Pre-Verification of Quantum Processes

Sai Vinjanampathy¹, Amit Rai¹, Max Tillman², Alexander Szameit³, Dmitris Angelakis^{1,4}, L. C. Kwek^{1,5}

¹Centre For Quantum Technologies, National University of Singapore.
 ²Faculty of Physics, University of Vienna & IQOQI, Vienna.
 ³Institute of Applied Physics, Friedrich-Schiller Universität Jena.
 ⁴Science Department, Technical University of Crete.
 ⁵IAS & NIE, Nanyang Technological University.

cqtsv@nus.edu.sg

December 6, 2013

Sai Vinjanampathy (CQT-NUS)

QIPA-2013, HRI

Outline

- 1. Introduction
- 2. Pre-Verification
- 3. Chernoff & Neighbors
- 4. Simulation & Experiment
- 5. Conclusions

• Data and device "fidelity".

- Data and device "fidelity".
- Data "fidelity" checked via error control theory.

- Data and device "fidelity".
- Data "fidelity" checked via error control theory.
- Device "fidelity" checked via hypothesis testing theory.

- Data and device "fidelity".
- Data "fidelity" checked via error control theory.
- Device "fidelity" checked via hypothesis testing theory.

• Error Detection ☑ & Error Correction ⊠.

- Data and device "fidelity".
- Data "fidelity" checked via error control theory.
- Device "fidelity" checked via hypothesis testing theory.

- Error Detection ☑ & Error Correction ⊠.
- "Naive": Check all possible I/O combinations.

Introduction Qua

Quantum Case

Quantum Case: States and Processes

States

- Data transmission \rightarrow State transmission.
- Density matrices have $\mathrm{d}_\mathrm{s}^2-1$ elements.

Processes

- Devices \rightarrow Processes: $\mathcal{H}_{\mathcal{S}} \rightarrow \mathcal{H}_{\mathcal{S}}$.
- Density matrices characterized by $\mathrm{d}_{\mathrm{s}}^2-1$ elements.
- Processes characterized by $\mathrm{d}_s^4-\mathrm{d}_s^2$ elements.
- Costly when $\mathrm{d}_{\mathrm{s}}=2^{\mathrm{m}}\text{, for }\mathrm{m}$ qubits''.

^apseudo-spins are different

Process Tomography-I

Basics

- Basis ϱ_k .
- Any density matrix $ho = \sum_{k=1}^{\infty} c_k \varrho_k$
- For any process Φ , measure $\tilde{\varrho}_k = \Phi(\varrho_k)$.
- From linearity, $\Phi(\rho) = \sum_{k=1}^{d_s^2} c_k \Phi(\varrho_k) = \sum_{k=1}^{d_s^2} c_k \tilde{\varrho}_k.$
- Count again : d_s^2-1 for each of the d_s^2 density matrices.

• Total
$$\Rightarrow d_s^4 - d_s^2$$

d_s	$d_{\rm s}^4-d_{\rm s}^2$
2	12
3	72
4	240
5	600
6	1260
7	2352
8	4032
9	6480
10	9900

Process Tomography-II: EAPT

• Entanglement Assisted Process Tomography (EAPT)¹.

Introduction

- Choi-Jamiołkowski: $\Phi \Leftrightarrow \varrho_{\Phi}$, where $\varrho_{\Phi} := [\Phi \otimes I] (|\phi\rangle \langle \phi|)$.
- $|\phi
 angle=rac{1}{\sqrt{{
 m d}_{
 m s}}}\sum_{j}|j
 angle|j
 angle$ is maximally entangled state in dilated space.

FAPT

- Employ $|\phi\rangle$ and use state tomography to find $\rho_{\Phi}.$
- Caveat: Production of highly entangled state $|\phi\rangle!$ As many measurements!

QIPA-2013, HRI

¹Altepeter, Joseph B., et al. Physical Review Letters 90.19 (2003): 193601.

Process Tomography-III: AAPT

• Ancilla Assisted Process Tomography (AAPT)².

