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Short Review on Nonclassical Correlation Introduction Discussions some new results

Understanding Correlations

To discuss different measures of non-classical correlations:-
entanglement and beyond entanglement scenario.

The basic problem here is: the behavior of quantum systems is not
fully understood whenever there are more number of parties involved.
In other words, there exist a kind of correlation between the parties
involved which is not explainable by classical scenario.
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Entanglement

This is possibly the most wonderful invention of quantum
mechanics. Initially everyone thinks the correlation which is
responsible for non-local behavior of quantum systems is nothing but
the entanglement.

However, findings in different quantum systems show there are other
candidates also. e.g., the local-indistinguishibility of a complete set
of orthonormal product states in 3× 3 system.
As entanglement is used as a resource in many information
processing tasks, (e.g, teleportation, dense coding, etc.) therefore,
the characterization and quantification problems are the some
fundamental issues generated in the last two decades. However,
there are lot of difficulties.
As far as bipartite entanglement is concerned we have at least some
knowledge how to deal with entangled states. For pure bipartite
states there exists a unique measure of entanglement calculated by
Von- Neumann entropy of reduced density matrices.
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However for mixed entangled states there is no unique measure of
entanglement. One has to look on different ways to quantify
entanglement. Some of the measures of entanglement are distillable
entanglement, entanglement cost, entanglement of formation,
relative entropy of entanglement, logarithmic negativity, squashed
entanglement, etc.

The Difficulty: In most of the cases it is really hard to calculate
exactly the measures of entanglement. Only for some few classes of
states, actual values are available. A similar problem is that it is
hard to find whether a mixed bipartite state is entangled or not.
The situation in multipartite case is more complex than that of
bipartite case. e.g., how could we define a measure of entanglement
for multipartite states at least for pure states are concerned. It is
also very difficult to define maximally entangled states in
multipartite systems.
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Consider a mixed entangled state in a multipartite system with the
property that it has maximal entanglement w.r.t. any bipartite cut
(i.e., reduced density matrices corresponding to the cut is
proportional to the identity operator), then we observe that for
n-qubit (n ≥ 3) system, there does not exist any maximally
entangled states for n = 4 and n ≥ 8.

So one has to think how to define maximally entangled states for
such situations. Gour and others have defined maximally entangled
states in 4-qubit system considering some operational interpretation.
A possible way: the average bipartite entanglement w.r.t. all
possible bipartite cuts the state is maximal.
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Correlation measures beyond entanglement

The first measure of correlation we consider is Quantum Discord:
(H.Ollivier and W.H. Zurek, PRL, 88,017901(2001))

Consider the following state: ρ =
1
4 [|+〉〈+|⊗|0〉〈0|+ |−〉〈−|⊗|1〉〈1|+ |0〉〈0|⊗|−〉〈−|+ |1〉〈1|⊗|+〉〈+|]
The above state is separable. However, it has non-zero quantum
discord which is defined by the difference of measuring mutual
information in two different ways, D(A,B) = I(A : B)− J(A : B)
where, I(A : B) = S(A)− S(A|B) and
J(A : B) = S(A)−minΠj

∑
j pjS(A|j)

The above quantity is a measure of non-classical correlation. It has
zero value if and only if there exists a Von Neumann-measurement
Πj = |ψj〉〈ψj | such that the bipartite state ρ = Πj ⊗ IρΠj ⊗ I.
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Some Observations
One could interpret Discord in terms of consumption of
entanglement in an extended quantum state merging protocol thus
enabling it to be a measure of genuine quantum correlation.

