
ON BILINEAR LITTLEWOOD-PALEY SQUARE FUNCTIONS

P K RATNAKUMAR AND SAURABH SHRIVASTAVA

Abstract. In this paper, we study bilinear Liitlewood-Paley square function
introduced by M. Lacey. We give an easy proof of it’s boundedness from

Lp(Rd) × Lq(Rd) into Lr(Rd), d ≥ 1, for all possible values of exponents

p, q, r, i.e. for 2 ≤ p, q ≤ ∞, 1 ≤ r ≤ ∞ satisfying 1
p
+ 1

q
= 1

r
. We also prove

analogous results for bilinear square functions on Torus group Td.

1. Introduction

The theory of bilinear multipliers is revived with the outstanding work of Lacey
and Thiele [6], [7] on boundedness of the bilinear Hilbert transform.

Definition 1.1 (Bilinear Hilbert Transforms). For f, g ∈ S(R), the bilinear Hilbert
transform is defined by

H(f, g)(x) = p.v.

∫
R
f(x− y)g(x+ y)

dy

y
.(1.1)

Writing Fourier transform for f and g, the operator H(f, g) takes the following
form

H(f, g)(x) = −i
∫
R

∫
R
f̂(ξ)ĝ(η)sgn(ξ − η)e2πix(ξ+η)dξdη,(1.2)

where

sgn(ξ) =

 1, ξ > 0
0, ξ = 0
−1, ξ < 0.

In [6], [7] Lacey and Thiele proved that

Theorem 1.2 (Lacey-Thiele Theorem [6, 7]). Let 1 < p, q ≤ ∞ and 2
3 < r <∞ be

such that 1
p + 1

q = 1
r . Then for all functions f, g ∈ S(R), there exists a constant C

such that
‖Hα(f, g)‖Lp(R) ≤ C‖f‖Lp(R)‖g‖Lq(R).

In this work the authors developed very powerful techniques known as time-
frequency techniques and settled a longstanding conjecture of A.P. Calderón.

In this paper we are concerned with Lp boundedness properties of bilinear
Littlewood-Paley square functions on Rd and on Td, d ≥ 1. The theory of lin-
ear Littlewood-Paley square functions is very interesting and has a wide range of
applications in harmonic analysis. The study of Littlewood-Paley square functions
in the context of bilinear multipliers was initiated by Lacey [4] in 1996. As far
as our knowledge is concerned not much is known about bilinear square functions.
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We refer the interested reader to [1, 2, 3, 8, 9] for the work done so far (in our
knowledge) on bilinear square functions.

Let ω be a cube in Rd, d ≥ 1. Then for f, g ∈ S(Rd) we can define bilinear
operator Sω associated with symbol χω(ξ − η) as follows :

Sω(f, g)(x) =

∫
Rd

∫
Rd
f̂(ξ)ĝ(η)χω(ξ − η)e2πix.(ξ+η)dξdη.(1.3)

When d = 1, using Theorem 1.2 it is known that Sω maps Lp(R) × Lq(R) into
Lr(R), where 1 < p, q ≤ ∞ and 2

3 < r <∞ with 1
p + 1

q = 1
r .

The bilinear square functions are defined as follows :

Definition 1.3 (Bilinear Littlewood-Paley Square Functions). Let {ωl}l∈Zd be a
sequence of disjoint cubes in Rd. Let Sωl be the bilinear operator associated with the
symbol χωl(ξ−η) as defined above. Then for f, g ∈ S(Rd), the bilinear Littlewood-
Paley square function associated with the sequence {ωl}l∈Zd is defined as:

S(f, g)(x) =

∑
l∈Zd
|Sωl(f, g)(x)|2

 1
2

.(1.4)

These square functions are referred to non-smooth bilinear square functions.

The smooth bilinear square functions are defined similarly. More precisely, for a
sequence of disjoint cubes ωl in Rd, a smooth bilinear square function is defined as

T (f, g)(x) :=

∑
l∈Zd
|Tφl(f, g)(x)|2

 1
2

, f, g ∈ S(Rd),(1.5)

where Tφl is the bilinear multiplier operator associated with smooth symbol φl with
supp(φl) ⊂ ωl.

The interest is to obtain Lp boundedness properties of bilinear square functions.
As mentioned previously, the first result is this direction is due to Lacey. He proved
the following :

Theorem 1.4. [4] Let φ be a smooth function defined on Rd such that φ is supported
in the unit cube of Rd. For l ∈ Zn, let φl be the function defined by φl(ξ) = φ(ξ− l).
Then, for all 2 ≤ p, q ≤ ∞ satisfying 1

p + 1
q = 1

2 , there exists a constant C > 0 such

that for all f, g ∈ S(Rd) we have

‖T (f, g)‖L2(Rd) ≤ C‖f‖Lp(Rd)‖g‖Lq(Rd).(1.6)

The proof of the above theorem is quite intricate and we notice that the exponent
r = 2 is crucial in the proof. In the same paper Lacey’s posed the following natural
questions about bilinear Littlewood-Paley square functions.

