
Probing the role of LG
inequality for quantum key

distribution

Quantum Information Processing and

Applications - HRI, Allahabad

Dec 7, 2013
R. Srikanth, PPISR, Bangalore



Collaborators

H. Akshata Shenoy, IISc, Bangalore

Arvinda S, Poornaprajna Institute of Scientific Research, B’lore

Prof. D. Home, Bose Institute, Kolkata



Crypto-wars: A Nonlocal hope

QKD: Distant parties (Alice and Bob) share private random bit
string, whose security against Eve is based on quantum features
like no-cloning (Bennett and Brassard 1984).

Quantum nonlocality (Bell 1964) can also be the basis of se-
curity (Ekert 1991). Basic intuition: monogamy of nonlocal
correlations (CKW 2000).

Extendable to multi-partite quantum secret sharing exploiting
monogamy of multipartite correlations (Scarani & Gisin 2001).

More generally: cryptographic benefits of any non-signaling, non-
local theory include impossibility of perfect cloning, monogamy
& privacy of correlations, complementarity etc. (Masanes, Acin
and Gisin 2005).



Separability strikes back

Nonlocality as invoked above can equally be reproduced by pro-

tocols based on separable states (Bennett, Brassard & Mermin

1992).

The basic reason for this: single-particle properties like no-cloning

and complementarity are consequences of non-signaling nonlo-

cality (MAG 2005).

It would thus seem that nonlocality/entanglement gives no ad-

ditional benefit to cryptography.



The Return of Nonlocality

Conventional QKD schemes implicitly assume devices can be
trusted. But what if correlations are established via side-channels
between encoded state (e.g., polarization in BB84) and another
degree of freedom (e.g., frequency)?

Device independent (DI) scenario: security guaranteed via
certain statistical checks and without detailed characterization
of devices (Mayers & Yao 1998).

Necessary condition for security in this more stringent require-
ment: P (a, b|x, y) 6=

∑
λ P (a|x, λ)P (b|y, λ)pλ, since Eve may pos-

sess a copy of λ ⇒ P (a, b) must violate a Bell inequality. suffi-
ciently highly: security not just against a quantum mechanical
Eve, but even arbitrary non-signaling Eve. (BHK06, AGM06).



Insecurity of BB84 in DI scenario

P (a = b|x = y) = 1

P (a = b|x 6= y) =
1

2
(1)

for which the CHSH inequality

E(0,0) + E(0,1)− E(1,0) + E(1,1) = 2 ≤ BLR

The correlations (1) can be reproduced by:

ρAB =
1

4
(|00〉AB〈00|+ |11〉AB〈11|)z ⊗ (|00〉AB〈00|+ |11〉AB〈11|)x.

Accessing higher dimensions undermines BB84.

Non-signaling: Eve has full info after PAB.



Back to separability? Temporal considerations,
OK?

Conventional DI QKD assumes P (a, b|x, y) must be spatial. For-
mally, violation of a correlation inequality indicates lack of joint
distribution – basis of unification of spatial, temporal and con-
textuality inequalities (Markiewicz et al. 2013; DASH 2013).

What about replacing spatial with temporal correlations? Does
it make sense?

Idea suggestive but not obvious, mainly for various reasons:
(1) BB84 is a Prepare-and-Measure protocol, involves quantum
communication, whereas above attack is static;
(2) Temporal correlations, unlike spatial, are signaling.
(3) ‘temporal entanglement’ quite different from spatial
(4) So too with monogamy of temporal entanglement



What LGI based cryptography can hope for

Consider attack using cheat state ρAB. If m and n denote the

Bloch vectors of the state of two uncorrelated particles, and

measurements x and y are performed on them, then E(x,y) ∝
(x ·m)(y · n). Such ‘separable’ correlations cannot violate LGI.

Therefore, LGI serves as a sameness check: entity authentica-

tion: to ascertain that it was prepared in the previous step by

Alice (barring singlet correlations).

(Analogously, the Bell test of a conventional DI protocol consti-

tutes a check on dimensionality of the system.)



First issue: including BB84 emissions

However: if the hi-dim attack is coupled with standard BB84

emissions, then the sameness check does not help!

Thus we must either (A) abandon prepare-and-measure crypto-

graphic strategies for entanglement-based ones OR (B) enhance

prepare-and-measure strategies OR (C) find reasons to restrict

Eve’s power just enought to suit us!

Moral: no easy way to go from spatial to temporal correlations

in cryptography:



Here we opt for (C)

A bit like saying Eve can carry a tera-watt laser weapon but not

a torch light!

Technically: static BHK attack with standard BB84 emission

becomes signaling (if Alice’s device is in the state |0〉 OR |−〉,
and Eve measures in the computational basis and find |1〉, she

knows Alice’s basis choice to be the diagonal basis, implying a

signaling side-channel which we rule out by assumption).

