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1 Introduction

Consider the discrete measure µ given by

µ =
∞∑
j=0

cjδ(x− aj)

with
∑∞
j=0 c

2
j <∞. The Fourier transform of such a measure is given by the

almost periodic function

F (ξ) = µ̂(ξ) =
∞∑
j=0

cje
iaj .ξ.

For such functions the Parseval’s theorem says

limr→∞r
−n

∫
Br(y)

|µ̂(ξ)|2dξ = c
∞∑
j=0

|cj|2

for any fixed y. The left hand side is the so called Bohr means of the

almost periodic function F and it was first proved by H. Bohr for uni-

formly almost periodic functions and the above general form was proved by

A. Besicovitch [1]. Wiener [11] considered finite measures of the form

∞∑
j=0

cjδ(x− aj) + ν

where ν is absolutely continuous with respect to the Lebesgue measure. He

proved that ν contributes nothing to the Bohr means of µ̂.

For the Fourier transform we also have the Plancherel theorem which can

be written as

limr→∞

∫
Br(y)

|f̂(ξ)|2dξ = (2π)n
∫
|f(x)|2dx.

If we think of this as the Plancherel theorem for the n-dimensional measure

fdx, then the Besicovitch - Wiener theorem can be considered as the 0-

dimensional analogue for the discrete measure µ. For the surface measure on
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|x| = t there is a result due to Agmon - Hormander which gives the (n− 1)

- dimensional case of the above theme. Recently Strichartz [5] has made far

reaching generalisation of the above theme by considering measures which

are fractal in nature. In the general set up equalities have to be replaced by

inequalities. Results of the type

limsupr→∞r
α−n

∫
Br(y)

|(fdµ)̂ (ξ)|2dξ ≤ c
∫
|f |2dµ.

have been proved by Strichartz for a large class of measures.

Our aim in this paper is to initiate the investigation of similar problems

in the case of the Fourier transform on the Heisenberg group. We obtain

analogue of Besicovitch - Wiener theorem for the discrete measures and also

an analogue of Agmon - Hormander theorem for the surface measure. We

also consider the case of Hermite and Laguerre expansions and prove similar

results.

We wish to thank Prof. R. Strichartz for the encouraging remarks and

useful suggestions on a prior version of this paper. We also wish to thank the

referee whose remarks helped us improve the paper. The first author wishes

to thank National Board for Higher Mathematics (India) for the financial

support.

2 Fourier transform on the Heisenberg group

The (2n+ 1) dimensional Heisenbeg group H n is the group IC n× IR with the

operation

(z, t)(w, s) = (z + w, t+ s+
1

2
Imz.w̄)

where z, w ∈ IC n, t, s ∈ IR. The Fourier transform on the Heisenberg group is

defined using the infinite dimensional Schrodinger representation πλ indexed
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by nonzero reals λ. These are all realised on L2(IRn) and are given by

πλ(z, t)ϕ(ξ) = eiλteiλ(x.ξ+ 1
2
x.y)ϕ(ξ + y), for ϕ in L2(IRn). Consequently the

Fourier transform of a function f on H n is the operator valued function

f̂(λ) =
∫
f(z, t)πλ(z, t)dzdt.

The Plancherel formula then reads

‖f‖2
2 = (2π)−n−1

∫
‖f̂(λ)‖2

HS|λ|ndλ.

where ‖T‖HS is the Hilbert - Schmidt norm of the operator T .

Our point of departure is the following variant of the Plancherel formula

established by Strichartz [4]. For f in L2(H n) one has

‖f‖2
2 = 2π

∞∑
k=0

∫
ICn

∫ ∞

−∞
|f ∗ eλk(z, 0)|2dλdz.

Here eλk are the elementary spherical functions defined by

eλk(z, t) = e−iλtϕλk(z)

where ϕλk(z) = Ln−1
k (1

2
|λ||z|2)e−

1
4
|λ||z|2 , Ln−1

k being Laguerre polynomials of

type (n-1). For various properties of Fourier transform and spherical func-

tions we refer to [8]. The book of Folland [2] gives a nice introduction to the

Heisenberg group.

