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Abstract.

Teleportation usually involves entangled par-

ticles 1,2 shared by Alice and Bob, Bell-state

measurement on particle 1 and system parti-

cle by Alice, classical communication to Bob,

and unitary transformation by Bob on parti-

cle 2.
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We propose a novel method: interaction-

based remote tomography and entanglement

swapping.
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Remote Tomography and Entanglement

Swapping via Von Neumann-Arthurs-Kelly

interaction between system photon P and



tracker photons.If the photon P ′ is
EPR-entangled with P , the tracker photons

become entangled with P ′ .

Alice arranges an entanglement generating

von Neumann-Arthurs-Kelly interaction be-

tween the system particle P and two appa-

ratus particles, and then transports the lat-

ter to Bob. Bob reconstructs the unknown

initial state of the system not received by

him by quadrature measurements only on the

final off-diagonal reduced density matrix of



the apparatus particles. Further, if the sys-
tem particle P is initially entangled with an-
other system particle P ′, the apparatus par-
ticles received by Bob will also be entangled
with P ′. These results follow from an ex-
act solution of the Schrödinger equation with
von Neumann-Arthurs-Kelly interaction be-
tween a system particle and two apparatus
particles for generalized initial conditions.

Introduction. The idea of ‘quantum track-
ing’ of a single system observable by an ap-
paratus observable first occurred in the mea-
surement theory of Von Neumann citevonN ,



and generalized to two canonically conjugate
observables by Arthurs and Kelly Jr.citeAK.
Suppose the initial state of the system-apparatus
combine is factorized . If after interaction,
the apparatus observable X has the same
expectation value in the final state as the
system observable A in the initial state, for
arbitrary initial state of the system, then X

is said to track A. This nomenclature was
probably used first by Arthurs and GoodmanciteAG

who , as well as, Gudder, Hagler, and Stulpe
citeAG proved the joint measurement uncer-
tainty relation. The Arthurs-Kelly interac-
tion can also enable exact measurements of



some quantum correlations between position

and momentum citeSMR.

We shall be concerned here not with joint

measurements but with the completely dif-

ferent ideas of ‘remote quantum tomogra-

phy’ and ’entanglement swapping’ for con-

tinuous variables. These are akin to ‘quan-

tum teleportation’ or the replication of an

unknown quantum state of a particle at a

distant location without physically transport-

ing that particle. Teleportation, as first pro-

posed by Bennett, Brassard, Crépeau, Jozsa,



Peres and Wootters citeBennett and general-
ized to continuous variables by Vaidman citeV aidman,
usually involves four different technologies.(i)
An EPR-pair E1, E2 is shared by observers A
(Alice) and B (Bob) at distant locations. (ii)
The system particle P with unknown state is
received by A who makes a Bell-state mea-
surement on the joint state of that parti-
cle and E1 and (iii) communicates the result
via a classical channel to B , (iv) B then
makes a unitary transformation depending
on the classical information on E2 to repli-
cate the unknown system state. Telepor-
tation has been experimentally realized, e.g.



by Bouwmeester et al citeBouwmeester, and the

methods and uses extensively reviewed, e.g.

by Braunstein et al citeBraunstein. In particu-

lar the density matrix of the system particle

can be constructed by quadrature measure-

ments on E2 (remote tomography).

Interaction-based Remote Tomography

and Teleportation of EPR-Entanglement.

We report here a completely new method

which replaces the above four technologies

by the single step of an interaction between



the system particle and two apparatus par-
ticles. At Alice’s location A, a system par-
ticle P with unknown state interacts via an
Arthurs-Kelly interaction with two appara-
tus particles A1, A2 in a known state. When
the particles are photons, the interaction can
easily be generated (see e.g. Stenholm citeAK).
The particles A1, A2 are then sent to a dis-
tant observer Bob (B). B makes quantum
tomographic measurements on them (quadra-
ture measurements in the case of photons)
and reconstructs the exact initial density ma-
trix of the system particle without ever hav-
ing received that particle. Further, if another



particle P ′ in Alice’s hands is EPR-entangled

with P , it will be EPR-entangled with the

distant pair A1, A2. (See Fig.2). Practi-

cal implementation will require a quantum

channel to send the two apparatus particles

from location A to the distant location of

B followed by tomographic measurements

by B: for photons, a generalization of sin-

gle photon Optical Homodyne Tomography

(see e.g. citeV ogel, citeBraunstein−Leonhardt and
citeY uen ) to two photons , which seems fea-

sible and worthwhile .



