + c_2 |\downarrow\rangle$
- ullet The environment is in the ground state $|\phi_E(t=0)
 angle=|\phi_g
 angle$
- Composite initial wave function:

$$|\psi(t=0)\rangle = |\phi_{\mathcal{S}}(t=0)\rangle \otimes |\phi_{\mathcal{g}}\rangle$$

Quan et al, Phys. Rev. Lett. 96, 140604 (2006).

Coupling and Evolution of the environmental spin chain

• At a later time t, the composite wave function is given by $|\psi(t)\rangle = c_1|\uparrow\rangle\otimes|\phi_+\rangle + c_2|\downarrow\rangle\otimes|\phi_-\rangle$.

 $|\phi_{\pm}\rangle$ are the wavefunctions evolving with the environment Hamiltonian $H_E(h\pm\delta)$ given by the Schrödinger equation

$$i\partial/\partial t|\phi_{\pm}\rangle = \hat{H}[h\pm\delta]|\phi_{\pm}\rangle.$$

ullet The coupling δ essentially provides two channels of evolution of the environmental wave function with the transverse field $h+\delta$ and $h-\delta$.

What happens to the central spin?

The reduced density matrix:

$$\rho_{S}(t) = \begin{pmatrix} |c_{1}|^{2} & c_{1}c_{2}^{*}d^{*}(t) \\ c_{1}^{*}c_{2}d(t) & |c_{2}|^{2} \end{pmatrix}.$$

The decoherence factor (Loschmidt Echo)

$$\mathcal{L}(t) = d^*(t)d(t) = |\langle \phi_+(t)|\phi_-(t)\rangle|^2$$

Overlap between two states evolved from the same initial state with different Hamiltonian

- $\mathcal{L}(t) = 1$, pure state. $\mathcal{L}(t) = 0$ Complete Mixing
- Coupling to the environment may lead to Complete loss of coherence

Loschmidt Echo and quantum criticality

We are interested in the small δ limit

Equilibrium Situation:

• No explicit time dependence in the Hamiltonian.

Non-Equilibrium Situation:

- ullet $|\psi_0
 angle$ is an eigenstate of H_0 ; but there is a sudden quenching
- Explicit time dependence in the Hamiltonian

Equilibrium situation: the LE transverse Ising chain

$$\mathcal{L}(t) = |\langle \phi_0 | \exp(iH_+t) \exp(-iH_-t) | \phi_0 \rangle|^2 = |\langle \phi_+(t) | \phi_-(t) |^2$$

$$H_k^{\pm}(t) = 2 \left(\begin{array}{cc} h \pm \delta + \cos k & \sin k \\ \sin k & -(h \pm \delta + \cos k) \end{array} \right)$$

Two sets of Bogoliubov transformations

$$\mathcal{L}(t) = \prod_{k>0} F_k = \left[1 - 2\sin^2(2\alpha_k)\sin^2(\epsilon_k(h_+)t)\right]$$

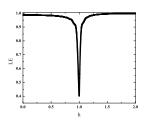
$$2\alpha_k = (\theta_k(h_+) - \theta_k(h_-))$$
 and $\tan \theta_k(h_+) = \frac{\sin k}{h_+ + \cos k}$

Equilibrium case: h independent of time

The decay of Loschmidt Echo close to QCP at a fixed tSum over modes close to the critical modes

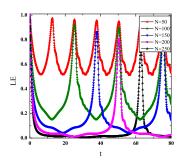
$$\mathcal{L}(t) = \exp(-\alpha t^2); \qquad \alpha \sim \frac{\delta^2}{(1-h)^2 N^2}$$

The scaling: $t \to t/p$, $N \to N/p$ or $\delta \to p\delta$



- Sharp dip at the quantum critical point
- Complete loss of coherence of the qubit

The collapse and revival at the QCP $h + \delta = 1$



Quasi-periodicity Scales with the system size L

Non-equilibrium initial state

- ullet The initial state: not an eigenstate of uncoupled Hamiltonian H_F
- H_F is generated through a sudden quench $H_i(h_i) \to H_F(h_f)$.

$$H_F(\lambda) = H_0 + \lambda V_\lambda + gV_g$$

$$\mathcal{L}_{q}(\lambda, t, g) = |\langle G(\lambda, g = 0) | e^{iH_{F}(\lambda, g)t} e^{-iH_{F}(\lambda + \delta, g)t} | G(\lambda, g = 0) \rangle|^{2}$$

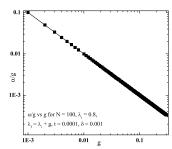
What happens to the temporal evolution of \mathcal{L} ?