Introduction

•
$$\mathbf{R} = \sum_{k}^{d_s^2} \lambda_k \mathbf{A}_k \otimes \mathbf{B}_k$$
, $\lambda_k > 0$.

- maximal rank state ${\rm R}$ faithful in mapping $\Phi:$

$$\left[\Phi\otimes I\right](R)=\sum_{k}^{d_{s}^{2}}\lambda_{k}\;\Phi(A_{k})\otimes B_{k}.$$

AAPT

- max rank states are "easy" to produce.
- Caveat: As many measurements!

 $^{^2\}mbox{Altepeter, Joseph B., et al. Physical Review Letters 90.19 (2003): 193601.$

Compressive Sensing

- Compressive Sensing: Prelude to CQPT³.
- Res.(Mbps \rightarrow Gbps) × Mult. Freq. × (# of Sensors) \Rightarrow "Data Deluge" |x>
- $rank(|x\rangle) = K \ll N$: Nyquist/Shannon + Throwaway + Transmit.
- Access compressible inf. $K \ll N$ directly via $M = \mathcal{O}(K \log(N))$ meas.
- Randomized measurements are universal.
- Take away: $rank(|x\rangle) = K \Rightarrow \mathcal{O}(K \log(N))$ measurements.

Sai Vinjanampathy (CQT-NUS)

QIPA-2013, HRI

Process Tomography-IV: CQPT

- Compressive Quantum Process Tomography(CQPT)⁴.
- Take away: It takes $\mathcal{O}(K \log(N))$ measurements.
- Assume that the Process Matrix ρ_{Φ} is sparse.
- Small (logarithmically) number of measurements suffice.
- Caveat: Not \forall processes, measure zero applicability!

⁴Shabani, A., et al. Physical Review Letters 106.10 (2011): 100401.

Construct, Convince & Measure

Driesow et.al., PRL 105, 143902(10)

Sai Vinjanampathy (CQT-NUS)

• Z_1, \ldots, Z_M , independent random variables.

 $^{^{}a}\mbox{Hoeffding},$ Wassily. Journal of the American statistical association 58.301 (1963): 13-30.

- $Z_1, \ldots Z_M$, independent random variables.
- Assume that $a_i \leq Z_i \leq b_i \ \forall \ i \in [1, M]$

 $[^]a$ Hoeffding, Wassily. Journal of the American statistical association 58.301 (1963): 13-30.

- $Z_1, \ldots Z_M$, independent random variables.
- Assume that $a_i \leq Z_i \leq b_i \ \forall \ i \in [1, M]$

• Measured mean
$$\mathbb{E}(\bar{Z}) = \frac{1}{M} \sum_{i} Z_{i}$$

 $[^]a$ Hoeffding, Wassily. Journal of the American statistical association 58.301 (1963): 13-30.

- $Z_1, \ldots Z_M$, independent random variables.
- Assume that $a_i \leq Z_i \leq b_i \ \forall \ i \in [1, M]$

• Measured mean
$$\mathbb{E}(\bar{Z}) = rac{1}{M}\sum_{i}Z_{i}$$

•
$$\mathbb{P}(\left|\bar{Z} - \mathbb{E}(\bar{Z})\right| \geq t) \leq 2e^{-\frac{Mt^2}{\sigma^2}}, \ \sigma^2 = \sum_{i=1}^M (b_i - a_i)^2/M$$

 $[^]a$ Hoeffding, Wassily. Journal of the American statistical association 58.301 (1963): 13-30.

- $Z_1, \ldots Z_M$, independent random variables.
- Assume that $a_i \leq Z_i \leq b_i \ \forall \ i \in [1, M]$

• Measured mean
$$\mathbb{E}(\bar{Z}) = \frac{1}{M} \sum_{i} Z_{i}$$

•
$$\mathbb{P}(\left|\bar{Z} - \mathbb{E}(\bar{Z})\right| \geq t) \leq 2e^{-\frac{Mt^2}{\sigma^2}}$$
, $\sigma^2 = \sum_{i=1}^{M} (b_i - a_i)^2/M$

• If $\{Z_1 \dots Z_M\}$ from the correct hypothesis, $\overline{Z} \approx \mathbb{E}(\overline{Z})^a$.