Physically, discord quantifies the loss of information due to the
measurement. This correlation measure is invariant under LU but
may change under other local operation. It is asymmetric w.r.t the
parties.
The set of Classical-Quantum states is non convex. Due to the
optimization problem, it is in general very hard to find analytic
expression for discord. Exact analytical result is available only for a
few classes of states. It was found that Quantum discord is always
non-negative and it reduces to Von Neumann Entropy of the
reduced density matrix for pure bipartite states.
There are other variations of discord and their extensions to
multipartite systems have also been proposed. e.g., Geometric
discord: D(ρ) = minχ ||ρ− χ|| where the minimum is taken over all
zero discord state χ.
Exact analytical formula for geometric discord is also available for
only a few class of states. A tight lower bound is found recently.
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Quantum (Un)Certainty

Consider the Bell state

1√
2
|00〉+ |11〉

This state is an eigen-state of the global spin observable σz ⊗ σz
hence measurement of this observable on the state is certain.

However it can’t be an eigen-state of any local observable a.σ ⊗ I
and hence the measurement is inherently uncertain. In fact this is
true for any pure entangled state and uncorrelated states such as
|00〉 admits atleast one certain observable.

How to measure this uncertainty?
How to extend this idea to mixed state also?

For this we need to build a measure and which does not affected by
classical mixing.
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Introduction

1 Classically, it is possible to measure any two observable with arbitrary
accuracy. However, such measurement is not always possible in quantum
systems. Uncertainty relation gives the statistical nature of errors in these
kind of measurement. Measurement of single observable can also help to
detect uncertainty of a quantum observable.

2 For a quantum state ρ, an observable is called quantum certain if the
error in measurement of the observable is due to only the ignorance
about the classical mixing in ρ. A good quantifier of this uncertainty is
the skew information.
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Skew information

Wigner and Yanase introduced the quantity

I(ρ,K ) := −1
2 tr{[√ρ,K ]2}

as a measure of information content of the ensemble ρ skew to a fixed
conserved quantity K .

It quantifies non-commutativity between a quantum state and an
observable so it serves as a measure of uncertainty of the observable K in
the state ρ. This type of measure helps to quantify the quantum part of
error in measuring an observable. I = 0 indicates quantum certain nature
of the observable K . It is also convex and non-increasing under classical
mixing. It has a nice property that I(ρ,K ) ≤ Var(ρ,K ).
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Local Quantum Uncertainty

For a bipartite quantum state ρAB , Girolami et.al. (Phys. Rev. Lett.
110, 240402 (2013)) introduced the concept of local quantum
uncertainty(LQU) and it is defined as

UΛ
A := min

K Λ
I(ρAB ,KA)

The minimization is performed over all local maximally informative
observable (or non-degenerate spectrum Λ) K Λ = K Λ

A ⊗ I. This quantity
quantifies the minimum amount of uncertainty in a quantum state.
Non-zero value of this quantity indicates the non existence of any
quantum certain observable for the state ρAB .
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Local Quantum Uncertainty

Properties of LQU

It vanishes for all zero discord state w.r.t. measurement on party A.
It is invariant under local unitary.
It reduces to entanglement monotone for pure state. In fact, for pure
bipartite states it reduces to linear entropy of reduced subsystems.
So, LQU can be taken as a measure of bipartite quantumness.
For a quantum state ρ of 2⊗ n system, LQU reduces to
1− λmax (W) where λmax is the maximum eigenvalue of the matrix
W = (wij)3×3, wij = tr{√ρ(σi ⊗ I)√ρ(σj ⊗ I)} and σi ’s are
standard Pauli matrices in this case.
Geometrically, LQU in a state ρ of a 2× n system is the minimum
Hellinger distance between ρ and the state after a least disturbing
root-of-unity local unitary operation applied on the qubit.
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Orthogonal Invariant State

Any O ⊗O invariant state from a n × n system can be taken as

ρ = a In2 + b F + c F̂

with n(na + b + c) = 1 (trace condition) and proper positivity
constraints. I is the identity operator, F is the flip operator and F̂ is the
projection on maximally entangled state.
The operators satisfy the algebra F2 = I,FF̂ = F̂F = F̂, F̂2 = n F̂, n is
the dimension of each subsystem.
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Orthogonal Invariant State