Early time decay $\mathcal{L}(t) \sim \exp(-\alpha t^2)$

$$\alpha = \frac{1}{2} \left[\langle \left(\frac{\partial H}{\partial \lambda} \right)^2 \rangle - \langle \left(\frac{\partial H}{\partial \lambda} \right) \rangle^2 \right] \delta^2 = \frac{1}{2} [\langle V_{\lambda}^2 \rangle - \langle V_{\lambda} \rangle^2] \delta^2$$

• Independent of g

$$\alpha \sim \delta^2 \lambda^{2\nu z - 2} (\lambda \gg L^{-1/\nu})$$
 and $\alpha \sim \delta^2 L^{2/\nu - 2z} (\lambda \ll L^{-1/\nu})$

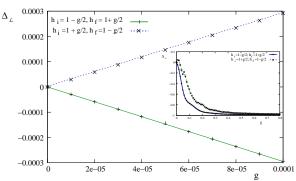


When is the quenching relevant

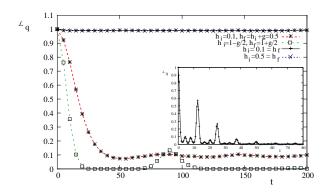
$$\mathcal{L}_q(\lambda, g, t) \approx \mathcal{L}(\lambda, 0, t) + g \frac{\partial \mathcal{L}_q(\lambda, g, t)}{\partial g}|_{g=0}$$

 $\partial \mathcal{L}_q(\lambda,g,t)/\partial g|_{g=0}\sim g^{-1}\sim L^{1/\nu_g}$, where ν_g is the correlation length exponent.

 $g \ll L^{-1/\nu_g}$, the correction due to quenching becomes irrelevant For a fixed time t=20 and $\delta=0.025$



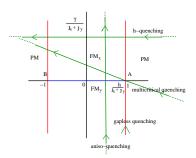
Variation with \mathcal{L} with time: is there a revival



- faster decay in comparison to the equilibrium case.
- Partial revival when quenched to the QCP, $h_f + \delta = 1$.

What happens when the environmental spin chain is driven?

Different Quenching paths:



Assume $h(t) = 1 - t/\tau$, driven spin chain

$$H_k^{\pm}(t) = 2 \begin{pmatrix} h(t) \pm \delta + \cos k & \gamma \sin k \\ \gamma \sin k & -(h(t) \pm \delta + \cos k) \end{pmatrix}.$$

B. Damski, Quan and Zurek, Phys. Rev. A 83, 062104 (2011).

The decoherence factor $\mathcal{L}(t)$

$$|\phi^{\pm}(t)\rangle = \prod_{k} |\phi_{k}^{\pm}(t)\rangle = \prod_{k>0} \left[u_{k}^{\pm}(t)|0\rangle + v_{k}^{\pm}(t)|k,-k\rangle\right].$$

$$i\partial/\partial t \left(u_k^{\pm}(t), v_k^{\pm}(t)\right)^T = H_k^{\pm}(t) \left(u_k^{\pm}(t), v_k^{\pm}(t)\right)^T$$

with $\prod_k F_k(t) = \prod_k |\langle \phi_k(h(t) + \delta) | \phi_k(h(t) - \delta) \rangle|^2$,

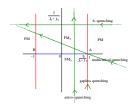
$$\mathcal{L}(t) = \exp\left[\frac{N}{2\pi} \int_0^{\pi} dk \, \ln F_k\right] \tag{1}$$

where F_k can be written in terms of u_k^{\pm} and v_k^{\pm} .

Motivation: Kibble-Zurek Scaling

- Quenching through a QCP: Defect generation in the final state
- Universal scaling of the defect density: $n \sim 1/\tau^{\nu d/(\nu z+1)}$

Different Quenching paths:



Critical point
$$h = t/\tau$$
; $n \sim \tau^{-1/2}$

Multicritical point

Quench $J_x = t/\tau$ with $h = 2J_y$; cross the MCP when $J_x = J_y$

We find Defect density: $n \sim \tau^{-1/6}$

Quenching through the gapless critical line $\gamma = t/\tau$: $n \sim \tau^{-1/3}$ A. Dutta, et. al., arxiv:1012.0653

The question we address:

We assume $\delta \to 0$ and and work within the appropriate range of time;

 λ is the driving parameter.