From the ’application point of view’ why is

it practically useful to transport the appara-

tus particles with the system state imprinted

on it ? Why can’t Alice directly send the

system particle to Bob ? There can be sev-

eral reasons. E.g. the system particle might

be unstable; or in the case of a photon, it

might have a frequency unsuitable for optical

fibre transmission. The apparatus photons

can be chosen to have frequency in the tele-

com windows around 1300 nm or 1550 nm

where optical fibres have very low absorp-

tion facilitating long distance transmission.



The scheme we propose exploits the entan-

glement between the system photon and the

apparatus photons generated by the three-

particle Arthurs-Kelly interaction. Multipar-

ticle interactions to generate entanglement

have previously been exploited for quantum

enhanced metrology citeRoy−Braunstein. We

proceed now to put the new method on a

rigorous footing.

A Symmetry Property. We shall use the

Arthurs-Kelly system-apparatus interaction Hamil-

tonian , which is invariant under a class of



simultaneous transformations on the system

and apparatus specified below,

H = K(q̂p̂1 + p̂p̂2) = K(q̂θp̂1,θ + p̂θp̂2,θ) (1)

where K is a coupling constant , q̂, p̂ are po-

sition and momentum operators of the sys-

tem, x̂1, x̂2 are two commuting position op-

erators of the apparatus (e.g. two photons),

with conjugate momenta p̂1, p̂2 which are cou-

pled to q̂ and p̂ respectively.The rotated quadra-

ture operators with subscript θ are defined



using the rotation matrix R,(
q̂θ
p̂θ

)
= R

(
q̂
p̂

)
,

(
p̂1,θ
p̂2,θ

)
= R

(
p̂1
p̂2

)
, R =

(
cos θ sin θ
− sin θ cosθ

)
.

(2)
The operators p̂j,θ are seen to be just the
commuting momentum operators of the ap-
paratus particles corresponding to rotated
co-ordinates xj,θ, for j = 1,2,

x1,θ+ix2,θ = exp(−iθ)(x1+ix2), p̂j,θ = −i∂/∂xj,θ.
(3)

We also define,

x̂1,θ + ix̂2,θ = exp(−iθ)(x̂1 + ix̂2). (4)



Then, in the case of the apparatus being

two photons with annihilation operators ai
,i = 1,2,

x̂i,θ = ai exp (−iθ)/
√
2+ h.c., p̂i,θ = x̂i,θ+π/2.

(5)

Exact Solution of the Schrödinger equa-

tion with generalized initial conditions.

We assume the constant K to be so large

that the free Hamiltonians of the system and

the apparatus are negligible compared to H



during interaction time T . We start from an

initial factorized state ,

〈q|〈x1, x2|ψ(t = 0)〉 = 〈q|φ〉χ(x1, x2), (6)

where 〈q|φ〉 is the unknown system wave fuc-

tion, and the apparatus wave function is cho-

sen to be a product of two Gaussians, χ(x1, x2) =

χ1(x1)χ2(x2),

χ1(x1) = π−1/4b
−1/2
1 exp [−x21/(2b

2
1)]

χ2(x2) = π−1/4(2b2)
1/2 exp [−2b22x

2
2]. (7)

Arthurs and Kelly chose b2 = b1 = b. We

solve the Schrödinger equation with arbitrary



b1, b2 ; we need b1 6= b2 to utilise the sym-

metry of the Hamiltonian.

The commutator of the two terms in H in

fact commutes with each of the terms. Hence,

exp (−iHt) = exp (−iKtq̂p̂1) exp (−iKtp̂p̂2)
exp (iK2t2p̂1p̂2/2) .(8)

If we work in the q, x1, p2 representation, the

three exponentials on the right-hand side suc-

cessively translate x1, q, x1 acting on the ini-

tial wavefunction. Hence the exact solution



of the Schrödinger equation is,

〈q, x1, p2|ψ(t)〉 = χ1(x1 − qKt+ (1/2)p2K
2t2)

χ̃2(p2)φ(q − p2Kt), (9)

where χ̃2 denotes a Fourier transform of χ2.
The co-ordinate space wave function is given
by a Fourier transform. Choosing KT = 1
we obtain,

ψ(q, x1, x2) =
∫
ψ(q, x1, x2, ξ)dξ , (10)

where,

ψ(q, x1, x2, ξ) = φ(ξ) exp (i(q − ξ)x2)/(2π
√
b1b2)

exp (−
(2x1 − q − ξ)2

8b21
−

(q − ξ)2

8b22
). (11)