The parametrization procedure can be done in another way by
considering the expectation values of the operators In, F, F̂. Expectation
value of In just gives the relation tr ρ = 1 which is obvious. We define
two parameters f and f̂ as

f := 〈F〉ρ = tr(ρF)

f̂ := 〈F̂〉ρ = tr(ρF̂)

We can define three orthogonal projectors U, V and W as,

U = F̂/n
V = (In2 − F)/2
W = (In2 + F)/2− F̂/n
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Orthogonal Invariant State

In terms of this orthogonal basis, ρ can be expressed as,

ρ =
f̂
nU +

1− f
n(n − 1)

V +
n + nf − 2f̂

n(n − 1)(n + 2)
W

The old parameters a, b, c are connected to the new ones f , f̂ by the
relation,  1

f
f̂

 = n

 n 1 1
1 n 1
1 1 n

  a
b
c


In terms of the new parameters the positivity conditions on ρ
reads,0 ≤ f̂ , f ≤ 1, f̂ ≤ n(f + 1)/2
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Generators of SU(n)

We can construct traceless, orthogonal generators (generalized Gell-Mann
matrices) for SU(n), containing n2 − 1 elements as:

λα =


√

2
α(α+1) (

∑α
k = 1 |k〉〈k| − α|α + 1〉〈α + 1|) , α = 1, ..., n − 1

|k〉〈m|+ |m〉〈k|, 1 ≤ k < m ≤ n, α = n, ..., n2+n
2 − 1

i(|k〉〈m| − |m〉〈k|), 1 ≤ k < m ≤ n, α = n(n+1)
2 , ..., n2 − 1
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Generators of SU(n)

Among the (n2 − 1) matrices, the first (n− 1) are mutually commutative,
next (n2 − 1)/2 are symmetric and rest (n2 − 1)/2 are antisymmetric.
The generators λα satisfy the orthogonality relation tr(λαλβ) = 2δαβ .
The generators satisfy the following commutation and anti-commutation
relations,

[λi , λj ] =2i
∑

k
fijk λk

{λi , λj} =2
∑

k
dijk λk +

4
n δij In

Hence

λi λj = i
∑

k
fijk λk +

∑
k

dijk λk +
2
n δij In
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LQU for Orthogonal Invariant States

√
ρ can expressed as,

√
ρ =

√
f̂
nU +

√
1− f

n(n − 1)
V +

√
n + nf − 2f̂

n(n − 1)(n + 2)
W

=a1 In2 + b1 F + c1 F̂

with a1, b1, c1 are functions of f , f̂ .
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LQU for Fixed spectrum

Particularly we choose an class of non-degenerate A-observable K Λ
A =s.λ

with s = (s1, s2, ..., sn2−1), |s| = 1 and λ = (λ1, λ2, ..., λn2−1). We also
want that this observable has following spectrum: ±(n − 1), (n − 2), ..., 0
when n is even and ±(n − 2), (n − 3), ..., 1 when n is odd. Hence, si ’s
also satisfy other functional relations to satisfy the spectrum condition.
In this case

UΛ
A(ρ) = min

K Λ
I(ρ,K Λ)

= min
K Λ
{tr(ρ(K Λ)2)− tr(√ρK Λ√ρK Λ)}

= min
s
{tr{ρ(s.λ⊗ In)2} − tr{√ρ(s.λ⊗ In)

√
ρ(s.λ⊗ In)}}

The maximum is over all s with |s| = 1 and si ’s also satisfies all necessary
conditions to build the chosen spectrum.
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LQU for Orthogonal Invariant States

For any state with tr(ρλk ⊗ In) = 0,

UΛ
A(ρ) =

2
n −max

s
(s.W.s†)

The elements of the matrix W is defined as

wij = tr{√ρ(λi ⊗ In)
√
ρ(λj ⊗ In)}

For any O ⊗O invariant state tr(ρλk ⊗ In) = 0 and W is diagonal. It is
also possible to choose s which satisfies all the constraints. Hence we can
simplify the value of UA in terms of maximum eigenvalue λmax of W as