We now state and prove an analogue of Besicovitch - Wiener theorem for

the measure

µ =
∞∑
j=0

cjδ(zj, tj)

where δ(zj, tj) is the Dirac measure at the point (zj, tj). We need various

properties of the Laguerre functions ϕk(z). They satisfy the orthogonality

relation ϕk × ϕj(z) = (2π)nϕk(z)δk,j where δk,j is the Kronecker delta. Here
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ϕk ×ϕj(z) denote the twisted convolution
∫
IC n ϕk(z−w)ϕj(w)e

i
2
Imz.w̄dw of

ϕk and ϕj. They satisfy the product formula

∫
|w|=r

ϕk(z − w)e
i
2
Imz.w̄dµr =

k!(n− 1)!

(k + n− 1)!
ϕk(r)ϕk(z)

where ϕk(r) stands for ϕk(w) with |w| = r, and µr is the normalised sur-

face measure on the sphere |w| = r. We also need the following generating

function identity

∞∑
k=0

k!(n− 1)!

(k + n− 1)!
ϕk(r)ϕk(s)t

2k = (n− 1)!(1− t2)−1e
− 1+t2

1−t2
r2+s2

2
Jn−1( irst

1−t2 )

( irst
2

)n−1
.

For these formule we refer to [10]. We frequently use the following Tauberian

theorem.

Theorem 1 Let αj, λj be sequences of real numbers such that

αj ≥ 0, λj = j1/n + o(j1/n). Then the following are equivalent :

(1)
∑∞
j=1 e

−ελjαj ≈ c0ε
−(n−l) as ε ↓ 0

(2)
∑N
j=1 αj ≈ c0(Γ(n− l + 1))−1N 1−l/n.

A proof of this theorem can be seen in [7].

Theorem 2 Let µ =
∑∞
j=0 cjδ(zj, tj), where the sequence (cj) belongs to

l1
⋂
l2 and zj’s are distinct. Then

lim
N→∞

N−n
N∑
k=0

∫
IC n |µ ∗ eλk(z, 0)|2dz =

(2π)n

|λ|nn!

∞∑
j=0

|cj|2.

Proof : We have eλk(z, t) = e−iλt ϕk(
√
|λ|z). Therefore,

µ ∗ eλk(z, 0) =
∫
H n

eλk(z − w,−s−
1

2
(Imz.w̄)) dµ(w, s)
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=
∞∑
j=0

cj e
λ
k(z − zj,−tj −

1

2
(Imz.z̄j))

=
∞∑
j=0

cj e
−iλ(tj+

1
2

(Imz.z̄j)) ϕk(
√
|λ|(z − zj)).

Therefore,

∫
IC n |µ ∗ eλk(z, 0)|2dz

=
∫
IC n

∑
j,p

cj c̄p e
−iλ(tj−tp+ 1

2
Imz.zj−zp ) ϕk(

√
|λ|(z − zj)) ϕk(

√
|λ|(z − zp))dz

=
∑
j,p

cj c̄p e
−iλ(tj−tp)

∫
IC n e

iλ
2
Im((zj−zp).z̄) ϕk(

√
|λ|(z − zj)) ϕk(

√
|λ|(z − zp))dz.

The interchange of the order of integration and the sum is justified by Fubini’s

theorem since (cj) is in l1 and

∫
IC n |ϕk(

√
|λ|(z − zj))| |ϕk(

√
|λ|(z − zp))| dz ≤ |λ|−n

∫
IC n |ϕk(z)|2 dz.

A simple calculation shows that

∫
IC n e

iλ
2
Im((zj−zp).z̄) ϕk(

√
|λ|(z − zj)) ϕk(

√
|λ|(z − zp))dz.

= |λ|−n ei
λ
2
Imzj .z̄p ϕk × ϕk(

√
|λ|(zj − zp))

= (2π)n |λ|−n ei
λ
2
Imzj .z̄p ϕk(

√
|λ|(zj − zp)).

Thus we have

∫
IC n |µ∗eλk(z, 0)|2dz = (2π)n |λ|−n

∑
j,p

cj c̄p e
−iλ(tj−tp)ei

λ
2
Imzj .z̄p ϕk(

√
|λ|(zj−zp)).