One finds

(i)
$$\ln \mathcal{L}(t) \sim (-t^2 f(\tau))$$
, if QCP is at $\lambda = 0$

(ii)
$$\ln \mathcal{L}(t) \sim \{-(t - \lambda_0 \tau)^2 f(\tau)\}$$
, if QCP is at λ_0

What is the scaling of this function $f(\tau)$?

• Is that identical to the scaling of the defect density?

Not necessarily! Even for this integrable system!

How to Calculate $\mathcal{L}(t)$?

Use the integrable two-level nature of the environmental Hamiltonian.

Far away from the QCP $(|h(t)|\gg 1 \ (t\to +\infty))$

$$|\phi_k(h+\delta)\rangle = u_k|0\rangle + v_k e^{-i\Delta^+ t}|k,-k\rangle$$

$$|\phi_k(h-\delta)\rangle = u_k|0\rangle + e^{-i\Delta^-t}v_k|k,-k\rangle$$

$$\Delta^+ = 4\sqrt{(h+\delta+1)^2 + \gamma^2 \sin k^2}$$

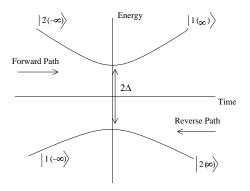
$$\Delta^- = 4\sqrt{(h-\delta+1)^2 + \gamma^2 \sin k^2},$$

are the energy of two excitations in $|k,-k\rangle$ when the transverse field is equal to $h+\delta$ and $h-\delta$, respectively.

Excitations occur only in the vicinity of QCPs

F. Pollman et al, Phys. Rev. E 81 020101 (R) (2010).

Landau-Zener formula



two approaching levels $\pm \sqrt{\epsilon^2 + \Delta^2}$ with $\epsilon = t/\tau$.

Probability of excitation $P = \exp(-\pi \Delta^2 \tau)$

Gap protects from the excitation At the QCP , the gap for the critical mode vanishes; Gap is small for other modes close it. Zener, Proc. R. Soc. London Ser A 137 (1932) 696; Landau and Lifshitz, Quantum Mechanics

How to Calculate $\mathcal{L}(t)$?...

How does one know u_k and v_k ?

• Use the Landau-Zener transition formula:

$$p_k = |u_k|^2 = \exp(-2\pi\tau\gamma^2\sin^2 k)$$

$$F_k(t) = |\langle \phi_k(h(t) + \delta) | \phi_k(h(t) - \delta) \rangle|^2$$

$$= ||u_k|^2 + |v_k|^2 e^{-i(\Delta^+ - \Delta^-)t}|^2, \qquad (2)$$

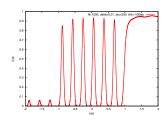
In the vicinity of the quantum critical point at h=1 $\Delta = (\Delta^+ - \Delta^-)/2$.

$$F_k(t) = 1 - 4p_k(1 - p_k)\sin^2(\Delta t)$$

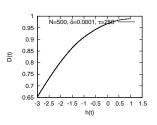
= 1 - 4\left[e^{-2\pi\tau\gamma^2k'^2} - e^{-4\pi\tau\gamma^2k'^2}\right]\sin^2(4\delta t) (3)

sin k has been expanded near the critical modes $k=\pi$, with $k'=\pi-k$ and we have taken the limit $\delta\to 0$.

Large δ and small δ



- \bullet Limit of large δ
- Oscillations



- $\bullet \ \, \text{Limit of small} \\ \delta$
- GaussianDecay

How to calculate $\mathcal{L}(t)$?

