GELFAND PAIRS, K-SPHERICAL MEANS AND
INJECTIVITY ON THE HEISENBERG GROUP

By

G. SAIITH AND P. K. RATNAKUMAR*

Abstract. We study the injectivity properties of the spherical mean value op-
erators associated to the Gelfand pairs (H ™, K), where K is a compact subgroup of
U(n). We show that these spherical mean value operators are injective on L? (H ™)
for1 < p < oo. For p = oo, these operators are not injective. Nevertheless, if
the spherical means f x u; over K-orbits of sufficiently many points (2;,t;) € H™
vanish, we identify a necessary and sufficient condition on the points (z;, ;) which
guarantees f = 0. For K = U(n), this is equivalent to the condition for the
two-radius theorem.

1 Introduction

Given a continuous function f on the Heisenberg group H ™, the spherical mean
is defined to be

1@ = [ et e D) dunl),

where u, is the normalised surface measure on the sphere {(z,0) : z €C",|z| = r}
in H™. The study of injectivity of such mean value operators on L*(H ™) has been
carried out by Thangavelu [12] for 1 < p < oo and by Agranovsky et al. [1] for
the case p = oo. In [12], the basic tool used to prove the injectivity is the spectral
decomposition of a function in terms of the joint eigenfunctions of the operator
T = 10/t and the sublaplacian £ on the Heisenberg group, due to Strichartz (see
.

The method employed in the case p < oo does not work for p = oco. In [1],
Agranovsky et al. studied the injectivity properties for U(n) and T(n) spherical
averages for the bounded continuous functions on H™. Their approach is to exploit
the general theory of commutative Banach * algebras for L (H"), the space of
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K-invariant functions in L*(H ™) for K = U(n) or T(n). The basic tool they use is
the Wiener—Tauberian theorem for these algebras.

Crucial in the study of injectivity problems for the spherical mean operator is
the relation

A A A
ep * i = Creg(r,t)ep,

where . ; is the normalised surface measure on the sphere {(z,¢) : [z =r}in H™

and
(k+n-1)

= Tm oD

This relation follows from the functional equation

/K¢(:ck-y)dk=ck¢($)¢(y)a Cr = U;C.W(Ln—n__lgi

satisfied by the U(n)-spherical function ¢ = e} on H™.

Since the functional equation is the characterizing property of spherical func-
tions associated to the Gelfand pairs, one is led to conjecture that these results are
valid in the more general set-up of Gelfand pairs.

The aim of this paper is to investigate the above problems in the set-up of
Gelfand pairs and prove the injectivity results for more general K-orbital averages
on AH™.

Observe that the sphere {{w,t) : jw| = r} is the U{n) orbit of a point (w,t) €
H™ with |w| = r. In general, let (zp,to) be a point in H™ and let K(zo,tp) =
{(kzo,1o) : k € K} denote the K-orbit of (2o, ). Since K is a compact subgroup of
U{n), itis easy to see that (K 29, %) is a smooth compact manifoldinC " x {¢c} € H™
homeomorphic to K/I(z,), where I(z) is the isotropic subgroup for (2o, o), i.€.,
I{(z0) = {k € K : k2o = 20} Let p,, 1, denote the normalised surface measure on
the K-orbit of the point (z0,%¢) € H".

2 The Heisenberg group and its representations

Recall that the Heisenberg group H ™ is defined to be €™ x IR with the group
law

(z,8)(w,s) = (z + w,t + s + 3 Im (2.7)).

Under this group law, H" becomes a nilpotent Lie group, with the Haar measure
dz dt, the Lebesgue measure on €™ x IR. The corresponding Lie algebra h, is
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generated by the (2n + 1) left invariant vector fields

0 1 9
X, =2 -2y 2 o
J (ax] 2y}8t>7 7 1123"'77&7

Y, = i_*_l 46 i=1.2
1= \ay; " 2%8t) T

9
T=i—
rr

The operator £ = — 37, (X? +Y;?) is called the sublaplacian on the Heisenberg
group.

Now we give a brief description of the representations of the Heisenberg group.
We are primarily interested in the Fock—Bargmann representation. For each A €
R* = R\ {0}, the Fock space F) is defined to be the space of all holomorphic or
anti-holomorphic functions on € ™ (depending on whether ) is positive or negative)
which are square integrable with respect to the measure |A|" e~ Mwl* gy, Then Fy
is a Hilbert space with the inner product (f,g)z, = [A™ fg = f(w) g(w) e M1 duw
for f,g € Fa.