Tracing the system-apparatus density matrix

over the system co-ordinate we obtain the

apparatus density matrix at time T,

〈x1, x2|ρAPP (T )|x′1x
′
2〉 =

∫
ψ(q, x1, x2, ξ)

ψ∗(q, x′1, x
′
2, ξ

′)dqdξdξ′ . (12)

The probability densities P1(x1) and P2(x2)

for x1 and x2 are obtained by integrating the

diagonal elements of this density operator

over x2 and x1 respectively.In fact P1(x1) and

P2(x2) can be obtained from the Arthurs-

Kelly expressions by b2 → (b21 + b22)/2 and



b−2 → (b−2
1 + b−2

2 )/2 respectively.The result-

ing expectation values of x1, x2 equal those

of q, p respectively, but the dispersions are

higher, (∆x1)
2 = (∆q)2+(b21+b

2
2)/2, (∆x2)

2 =

(∆p)2 + (b21 + b22)/(8b
2
1b

2
2).

Our key new results require b1 6= b2. First,

integrating the off-diagonal elements of the

apparatus density matrix over x2, x
′
2 ,∫

〈x1, x2|ρAPP (T )|x′1x
′
2〉dx2dx

′
2 = 1

b1b2

∫
|φ(q)|2

exp (−(x1−q)2+(x′1−q)
2

2b21
)dq . (13)



This shows that we can extract the exact ini-
tial system position probability density from
the final apparatus density matrix as the ex-
pectation value of an apparatus observable.∣∣∣∣〈q = x1|φ〉

∣∣∣∣2 = limb1→0
b2√
π

∫
dx2dx

′
2

〈x1, x2|ρAPP (T )|x1x′2〉
= limb1→0TrρAPP (T )Y (x1), (14)

where Y (x1) is the apparatus observable,

Y (x1) =
b2√
π
|x1〉〈x1|

∫
|x′2〉〈x

′′
2|dx

′
2dx

′′
2

= 2b2
√
π|x1〉〈x1||p̂2 = 0〉〈p̂2 = 0| (15)



Similarly, the exact initial system momentum
probability density is an expectation value of
an apparatus observable in the final appara-
tus density matrix,∣∣∣∣〈p = x2|φ〉

∣∣∣∣2 = limb2→∞
1

2b1
√
π

∫
dx1dx

′
1

〈x1, x2|ρAPP (T )|x′1x2〉
= limb2→∞TrρAPP (T )Z(x2),(16)

where Z(x2) is the apparatus observable,

Z(x2) =

√
π

b1
|x2〉〈x2|p̂1 = 0〉〈p̂1 = 0|. (17)

In the limit, b1 → 0, b2 → ∞, we have faithful



tracking of both system position and system

momentum, since Y (x1) tracks the position

projectors |q̂ = x1 >< q̂ = x1| for all x1 and

Z(x2) tracks the system momentum projec-

tors |p̂ = x2 >< p̂ = x2| for all x2.

Further, the Wigner function of the initial

system state can be calculated exactly from

the final apparatus density matrix,

W (x1, x2) = limb1→0,b2→∞
b2

2πb1∫
dx′1dx

′
2〈x1, x2|ρAPP (T )|x

′
1x

′
2〉. (18)



We now show that we can indeed measure a

continuous infinity of apparatus observables

on the final state to obtain the initial Wigner

function of the system particle.

Rotated quadratures and Quantum To-

mography. In order to harness the sym-

metry property mentioned above, we need a

corresponding symmetry property of the ini-

tial apparatus state, χ(x1, x2) = χ(x1,θ, x2,θ).

Therefore we are forced to use initial appa-

ratus states very different from Arthurs and



Kelly. We need,

2b1b2 = 1; χ(x1, x2) = χ(x1,θ, x2,θ)

= π−1/2b−1
1 exp [−(x21 + x22)/(2b

2
1)]. (19)

For this choice , the system-apparatus initial

state can be rewritten for arbitrary θ as,

〈q̂θ = qθ|〈x̂1,θ = x1,θ, x̂2,θ = x2,θ|ψ(t = 0)〉
= 〈q̂θ = qθ| φ〉χ(x1,θ, x2,θ),(20)

with the obvious notation (q̂θ−qθ)|q̂θ = qθ〉 =
0. Since the Hamiltonian H and the initial

apparatus states have exactly the same form

in terms of the rotated variables as in terms



of the original variables, we can repeat the

previous calculations with q̂θ, p̂θ, qθ, pθ, x1,θ, x2,θ
replacing q̂, p̂, q, p, x1, x2 respectively. Hence

the matrix elements of ρAPP. are obtained

by replacing in the previously obtained ex-

pressions

q, p, x1, x2, x
′
1, x

′
2 → qθ, pθ, x1,θ, x2,θ, x

′
1,θ, x

′
2,θ.