(1) Does Theorem 1.4 hold for r 6= 2 ?
(2) What about the non-smooth version of Theorem 1.4 ?

As one can easily see that boundedness of non-smooth square function on R implies
the boundedness of the bilinear Hilbert transform on R, which is known to be a
very hard problem. So the second question about the non-smooth square function
is supposed to be very difficult to answer. Bernicot [1] provided a positive result in
this direction. In fact he proved much more in the form of the following theorem :
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Theorem 1.5. [1] Let {ωn = [an, bn]}n∈Z be a sequence of disjoint intervals in R
with bn − an = bn−1 − an−1 and an+1 − bn = an − bn−1 for all n ∈ Z. Then for
exponents 2 < p, q, r′ < ∞ satisfying 1

p + 1
q = 1

r , there is a constant C = C(p, q)

such that for all functions f, g ∈ S(R) we have∥∥∥∥∥∥
(∑
n∈Z
|Sωn(f, g)|2

) 1
2

∥∥∥∥∥∥
Lr(R)

≤ C‖f‖Lp(R)‖g‖Lq(R).(1.7)

The proof of above theorem is very complicated. The author has developed
upon time-frequency techniques suitably in order to deal with square functions.
The condition that the intervals are of equal lengths and are equi-distant play very
important roles in the proof.

The first question of Lacey is answered in two papers Mohanty and Shrivastava [8]
and Bernicot and Shrivastava [2]. They proved that

Theorem 1.6. [8, 2] Let φ ∈ C∞(R) have support contained in the unit interval
of R. For l ∈ Z, define φl(ξ) = φ(ξ − l). Then for 2 ≤ p, q ≤ ∞ and 1 < r ≤ ∞
satisfying 1

p + 1
q = 1

r , there exists a constant C = C(φ, p, q) > 0 such that for all

f, g ∈ S(R), we have∥∥∥∥∥∥
(∑
l∈Z
|Tφl(f, g)|2

) 1
2

∥∥∥∥∥∥
Lr(R)

≤ C‖f‖Lp(R)‖g‖Lq(R).(1.8)

Mohanty and Shrivastava [8] proved the above theorem for exponents 4
3 < r ≤ ∞.

In order to prove the above theorem authors showed that the square function under
consideration is dominated by the bilinear Hardy Littlewood maximal function.
Then using celebrated result due to Lacey [5] about boundedness of the bilinear
Hardy-Littlewood maximal operator authors deduced the required Lp estimates
for square function. The use of the bilinear Hardy Littlewood maximal function
imposes the condition r > 4

3 . In the same paper authors also proved that for
inequality (1.8) to hold true condition 2 ≤ p, q is necessary. Later, Bernicot and
Shrivastava [2] using time-frequency techniques proved Lp estimates for a more
general smooth bilinear square function. More precisely, they proved that

Theorem 1.7. [2] Let Ω = {ω}ωΩ
be a well-distributed collection of intervals (i.e.∑

ω∈Ω χω ≤ C for some C > 0) satisfying

(1.9) inf
ω∈Ω
|ω| ' sup

ω∈Ω
|ω|.

Then, for 2 ≤ p, q, r′ <∞ satisfying 1
r = 1

p + 1
q , there exists a constant C, indepen-

dent of the collection Ω, such that for all f, g ∈ S(R), we have∥∥∥∥∥∥
(∑
ω∈Ω

|Tψω (f, g)|2
)1/2

∥∥∥∥∥∥
Lr(R)

≤ C‖f‖Lp(R)‖g‖Lq(R),

where ψω is a smooth function supported in the interval ω.

As an application of the above theorem authors deduced Theorem 1.6 for re-
maining exponents 1 < r ≤ 4

3 . Thus, we see that for exponents 1 < r ≤ 2 the proof
of Theorem 1.6 relies on times-frequency techniques which makes it very difficult.
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Also, for this range of exponents we do not have this theorem in higher dimension.
Moreover, the end point r = 1 is not covered in Theorem 1.6.

The study of bilinear square functions on T was initiated by Mohanty and Shri-
vastava [9]. They proved the bilinear analogue of Carleson’s Littlewood-Paley the-
orem on T. Unlike the linear case the bilinear Carleson’s Littlewood-Paley theorem
on T is not straight forward (for more details see [9]). The authors used suitable
transference techniques in order to prove their result.