Now we consider the sum

∞∑
k=0

t k
∫
IC n |µ ∗ eλk(z, 0)|2dz.
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As the functions ϕk(z) are uniformly bounded (in fact, |ϕk(z)| ≤ ck n−1 ), we

can first sum with respect to k to get

∞∑
k=0

t k
∫
IC n |µ ∗ eλk(z, 0)|2dz

= (1− t)−n(2π)n|λ|−n
∑
j,p

cj c̄pe
−iλ(tj−tp)ei

λ
2
Imzj .z̄pe−

1
2

1+t
1−t |λ| |zj−zp|

2

dz

In deriving the above we have used the generating function identity,

∞∑
k=0

t kϕk(z) = (1− t)−ne−
1
2

1+t
1−t |z|

2

.

Since |zj − zp| 6= 0 for j 6= p we see that

limt→1−e
− 1

2
1+t
1−t |λ||zj−zp|

2

= 0

for j 6= p. Therefore,

limt→1−(1− t)n
∞∑
k=0

t k
∫
IC n |µ ∗ eλk(z, 0)|2 dz = (2π)n |λ|−n

∞∑
j=0

|cj|2.

By appealing to the Tauberian theorem we get the result.

We next consider the surface measure on the sphere

Sr = {(z, 0) : |z| = r} ⊂ H n. Let µr be the normalised measure on the

sphere Sr.

Theorem 3 Let g ∈ L2(IR) and let µ be the product of µr and and g dt on

H n. Then

limN→∞N
− 1

2

N∑
k=0

∫ ∞

−∞

∫
IC n |µ∗eλk(z, 0)|2 |λ|2n−

1
2 dz dλ =

πn−122n− 1
2 (n− 1)!

r2n−1
‖g‖2

2.
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Proof : We have

µ ∗ eλk(z, 0) =
∫
H n

eλk(z − w,−s−
1

2
Imz.w̄) dµ(w, s)

=
∫
IC n
×IR

ϕk(
√
|λ|(z − w)) e−iλ(−s− 1

2
Imz.w̄)g(s) dµr(w) ds

=
∫
|w|=r

ϕk(
√
|λ|(z − w)) e−iλ

1
2
Imz.w̄ dµr(w)

∫
IR
g(s) eiλsds

=
k!(n− 1)!

(k + n− 1)!
ϕk(

√
|λ|r)ϕk(

√
|λ||z|) ĝ(λ).

Thus

∫
IC n |µ ∗ eλk(z, 0)|2 dz = |λ|−n (2π)n

k!(n− 1)!

(k + n− 1)!
(ϕk(

√
|λ|r))2 |ĝ(λ)|2.

As in the previous theorem, we consider

∞∑
k=0

t2 k
∫ ∞

−∞

∫
IC n |µ ∗ eλk(z, 0)|2 |λ|2n−

1
2 dz dλ

=
∞∑
k=0

t2 k
k!

(k + n− 1)!
(2π)n Γ(n)

∫ ∞

−∞
|ϕk(

√
|λ|r)|2 | ĝ(λ)|2 |λ|n−

1
2 dλ

First we claim that the sum can be taken inside the integral. To see this it

is enough to check that the integral

∫
{
∞∑
k=0

t2 k
k!

(k + n− 1)!
(2π)n Γ(n) (ϕk(

√
|λ|r))2} | ĝ(λ)|2 |λ|n−

1
2 dλ

is finite. The generating function identity for the Laguerre functions give

∞∑
k=0

t2 k
k!