Thus, we obtain for arbitrary θ ,∣∣∣∣〈q̂θ = u|φ〉
∣∣∣∣2 = limb1→0TrρAPP (T )Yθ(u),

(21)



Yθ(u) ≡
√
π

b1
|x̂1,θ = u〉〈x̂1,θ = u|

|p̂2,θ = 0〉〈p̂2,θ = 0|. (22)

Since, p̂θ = q̂θ+π/2 the initial system proba-

bility densities for it are obtained from above

just by replacing θ → θ+ π/2.

We have proved that in the limit,

b1 → 0, b2 = 1/(2b1) → ∞, (23)

we can recover exactly the initial system prob-

ability densities of arbitrary Hermitian linear



combinations q̂θ,

〈q̂θ = u| ρS|q̂θ = u〉 =
∣∣∣∣〈q̂θ = u|φ〉

∣∣∣∣2 (24)

and hence the initial Wigner function, by

measuring expectation values of Hermitian

operators in the same final state of the ap-

paratus after interaction.

Reconstruction of the initial Density Ma-

trix of the System from the final Appara-

tus Density Matrix. Quantum tomography



is completed by calculating the Wigner func-
tion W (q, p) as an inverse Radon transform,

W (q, p) = (2π)−2
∫ ∞

0
ηdη

∫ 2π

0
dθ
∫ ∞

−∞
du

exp (iη(u− (q cos θ+ p sin θ)))〈q̂θ = u| ρS|q̂θ = u〉,(25)
and from that the density operator,

〈q|ρS|q′〉 = (2π)−1
∫ π
0

|q − q′|dθ(sin θ)−2

exp ((−i(q2 − q′2) cot θ)/2)
∫ ∞

−∞
du

exp (iu(q − q′)/ sin θ)〈q̂θ = u| ρS|q̂θ = u〉.(26)

Accounting for time evolution of the ap-



paratus photons during transit time τ to
distant location B. Note that

TrρAPP (T )Yθ(u) = TrρAPP (T + τ)

×exp(−iH0τ)Yθ(u)exp(iH0τ),

where the Hamiltonian

H0 = ω(a1 † a1 + a2 † a2 +1)

, if the photons have the same frequency ω.
Hence the 〈q̂θ = u|ρS|q̂θ = u〉 are equivalently
given by replacing

ρAPP (T ), x̂1,θ, p̂2,θ



by

ρAPP (T + τ), cos(ωτ)x̂1,θ − sin(ωτ)p̂1,θ,

cos(ωτ)p̂2,θ + sin(ωτ)x̂2,θ

respectively.We just have to measure differ-

ent quadratures for the apparatus photons

depending on the transit time τ .

Quantitative comparisons for the third

excited state of the oscillator .

Our exact theorems are for the limit b1 → 0.

The purpose here is to estimate how small



this parameter has to be for reasonably accu-

rate reconstruction of the initial state which

,in this example, is chosen to be the highly

non-classical third excited of the oscillator.

The wave function in the position basis is

φ(q) = (2q3 − 3q)exp

(
−
q2

2

)
/(

√
3 π1/4).

(27)

The Wigner function is a function of q2 +

p2 ≡ d

W (d) = exp(−d)[4d3 − 18d2 +18d− 3]/(3π).

(28)



The Wigner function for the 3rd excited

state of the harmonic oscillator
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Reconstructed Wigner function with
b1 = 0.1. (c): Difference between curves
(a) and (b). (d): Reconstructed Wigner
function with b1 = 0.3. (e): Arthurs-Kelly

probability distribution .
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Position probability densities in for the third



excited state. (a): Quantum probability

density of the state. (b): Obtained from

reconstructed Wigner function with

b1 = 0.1. (c): Difference between curves

(a) and (b). (d): Obtained from

reconstructed Wigner function with

b1 = 0.3. (e): Obtained from Arthurs-Kelly

probability distribution .
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distance between: a) The Wigner function
and the reconstructed Wigner function, b)
The position probability density and the
reconstructed density , versus b1. Even

when b1 is as large as 0.2, the K-S distance
in case a) reaches a value of only 0.072.

The agreement is even better in case b), (
the small discontinuity in the K-S distance
at b1 = 0.16 is due to the shifting of the

position where the maximum K-S distance
is reached).

