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Enhanced imaging in the real world

Figure: Hooke’s microscope

Figure: Hooke’s Micrographia
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Quantum-enhanced sensing has been used in

gravitational wave detection
�� ��LIGO, GEO600

phase tracking
�� ��Yonezawa et al. Science, 337, 1514, (2012)

small displacements
�� ��Taylor et al. Nat. Phot. 7, 229, (2013)

concentration measurements
�� ��Crespi et al. APL, 100, 233704, (2012)
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Quantum-enhanced sensing has been used in

gravitational wave detection
�� ��LIGO, GEO600

phase tracking
�� ��Yonezawa et al. Science, 337, 1514, (2012)

small displacements
�� ��Taylor et al. Nat. Phot. 7, 229, (2013)

concentration measurements
�� ��Crespi et al. APL, 100, 233704, (2012)

microscopy and imaging

inherently multi-parameter problems
study it as such

We will study a discretised model for phase imaging
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Enhancement using quantum probes

A probe made of constituents, qubits - quantum bits -
quantum two-level systems

Using a simple probe |Ψ〉 = |0〉+|1〉√
2
, and

Uφ = e−iφZ , Z =

(
1 0
0 −1

)

|ψ〉 Uφ NM





|Ψ〉 = |0〉+e iφ|1〉√
2

M = X

〈M〉 ∼ sin2(φ/2)
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, and
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(
1 0
0 −1

)

|ψ〉 Uφ NM





|Ψ〉 = |0〉+e iφ|1〉√
2

M = X

〈M〉 ∼ sin2(φ/2)

|Ψ〉 = |00〉+e i2φ|11〉√
2

M = X ⊗ X

〈M〉 ∼ sin2 φ
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Enhancement using quantum probes

a probe made of constituents, say N qubits, in a state |Ψ〉
a Hamiltonian Hφ = φZ
a measurement M

|ψ〉 Uφ NM





|ψ〉 Uφ NM





|ψ〉 Uφ NM





|Ψ〉 =
(
|0〉+|1〉√

2

)⊗N
〈M〉 ∼ sin2(φ/2)

|ψ〉

U

Uφ NM





|ψ〉 Uφ NM





|ψ〉 Uφ NM





|Ψ〉 = |00···000〉+e iNφ|11···111〉√
2

〈M〉 ∼ sin2(Nφ/2)
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High frequency fringes aren’t enough

The Cramér-Rao bound places a lower bound on the accuracy
of estimation

Classical : δ2φ ≥ 1

Fφ
Quantum : δ2φ ≥ 1

Iφ
Classical Fisher Information

Fφ =

∫
dφ p(φ)

(
∂2

∂φ2
ln p(φ)

)
=

∫
dφ

1

p(φ)

(
∂p(φ)

∂φ

)2

Quantum Fisher Information

Iφ = 4(〈∂φψ|∂φψ〉 − |〈∂φψ|ψ〉|2)

FI measures curvature, which determine the precision

These bounds depend on the probe and dynamics, and are
always attainable�� ��Braunstein/Caves, PRL, 72, 3439, (1994)
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States attaining the quantum scaling

Highly correlated states such as

GHZ (Greenberger-Horne-Zeilinger) states

|00 · · · 000〉+ |11 · · · 111〉√
2

Iφ = N2

�� ��Greenberger et al., arXiv:0712.0921

N00N states

|N, 0〉+ |0,N〉√
2

Iφ = N2

�� ��Kok et al., Phys. Rev. A 65, 052104 (2002)

Classical scaling

Iφ ∼ N
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The problem

. . . . 

θ1

θd

θ2
Pr

ep
ar

at
io

n

M
ea
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re

m
en

t

N photons across d + 1 modes

An image is an estimation of all the d phases

Minimise the total variance |∆θ|2 =
∑d

m=1 δ
2θm
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The problem

For a probe |ψ〉 =
∑D

k=1 αk |Nk,0, · · · ,Nk,d〉 ≡
∑D

k=1 αk |Nk〉,
D = (N + d)!/N!d!

. . . . 

