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Enhanced imaging in the real world

Figure: Hooke's microscope

Probe State [¢o

Figure: Hooke's Micrographia
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Quantum-enhanced sensing has been used in

@ gravitational wave detection

o phase traCkIng {Yonezawa et al. Science, 337, 1514, (2012)]

@ small displacements [Taylor et al. Nat. Phot. 7, 229, (2013)}

@ concentration measurements {Crespi et al. APL, 100, 233704, (2012)}
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Quantum-enhanced sensing has been used in

@ gravitational wave detection

o phase tracking {Yonezawa et al. Science, 337, 1514, (2012)]

@ small displacements [Taylor et al. Nat. Phot. 7, 229, (2013)}

@ concentration measurements [Crespi et al. APL, 100, 233704, (2012)

@ microscopy and imaging

e inherently multi-parameter problems
e study it as such

We will study a discretised model for phase imaging
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Enhancement using quantum probes

@ A probe made of constituents, qubits - quantum bits -

quantum two-level systems

@ Using a simple probe |V) = IO)\-}2|1>’ and
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o M=X
o (M) ~ sin’(9/2)

o
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@ A probe made of constituents, qubits - quantum bits -
quantum two-level systems

@ Using a simple probe |V) = 0041 " and
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Enhancement using quantum probes

@ a probe made of constituents, say N qubits, in a state |W)
@ a Hamiltonian Hy, = ¢Z
@ a measurement M

W) 1Y% A [v) - Uy AL

W) e A ) 4 U HUs HA

V) Y A [v) — Uy AL
e |\U> = (%)QM\I ° |\u> — \00~~-000)+\e/”2i’¢|11.,,111>
° (M)~ sin’(9/2) o (M)~ sin?(Ng/2)
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High frequency fringes aren’t enough

@ The Cramér-Rao bound places a lower bound on the accuracy

of estimation
) 5 1 5 1
Classical : 6“¢ > — Quantum : 6°¢p > —
Fg Zy

@ Classical Fisher Information

Fo= [ a0 pto (6¢2'”" ) =[5 (% ))

@ Quantum Fisher Information

Ty = 4((0p1060) — (0s0|) )

@ FI measures curvature, which determine the precision

@ These bounds depend on the probe and dynamics, and are
always attainable

[ Braunstein/Caves, PRL, 72, 3439, (1994) ]
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States attaining the quantum scaling

Highly correlated states such as

GHZ (Greenberger-Horne-Zeilinger) states
|00---000) + |11---111)

T, = N?

V2

[ Greenberger et al., arXiv:0712.0921 ]

NOON states
V2

[Kok et al., Phys. Rev. A 65, 052104 (2002)]

Classical scaling

Ty~ N
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The problem

Preparation

@ N photons across d + 1 modes
@ An image is an estimation of all the d phases
o Minimise the total variance |A82 = 3¢ . §26,,

m=1
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The problem

For a probe [¢) = 320 ax|Nio, -, Nid) = o1 kN,
D = (N + d)/Nid!

Preparation

o Up = exp(izg,zlﬂlmﬁm)
° [vg) = Upl¥))

@ Use the Cramer-Rao bound

Cov(8) > (M Tg) !

The multi-parameter bound can be saturated.

[ Matsumoto, J. Phys. A 35, 3111 (2002)]
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Quantum Fisher information

o Tp =45, [aiPNiNT — 43, [l [2N;NT
o Exploit the symmetry :

‘¢S> :a(’07N7070>++’0707N>)+5‘N707 70>7

° [Ig]/,m = 4N2(5/,ma2 — a4)
o Minimise : |AG> = 39 _ 620, = Tr[Z, ]

provides a = 1/v/d + V/d,

1+Vd)2d/4
|A05|2:( N2) /
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Comparison

@ Simultaneous quantum estimation

(1+Vd)2%d/4

|AB,|? = e

@ Individual quantum estimation using %00% states

d3
|A8;,4)° = e

@ Classical scheme using uncorrelated coherent states

d2
|A0clas|2 = N

|AGs|?2 < |ABing|? < |ABas|? for d > 1 and d < N
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Comparison
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Figure: Strategies for multiple phase estimation using N = 16 photons.

Sensing and imaging at the quantum limit



Practicalities

Probe states

@ Interference of n photons on each port of a ‘beamsplitter’
e Callit |¢(n,d)) with N = n(d + 1)
@ Spagnolo et al. explored the QFl for d =2,3 and n=1

Measurements

Preparation
Photon Number
Resolving Detectors

Figure: Schematic of a realistic multi-phase estimation protocol
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Practicalities

a)

N
(=)

Total variance | A6/
o

o
[S)

b.)

Total variance | A6

3
Number of phases (d)

Figure: (a.) QCRB for simultaneous estimation of 4 phases using
)(n.4)), NOON and [¢)s) states. (b.) Green dots : Simultaneous
estimation of d phases using a |1(1, d)) and a realistic measurement
apparatus. QCRB for the same [¢/(1. d)), equivalent NOON and [1)s)
states.
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Losses are inevitable !

Probe State [¢0)

Sample

Figure: Sample induces simultaneous dispersion ¢ and absorption 7

[ Crowley/AD/Barbieri/Walmsley, arxiv:1206.0043 ]

Sensing and imaging at the quantum limit 18



Losses are inevitable !

To estimate multiple parameters {8} simultaneously,

Cov(0) > (Zg) 71,

For estimating phase ¢ and loss 7 simultaneously,

_(Zss O
I_( O I7777>.

Crowley/AD /Barbieri/Walmsley, arxiv:1206.0043 J
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Losses are inevitable !