With arbitrary side-channels, QKD is a lost hope. “Eve is not

God” – but a powerful human being!



2nd issue: Temporal correlations are signaling.

Correlations for sequential measurements on qubit x̂ then ŷ:

Pαβ|x̂ŷ = Tr
(

1 + βŷ

2

1 + αx̂

2
ρ

1 + αx̂

2

)
=

1

4
+
α

4
Tr(x̂ρ) +

β

8
Tr(ŷρ)

+
β

8
Tr(x̂ŷx̂ρ) +

αβ

8
Tr({x̂, ŷ}ρ), (2)

where α, β = ±1.

Bob’s marginal Pβ|xy =
∑
α Pαβ|xy = 1

4 + β
8Tr(ŷρ) + β

8Tr(x̂ŷx̂ρ)
depends on Alice’s setting (converse not true).

On the other hand, correlator

〈x̂ŷ〉 =
∑
α,β

αβPαβ|x̂ŷ =
1

2
〈{x̂ŷ}〉 = ~x · ~y, (3)

same as with spatial correlations ⇒ same Tsirelson bound.



3rd issue: temporal ‘entanglement’ &
monogamy

In quantum mechanics: Three consecutive measurements x̂, ŷ

and ẑ are performed at t1, t2 and t3 (t1 < t2 < t3) respectively:

〈x̂, ẑ〉 =
∑

m,n,o=±1

mo Tr [ρΠm
x ] Tr

[
Πm
x Πn

y
]

Tr
[
Πn
yΠo

z
]

= (x · y)(y · z), (4)

Third correlatum is disentangled from first, when second is pro-

jective measurement. (By contrast, a W state lacks this feature).

Formally, lhs of (4) like measurement on product state of iden-

tical copies with Bloch vector y.



Separable bound for CHSHI

For separable states, Λ ≤
√

2. (Local bound is 2.) Bound reached
with e.g., x′, z, x and z′ be coplanar, separated by angle π/4,
with y = z.

~a1 = î, ~a2 = ĵ,~a3 =
1√
2
î+

1√
2
ĵ,

~b1 =
1√
2
î+

1√
2
ĵ,~b2 =

−1√
2
î+

1√
2
ĵ,~b3 = ĵ (5)

which are used for evaluating one of the following Bell correla-
tions

Λ = E(~a1,~b1) + E(~a2,~b1) + E(~a1,~b2)− E(~a2,~b2). (6)

Most general separable state

ρsep =
∫ ∫

σ(~na, ~nb)|na〉〈na| ⊗ |nb〉〈nb|d~nad~nb, (7)



where
∫ ∫

σ(~na, ~nb)d~nad~nb = 1 and

~na = sin θa cosφâi+ sin θa sinφaĵ + cos θak̂

~nb = sin θb cosφb̂i+ sin θb sinφbĵ + cos θbk̂ (8)

E(~ai,~bj) = Tr[ρsep~σ.~ai ⊗ ~σ.~bj] (9)

Λ =
√

2
∫ ∫ ∫ ∫

σ(θa, θb, φa, φb) sin2 θa sin2 θb sin(φa + φb)dθadθbdφadφb

⇒ −
√

2 ≤ S ≤
√

2, (10)

which is less than the local-realist bound 2.



Monogamy and signaling are related

No-signaling + nonlocality ⇒ no-cloning, monogamy etc (MAG

2006).

Nonlocality + some signaling⇒ weakened no-cloning, monogamy

etc (AS 2013).

Alice and Bob share a non-signaling correlation given by a⊕ b =

x · y – violates CHSH inequality to the algebraic maximum of 4.

Suppose Charlie interacts with Bob, and becomes correlated with

Alice by: a⊕ c = x · z.

Adding up: b⊕c = x·(y⊕z), 1-bit signal from Alice to Bob-Charlie



More generally: Charlie’s attempt to generate correlation leads
to convex combination of PR + local box along both arms:

ΛAB + ΛAC ≤ 2× (2(1− µ) + 4µ) = 4µ+ 4, (11)

µ = 0 ⇒ no-signaling bound (Toner 2006). No bound when
µ = 1.

Probability that Bob-Charlie deduce Alice’s input is thus µ2 +
1
2(1− µ2) = 1

2(1 + µ2) ≡ σ.

Signal S ≡ 2σ − 1 = µ2 ∈ [0,1] so that:

ΛAB + ΛAC ≤ 4(1 +
√
S), (12)

showing how signaling weakens monogamy.

Larger the signaling, smaller the gap C − S, and more classical
the correlations (AS 2013).



4th issue: Monogamy of temporal correlations

Given sequential measurements A,B,C, we have by virtue of Eqs.

(4) and (10) Monogamy for temporal qubit correlations:

ΛAB + ΛAC ≤ 2
√

2 +
√

2 = 3
√

2 > 4,

no-signaling bound.