θ1

θd

θ2

Pr
ep

ar
at

io
n

M
ea

su
re

m
en

t

Uθ = exp(i
∑d

m=1N̂mθm)

|ψθ〉 = Uθ|ψ〉
Use the Cramer-Rao bound

Cov(θ) ≥ (M Iθ)−1

The multi-parameter bound can be saturated.�� ��Matsumoto, J. Phys. A 35, 3111 (2002)
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Quantum Fisher information

Iθ = 4
∑

i |αi |2NiN
T
i − 4

∑
ij |αi |2|αj |2NiN

T
j

Exploit the symmetry :

|ψs〉 = α(|0,N, 0, 0〉+ · · ·+ |0, 0,N〉) + β|N, 0, · · · , 0〉,

[Iθ]l ,m = 4N2(δl ,mα
2 − α4)

Minimise : |∆θ|2 =
∑d

m=1 δ
2θm = Tr[I−1

θ ]

provides α = 1/
√

d +
√
d ,

|∆θs |2 =
(1 +

√
d)2d/4

N2
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Comparison

Simultaneous quantum estimation

|∆θs |2 =
(1 +

√
d)2d/4

N2
.

Individual quantum estimation using N
d 00N

d states

|∆θind |2 =
d3

N2

Classical scheme using uncorrelated coherent states

|∆θclas |2 =
d2

N

|∆θs |2 < |∆θind |2 < |∆θclas |2 for d > 1 and d < N
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Comparison
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Figure: Strategies for multiple phase estimation using N = 16 photons.

With equal resources, multi-parameter estimation is better by O(d)
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Practicalities

Probe states

Interference of n photons on each port of a ‘beamsplitter’

Call it |ψ(n, d)〉 with N = n(d + 1)

Spagnolo et al. explored the QFI for d = 2, 3 and n = 1

Measurements
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Figure: Schematic of a realistic multi-phase estimation protocol

Sensing and imaging at the quantum limit 16



Practicalities
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Figure: (a.) QCRB for simultaneous estimation of 4 phases using
|ψ(n, 4)〉, N00N and |ψs〉 states. (b.) Green dots : Simultaneous
estimation of d phases using a |ψ(1, d)〉 and a realistic measurement
apparatus. QCRB for the same |ψ(1, d)〉, equivalent N00N and |ψs〉
states.
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Losses are inevitable !

Figure: Sample induces simultaneous dispersion φ and absorption η�� ��Crowley/AD/Barbieri/Walmsley, arxiv:1206.0043
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Losses are inevitable !

To estimate multiple parameters {θ} simultaneously,

Cov(θ) ≥ (Iθ)−1,

For estimating phase φ and loss η simultaneously,

I =

(
Iφφ 0

0 Iηη

)
.

�� ��Crowley/AD/Barbieri/Walmsley, arxiv:1206.0043
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Losses are inevitable !

To estimate multiple parameters {θ} simultaneously,

Cov(θ) ≥ (Iθ)−1,

For estimating phase φ and loss η simultaneously,

I =

(
Iφφ 0

0 Iηη

)
.

But, attainability not guaranteed /

In fact, the only option leads to a trade-off :
Iηη = Iηη − 1

4η2Iφφ
Quantum mechanics prevents attainment of the quantum limit�� ��Crowley/AD/Barbieri/Walmsley, arxiv:1206.0043
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Dephasing is also a challenge !

The phase diffusion channel is

ρ = N∆(ρin) =
1√

2π∆

∫
dξ e−

ξ2

2∆2 UξρinU
†
ξ ,

where Uξ = exp(−iξâ†â) is the phase shift operator.

In the Fock basis,

N∆(|n〉〈m|) = e−∆2(n−m)2 |n〉〈m|.

Start with the probe state

ρ0 =

(
cos2( θ2 ) cos( θ2 ) sin( θ2 )

cos( θ2 ) sin( θ2 ) sin2( θ2 )

)
.

At present, the analysis applies to 2d Hilbert spaces
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QFI matrix

For simultaneous phase and diffusion estimation

Hθ(∆) = sin2 θ

(
e−2∆2

0

0 4∆2

e2∆2−1

)
.

