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Abstract

In this paper we prove Plancherel theorem for measures on the
Heisenberg group. We also consider Hermite and special Hermite
expansions and prove Plancherel theorem for discrete measure and

surface measure for these expansions.
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1 Introduction

Consider the discrete measure p given by

p=> ¢z
=0

with >°%° < o0. The Fourier transform of such a measure is given by the

JOJ

almost periodic function

F() =€) = 3 e,
=0

For such functions the Parseval’s theorem says

lim,ﬂ_mr_”/ |f1(6)|?de = CZ |Cj|2
Br(y) j=0

for any fixed y. The left hand side is the so called Bohr means of the
almost periodic function F' and it was first proved by H. Bohr for uni-
formly almost periodic functions and the above general form was proved by

A. Besicovitch [1]. Wiener [11] considered finite measures of the form

> bz —a;) +v
=0

where v is absolutely continuous with respect to the Lebesgue measure. He
proved that v contributes nothing to the Bohr means of ji.
For the Fourier transform we also have the Plancherel theorem which can

be written as

zme/ €)|2de = (27)" /\f )dz.

If we think of this as the Plancherel theorem for the n-dimensional measure
fdx, then the Besicovitch - Wiener theorem can be considered as the 0-

dimensional analogue for the discrete measure p. For the surface measure on
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|z| = t there is a result due to Agmon - Hormander which gives the (n — 1)
- dimensional case of the above theme. Recently Strichartz [5] has made far
reaching generalisation of the above theme by considering measures which
are fractal in nature. In the general set up equalities have to be replaced by

inequalities. Results of the type

timsup, o " | |y ©Pde < c AR

have been proved by Strichartz for a large class of measures.

Our aim in this paper is to initiate the investigation of similar problems
in the case of the Fourier transform on the Heisenberg group. We obtain
analogue of Besicovitch - Wiener theorem for the discrete measures and also
an analogue of Agmon - Hormander theorem for the surface measure. We
also consider the case of Hermite and Laguerre expansions and prove similar
results.

We wish to thank Prof. R. Strichartz for the encouraging remarks and
useful suggestions on a prior version of this paper. We also wish to thank the
referee whose remarks helped us improve the paper. The first author wishes
to thank National Board for Higher Mathematics (India) for the financial

support.

2 Fourier transform on the Heisenberg group

The (2n+ 1) dimensional Heisenbeg group H ™ is the group @ " x IR with the
operation

1
(z,t)(w,s) = (z+w,t+ s+ ilmz.w)

where z,w €@ ", t, s € IR. The Fourier transform on the Heisenberg group is

defined using the infinite dimensional Schrodinger representation 7, indexed
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by nonzero reals . These are all realised on L?*(IR™) and are given by
Tz, )(€) = eMeMettarv) o 4 ) for ¢ in L2(IR™). Consequently the

Fourier transform of a function f on H™ is the operator valued function

f()\) = /f(z,t)m(z,t)dzdt.

The Plancherel formula then reads

I1£13 = @07 [ IF O rslAdx

where ||T'|| gs is the Hilbert - Schmidt norm of the operator T.
Our point of departure is the following variant of the Plancherel formula

established by Strichartz [4]. For f in L*(H"™) one has

2 _ - o A 2
”fHQ_%;;)/@"/ |f % e}z, 0)[2d\dz.

e}

Here e} are the elementary spherical functions defined by

er(z,t) = e Mpp(2)

where 03 (z) = LZ’l(%W\z|2)e’i“”z‘2, L' being Laguerre polynomials of
type (n-1). For various properties of Fourier transform and spherical func-
tions we refer to [8]. The book of Folland [2] gives a nice introduction to the
Heisenberg group.

We now state and prove an analogue of Besicovitch - Wiener theorem for

the measure
p=7_co(z,1)
=0

where §(z;,t;) is the Dirac measure at the point (z;,t;). We need various
properties of the Laguerre functions ¢x(z). They satisfy the orthogonality
relation ¢ X @;(2) = (2m)"py(2)dy,; where Jj ; is the Kronecker delta. Here
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@1 X p;(z) denote the twisted convolution [ g » pr(z —w)ep; (w)ez™=® dy of
@i and ;. They satisfy the product formula

El(n —1)!

m%(”@k(z)

ez = ety =
where ¢ (1) stands for ¢p(w) with |w| = r, and p, is the normalised sur-
face measure on the sphere |w| = r. We also need the following generating

function identity

o0 kl n -1 142 2 +s n—l( ZCS';)
Z ))lm Jor(s)t* = (n — D1 — %) e =2 (M)% :
2

For these formule we refer to [10]. We frequently use the following Tauberian

theorem.

Theorem 1 Let o, A; be sequences of real numbers such that

a; >0, X\ = 7" +0(j™). Then the following are equivalent :
(D) X5 e Mg~ coe ™D ase | 0
(), 0y & qT(n — 1+ 1) N 10

A proof of this theorem can be seen in [7].