The purpose of this paper is to provide an elementary proof of Theorem 1.6
valid for the entire possible range of exponents, 2 ≤ p, q,≤ ∞, 1 ≤, r ≤ ∞, and
works in all dimensions. We would like to remark that our proof works in case of
higher dimension as well. Moreover, our proof is valid with a weaker hypothesis
on function φ, see condition (2.1) with φ̌ = K, where we assume only certain
integrability condition on K. In this paper we also obtain Lp estimates for bilinear
Littlewood-Paley square functions on Td. As a consequence of this result we obtain
boundedness of the bilinear Carleson’s Littlewood-Paley operator on Td.

2. Smooth Bilinear Square Functions on Rd

In this section we study smooth bilinear square functions on Rd and give an easy
proof of Theorem 1.6 in Rd for all possible values of exponents p, q, r. In particular,
we prove the following :

Theorem 2.1. Let K be a measurable function on Rd such that∑
m∈Zn

(∫
Qm

|K(y)|ρdy
) 1
ρ

<∞,(2.1)

where ρ = max{2 , r ′} and Qm =
∏d
j=1[mj ,mj + 1). For l ∈ Zn, define K̂l(ξ) =

K̂(ξ − l) and let Tl be the bilinear operator associated with K̂l(ξ − η). Then for
exponents 2 ≤ p, q ≤ ∞ and 1 ≤ r ≤ ∞ satisfying 1

p + 1
q = 1

r , there exists a

constant C = C(K, r) such that we have∥∥∥∥∥∥∥
∑
l∈Zd
|Tl(f, g)|2

 1
2

∥∥∥∥∥∥∥
Lr(Rd)

≤ C‖f‖Lp(Rd)‖g‖Lq(Rd)(2.2)

Proof: For notational convenience we prove this theorem only in one dimension.
The same proof is valid in higher dimension as well.

We use the defintion of Tl(f, g) in terms of the kernel (see (1.1)), i.e.,

Tl(f, g)(x) =

∫
R
f(x− y)g(x+ y)Kl(y)dy

=

∫
R
f(x− y)g(x+ y)e2πilyK(y)dy.

We claim that for almost every x ∈ R and for all f, g ∈ S(R), the square function
satisfies the following pointwise estimate(∑

l∈Z
|Tl(f, g)(x)|2

) 1
2

≤
∑
m∈Z

(∫ m+1

m

|f(x− y)g(x+ y)K(y)|2dy
) 1

2

.(2.3)
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Let a = {al}l∈Z be a sequence in l2(Z) such that ‖a‖l2(Z) = 1. Then we prove
that for a.e. x ∈ R, we have

|
∑
l∈Z

alTl(f, g)(x)| ≤
∑
m∈Z

(∫ m+1

m

|f(x− y)g(x+ y)K(y)|2dy
) 1

2

.

Once we have the above estimate we can deduce the claimed estimate (2.3) using
duality argument. Consider

∑
l

alTl(f, g)(x) =
∑
l

al

∫
R
f(x− y)g(x+ y)Kl(y)dy

=

∫
R
f(x− y)g(x+ y)K(y)

∑
l

ale
2πilydy

=

∫
R
f(x− y)g(x+ y)K(y)â(y)dy,

where â is the Fourier transform of sequence a. Note that â is a periodic function
such that ‖â‖L2([0,1]) = 1. Hence

|
∑
l

alTl(f, g)(x)| ≤
∑
m∈Z

∫ m+1

m

|f(x− y)g(x+ y)K(y)â(y)|dy

≤
∑
m∈Z

(∫ m+1

m

|f(x− y)g(x+ y)K(y)|2dy
) 1

2
(∫ m+1

m

|â(y)|2dy
) 1

2

=
∑
m∈Z

(∫ m+1

m

|f(x− y)g(x+ y)K(y)|2dy
) 1

2

.

This proves the claim.

We shall consider cases 1 ≤ r ≤ 2 and 2 ≤ r ≤ ∞ separately.