(k + n− 1)!
(ϕk(

√
|λ|r))2

= (1− t2 )−n { |λ|r
2t

2(1− t2)
}−n+1 Jn−1(i

|λ|r2t

1− t2
) e
− |λ| r

2

2
1+t2

1−t2

The Bessel function Jn−1(iz) has the estimate

|Jn−1(iz)| ≤ c z−
1
2 ez z ≥ 1.
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In view of this the above sum is bounded by

c r,t |λ|−n+ 1
2 e−

1
2

1−t
1+t
|λ|r2

and hence the integral under consideration is finite. Thus we have shown

that

∞∑
k=0

t2 k
∫ ∞

−∞

∫
IC n |µ ∗ eλk(z, 0)| 2 |λ| 2n−

1
2dz dλ = Γ(n) (2π)n(1− t2 )−n

×
∫ ∞

−∞
| ĝ(λ)| 2 { |λ|r

2t

2(1− t2 )
}−n+1 Jn−1(i

|λ|r2t

1− t2
) e
− 1

2
1+t2

1−t2
|λ|r2 |λ|n−

1
2dλ

consider the function

(1− t2 )−n+ 1
2 { |λ|r

2t

2(1− t2 )
}−n+1 Jn−1(i

|λ|r2t

1− t2
) e
− 1

2
1+t2

1−t2
|λ| r2

.

Using the integral representation for the Bessel function this is equal to

(1− t2)−n+1/2 e
− |λ|r

2

2
1+t2

1−t2 1
Γ(1/2)Γ(n−1/2)

∫ 1
−1(1− s2 )n−3/2 e

− |λ|r
2t s

1−t2 ds

= (1−t2 )−n+1/2

Γ(1/2)Γ(n−1/2)

∫ 1
−1(1− s2 )n−3/2 e−

|λ|r2
2

1−t
1+t e

− |λ|r
2

2
2t

1−t2
(1−s)

ds.

A simple computation shows that this is equal to

e−
|λ|r2

2
1−t
1+t

Γ(1/2)Γ(n− 1/2)

∫ 2/1−t2

0
(y[2− y(1− t2 )])n−3/2 e−|λ|r

2tydy.

As t→ 1−, this converges to

1

Γ(1/2)Γ(n− 1/2)

∫ ∞

0
(2y)n−3/2 e−|λ|r

2y dy = 2n−3/2 π−1/2 (|λ|r2)−n+ 1
2 .

Therefore we have proved
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limt→1−(1− t2 )
1
2

∞∑
k=0

t2k
∫ ∞

−∞

∫
IC n |µ ∗ eλk(z, 0)|2 |λ|2n−

1
2 dz dλ

= Γ(n) 22n− 3
2 πn−

1
2 r−2n+1

∫ ∞

−∞
| ĝ(λ)|2 dλ

By appealing to Tauberian theorem we complete the proof.

In the above theorem we can replace g(t) dt by a discrete measure
∑
cj δaj ,

where a′js are distinct. Then as a corollary we obtain the following result.

Corollary 4 Let µ be the product of µr and the discrete measure
∑
j cj δaj ,

where a′js are distinct. Then

limM→∞ limN→∞
N−

1
2

M

∫ M

−M

N∑
k=0

∫
IC n |µ ∗ eλk(z, 0)|2 |λ|2n−1/2 dz dλ

=
πn−1(n− 1)! 22n−1/2

r2n−1

∞∑
j=0

|cj|2.

Proof : In this case

µ ∗ eλk(z, 0) =
∫
|w|=r

ϕk[
√
|λ|(z − w)] ei

λ
2
Imz.w̄ dµr(w) F (λ),

where

F (λ) =
∑
j

cj e
iλsj .

Therefore,

µ ∗ eλk(z, 0) =
k!(n− 1)!

(k + n− 1)!
ϕk(

√
|λ|r) ϕk(

√
|λ|z) F (λ).

Hence
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∫ M

−M

∫
IC n |µ ∗ eλk(z, 0)|2 |λ|2n−1/2 dz dλ

= (2π)n
k!(n− 1)!

(k + n− 1)!

∫ M

−M
{ϕk(

√
|λ|r)}2 |F (λ)| 2 |λ|n−

1
2dλ.

As in the theorem we can show that

limN→∞N
− 1

2

N∑
k=0

∫ M

−M

∫
IC n |µ ∗ eλk(z, 0)|2 |λ| 2n−1/2 dz dλ

=
πn−1 (n− 1)! 22n− 1

2

r2n−1

∫ M

−M
|F (λ)|2 dλ.

By Wiener’s theorem

limM→∞
1

M

∫ M

−M
|F (λ)|2dλ =

∞∑
j=0

|cj|2.