^aHoeffding, Wassily. Journal of the American statistical association 58.301 (1963): 13-30.

• Assume $Z_j = \operatorname{tr}(\mathcal{E}_j \Phi(\rho_j)) + \sqrt{\eta_j} d\mathbb{W}_j$.

• Assume
$$Z_j = \operatorname{tr}(\mathcal{E}_j \Phi(\rho_j)) + \sqrt{\eta_j} d \mathbb{W}_j$$
.

• $d\mathbb{W}_j$ models noise with strength η_j .

• Assume
$$Z_j = \operatorname{tr}(\mathcal{E}_j \Phi(\rho_j)) + \sqrt{\eta_j} d \mathbb{W}_j$$
.

- $d\mathbb{W}_j$ models noise with strength η_j .
- Our expectation is $tr(\mathcal{E}_j \Phi(\rho_j))$ if hypothesis Φ is right.

• Assume
$$Z_j = \operatorname{tr}(\mathcal{E}_j \Phi(\rho_j)) + \sqrt{\eta_j} d \mathbb{W}_j$$
.

- $d\mathbb{W}_j$ models noise with strength η_j .
- Our expectation is $tr(\mathcal{E}_j \Phi(\rho_j))$ if hypothesis Φ is right.

•
$$\mathbb{P}(\left|\bar{Z} - \mathbb{E}(\bar{Z})\right| \ge t) \le 2e^{-\frac{Mt^2}{\sigma^2}}$$
 "Error Probability"

• Assume
$$Z_j = \operatorname{tr}(\mathcal{E}_j \Phi(\rho_j)) + \sqrt{\eta_j} d \mathbb{W}_j$$
.

- dW_j models noise with strength η_j .
- Our expectation is $tr(\mathcal{E}_j \Phi(\rho_j))$ if hypothesis Φ is right.

•
$$\mathbb{P}(\left|ar{Z} - \mathbb{E}(ar{Z})
ight| \geq t) \leq 2e^{-rac{Mt^2}{\sigma^2}}$$
 "Error Probability"

• Measurements scale well $\Rightarrow n := -rac{\sigma^2}{t^2} \log \left(rac{\mathbb{P}_e}{2}
ight).$

• Assume
$$Z_j = \operatorname{tr}(\mathcal{E}_j \Phi(\rho_j)) + \sqrt{\eta_j} d \mathbb{W}_j$$
.

- dW_j models noise with strength η_j .
- Our expectation is $tr(\mathcal{E}_j \Phi(\rho_j))$ if hypothesis Φ is right.

•
$$\mathbb{P}(\left|\bar{Z} - \mathbb{E}(\bar{Z})\right| \ge t) \le 2e^{-\frac{Mt^2}{\sigma^2}}$$
 "Error Probability"

- Measurements scale well $\Rightarrow n := -rac{\sigma^2}{t^2} \log \left(rac{\mathbb{P}_e}{2}
 ight).$
- Distinguishing neighbors follows common sense.

QIPA-2013, HRI

Asymptotic Error Probability

• Asymp. min. err. prob. $\mathbb{P}_e = exp(-M\xi_{qcb})$

Asymptotic Error Probability

• Asymp. min. err. prob. $\mathbb{P}_e = exp(-M\xi_{qcb})$

•
$$\xi_{qcb} := -\log\min_{0 \le s \le 1} \operatorname{tr} \left(\rho^s \sigma^{1-s} \right)^a.$$

- 0.4

0.6 0.8

10 M

 $1 - P_e$

2

4 6 8

Asymptotic Error Probability

• Asymp. min. err. prob. $\mathbb{P}_e = exp(-M\xi_{qcb})$

•
$$\xi_{qcb} := -\log\min_{0 \le s \le 1} \operatorname{tr} \left(\rho^s \sigma^{1-s} \right)^a$$
.