Assume $\delta
ightarrow 0$

$$\mathcal{L}(t)(t) = \exp \frac{N}{2\pi} \int_0^\infty dk$$

$$\ln \left[1 - \left(e^{-2\pi\tau\gamma^2 k'^2} - e^{-4\pi\tau\gamma^2 k'^2} \right) 64\delta^2 t^2 \right]$$

Finally $\mathcal{L}(t)$ is given by

$$\mathcal{L}(t) \sim \exp\{-8(\sqrt{2}-1)N\delta^2t^2/(\gamma\pi\sqrt{\tau})\}.$$

• $\ln \mathcal{L}(t) \sim \tau^{-1/2}$

The same scaling as the defect density

Non-linear Quenching

Non-linear Quenching: $h = 1 - \operatorname{sgn}(t)(t/\tau)^{\alpha}$

The scaling form $p_k = |u_k|^2 = G(k^2 \tau^{2\alpha/(\alpha+1)})$

$$\mathcal{L}(t) = \exp(-CN\delta^2 t^2/\tau^{\alpha/(\alpha+1)})$$

• $\ln \mathcal{L}(t) \sim \tau^{-\alpha/(\alpha+1)}$

Quenching through a MCP

$$\ln \mathcal{L}(t) \sim (t - J_y \tau)^2 / \tau^{1/6} \sim (J_x - J_y) \tau^{11/6}$$

ullet Quenching through Isolated critical points: In $\mathcal{L}(t)(au) \sim n$

Is this scenario true in general?

Quenching through a critical line

Change $\gamma=t/ au$ with h=1. Quenched through the MCP

Modified CSM with interaction:

$$H_{SE} = -(\delta/2) \sum_{i} (\sigma_{i}^{x} \sigma_{i+1}^{x} - \sigma_{i}^{y} \sigma_{i+1}^{y}) \sigma_{S}^{z}$$

The coupling δ provides two channels of the temporal evolution of the environmental ground state with anisotropy $\gamma+\delta$ and $\gamma-\delta$. The appropriate two-level Hamiltonain

$$H_k^{\pm}(t) = 2 \begin{pmatrix} (\gamma \pm \delta) \sin k & h + \cos k \\ h + \cos k & -(\gamma \pm \delta) \sin k \end{pmatrix}.$$

• The defect density in the final state $n \sim \tau^{-1/3*}$

Does that mean $\ln \mathcal{L}(t) \sim \tau^{-1/3}$?

* U. Divakaran et al, Phys. Rev. B 78, 144301 (2008).

A completely different Scaling

$$F_k = 1 - 4(e^{-\pi\tau k^3/2} - e^{-\pi\tau k^3})\sin^2(4\delta kt)$$

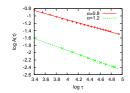
An Gaussian decay:

$$\mathcal{L}(t) \sim \exp\{-2^{14/3}N\delta^2t^2/(3\pi\tau)\}.$$

• Scaling of $\ln \mathcal{L}(t)(\sim \tau^{-1})$ is completely different!!

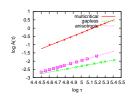
Numerical Justification

Non-linear Quenching



Slope
$$\simeq -\alpha/(\alpha+1)$$

Different Qubit-environment interactions



Fairly good agreement with analytical predictions.

Integrability versus non-integrability

Ising model in a skewed field:

$$H = -\sum_{\langle ij \rangle} \sigma_i^z \sigma_j^z - \sum_i \sigma_i^x - g(\sigma_i^x \cos \phi + \sigma_i^z \sin \phi)$$

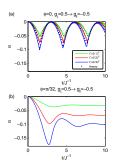
Integrable $\phi = 0, \phi$

- ullet Start from the ground state of g_i ; Quench from $g_i o g_f$
- The final state $|\psi(g_f, \tau)\rangle$

Look at the temporal evolution:

$$\mathcal{L}(t) = |\langle \psi(g_f, \tau)| \exp(-iH(g_f)t|\psi(g_f, \tau)\rangle|^2 = \exp(-\alpha(t)L)$$

Integrability versus non-integrability



Integrable Case

$$\alpha(t) = \frac{1}{2\pi} \int_0^\infty dk \log \left[1 + 4\sin^2(\Delta_f t/2) P_k (1 - P_k) \right]$$

F. Pollman et al, Phys. Rev. E 81 020101 (R) (2010).

• Dynamical phase transitions

Heyl, Polkovnikov and Keherein, Phys. Rev. Lett (2013).

Concluding Comments:

- The LE shows interesting behavior close to a Quantum critical point: small δ ; Universal Scaling?
- Non-equilbrium initial state Faster loss of coherence
- Scaling of the decoherence factor for a driven spin chain
- not necessarily identical to the scaling of the defect density.
- May be identical for quenching through isolated critical points.
- Clear deviation for quenching through critical lines.
- Dynamical Phase transitions

Points to ponder

• Integrable system reducible to two-level problems....

What happens beyond that?