Theorem 2 Let u = 3352,¢;0(zj,t;), where the sequence (c;) belongs to

N and zj’s are distinct. Then

N—o0

Proof : We have e}(z,t) = e~ ¢;(1/|\|2). Therefore,

1
o* 62\(’27 0) - / . 62(2 —w,—S§ — E(ImZU_))) d,u(w, 8)



o) 1 B
= Y cieplz— 2, —t; — §(Imzz]))
=0

= ¢ e Mmoo (N (2 — ).
=0

Therefore,

[ v ez, 0)d

= [ Ta6 PO HEmETD o (NG - 5) ey I - )z
2P

= At — idIm((zj—2p).2
= TG et [ A o (DN - 2) en/IA(E - )
7P

The interchange of the order of integration and the sum is justified by Fubini’s

theorem since (¢;) is in [' and

J g 1o NG =2 oI G = 2o dz < 7 [ e d

A simple calculation shows that

'L'A m((z;—zp).2
/@n e'2mE=202) o (VN (2 = 27)) oy A (2 — 2,))dz.
—-n iA mz;.z,
= AT 2T o xop(V A (25 — 7))

n —n _i2Imz;.5
= (2m)" A7 €215 o (VI (25— 2))-

Thus we have

J - ez 0z = @m) N X ey e ebm g (/i (5—5).
7P

Now we consider the sum

Ztk/av n ’lLL * €2<Z70)|2d’2'

k=0



As the functions ¢ (2) are uniformly bounded (in fact, |@r(2)] < ck™1), we

can first sum with respect to k to get

Soth [ s e, 0)
k=0 @
11+t

— (1 . t>fn(27r)n|)\|fn Z Cjc_peii)\(tj7tp)€i%IijAZ_p€7§ 17t\)\| \ijzp|2dz
Jp
In deriving the above we have used the generating function identity,

1
11|22

(NI

Y tron(z) = (1 —t) e
k=0
Since |z; — z,| # 0 for j # p we see that
L1t

. 1 Az — 2
llmt_,l_e 21—t| HZJ zp‘ :0

for j # p. Therefore,

limg_q—(1— )" > t* /@n [ ep(z,0))* dz = 2m)" A" D el
k=0 Jj=0

By appealing to the Tauberian theorem we get the result.

We next consider the surface measure on the sphere
S, = {(2,0) : |[z2| = r} € H™ Let p, be the normalised measure on the

sphere S,..

Theorem 3 Let g € L*(IR) and let p be the product of u, and and gdt on
H". Then

7Tn7122n—% (n _ 1)

. _1 N > n_l !
timy—ooN 530 [ [ s, 0)F NP dzdd = T g .
k=0" "%




Proof : We have
ok ep(z,0) = / § ep(z —w,—s — ;Imz.w) du(w, s)
_ /(L*”le o (/P2 = w)) e 3ImeD) gy 4 () dis
B /|w|:r or(\IA|(z — w)) e P2 Tm= 4y () /Rg(s) s g

- m en (I r(y/1AT121) (V)

Thus

/(Z«n |1 62(2,0)’2 dz = |A™" (27T>n<]€!(n —1)!

ey Ol

As in the previous theorem, we consider

Zt%/ Oo/@n 1% e}(z,0)* [A2"2 dz dA
k=0 -

- ,gitm:'_w @) D) [ ety LgO R 1A dr

First we claim that the sum can be taken inside the integral. To see this it

is enough to check that the integral

[ A2 gy @0 T (IR GO0 A1 )

is finite. The generating function identity for the Laguerre functions give

Z o k+n' 1 (Arly Al )’

|\|r?t i Alr?t, 1Al 1
g —_ -n n J 1— t2
(1= )" (g} ™ dualif ) e
The Bessel function .J,,_1(iz) has the estimate
| Jn—1(i2)] <czze z> 1.



In view of this the above sum is bounded by
el 11—ty
Cpp [N TF2 ez T I

and hence the integral under consideration is finite. Thus we have shown
that

Ot%/ /@nm*ek(z 0)|2 [A|2*3dzd) = D(n) (27)"(1 — ¢2) ™

k=
o A2t APt 32 e
<L T Gy A R L
consider the function
/\|7’2t |/\|7’2t 11442 |A] 2
1_ TL+ | n+1 i 2 1-¢2 T
(1= )7 (s i) e

Using the integral representation for the Bessel function this is equal to

IA[r2 1442

(1 . 252)—n+1/2 e 2

|/\|7‘ t s

1 F(1/2)F1(n71/2) JL (L= )32 7 T ds

)" Alr® 1t _r? 2t s
—= %I (1 — 82 )n—3/2 e_Ti_',t e p] 1—t2(1 ) ds

A simple computation shows that this is equal to

e~z TRt

F(1/2)F(n _ 1/2) /O 2/1—t (y[2 — y(l _ t2 )])n—3/2 €_|)“7"2tydy'

As t — 1—, this converges to

1 > n— —|\|r? n— - —n+i
F(1/2)F(n_1/2)/0 <2y) 3/2 e [Alr?y dy:2 3/2 T 1/2 (|/\|T2) +2.