Implications studied under two protocols:

(1) LG protocol: Where secret bit generation based on monogamy:

nonlocal case secure, whereas temporal case almost not.

(2) LG-BB84 protocol: Where LG mode used for entity authen-

tication, while BB84 mode used for secret bit generation.



LG protocol: Rendered almost insecure through
weakened monogamy

On particle transmitted from Alice to Bob, both randomly per-

form LGI measurements.

Basis reconciliation: Bob announces bases; Alice keeps her out-

come as-is except flips last case (settings (1,1)).

Violation of LGI guarantees mostly correlated than anti-correlated.

Secure in non-signaling case, and just secure under above signal-

weakened monogamy,

LG/CHSH in probability form: B ≡ 1
4
∑
x,y P (a⊕ b = xy|x, y) ≤ 3

4.



Monogamy: BAB + BAE ≤ 3
√

2
8 + 1 ≡ 3

2 + ε, where ε = 3
4
√

2
− 1

2 is

the weakening of monogamy beyond the no-signaling limit.

From Pawlowski (2010) for individual attacks: Bob knows Alice’s

bit with probability pB = BAB, while Eve knows Alice’s bit with

probability pE ≤ 2BAE − 1
2.

By virtue of monogamy pB + 1
2pE + 1

4 ≤
3
2 + ε, therefore pB ≥ pE

if BAB ≥ 5
6 + 2ε

3 , or, in correlation terms ΛAB ≥ 8
3(1 + 2ε), which

is precisely 2
√

2 for the above value of ε.



LG-BB84 protocol

M± ≡ 1√
2

(X ± Z).

Alice transmits Bob randomly one of the 8 states: eigenstates

of X,Z,M+ ≡ {|0〉, |1〉},M− ≡ {|+〉, |−〉}.

Bob randomly measures: X,Z,M±.

BB84 mode: When bases match ⇒ secret bit.

LG mode: Alice measures X/Z, Bob measures M±, or vice versa,

outcome data is used to check for violation of LGI. (for entity

authentication)



Higher-dimensional attack cheat state ρAB here would be: ρ′AB =
1

16

(
Π(12)

00 + Π(12)
11

)
⊗
(

Π(34)
++ + Π(34)

−−

)
⊗
(

Π(56)
00 + Π(56)

11

)
⊗
(

Π(78)
++ + Π(78)

−−

)
.

ρ′AB passes the BB84 test, but maximally fails LG test (Λ = 0)

Eve mixes fraction f of device attack (via ρ′AB) with channel

attack with prob 1− f (producing error rate η).

Alice and Bob find

Λ0 ≡ 2
√

2(1− f)(1− η),

e ≡ (1− f)η (13)



Single-qubit attack

Our protocol is equivalent to Alice transmitting half a singlet to

Bob, and measuring her qubit in LG-BB84 basis (Scarani and

Gisin 2005):

For privacy amplification (as against advantage distillation) in

QKD (Csizar & Körner 1989):

I(A : B) > IE ≡ min[I(A : E), I(B : E)].

Eve’s optimal individual attack (maximizing I(A:E) for given dis-

turbance), parametrized by θ ∈ [0, π/2] (Niu & Griffiths 2000):

U |00〉BE = |00〉BE
U |10〉BE = cos θ|10〉BE + sin θ|01〉BE, (14)



|Ψ(θ)〉ABE =
1√
2

(|000〉+ cos θ|110〉) + sin θ|101〉

Calculation with ρAB, ρAE, ρBE shows that the error statistics

(matches vs mismatches in outcomes) are the same for any mea-

surement basis. Moreover, error is binary symmetric.

eAB = (1− cos θ)/2; eAE = (1− sin θ)/2; eBE = (1− sin 2θ)/2;

In each case, I(· : ·) = 1−H(eα).

Plotting IAB vs IE, one finds

IAB ≥ IE ⇐⇒ θ ≤ π/4 (15)



Nonlocality

Two-qubit mixed state density operator ρ = 1
4[I ⊗ I + (~r · σ) ⊗

I + I ⊗ (~s · σ)
∑3
n,m=1 tmn(σm ⊗ σn)], Λmax(ρ) = 2

√
M(ρ). Thus

ρ violates CHSHI iff M(ρ) > 1, where M(ρ) = max(ej + ek),

ej, ek being eigenvalues of matrix T †T , where T = {tmn} is the

correlation matrix (Horodecki family (1995)).

Λmax(ρAB) = 2
√

2 cos θ; Λmax(ρAE) = 2
√

2 sin θ; Λmax(ρBE) =
√

2 sin 2θ;

Thus ρAB is nonlocal iff θ > π/4 By Eq. (15),

security ⇐⇒ nonlocality.

By our reduction: security ⇐⇒ violation of LG inequality.



Thank you!