This completes the proof of the corollary.

3 Hermite and special Hermite expansions

Consider the normalised Hermite functions Φα(x) on IRn.These are indexed

by multi indices α ∈ INn and are eigenfunctions of the Hermite operator

H = −∆ + |x|2. In fact HΦα = (2|α|+ n)Φα where |α| = α1 + α2 + ...+ αn

and {Φα} is an orthonormal basis for L2(IRn). The Plancherel theorem for

the Hermite expansion reads∫
|f |2dx =

∑
α

|f̂(α)|2.

where f̂(α) =
∫
f(x)Φα(x)dx. The Hermite functions Φα satisfies the Mehlers

formula

∑
α

Φα(x)Φα(y)t|α| = π−
n
2 (1− t2)−

n
2 e
− 1

2
1+t2

1−t2
(|x|2+|y|2)+ 2t

1−t2
x.y
.
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Using the generating function and the Tauberian theorem one can easily

prove the following result.

Theorem 5 Let µ =
∑
cjδ(aj) + ν where ν is absolutely continuous and a′js

are distinct. Then

limN→∞N
−n

2

∑
|α|≤N

|µ̂(α)|2 =
(2π)−n/2

Γ(n/2 + 1)

∑
|cj|2

where µ̂(α) =
∫

Φα(x)dµ.

For a proof of this see Strichartz [5].

We now consider the case of surface measure νr on the sphere |x| = r.

More generally we consider measures of the form fdνr, where f is a square

integrable function on the sphere |x| = r. To treat such measures we need the

following Hecke - Bochner type identity for the Hermite projection operators.

Let Pk(f) stand for the projection of f onto the k - th eigenspace spanned

by Φα(x), |α| = k, that is

Pkf(x) =
∑
|α|=k

f̂(α)Φα(x).

Let Lδk be the Laguerre polynomial of the type δ and define

Rδ
k(f) =

2Γ(k + 1)

Γ(k + δ + 1)

∫ ∞

0
f(r)Lδk(r

2)e−
r2

2 r2δ+1dr.

For radial functions the following proposition has been proved in [9].

Proposition 6 Assume that f(x) = f0(|x|)p(x) where p(x) is a solid har-

monic of degree m. Then

P2k+mf(x) = Fk(|x|)p(x)

where Fk(r) = Rδ
k(f)Lδk(r

2)e−
1
2
r2 with δ = n

2
+ m − 1. For other values of

k, Pk(f) = 0.
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For a measure dµ on IRn, let Pk(dµ) be defined by

Pk(dµ) =
∑
|α|=k(

∫
Φα(y)dµ)Φα(x).

Theorem 7 Let ν be the normalised surface measure on Sn−1 and let f ∈

L2(S n−1, dν). Then limN→∞N
− 1

2
∑N
k=0 ‖Pk(fdν)‖2

2 = 2
π

∫
Sn−1 |f |2dν.

Proof : Expand f in terms of spherical harmonics f =
∑
cmYm where Ym is

a spherical harmonic of degree m. In view of the proposition it is easy to see

that

P2k+m(Ymdν) =
2 Γ(k + 1)

Γ(k + δ + 1)
Lδk(1) e−

1
2 Lδk(|x|2) e−

1
2
|x|2 Ym.

As various Ym’s are orthogonal to each other it is enough to prove the theorem

when f = Ym.

∞∑
k=0

tk‖P2k+m(Ymdν)‖2
2 = 2

∞∑
k=0

Γ(k + 1)

Γ(k + δ + 1)
(Lδk(1)e−

1
2 )2 tk

= 2(1− t)−1e−
1+t
1−t
Jδ(

2i
√
t

1−t )

(
√
t)δ

.

Now we can proceed as in theorem (3) to conclude the proof.

Finally we briefly consider the case of special Hermite expansions. By

the term we mean an expansion of the type

f = (2π)−n
∑

f × ϕk

where f is a function on IC n. Analogues of theorems (5) and (7) can be

proved in the context of special Hermite expansions. These are in a way

particular cases of theorems in section 2 when we consider functions on the

Heisenberg group that are independent of t. We leave the formulations and

proofs to the interested reader.
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