Therefore we have proved




limt_,l_(l—tg)%Zt%/ m/@n e Xz, 0)2 AP dz dx
k=0 >

3 1

— F(n) 22n—§ 2 r—2n+1/ ‘g()\)P d\
By appealing to Tauberian theorem we complete the proof.

In the above theorem we can replace g(t) dt by a discrete measure 3 ¢; dq;,

where a’;s are distinct. Then as a corollary we obtain the following result.

Corollary 4 Let y1 be the product of pi, and the discrete measure 3, ¢; dq,,

where a}s are distinct. Then

N-3 M N
S5 L X gl @00 P dzdy
-M "o

7.rn—1<n _ 1)[ 2271—1/2 )

- r2n—1 Z |CJ'|2'
j=0

Proof : In this case

prd(e0) = [ el DI —w)] 27 dpw) BN,

where
FA) =) ¢ .
J
Therefore,
El(n —1)!
o ep(z,0) = Gitn—1) e(VIAIr) er(y/IAz) F(N).
Hence
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M
[ gl ez 0F P12 dz
-M
n k'(n — 1)' M n—l
= @) Gy Ly (eI I )12
As in the theorem we can show that

lN M
limy-oN Y [ [ e ed(z 002 A2 dz
i—o/-m I @

n—1 —1)! 2271—% M
T (=) / I (V) d).
-M

T2n—1

By Wiener’s theorem
timag [ 1F Q)= 3o
HooM Y = il

This completes the proof of the corollary.

3 Hermite and special Hermite expansions

Consider the normalised Hermite functions ®,(x) on IR".These are indexed
by multi indices a € IN" and are eigenfunctions of the Hermite operator
H = —A+ |z|>. In fact H®, = (2|a| + n)®, where |a| = a3 + g + ... + @,
and {®,} is an orthonormal basis for L2(IR™). The Plancherel theorem for

the Hermite expansion reads
1Pz = 1)

where f(a) = [ f(2)®,(x)dz. The Hermite functions @, satisfies the Mehlers

formula

2
S0y (2)Pu(y)t = 772 (1 - )-8 B () 2y

«
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Using the generating function and the Tauberian theorem one can easily

prove the following result.

Theorem 5 Let i = 3" c;0(a;) +v where v is absolutely continuous and a’s
are distinct. Then

(2m)"/?

limy—ooN™% 37 |i(e)? = <2< 3 oy
|Q§N L(n/2+1) 2.l

where fi(a) = [ Py (z)dp.

For a proof of this see Strichartz [5].

We now consider the case of surface measure v, on the sphere |z| = 7.
More generally we consider measures of the form fdv,, where f is a square
integrable function on the sphere |z| = . To treat such measures we need the
following Hecke - Bochner type identity for the Hermite projection operators.
Let Py(f) stand for the projection of f onto the k - th eigenspace spanned
by ®,(x), |a| = k, that is

Pef(z) =Y f(a)®alw).
lal=F

Let L2 be the Laguerre polynomial of the type § and define

() — F2F(k: +1)

> 5,2\~ 2541
(k+5—|—1)/o f(r)Ly(r*)e” zr*" dr.

For radial functions the following proposition has been proved in [9].

Proposition 6 Assume that f(z) = fo(|x|)p(z) where p(z) is a solid har-

monic of degree m. Then

Popm [ () = Fi(|2])p(2)

where Fi(r) = RS(f)L(r2)e 2" with § = 5 +m — 1. For other values of
k? Pk:(f) = 0.
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For a measure du on IR",  let Py(du) be defined by
Py(dp) = Xjaj=r (] Paly)dp) Pa(z).

Theorem 7 Let v be the normalised surface measure on S™1 and let f €

L*(S "1, dv). Then limy—.aoN"2 SN || Pu(fdv)||3 = 2 fgus | f|2dv.

Proof : Expand f in terms of spherical harmonics f = > ¢,,Y,, where Y,, is
a spherical harmonic of degree m. In view of the proposition it is easy to see

that

20(k+1) 500y 21 rag 2y —Llaf?
—————I:(1)e 2L 2y
A et e

As various Y;,,’s are orthogonal to each other it is enough to prove the theorem

when f =Y,,.

Popymn(Yidv) =

o0 < D(k+1) .
)| Popgn (Yind) |2 = 23 2 (L2(1)e2)* t*
,;) 2kt 2 ér(wmm k
 J5(BL
= o1 —t) e tH ey

Now we can proceed as in theorem (3) to conclude the proof.

Finally we briefly consider the case of special Hermite expansions. By

the term we mean an expansion of the type

f=0@m)™" Y fx ek

where f is a function on @". Analogues of theorems (5) and (7) can be
proved in the context of special Hermite expansions. These are in a way
particular cases of theorems in section 2 when we consider functions on the
Heisenberg group that are independent of t. We leave the formulations and

proofs to the interested reader.
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