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pre-verification
≡

classical testing quantum data
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Introduction Verification and Validation

Introduction

• Data and device “fidelity”.

• Data “fidelity” checked via error control theory.

• Device “fidelity” checked via hypothesis testing theory.

• Error Detection2� & Error Correction4.

• “Naive”: Check all possible I/O combinations.
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Introduction Quantum Case

Quantum Case: States and Processes

States

• Data transmission → State transmission.

• Density matrices have d2
s − 1 elements.

Processes

• Devices → Processes: HS → HS .

• Density matrices characterized by d2
s − 1 elements.

• Processes characterized by d4
s − d2

s elements.

• Costly when ds = 2m, for m qubitsa.

a
pseudo-spins are different
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Introduction Process Tomography

Process Tomography-I

Basics

• Basis %k .

• Any density matrix ρ =

d2s∑
k=1

ck%k

• For any process Φ, measure %̃k = Φ(%k).

• From linearity, Φ(ρ) =

d2s∑
k=1

ckΦ(%k) =

d2s∑
k=1

ck%̃k.

• Count again : d2
s − 1 for each of the d2

s density
matrices.

• Total ⇒ d4
s − d2

s .

ds d4
s � d2

s

2 12
3 72
4 240
5 600
6 1260
7 2352
8 4032
9 6480
10 9900
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Introduction EAPT

Process Tomography-II: EAPT

• Entanglement Assisted Process Tomography (EAPT)1.

• Choi-Jamio lkowski: Φ⇔ %Φ, where %Φ := [Φ⊗ I] (|φ〉〈φ|).

• |φ〉 = 1√
ds

∑
j

|j〉|j〉 is maximally entangled state in dilated space.

• Employ |φ〉 and use state tomography to find ρΦ.

• Caveat: Production of highly entangled state |φ〉! As many
measurements!

1
Altepeter, Joseph B., et al. Physical Review Letters 90.19 (2003): 193601.
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Introduction AAPT

Process Tomography-III: AAPT

• Ancilla Assisted Process Tomography (AAPT)2.

• R =

d2s∑
k

λkAk ⊗ Bk, λk > 0.

• maximal rank state R faithful in mapping Φ:

[Φ⊗ I] (R) =

d2s∑
k

λk Φ(Ak)⊗ Bk.

• max rank states are “easy” to produce.

• Caveat: As many measurements!

2
Altepeter, Joseph B., et al. Physical Review Letters 90.19 (2003): 193601.
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Introduction “Classical” Compressive Sensing

Compressive Sensing

• Compressive Sensing: Prelude to CQPT3.

• Res.(Mbps→Gbps) × Mult. Freq. × (# of Sensors) ⇒ “Data Deluge” |x〉

• rank(|x〉) = K � N: Nyquist/Shannon + Throwaway + Transmit.

• Access compressible inf. K � N directly via M = O (K log(N)) meas.

• Randomized measurements are universal.

• Take away: rank(|x〉) = K ⇒ O (K log(N)) measurements.

3
Candes, E. J.,et.al., Communications on pure and applied mathematics 59.8 (2006): 1207-1223.
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Introduction CQPT

Process Tomography-IV: CQPT

• Compressive Quantum Process Tomography(CQPT)4.

• Take away: It takes O (K log(N)) measurements.

• Assume that the Process Matrix %Φ is sparse.

• Small (logarithmically) number of measurements suffice.

• Caveat: Not ∀ processes, measure zero applicability!

4
Shabani, A., et al. Physical Review Letters 106.10 (2011): 100401.
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Pre-Verification Construct, Convince & Measure

Construct, Convince & Measure

⇓

3

state |�+i = (|Hia|Hib + |V ia|V ib) /
p

2, where H and V
denote horizontal and vertical polarization, respectively,
and a and b correspond to the two spatial modes. By
pumping with higher power (700mW cw–equivalent) also
two photon pairs are emitted as a four–fold emission,
while the even higher–order emission is kept low. To en-
able a triggered three-photon emission, two photon pairs
must be emitted simultaneously into spatial modes a and
b, resulting in

| ia,b = (|HHia|HHib + |HV ia|HV ib
+|V V ia|V V ib)/

p
3.

These photons are guided to a state preparation stage
utilizing two polarizing beam splitters (PBS1 and PBS2)
such that a successful detection event in the trigger mode
a00 heralds the generation of the states |Hia0 |Hib0 |V ib00
or |V V ib0 . Postselection on a four-fold-coincidence, con-
sisting of the trigger event and three detection events in
the output modes of the circuit, ensures that three pho-
tons entered the waveguide in separate spatial modes. A
half-wave plate in mode b00 introducing a 90� rotation is
used to render the photons indistinguishable in polariza-
tion. Using mating adapters, the three photons can be
inserted in any combination of three input modes of the
polarization-maintaining fiber-array that is butt-coupled
to the integrated device. A schematic of the experimental
setup is shown in Figure 3.

III. RESULT

The multi-photon interference on chip [27] is controlled
by three adjustable delay lines to temporally overlap
the photons. Scanning the temporal delays results in
a three-photon HOM-dip that acts as a strong signature
of the three photons’ non-classical interference (Figure 1
b). The underlying unitary operation of the integrated
circuits was reconstructed by using an adaption of a re-
cently proposed method [28]. For each optical network,
the 19 independent parameters were fitted to the exper-
imentally acquired 25 single-photon probabilities and 40
two-photon visibilities (see Methods for details). Figure
4 depicts the experimental data and theoretical predic-
tions of the boson-sampling computation for two di↵erent
randomly designed integrated circuits. For each experi-
mental data point, four-fold coincidence events were de-
tected for 20 hours. The output distributions are in good
agreement with the theoretical values obtained from the
reconstructed unitary matrices.