Optimal probe state is θ = π/2

Joint bound attainable for this state

Furthermore,

H(N00N)(∆) = N2Hπ/2(N∆)

H(coh)(∆) = |α|2Hθ(∆)
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Attaining the bounds with real measurements

In terms of the statistical variances,
H−1

11

MVar(φ)
+

H−1
22

MVar(∆)
≤ 1

The ultimate, and the attained limit. Effect of small deviations.
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Quantum metrology has 3 ingredients

Design of the probe states

Dynamics

Measurements/Detection
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Recall : Enhancement using quantum probes

a Hamiltonian Hχ = χH

a probe made of constituents, say N qubits, in a state |Ψ〉
a measurement M

|ψ〉 H NM





|ψ〉 H NM





|ψ〉 H NM





|Ψ〉 =
(
|0〉+|1〉√

2

)⊗N
M = X⊗N

δ2χ ∼ 1
N

|ψ〉

U

H NM





|ψ〉 H NM





|ψ〉 H NM





|Ψ〉 = |00···000〉+|11···111〉√
2

M = X⊗N

δ2χ ∼ 1
N2
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Nonlinear quantum metrology consists of

a Hamiltonian Hχ = χH

a probe made of constituents, say N qubits, in a state |Ψ〉
a measurement M

|ψ〉

H
NM






|ψ〉 NM





|ψ〉 NM





|Ψ〉 = |ψ〉⊗N

M = X⊗N

δ2χ ∼?

|ψ〉

U H
NM






|ψ〉 NM





|ψ〉 NM





|Ψ〉
M = X⊗N

δ2χ ∼?
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The Cramér-Rao bound

δ2χ ≥ 1

Iχ
For a k-body Hamiltonian,

δ2χ ≥ 1(
N
k

)2

(λkM − λkm)2

∼ 1

N2k

�� ��Boixo et al., PRL, 98, 090401 (2007)
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The Cramér-Rao bound

δ2χ ≥ 1

Iχ
For a k-body Hamiltonian,

δ2χ ≥ 1(
N
k

)2

(λkM − λkm)2

∼ 1

N2k

�� ��Boixo et al., PRL, 98, 090401 (2007)

Using no correlations : |ψ〉⊗N

|ψβ〉 = cos
(
β
2

)
|0〉+ sin

(
β
2

)
|1〉 for sinβ =

√
1/k ,

δ2χ ≥ 1

N2k−1�� ��Boixo/AD/Flammia/Shaji/Bagan/Caves , PRA, 77, 0123017, (2008)
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Intuition for quadratic Hamiltonians

Ht/~ = χ1n2
1 + χ2n2

2 + 2χ12n1n2

beamsplitter

50/50 beamsplitter

particle
detectors

mirror

mirror

mirror

mirror

n bosons

Kerr phase
shift χ1n1

2 

Kerr phase
shift χ2n2

2 

cross-Kerr phase
shift 2χ

12n1n2 

With n = n1 + n2, Jz = n1 − n2,
Ht/~ = (χ1 + χ2 + 2χ12)n2 + 2(χ1 − χ2)nJz + (χ1 + χ2 − 2χ12)J2

z�� ��Boixo/AD/Davis/Flammia/Shaji/Caves, PRL, 101, 040403, (2008)�� ��Boixo/AD/Davis/Shaji/Tacla/Caves, PRA, 80, 032103, (2009)
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Optical nonlinear quantum metrology

Estimate the self-Kerr effect in polarization maintaining fibre
Coherent state input in H and V
H,V split in time domain before the fibre sample (χ12 ≈ 0)

Figure: Setup for surpassing the 1/N scaling
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Optical nonlinear quantum metrology

Eout = χ(3)E 3
in ∼ χ(3)|Ein|2Ein

5.5 6 7.5

-11

-10

-9

-8

-7

-6

-5

-4

-3

5.5 6 6.5 7 7.5

-11

-10

-9

-8

-7

-6

-5

-4

-3

SHL

HL

SNL

δχ

Log(N)
Figure: Experimental observation of surpassing the 1/N scaling�� ��Jin/Zhang/AD/Walmsley, In preparation
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Onto quantum imaging ... the future

Biological cells have variations in χ(3)

Sample is tiny, so the nonlinear phase picked up is ∼ 10−6 rad
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Onto quantum imaging ... the future

Biological cells have variations in χ(3)

Sample is tiny, so the nonlinear phase picked up is ∼ 10−6 rad

Recent developments make this feasible

Figure: Matsuda et al., Nature Photonics 3, 95 (2009)
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Quantum sensing is at an exciting stage of innovation ...

3 Combining the tools from estimation theory with quantum
mechanics and quantum optics

3 Theory work to direct experimental efforts in attaining
tangible quantum advantages

3 Issues of practice require a deeper understanding of issues of
principle
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mechanics and quantum optics
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tangible quantum advantages
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principle

Thank you for your time and attention !!
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