To estimate multiple parameters {8} simultaneously,

Cov(0) > (Zg) 1,

For estimating phase ¢ and loss 1 simultaneously,

_(Zsy O
I_< 0 ITI"Y)‘

But, attainability not guaranteed ®

@ In fact, the only option leads to a trade-off :
_ 1
by = Loy — WIM
@ Quantum mechanics prevents attainment of the quantum limit

{ Crowley/AD /Barbieri/Walmsley, arxiv:1206.0043 ]

Sensing and imaging at the quantum limit



Dephasing is also a challenge !

@ The phase diffusion channel is
1 _& +
p = Na(pin) = m d§ e 2a2 UfpinU§7

where Ug = exp(—i€a'3) is the phase shift operator.
@ In the Fock basis,
Na(|m)(m]) = e 2= ) (m.

@ Start with the probe state

m=( cos?(3) | cos(5)sin(3) )

cos(g)sin(g) sinz(g)

o At present, the analysis applies to 2d Hilbert spaces
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For simultaneous phase and diffusion estimation

e24? 0
Hg(A):sin20< 0 e |-

2
e2A° 1

e Optimal probe state is § = 7/2
@ Joint bound attainable for this state

@ Furthermore,
HVON(A) = N*H,, 5(NA)

HEM(A) = |aHg(A)
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Attaining the bounds with real measurements

-1 -1
H11 H22

In terms of the statistical variances, MVar(9) + MVar(8) =

Hy™!
M Var (8)
1.0

0.8|/
0.6
0.4

0.2

0.2 0.4 0.6 0.8 1.0 M Var (¢)

The ultimate, and the attained limit. Effect of small deviations.
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Quantum metrology has 3 ingredients

@ Design of the probe states
@ Dynamics

@ Measurements/Detection
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Recall : Enhancement using quantum probes

@ a Hamiltonian H, = xH
@ a probe made of constituents, say N qubits, in a state |W)

@ a measurement M

2 0
0BR  m e
v )

) |\|J> — <|0)\—/F§|1>>®N o |\U> _ |00...000)\_}2|11...111>

o M= XN o M = X®N

o 52X ~ % ° 52X -~ #
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Nonlinear quantum metrology consists of

e a Hamiltonian H, = xH

@ a probe made of constituents, say N qubits, in a state |W)
@ a measurement M

%) ¥ 4 H
vy 4 HHA W) 4 uH HHA

) — W) -
o [W) =[y)®N ° V)
o M= X®N o M= X®N
e 4%y ~7? e 62y ~7?
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The Cramér-Rao bound

1
02y > —

For a k-body Hamiltonian,

1 1
2
0°x > ~ W

() ot

Boixo et al., PRL, 98, 090401 (2007) }
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The Cramér-Rao bound

1
82y > —

X Z 7,
For a k-body Hamiltonian,

52X > 1 1

~y

2 2k
N N

[ Boixo et al., PRL, 98, 090401 (2007) J

Using no correlations : [4)®

N
W’ﬁ)—COS( >|0)+sm( >|1 for sin 3 = \/7

1 o
5X—N2k 1

Pt
'EE_EE'& g
Q573

N

Boixo/AD/Flammia/Shaji/Bagan/Caves , PRA, 77, 0123017, (ZOOB)J
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Intuition for quadratic Hamiltonians

Ht/h = x1n? + x2n3 + 2x12n12

particle
detectors
50/50 beamsplitter
mirror/
Kerr phase
shiftx n? cross-Kerr phase
7t

* shift 2x,,nn,
mirror
/ l{ & /mirror

won _ Kerr phase
L shift

n bosons
~ <

mirror
beamsplitter

With n=ny +np, J; = n1 — na,
Ht/h = (x1+ x2 + 2x12)n* + 2(xa — x2)nJz + (xa + x2 — 2x12)J2

{Boixo/AD/Davis/FIammia/Shaji/Caves, PRL, 101, 040403, (2008)}

[ Boixo/AD,/Davis/Shaji/Tacla/Caves, PRA, 80, 032103, (2009) ]
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Optical nonlinear quantum metrology

@ Estimate the self-Kerr effect in polarization maintaining fibre
@ Coherent state input in H and V
@ H,V split in time domain before the fibre sample (x12 ~ 0)
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Figure: Setup for surpassing the 1/N scaling
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Optical nonlinear quantum metrology

Eour = X(3) EI% ~ X(s)’EinFEin

Sr SNL ]

55 6 6.5 7 7.5
. : . Log() . .
Figure: Experimental observation of surpassing the 1/N scaling

Jin/Zhang/AD/Walmsley, In preparation
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Onto quantum imaging ... the future

e Biological cells have variations in x(3)

@ Sample is tiny, so the nonlinear phase picked up is ~ 107° rad
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Onto quantum imaging ... the future

e Biological cells have variations in x(3)
@ Sample is tiny, so the nonlinear phase picked up is ~ 107° rad

Recent developments make this feasible

Mean photon number in a clockwise probe pulse
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Figure: Matsuda et al., Nature Photonics 3, 95 (2009)
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Quantum sensing is at an exciting stage of innovation ...

v/ Combining the tools from estimation theory with quantum
mechanics and quantum optics

v/ Theory work to direct experimental efforts in attaining
tangible quantum advantages

v lIssues of practice require a deeper understanding of issues of
principle
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Quantum sensing is at an exciting stage of innovation ...

v/ Combining the tools from estimation theory with quantum
mechanics and quantum optics

v/ Theory work to direct experimental efforts in attaining
tangible quantum advantages

v lIssues of practice require a deeper understanding of issues of
principle

Thank you for your time and attention !!
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