In the figures we make quantitative compar-
isons between the Wigner function, our re-



constructed Wigner function with 2b1b2 = 1

(for b1 = {0.1,0.3}) and the Arthurs-Kelly

Probability distribution .It is worth noting

that for b1 = 1√
2
, the reconstructed Wigner

function is equal to the Arthurs-Kelly dis-

tribution which differs greatly from the true

Wigner function. Towards practical utility,

note that for b1 = .1 the reconstructed Wigner

function and the position probability derived

from it are already very close to the actual.

A well-known measure of the distance be-

tween two probability distributions is given



by the Kolmogorov-Smirnov distance, D(K−
S) = maxx|F1(x)−F2(x)|, where Fi(x) is the

cumulative probability for the variable X ≤ x

for the i-th probability distribution. This dis-

tance between the pseudo-probabilities given

by the Wigner function and the reconstructed

Wigner function, as well as for the corre-

sponding position probabilities derived from

them are plotted in Fig. 4. The distance (es-

pecially for the position probability) is very

small even upto b1 = 0.2 though the theorem

of exact equality is only in the limit b1 → 0.



Teleportation of Entanglement. If the
photon P with co-ordinate q is EPR-entangled
with another photon P ′ with co-ordinate q′

with initial wave function φ(q, q′), the den-
sity matrix for particles 1,2, P ′ after inter-
action can be shown to obey citeSMR1 ana-
logues of Eqs. (14), (15) with 〈q = x1|φ〉 re-
placed by 〈q = x1, q

′|φ〉, and Y (x1) replaced
by Y (x1)|q′〉〈q′|,∣∣∣∣〈q = x1, q

′|φ〉
∣∣∣∣2 = limb1→0TrρAPP (T )Y (x1)|q′〉〈q′|.

Thus the apparatus photons after interaction
with P become entangled with P ′ achiev-



ing interaction-based teleportation of EPR-

entanglement. The exact initial probability

densities for q, q′ (and similarly for p, p′), i.e.

the exact EPR-correlations can be retrieved

from this final entangled state.

Conclusions and Outlook. (i) We have

shown that the Arthurs-Kelly interaction be-

tween an unknown state of a photon P and

chosen initial state of two apparatus photons

enables a one-step remote tomographic re-

construction of the unknown initial state of



P , as well as teleportation of its entangle-

ment with another photon P ′, instead of the

usual four step process. It is practically fea-

sible because apparatus photon frequencies

can be chosen in the telecom windows, and

the technology of generating the Arthurs-

Kelly interaction quantum optically is well

established.

(ii) Remote Tomography requires the mea-

surement of the two photon observable Yθ(u)

which is just a product of two commuting



quadrature operators for the apparatus pho-
tons, each of the kind usually measured for a
single photon. This generalization of optical
homodyning to the two teleported photons
will by itself be a stimulating development.

(iii) The Arthurs-Goodman result on impos-
sibility of simultaneous accurate tracking of
position and momentum by commuting ob-
servables of the apparatus is not violated.
The secret is that the apparatus observables
tracking position and momentum do not com-
mute, [Y (x1), Z(x2)] 6= 0. This is not a prob-
lem since we are interested in tomography ,



not in the simultaneous measurement of po-
sition and momentum.

(iv) The final density operator of the system
can also be exactly calculated and it can be
seen that < q >T=< q >0 , ∆q2T = ∆q20+2b22;
since the final system state is different from
the initial state, and depends on the initial
states of both the system and the appara-
tus, the no-cloning citeWootters and no-hiding
theorems citeBraunstein−Pati are respected.
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Aditi Sen De for discussions. AD and NS
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INSA Senior Scientist award.



References

1. J. Von Neumann, Math. Foundations of

Quantum Mechanics, Princeton Univer-

sity Press (1955).

2. E. Arthurs and J. L. Kelly, Jr., Bell Sys-

tem Tech. J. 44,725 (1965); K. Husimi,

Proc. Phys. Math. Soc.Japan, 22,264

(1940), S. L. Braunstein, C. M. Caves



and G. J. Milburn, Phys. Rev. A43,1153

(1991); S. Stenholm, Ann. Phys. 218,233

(1992); P. Busch, T. Heinonen and P.

Lahti, Phys. Reports 452,155 (2007).

3. E. Arthurs and M. S. Goodman, Phys.

Rev. Lett. 60,2447 (1988); S. Gudder,

J. Hagler, and W. Stulpe, Found. Phys.

Lett. 1,287 (1988).

4. S. M. Roy, Phys. Lett. A377, 2011

(2013).



5. C. H. Bennett, G. Brassard, C. Crépeau,
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