• ξ_{qcb} is a dist. measure. Apply to ϱ_{Φ} and $\varrho_{\Phi} + \varepsilon d \varrho_{\Phi}$

_ 0.4

 $1 - P_e$

Asymptotic Error Probability

• Asymp. min. err. prob. $\mathbb{P}_e = exp(-M\xi_{qcb})$

•
$$\xi_{qcb} := -\log\min_{0 \le s \le 1} \operatorname{tr} \left(\rho^s \sigma^{1-s} \right)^a$$
.

- ξ_{qcb} is a dist. measure. Apply to ϱ_{Φ} and $\varrho_{\Phi} + \varepsilon d \varrho_{\Phi}$
- Spectral decomposition $\rho_{\Phi} = \sum_{i} \lambda_{i} |i\rangle \langle i|$

 $1 - P_e$

2

4

— 0.4 --- 0.6 --- 0.8

8

13 / 20

10 10

Chernoff Bound for Processes

Asymptotic Error Probability

• Asymp. min. err. prob.
$$\mathbb{P}_e = exp(-M\xi_{qcb})$$

•
$$\xi_{qcb} := -\log \min_{0 \le s \le 1} \operatorname{tr} \left(\rho^s \sigma^{1-s} \right)^a$$
.

• ξ_{qcb} is a dist. measure. Apply to ϱ_{Φ} and $\varrho_{\Phi} + \varepsilon d \varrho_{\Phi}$

• Spectral decomposition
$$\rho_{\Phi} = \sum_{i} \lambda_{i} |i\rangle \langle i|$$

•
$$\xi_{qcb} = \frac{\varepsilon}{2} \sum_{i,j} \frac{\left| \langle i | d \rho_{\Phi} | j \rangle \right|^2}{(\sqrt{\lambda_i} + \sqrt{\lambda_j})^2} = \frac{\varepsilon}{2} d\xi.$$

Sai Vinjanampathy (CQT-NUS)

Chernoff & Neighbors Distinguishing Neighbors Two Ways...

Distinguishing Neighbors Via Q. Chernoff & Hoeffding

Chenoff

- $\mathbb{P}_e = exp(-\frac{M\varepsilon}{2}d\xi)$
- As $\varepsilon \to 0$ for a given M, $\mathbb{P}_e \to 1$.
- $M = -\frac{2}{\varepsilon d\xi} \log(\mathbb{P}_e)$ Scales badly.

Hoeffding

•
$$\mathbb{E}(\bar{Z}) \to \mathbb{E}(\bar{Z}) + \varepsilon \mathbb{E}(d\bar{Z})$$

• As if
$$\mathbb{P}(|\bar{Z} - \mathbb{E}(\bar{Z})| \ge t) \le 2e^{-\frac{Mt^2}{\sigma^2}} \to \mathbb{P}(|\bar{Z} - \mathbb{E}(\bar{Z})| \ge t) \le 2e^{-\frac{M(t - \varepsilon \mathbb{E}(d\bar{Z}))^2}{\sigma^2}}$$

•
$$M = -\frac{\sigma^2}{(\varepsilon \mathbb{E}(d\bar{Z}))^2} \log\left(\frac{\mathbb{P}_e}{2}\right)$$
 Scales badly as well.

Simulation

- 10^4 random neighbors of ρ with average δ .
- Exponent increases.

Experiment("Construct")

- Femtosecond Lasers used to etch waveguides.⁵
- 1% errors.

QIPA-2013, HRI

Experiment("Convince")

 $Q = |\text{PerP}|^2$ $C = \text{Per}|P|^2$ V = (C - Q)/CMeasure these

"Super Stable Tomography"^a

^aLaing, Anthony, and Jeremy L. O'Brien 1208.2868

Convince-II: Pre-Verify

• min 2% dev. 14 times the min 1% value.

Conclusions

Conclusions

- Mesoscopic devices are state of the art...quantum data deluge!
- Bypass "fluorescence" + "imaging" type techniques.
- Replace QPT (when possible) with confidence test.
- No requirements: sparsity , linearity...
- Can be used "alongside" QPT.
- Doesn't violate canon on undecidability⁶...

Sai Vinjanampathy (CQT-NUS)

QIPA-2013, HRI

19 / 20

The End

Sai Vinjanampathy (CQT-NUS)