For each ) € R*, we define a representation py of H™ on F) by

idtt g2 ( if)
2 t)f(w)=e€ vz 1 w+ — forA >0

and

palz, t) flw) = ™ V3 el f <w + -\Z/_-Z—2> ford <0

for (z,¢t) € H™ and f € F». Then p, is an irreducible unitary representation
of H™. Tt is well-known that up to unitary equivalence these are all the unitary
representations that are non-trivial at the centre (see [10]).

In addition to these py, there is another family x,, of one dimensional represen-
tations of H ™, parametrized by w € €'", given by

xw(z,t) = eR¥F  for (z,t) € H™.

This completes the description of the unitary representations of H ™.
Let us now consider the entry functions for the representation p,. Notice that

the functions
1/2

C&\(w):(l/\“‘:) w® oa€N"

alr
form an orthonormal basis for . From the definition of the represcntation py, we
see that the entry functions are of the form

(oa(2, )G )z, = €M@ (VNI 2)
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The functions @, g are called the special Hermite functions. The functions &, 5
are the eigenfunctions of the special Hermite operator

1 " S 3
L=-A+-z2=i i
"t Z;L:jo(m]ayj yj@ﬂ?j)

with eigenvalue 2|3| + n. The normalised functions (27)~"/2®, 5, ,8 € IN™,
form an orthonormal basis for L(C"). The special Hermite functions enjoy the
orthogonality property

@.n Bop X By = (27)" 65, P,

where x denotes the twisted convolution. The twisted convolution of functions f
and g on C'™ is defined by

fx o) = [ G- w)gtw) et 0w

whenever the integral converges. For results concerning special Hermite functions,
see [11]. Note that the functions &, g differ from the special Hermite functions
considered in [11] by a multiple of (27)~"/2. This follows from the fact that the
Bargmann transform (see [10]), which intertwines the Schrédinger representation
and the Fock—Bargmann representation, takes the Hermite functions k), into (3.

3 Gelfand pairs and K-spherical functions

Let G be a nilpotent Lie group and K a compact subgroup of Aut(G). There
is a natural action of K on L'(G) defined by k- f(g) = f(k - g). We say the pair
(G, K) is a Gelfand pair if the subalgebra L} (G) of K -invariant functions in L'(G)
under this action is commutative with respect to the usual convolution.

Associated to a Gelfand pair (G, K), we have a class of K-invariant functions
called the K-spherical functions. These can be described in many ways. A K-
invariant complex valued function ¢ on G is called K-spherical if ¢(e) = 1 and ¢
is a joint eigenfunction for all left G-invariant and right K-invariant differential
operators on G.

Alternatively, K-spherical functions can be characterised as the non-trivial
contimuous functions on G satisfying the functional equation

3.1) /K Bz k) dk = o(z) $(y),

where dk denotes the normalized Haar measure on K.
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Bounded spherical functions are important from the point of view of L}.(G)
as a commutative Banach = algebra. In fact, these functions determine all the
multiplicative linear functionals on the algebra L}, (G). In Section 6, we use this
fact to study the injectivity of K-spherical means in the L case. For more details
about spherical functions, see {6].

The unitary group U(n) gives a subgroup of Aut(H ™) through the action
k-(z,t) = (k- zt). This gives a maximal compact subgroup of Aut(H™), which
we denote by U(n) again. Conjugating by an element, if necessary, we can assume
that every compact subgroup of Aut(H ™) is contained in U(n). It is well-known
that (H ", U(n)) is a Gelfand pair (see [7]) and there are many proper subgroups K
of U(n) for which (H ", K ) form a Gelfand pair.

Benson, Jenkins and Ratcliff [2] have classified all the compact subgroups K of
U(n) for which (H ™, K) form a Gelfand pair. They also studied the spherical func-
tions associated to these Gelfand pairs and obtained expressions for the spherical
functions in terms of certain fundamental invariants. In a series of papers using
the method developed in [2], they computed the spherical functions explicitly for
some of the Gelfand pairs. But an explicit expression for the spherical function for
all the Gelfand pairs (H ™, K} is not yet available.

We prove our injectivity theorems by studying the qualititive properties of
the spherical functions. As before, let (G, K) be a Gelfand pair. Let 7 be a
representation of G on a Hilbert space H. Define

K. = {k € K : o k unitarily equivalent to 7}.

LetH = b, H; be the K. _-irreducible decomposition of H. The following theorem
was proved in [2].

Theorem 3.1. If ¢ is a bounded K-spherical function on G, then it is of the
form

K6) = bea(a) = [ (ntig)o, o)k

for some irveducible unitary representation ™ and a unit vector v in H;. Moreover.
¢r.v = Gn o if and only if 7' is unitarily equivalent to o k for some k € K and
v,v’ belong to the same H;.