Case 1: 1 ≤ r ≤ 2

¿From estimate (2.3) we have

∥∥∥∥∥∥
(∑
l∈Z
|Tl(f, g)|2

) 1
2

∥∥∥∥∥∥
Lr(R)

≤
∑
m∈Z

[∫
R

(∫ m+1

m

|f(x− y)g(x+ y)K(y)|2dy
) r

2

dx

] 1
r

=
∑
m∈Z

[∑
n∈Z

∫ n+1

n

(∫ m+1

m

|f(x− y)g(x+ y)K(y)|2dy
) r

2

dx

] 1
r

≤
∑
m∈Z

[∑
n∈Z

(∫ n+1

n

∫ m+1

m

|f(x− y)g(x+ y)K(y)|2dydx
) r

2

] 1
r

.
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Here we have used Hölder’s inequality with exponents 2
r and ( 2

r )′ as 1 ≤ r ≤ 2. For
n,m ∈ Z, set km(x) = χ[m,m+1)(x)K(x) and

An,m =

∫ n+1

n

∫ m+1

m

|f(x− y)g(x+ y)K(y)|2dydx.(2.4)

Then,

An,m =

∫ n+1

x=n

∫ m+1

y=m

|f(x− y)g(x+ y)km(y)|2dydx

≤
∫ n−m+1

z=n−m−1

∫ n+m+2

w=n+m

|f(z)g(w)km(
w − z

2
)|2 dzdw

2

=

∫
R
|gn+m(w)|2

(∫
R
|fn−m(z)k̃m(w − z)|2dz

)
dw

=

∫
R
|gn+m(w)|2|fn−m|2 ∗ |k̃m|2(w) dw

≤ ‖gn+m‖2Lq(R) ‖f
2
n−m ∗ k̃2

m‖L(q/2)′R),

where k̃m(x) = 1√
2
km(x2 ), gn+m(x) = χ[n+m,n+m+2)(x)g(x), and fn−m(x) =

χ[n−m−1,n−m+1)(x)f(x). We have used Hölder’s inequality for exponents q
2 and

(q/2)′ as 2 ≤ q.

Let s = r′

2 . Since 1 ≤ r ≤ 2, we have s ≥ 1. Using the condition 1
p + 1

q = 1
r we

see that

1

p/2
+

1

s
= 1 +

1

(q/2)′
.

Hence using Young’s inequality we get that

‖f2
n−m ∗ k̃2

m‖L(q/2)′R) ≤ ‖f
2
n−m‖Lp/2(R) ‖k̃2

m‖Ls(R).

Substituting this estimate in above we get

An,m ≤ ‖gn+m‖2Lq(R) ‖f
2
n−m‖Lp/2(R) ‖k̃2

m‖Ls(R)(2.5)

= ‖k̃2
m‖s ‖fn−m‖2p ‖gn+m‖2q.(2.6)

Thus we have∥∥∥∥∥∥
(∑
l∈Z
|Tl(f, g)|2

) 1
2

∥∥∥∥∥∥
Lr(R)

≤
∑
m∈Z

[∑
n∈Z

(
‖k̃2
m‖Ls(R) ‖fn−m‖2Lp(R) ‖gn+m‖2Lq(R)

) r
2

] 1
r

≤
∑
m∈Z
‖k̃2
m‖

1
2

Ls(R)

(∑
n∈Z
‖fn−m‖rLp(R) ‖gn+m‖rLq(R)

) 1
r

≤
∑
m∈Z
‖km‖Lr′ (R)

(∑
n∈Z
‖fn−m‖pLp(R)

) r
p
(∑
n∈Z
‖gn+m‖qLq(R)

) r
q

≤ C

(∑
m∈Z
‖km‖Lr′ (R)

)
‖f‖Lp(R) ‖g‖Lq(R).

This completes the proof of Theorem for 1 ≤ r ≤ 2.
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Case 2: 2 ≤ r ≤ ∞

In this case we use Minkowski’s integral inequality for exponent r
2 as 2 ≤ r.

∥∥∥∥∥∥
(∑
l∈Z
|Tl(f, g)|2

) 1
2

∥∥∥∥∥∥
Lr(R)

≤
∑
m∈Z

[∫
R

(∫ m+1

m

|f(x− y)g(x+ y)K(y)|2dy
) r

2

dx

] 1
r

≤
∑
m∈Z

[∫ m+1

m

(∫
R
|f(x− y)g(x+ y)K(y)|rdx

) 2
r

dy

] 1
2

≤
∑
m∈Z

[∫ m+1

m

|K(y)|2
(∫

R
|f(x− y)g(x+ y)|rdx

) 2
r

dy

] 1
2

≤
∑
m∈Z

(∫ m+1

m

|K(y)|2dy
) 1

2

‖f‖Lp(R) ‖g‖Lq(R).