IV. CONCLUSION

Our experiment presents the first benchmark quan-
tum computation on randomly designed optical networks
showing a boson-sampling computation. This interme-
diate model of quantum computation is of particular
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Figure 2. The optical networks. a) Schematic drawing:
The circuit consists of five input modes (1 to 5), five out-
put modes (10 to 50), eight directional couplers (⌘1 to ⌘8)
and eleven phase shifters ('1 to '11). Up to three single
photons can be coherently launched into any combination of
input modes. Each output mode is connected to a single-
photon detector and coincidences are recorded with a home-
built FPGA-logic. Neighboring modes are separated 127µm
and the chip exhibits a total length of 10cm. Three di↵erent
optical networks written on the same chip were used in the
experiment. b) Fluoresence image: In order to visualize the
light evolution in the network, coherent laser light at a wave-
length of 633nm is launched into input modes 2 to 4 of an
optical network. Color centers are excited by the propagating
beam and emit fluorescent light at a wavelength of 650nm.
The Fluoresence signal is directly proportional to the propa-
gating light intensity.

interest as the bosonic interference of photons in ran-
dom networks is already hard to simulate on conven-
tional computers. In contrast to universal models of
photonic quantum computers that rely on ancilla pho-
tons, measurement-induced interactions, and adaptive
feed-forward techniques, the boson-sampling computa-
tion requires only passive optical elements. This relaxes
the physical requirements significantly such that a con-
tinuous improvement of current multi-photon sources and
detection e�ciencies as well as reducing the losses in inte-
grated circuits, might lead to quantum computations in
regimes where classical verification is no longer possible
in the near future.

a

a
Tillmann, Max, et al.Nature Photonics (2013),
Driesow et.al.,PRL 105, 143902(10)
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Pre-Verification Hoeffding’s Inequality

Hoeffding’s Inequality

• Z1, . . .ZM , independent random variables.

• Assume that ai ≤ Zi ≤ bi ∀ i ∈ [1,M]

• Measured mean E(Z̄ ) =
1

M

∑
i

Zi

• P(
∣∣Z̄ − E(Z̄ )

∣∣ ≥ t) ≤ 2e−
Mt2

σ2 , σ2 =
M∑
i=1

(bi − ai )
2/M

• If {Z1 . . .ZM} from the correct hypothesis, Z̄ ≈ E(Z̄ )a.

a
Hoeffding, Wassily. Journal of the American statistical association 58.301 (1963): 13-30.
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Pre-Verification Application to Pre-Verification

Application to Pre-Verification

• Assume Zj = tr(EjΦ(ρj)) +
√
ηjdWj .

• dWj models noise with strength ηj .

• Our expectation is tr(EjΦ(ρj)) if hypothesis Φ is right.

• P(
∣∣Z̄ − E(Z̄ )

∣∣ ≥ t) ≤ 2e−
Mt2

σ2 “Error Probability”

• Measurements scale well ⇒ n := −σ2

t2 log
(Pe

2

)
.

• Distinguishing neighbors follows common sense.
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Chernoff & Neighbors Chernoff Bound for Processes

Chernoff Bound for Processes

Asymptotic Error Probability

• Asymp. min. err. prob. Pe = exp (−Mξqcb)

• ξqcb := − log min
0≤s≤1

tr
(
ρsσ1−s)a.

• ξqcb is a dist. measure. Apply to %Φ and %Φ + εd%Φ

• Spectral decomposition %Φ =
∑
i

λi |i〉〈i |

• ξqcb = ε
2

∑
i ,j

∣∣〈i |dρΦ|j〉
∣∣2

(
√
λi +

√
λj)2

=
ε

2
dξ.

a
Audenaert, K. M. R., et al. Physical review letters 98.16 (2007): 160501.
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Chernoff & Neighbors Distinguishing Neighbors Two Ways...

Distinguishing Neighbors Via Q. Chernoff & Hoeffding

Chenoff

• Pe = exp(−Mε
2 dξ)

• As ε→ 0 for a given M, Pe → 1.

• M = − 2
εdξ log(Pe) Scales badly.

Hoeffding

• E(Z̄ )→ E(Z̄ ) + εE(dZ̄ )

• As if P(
∣∣Z̄ − E(Z̄)

∣∣ ≥ t) ≤ 2e
−Mt2

σ2 → P(
∣∣Z̄ − E(Z̄)

∣∣ ≥ t) ≤ 2e
−M(t−εE(dZ̄))2

σ2

• M = − σ2

(εE(dZ̄))2 log
(Pe

2

)
Scales badly as well.
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Simulation & Experiment

Simulation

• Choose 10 random measurements from 240.

• 104 random neighbors of ρ with average δ.

• Exponent increases.
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Simulation & Experiment

Experiment(“Construct”)

• Femtosecond Lasers used to etch waveguides.5

• Velocity→ n. Evanescent coupling.

• 1% errors.

5
Szameit A. and Nolte, J. Phys. B 43, 163001 (2010)
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Simulation & Experiment

Experiment(“Convince”)

”Super Stable Tomography”a

a
Laing, Anthony, and Jeremy L. O’Brien 1208.2868
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Simulation & Experiment

Convince-II: Pre-Verify

• min 2% dev. 14 times the min
1% value.
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Conclusions

Conclusions

• Mesoscopic devices are state of the art...quantum data deluge!

• Bypass “fluorescence” + “imaging” type techniques.

• Replace QPT (when possible) with confidence test.

• No requirements: sparsity , linearity. . .

• Can be used “alongside” QPT.

• Doesn’t violate canon on undecidability6. . .
6

Rosgen, Bill. Th. Q. Comp., Comm., and Crypt. Springer Berlin Heidelberg, 2011. 63-76.
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Conclusions

The End
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