When K, = K, we have a simpler representation of the spherical functions
(see [2]).

Corollary 3.2. IfK, = K and {v\,vs, ..., v} is an orthonormal basis for H;,

then
!

1
¢rr,j(9) = m j=1<7f(g)vj,vj>»
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where ¢r ;(g) = dr(g) Withv € H;, |v]| = 1.

Now we use the above theorem and corollary to study the bounded K -spherical
functions associated with the Gelfand pair (H ™, K). To begin with, we discuss the
bounded spherical functions associated with the infinite dimensional representa-
tions py. Notice that when K is a compact subgroup of U(n), K,, = K.

For each m > 0, let P, denote the span of all monomials w*, o] = m. Then
each such P, is irreducible under the U(n) action, and F = @,,, P», is the decom-
position of the Fock space F into U(n)-irreducible subspaces. Associated to this
decomposition, in view of Corollary 3.2, we have, for each A € IR* and form € IV,
a bounded U (n)-spherical function ¢}, given by
(3.2) wﬁz(zvt) =T ! Z (p)\(z, t)Cév Cé)f,\

dim P,,
|a|=m

e Y 8, (2)

= dmp,

lal=m

— 1 iAL /
_diume em(VIA2),

where o, (2) = L1 (42[2)e 717 is the Laguerre function of order n — 1.

When K is a proper compact subgroup of U(n), Py, need not be irreducible under
the K-action. So it further decomposes into K-irreducibles. Let P, = @j;"l Pm.j
be the decomposition of Py, into K-irreducible subspaces. Thus, for any compact
subgroup K of U(n), the Fock space decomposes into K -irreducible subspaces as
F=®r_ @jzl P,,.;; and for each m,j we get the K-spherical function ¥, ;

given by
n(j)

1 .
A - > i
¢m,j(z,t) = &im B iE:1<pA(z,t)vi 1),

where for each j, {v],i = 1,...,n(j)} is an orthonormal basis for Pp, ;. Since each
v{ € P,, is a linear combination of the monomials (,, it follows that 1,!)31’ (2 t) is
of the form

rilet) = €™ g s (VINz, VIAZ) e
where g¢,, ; is a polynomial in z and z.

Now we observe the following relation between the U(n)-spherical functions
and the K-spherical functions. Let us choose a basis {vf 21=1,..,n(j)} of P ;
so that the collection {v{ ti=1,..,n(j);j =1, ..., J } forms an orthonormal basis
for P,,. Using this basis in (3.2) and grouping the terms for each j, we see that

T
dim P, ¥ (2,t) = Zdim P ¢,’\n,j(z,t).

=1
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With an abuse of terminology, calling e;\n’j(z,t) = dim Py, ; w,’;,,j(z,t) spherical

functions, we get the following relation between the U(n)-spherical function and

A

the K -spherical functions ey, ;:

Jom
(3.3) en(z,t) = eh i(2,1).
i=1

Again, in view of Theorem 3.1, we see that the spherical functions associated
with the representations ., are given by

/ eiRe(kw.Z) dk.
K

Integrating with respect to the surface measure dux., on the orbit Kw and using
the K-invariance of the surface measure, we see easily that the above integral is
the same as

/ eiRe(w.‘z‘) dﬁKwy
K.w

which is nothing but the Fourier transform of the measure dux,,, evaluated at z.
Thus the spherical functions associated with the representation x,, are given by

(3.4) Pw(2) = fixw(z).

These spherical functions will be used in Section 6, when we discuss the injectivity
resuit for the L* case.

4 A spectral decomposition in terms of K-spherical
functions

Strichartz has given a spectral decomposition of an L? function on the Heisen-
berg group in terms of the joint eigenfunctions of 7 = /8t and the sublaplacian
£ on the Heisenberg group (see [9]). More precisely, if f € L?(H ™), we have

@.1) Sty =Y / f e}z A,
k=0"Y "~

where the series converges in the L2-norm. Here e}(z, t) denotes the U (n)-spherical
function on H " given by
A _ piAt, A
ex(z,t) = ¢ pi(2)
and ¢3(z) = L' (3|l |2|2) e~ #1M12* s the Laguerre function of order n — 1.
The functions e}(z,t) are joint eigenfunctions of the operators £ and 7 with the
eigenvalues (2k + n)|\| and —A, respectively.
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The above series may not converge for all f € LP for p # 2. So one considers
the Abel means

Afet =@ ot [ T rede i
k=0 i

Strichartz {9] has shown that for each 0 < r < 1 the Abel means converge in
LP(H"),1 <p < oo,and also A.f — finthe L normasr — 1—, for1 < p < oo.