In order to get second inequality we have used Hölder’s inequality with exponents
p
r and q

r as 1
p + 1

q = 1
r . This completes the proof for the second case when 2 ≤ r ≤

∞. �

3. Bilinear Square Functions on Td

In this section we study bilinear square functions on Td. As mentioned previously
Mohanty and Shrivastava [9] proved that the bilinear Carleson’s Littlewood-Paley
operator maps Lp(T)×Lq(T) into Lr(T) for exponents p, q, r satisfying 2 ≤ p, q ≤ ∞
and Hölder condition 1

p + 1
q = 1

r . The authors used vector valued transference

methods to prove their result. In this section we observe that the arguments used in
Section 2 to prove Theorem 2.1 can be applied to obtain boundedness of analogous
bilinear square functions on Td. More precisely, we prove the following :

Theorem 3.1. Let K be a measurable function on Td such that ‖K‖Lt(Td) < ∞,
where t = max{2 , r ′}. For l ∈ Zn, define K̂l(n) = K̂(n−l) and let S̃l be the bilinear

multiplier operator associated with the symbol K̂l(n−m). Then for exponents 2 ≤
p, q ≤ ∞ and 1 ≤ r ≤ ∞ satisfying 1

p + 1
q = 1

r , there exists a constant C = C(K, r)

such that for all trigonometric polynomials f, g on Td, we have∥∥∥∥∥∥
(∑
l∈Z
|Tl(f, g)|2

) 1
2

∥∥∥∥∥∥
Lr(Td)

≤ C‖f‖Lp(Td)‖g‖Lq(Td)(3.1)

Proof: The proof of this theorem follows using essentially the same arguments as
in previous section. We shall present here the main steps only. Also for convenience
we work in dimension one only as the higher dimensional result follows similarly.

Let f, g be trigonometric polynomials defined on T. Then we have the following
pointwise estimate for the square function (follow the proof of inequality (2.3)).(∑

l∈Z
|S̃l(f, g)(x)|2

) 1
2

≤
(∫

T
|f(x− y)g(x+ y)K(y)|2dy

) 1
2

.(3.2)
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Likewise earlier we consider cases 1 ≤ r < 2 and 2 ≤ r ≤ ∞ separately.

Case 1 : 1 ≤ r ≤ 2

Using estimate (3.2) and the condition that 1 ≤ r < 2 we have∥∥∥∥∥∥
(∑
l∈Z
|S̃l(f, g)|2

) 1
2

∥∥∥∥∥∥
Lr(T)

≤

[∫
T

(∫
T
|f(x− y)g(x+ y)K(y)|2dy

) r
2

dx

] 1
r

≤
[∫

T

∫
T
|f(x− y)g(x+ y)K(y)|2dydx

] 1
2

.

We follow the proof of inequality (2.6) and obtain that∫
T

∫
T
|f(x− y)g(x+ y)K(y)|2dydx ≤ ‖k2

2‖Ls(T) ‖f‖2Lp(T) ‖g‖
2
Lq(T),

where k2(x) = 1√
2
K(x2 ) and s = r′

2 . Putting the above two estimates together we

have ∥∥∥∥∥∥
(∑
l∈Z
|S̃l(f, g)|2

) 1
2

∥∥∥∥∥∥
Lr(T)

≤ C‖K‖Lr′ (T) ‖f‖Lp(T) ‖g‖Lq(T).

This completes the first case.

Case 2 : 2 ≤ r ≤ ∞

This part is easy as in the previous section. Since 2 ≤ r ≤ ∞ using Minkowski’s
integral inequality we have∥∥∥∥∥∥

(∑
l∈Z
|S̃l(f, g)|2

) 1
2

∥∥∥∥∥∥
Lr(T)

≤

[∫
T

(∫
T
|f(x− y)g(x+ y)K(y)|2dy

) r
2

dx

] 1
r

≤

[∫
T

(∫
T
|f(x− y)g(x+ y)K(y)|rdx

) 2
r

dy

] 1
2

≤ ‖K‖L2(T) ‖f‖Lp(T) ‖g‖Lq(T).

This completes the proof of Theorem 3.1. �

Remark 3.2. Let S̃l, l ∈ Zd, denote the bilinear multiplier operator on Td asso-
ciated with the symbol χ{l}(n −m). Consider the bilinear analogue of Carleson’s

Littlewood-Paley operator given by (f, g) →
(∑

l∈Zd |S̃l(f, g)|2
) 1

2

. We know that

χ{l}(n) = K̂(n− l), where K ≡ 1 on [0, 1]d. We can easily verify that K satisfies the
hypothesis of Theorem 3.1. Hence as an application of Theorem 3.1 we get that the
bilinear Carleson’s Littlewood-Paley operator maps Lp(Td) × Lq(Td) into Lr(Td),
where exponents p, q, r satisfy 2 ≤ p, q ≤ ∞, 1 ≤ r ≤ ∞, and Hölder condition
1
p + 1

q = 1
r .
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