UΛ
A(ρ) =

2
n − λmax (W)

The above result can work as a lower bound for the large class of states
with tr(ρλi ⊗ In) = 0, i = 1, 2, ..., n2 − 1
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Two Qutrit system

For O ⊗O invariant state in two-qutrit system, eigenvalues of W are
2(3a2

1 ± 2b1c1 + 2a1b1 + 2a1c1). Hence in this case

UΛ
A =

2
3 − 2(3a2

1 + 2|b1c1|+ 2a1b1 + 2a1c1)

For Werner (c = 0) and Isotropic (b = 0) class of states in two-qutrit
system, the eigenvalues of W become all equal. Hence the explicit form
of LQU are,

UΛ
A(ρwer ) =

1
3 (1−

√
1− 12b

√
1 + 6b)− b

UΛ
A(ρiso) =

4
27 (1−

√
1− 3c

√
1 + 24c) +

14
9 c

The results can be easily transferred in terms of f and f̂ .
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Two Qutrit system

Figure : LQU for Werner class of
states in two-qutrit system for
suitable parameter range of b. The
class is obtained by putting c = 0
in (12). The highest value of UΛ

A
reaches 0.5

Figure : LQU for Isotropic class of
states in two-qutrit system for
suitable range of the parameter c.
The class is obtained by putting
b = 0 in (12). The highest value of
UΛ

A reaches 0.66 in this case.
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Two Qutrit system

Figure : Region plot in (f f̂ )-plane of the eigenvalue of W for two-qutrit
orthogonal invariant class. Both the regions are enclosed by the constraints
0 ≤ f̂ , f ≤ 1, f̂ ≤ 3(f + 1)/2. First figure shows the shaded region where
b1c1 ≥ 0 and second one shows the shaded region where b1c1 < 0. Hence in
the first region UΛ

A = 2
3 − 2(3a2

1 + 2b1c1 + 2a1b1 + 2a1c1) and in the second
UΛ

A = 2
3 − 2(3a2

1 − 2b1c1 + 2a1b1 + 2a1c1)
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A General Approach

We can consider d2 elements of SU(d) as

unm :=
d−1∑
j=0

exp(
2πijn

d )|j〉〈j ⊕m mod d |; n,m = 0, ..., d − 1 (1)

Now consider any general observable K = s.Λ where
Λ = (λ0, λ1, ..., λd−1) and λi ’s are d diagonal matrices of order d2 with
only single entry 1 at corresponding ii-th position. λi ’s can be obtained
from linear combination of un0’s. Hence

K = s.Λ =
d−1∑
i=0

siλi =
d−1∑
i=0

tiui0; ti ’s are functions of si ’s (2)
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A General Approach

For any unitarily connected observable with same spectrum,

VKV † = t0I +
d−1∑
i=1

ti Ki .Λ; where we take Vui0V † = Ki .Λ

= m.Λ + t0I; with m =
∑

i
ti Ki

=‖ m ‖ m̂.Λ + t0I

(3)

Hence we can safely choose any observable(maximally informative) as
m̂.Λ and perform the optimization over all unit vector m̂. The amount of
LQU are proportional on all such orbits. In fact the optimization problem
turns out to be

UΛ
A(ρ) = min

mi ,
∑

m2
i =1

g(mi , f , f̂ ) (4)

where g is a real valued function of the parameters mi , f , f̂ .
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Bounds on Geometric Discord and Measurement induced
Nonlocality(MIN)

Due to the same type of optimization problem we are able to find
explicit bounds for geometric discord and MIN as follows:
0 ≤ (n2 − n)(b2 + c2) + 4(n − 1)bc ≤ D(ρ) ≤ N(ρ) ≤
(n2 − n)(b2 + c2) , if bc ≤ 0
0 ≤ (n2 − n)(b2 + c2) ≤ D(ρ) ≤ N(ρ) ≤
(n2 − n)(b2 + c2) + 4(n − 1)bc , if bc ≥ 0
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