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Isolated quantum systems
Schrodinger equation < Unitary evolution

,-% —He o U() =T [exp{—i/ot dt’H(t’)H
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Isolated quantum systems
Schrodinger equation < Unitary evolution

,% —HE s U) =T[exp{—i/ot dt’H(t’)H

Open quantum systems
Master equations = Dynamical maps

dp
—=£p ; - o
5 = P p— ®p
Dynamical maps take density matrices to density matrices
@ Linear and trace preserving
@ Preserves Hermiticity of p

@ Maps positive matrices to positive matrices &=
=] F = = £ DA



The dynamical map

For finite dimensional systems
Prs — Ars;r’s’pr’s’ = (Ap)rs-

Asrisrr(t) = [Arsrs(£)]*  (Hermiticity preserving)
Aprss = Opg (Trace preserving)

X XsArsirsyryy > 0 (Positivity)
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The dynamical map

For finite dimensional systems
Prs — Ars;r’s’pr’s’ = (Ap)rs-

Asrisrr(t) = [Arsrs(£)]*  (Hermiticity preserving)
Aprss = Opg (Trace preserving)

X XsArsirsyryy > 0 (Positivity)

Ars;r’s’ ( t) = Brr’;ss’ (t)
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The dynamical map

For finite dimensional systems
Prs — Ars;r’s’pr’s’ = (Ap)rs-

Asrisrr(t) = [Arsrs(£)]*  (Hermiticity preserving)
Aprss = Opg (Trace preserving)

X XsArsirsyryy > 0 (Positivity)

Ars;r’s’ ( t) = Brr’;ss’ (t)

Bl (t) = Bporssr(t) (Hermiticity)

Bprins = O (Trace preserving) .
X}V Brrssxsys > 0 (Positivity) w
=} 5 - = £ DA



Since B is hermitian, it can be written in terms of its eigenvalues
and eigenvectors.

Prs = Z AaCrr'(a)pr’s’C;rls(a)
If all Ay > 0 then define C(a) = VAo(()
p— Z C(a)pC(a)t

with

ZC =1

B is then a completely positive map @--ssnﬁw
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Starting from

p— 3 Cla)oCla),
we can expand the C(a) in terms of a standard operator basis ¥ :

Cla)=> a3
j
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Starting from
p— Y Cla)pC(a),

we can expand the C(a) in terms of a standard operator basis ¥ :

Cla)=> a3
j




Maps viewed on the Bloch sphere

The completely positive single qubit maps: Unitary rotation, pure
dephasing, depolarizing map, and the pin map.




State and process tomography

The dynamical map

The environment

Quantum state tomography

Open quantum dynamics

Quantum state tomography of an optical GHZ state - «. J. Resch,
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Open quantum dynamics The dynamical map
The environment State and process tomography

Quantum state tomography
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Wigner tomography of a superconducting anharmonic oscillator in
a superposition of Fock states - Yoni shalibo, Roy Resh, Ofer Fogel, David Shwa, Radoslaw
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Bialczak, John M. Martinis, and Nadav Katz, PRL 110, 100404 (2013) ‘\M
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Input QST

)
o {Xa}—{1x v}

Im(g)

5
Output QST
)
o) XY .
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Quantum process tomography of a universal entangling gate on

Josephson qubits (Input state 1) - Martinis group, Nature Physics (2010)
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Quantum process tomography of a universal entangling gate on

Josephson qublts (|nput state 2) = Martinis group, Nature Physics (2010)
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Quantum process matrix using 16 input states IISER
= Martinis group, Nature Physics (2010) o =) = - wngz’gji



Realization of quantum process tomography in NMR

Andrew M. Childs,»?3 Isaac L. Chuang,! and Debbie W. Leung!*°
1 IBM Almaden Research Center, San Jose, CA 95120

? Physics Department, California Tnsti of Technology, Pasad: CA 91125
3 Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
4 Quantum Entanglement Project, ICORP, JST, Edward Ginzton Lab y, Stanford Uni ity, Stanford, CA 94305

5 IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
(6 December 2000)

Quantum process matrix for a controlled not gate

= arXiv:quant-ph/0012032v1 o & = =




P~
o
~

o

o —_

y component
o

z component

y component &
o
o [$)] -

=
o)

'
=y

z component

o
o

'
ey

X component

X component

Time evolution of different input states of a qubit

= Martinis group, PRL 97, 050502 (2006)
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Can the extensive data obtained about the state and evolution of a
open quantum system through tomography be used to gain
quantitative information about the environment of the system?
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Can the extensive data obtained about the state and evolution of a

open quantum system through tomography be used to gain
quantitative information about the environment of the system?

We find that this data can be put to good use assuming that the
system is a qubit and that the environment is a generic N level
quantum system.
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The state of the system of interest - a qubit (X-system) - is
written in terms of the three Pauli matrices (SU(2) generators),

T = (L1, ¥, X3).

[Z;, Zj] = 2ie,~ijk.

The environment is an N level quantum system with its state
written in terms of the N2 — 1 generators of SU(N) denoted by A.

[/\,', /\j] = 2I'f;:,'k/\k.
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The parameters of the Hamiltonian

3 N2-1

1
H= 5 (aij + BiNk + Z Z ’}/jkzj'/\k>.
j=1 k=1
The parameters specifying the Hamiltonian are
a (ala a2, 063),
/B - (1317 EE) /BN2—1)7
o Y1712 e VN1 gl
7 = Y21 Y22 oo Yone-1 | = | P2
31 Y32 - Y3NR-1 V3
]_ L o= - - - > -
H=-(@-*+3-A2x-7-A).
2
. - = <>
We want to find &, 8 and 7. J%
=} = = E = FOQG



The X-system is initialized in one of three preparations:

1
pgl) — 5(1—}—21), ( ) _ = (1—}—22) and (3) = (1+23).
In the Schrodinger picture,

1
Pt = S+ AN ()5 + ()T, + P (1)Ts), k=1,2,3.

The nine functions aj(.k)(t) are obtained experimentally for some

length of time t as part of a complete process tomography
experiment.

