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 Each weak measurement causes random perturbation to the 

system and reveals partial information 

 Perfect reconstruction of the new state is possible if there is   
no loss of signal 
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 Reconfigurable any number of times each time 
with a different logic 

 Once programmed, runs at hardware speed 
     without any interruption 

Quantum Measurements: Strong vs. Weak 

Simulation of Quantum State Tracking 

 
 
 
 
 
 
 Jaynes-Cummings Hamiltonian [2]  
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 Dispersive limit: ∆= 𝜔01 − 𝜔cav ≫ 𝑔,  𝜒~𝑔2/Δ 
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 Operating condition: ℏ𝜔cav ≫ 𝑘𝐵𝑇 ~ 10 mK 

  𝑉(𝑡) is drawn from 𝑃 𝑉  
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𝑃 𝑉 = 𝑃 0 𝑃 𝑉 0 + P(1)𝑃 𝑉 1  

 
 
 
 
 
 
 
 Arbitrary Waveform 

Generator generates analog 
voltage corresponding to 𝑉(𝑡) 

 AWG simulates the 
measurement signal from a 
real qubit 

 FPGA calculates the 
trajectory and stores in the 
host computer 
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 Real-time tracking of the evolution of a quantum state 

 Stabilization of a quantum system using feedback protocols 

Motivation 

Quantum 
Trajectory  

 Typical relaxation time of a qubit in cQED: 10 - 30 𝜇s 

 Capability of real-time Digital Signal Processing: FPGA 

Hardware Requirements 

Field Programmable Gate Arrays 

Circuit-QED Architecture and Measurement Scheme 

RESULTS 

Conclusions and Future Directions 

 Quantum state tracking with an FPGA using simulated measurement signal  
 FPGA based tracking of a qubit in cQED architecture 
 Implementation of feedback control algorithms using FPGA 
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 241,142 Logic cells 

 200 MHz clock 

 720 user I/O pins 

 14,976 Kb Block 

RAM 

𝑃(0) ∝ 𝛼 2  𝑃(1) ∝ 𝛽 2  

Bayes’ Theorem: 

𝑃 0 𝑉 =
𝑃 0 𝑃 𝑉 0

𝑃(𝑉)
 

FPGA Module: X6-100M 
(Courtesy: Innovative Integrations) 

General Workflow 

Trajectory  ending up in the ground state 

Trajectory  ending up in the excited state 
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Programming 
VHDL 

Simulink 

Simulation 
ModelSIM 

ISIM 

Compilation 
Xilinx ISE 

Bit File 

FPGA 

Download 
   cable 

 The state is constantly updated [1] by 
performing repeated measurements 
to obtain the Quantum Trajectory 

 A sequence of weak measurements is 
equivalent to a strong measurement  

 