AAAAAAAAAAAAAAAAAA



3(8) = () = T

In the Heisenberg picture
al) () = (5(0)® = e[ 5;(2)].

Now consider the n'"' time derivative of aJ(.k)(t) in the Heisenberg
picture,

&0 = (Do) =T %)

Time derivatives of the Heisenberg picture Pauli operators that
appear on the right hand side are functions of the Hamiltonian o
parameters that we are trying to find. ﬁ
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d .
Gpri(t) ®le = i[H, 1(t) ® L]

Yi(t) = i[H, e"t e = ie[H, Ti]e~ M
= éeth[d' Y+ G A+ N A, yi]e 't
= aoX3(t) — azXa(t) + vk Zs(t) — 3k ux2(t),

For small values of t so that X;(t) ~ ¥;(0) = X;.

02 = ST(S5ilH, Sal} = ST{(T+ Zs)ilH, 5]}
= T[p{)5:1(0)] = (3’(0)




Using the equations for ¥ and Y3 we get

0 —Q3 (%)
—Q (051) 0

The first time derivatives of the nine functions a; form a real,
anti-symmetric, 3 X 3 matrix whose three independent elements
give us a3, ap and as

This is not particularly surprising since «;'s are the coefficients of
the part of the Hamiltonian that act only on the X-system.
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Simplifying notation

[O_Z X f], = e,-jkajZk

[5 % N = fiBile.

Using this notation we can write the equation for the first time
derivative as

f:i[H,f]:o_fo—i-(’_Y)-/_\'xf.
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The second time derivative

(k e K) . :
59(0) = Te(p %)) = Te(o”i[H, i[H. T)]))-
— — & - — & = —
iH, i[H,X]] = dxadxX+ax 7 AxE+7 - AxdadxiX
> - > - — A — —
+ 7 AT AXI+T (BxA) x T
< - <> - —
+ 7 (X7 xA) x L.

o3 + a3 + 52 + %31 —aion — 12 —a1a3 — 9193
30) = — —a1az — 1 A2 a2+ o+ P+ 532 —onas — A2 93 .
—Q1Q3 — ;}'/1 B ;}'/3 —QpQ3 — "‘;/2 . ")‘/3 CM% + 0&% + ’?]2. + ’73

The six independent equations above can be used to find the
lengths of the vectors 41, 42 and 43 as well as the dot products
£ DA

1 -2, 13 and A2 - A3
o = = =
~ AnilShaji  TheEnvironment from open dynamics



The third time derivative

iH, i[H, i[H, Z]]lef = @Xxaxaxx—+ax Y Ax Y AxT
+ Y AX Y AXEAXT
> = <~ - —
+ 7 -Axax vy -ANxX
e — — > = —
+27 (BxAN)x 7 -AxX
> - <> — — —
+ VAx 7(BxAN) XL,

ok . - - . -
aJ(' ) = e (|12 + 712+ 52 2+ 521) +2¢j10ctm (T 51+ 3FoimBo i Viem
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The trace equations with the odd order commutators are

antisymmetric and that with the even order commutators are

symmetric. Hence we expect to get three independent equations

each from the odd orders and six each from the even orders.

Assuming an average of 4.5 parameters from each order, we can

estimate the minimum order to which commutators are to be

computed in order to have sufficient linearly independent equations
so as to solve for the 3 + N2 — 1 + 3(N? — 1) = 4N? — 1 unknown

parameters as (4N2 — 1)/4.5.

E IISER if?
TH "




ar=1,a=2,a3=3,51=1,0=28=10=1 0 =1,
66 =1, p7 =1, g =0.1, Y11 =1, 722 = 1, 33 = 1. All the rest
were set to zero
2.52887 05— 0.5 —0.5/ 05— 0
0541 0.52868 0.5 — 0.5/ 1 05—
H— 0.54 0.5/ 0.5+ 0.5/ 1.44226 0
o 0.5+ 1 0 —1.47113
0 05+ 0
0 0 05+

0
0
0 05—
05— 0.5 —-0.5/
0541 —1.47113 0.5 —-0.5/
0.5+4+0.5/ 0.5+0.5/i —1.55774
o = = = z 9ace
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—=0.0001

—=0.0002

Difference between aj(-l)(true) and aJ(-l)(reconstructed) versus time.
j=1,2,3 are red, blue and green respectively w
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Difference between aj(-z)(true) and aJ(-z)(reconstructed) versus time.
j=1,2,3 are red, blue and green respectively. w
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= ——t————L Time
0.02 0.04 0.06 0.08 0.10

Difference between aj(-3)(true) and aJ(-s)(reconstructed) versus time.

j=1,2,3 are red, blue and green respectively. w
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The parameters of the Hamiltonian of a qubit interacting with an
N dimensional quantum system can be obtained, in principle, from
the time dependance of the qubit alone.

The expressions for the quantities aj(.k) and their derivatives for

varying N are shown to have a similar structure which is governed
by the underlying SU(N) Lie algebra.

The Hamiltonian enables one to understand the details of the
environment with which the qubit is interacting and this knowledge
can help one to take necessary steps to minimize the decohering
effects of the environment
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