The Strichartz decomposition (4.1) is a spectral decomposition in terms of
U(n) spherical functions e}(z,t) = e**tpp(z). We are interested in studying a
similar spectral decomposition of f in terms of the spherical functions associated
with compact subgroups of U(n). Getting a decomposition of this sort is an easy
matter in view of the relation (3.3) between the U(n) spherical functions and the
K spherical functions. In fact we have the following

Proposition 4.1. Let f € L*(H™). Then we have the decomposition

oo Ji

f(5.t) = (271)’"22/ [ )z DA,
k=0 j=o0
where ek are the K-spherical functions.

Now we prove the orthogonality of K-spherical functions.

Lemma 4.2. Let gy ;(z) = e} ;(2,0),2 € C". Then we have pr; X ¢1; =
(27) ™ 64 61,5 wx,j, where x denotes the twisted convolution on C".

Proof. Recall that ¢y ; is given by

n(j)
r.i(2) = Y _(o1(z,000,v0),

p=1

where {vJ : p=1,...,n(j)} is an orthonormal basis for Py,; . Since each element
v}, € Pr = Span{(a} =k

it is of the form v} = 33|, <4 a}(@)Cq. Since Pm = @f:l Pr,; is an orthogonal
decomposition and since {v] :Sf is an orthonormal basis for Py ;, we have vi 1v}
for i # j or p # g and |{v}|| = 1. This translates in terms of {a}} to

(4.2) > 0 (@)a} () = p.q b1 ;.

|| =k
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Now, using the above expression for v, we see that

n(j)
eri@D =3 5 al(@)ah(B) o1 (2 0)Cas Cs)

p=1ja|=k=|8]|
n

\_/D—‘

(4
=3 ap(a) ah(B) Bap(2).

k=8|
When k # [, it follows in view of (2.1) that

p=1 |af

Pk X @ = 0.
When k& = [, using (2.1), (3.4) and (4.1), we see that

n(j)

Crg X ok = 3 > ab(a)ai(B) al(u) a(v) ap X B
7,q¢=1 |a|=k=|8|

luj=k=|v|

n(j) . ' ‘
=2m™ Y > d(a) ) ah(B)ai(B) ai(v) Paw

P.9=1 |a|=k=|v] |B1=k

n(j)

= (27’1’) néi'j (271')n/2 Z Z af,(a)m@a,u

p=1 |aj=k=|v|

= (27)" 6,5 k.- O

When f is a Schwartz class function on H ", an easy computation shows that
4.3) frep F1ER)) / A w)ep J(z —w)e '2 zImz. B,

where f* denotes the Fourier transform of f in the ¢-variable and cpﬁ‘j('w) =
¢k,;(v/|Alw). Now, as a consequence of the above orthogonality, we see that the
operators

Pyjf(2,t) = (2m) " / fred (a0 A" dA

are projection operators.
Again for Schwartz class functions, it is easy to see that

oo

Py if(z,t) =(27)" f* / ez’j(z,t) [A]™ dA.

The kernel of the above operator is K(z,t) = (21)™" [_7 ep .(z,t) |A|" dA. The
content of the next proposition is that these are Calderon—Zygmund (C—Z) kernels.
Consequently, these operators extend as principal-value singular integral operators
bounded on LP(H").
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Proposition 4.3. The operators Py, ;j(z,t) are Calderon—Zygmund operators
on the Heisenberg group. Consequently, there exists a constant Cy, independent of
f such that

NP f e < Cre(P)|f 1l Lean

forall fe LP(H™), 1< p< oo,
Proof. The kernel of the projection operator Py ; is given by

K(z,t)=(2m)™" / eﬁ’j(z,t) [A|™ dA.
We show that K (z,t) is a C—Z kernel on the Heisenberg group. For this we have
to show that K(z,t) is homogeneous of degree —2n — 2 and that it satisfies the
cancellation property [.. K(z,t)dz = 0. Since each ¢ ; is a product of e~ i4l°
with a polynomial in z and Z of degree 2k, we see that

4.4 er(z,t) = ( Z aiﬁ ( |,\|z)" ( |)\|§)ﬁ) o= 327 gikt,
la]+181<2k

Therefore
00 o0
) _ i
/ ep; (2, D) A"dA = z afxﬁzazﬁ/ ezxz—gﬂ|z|2i,\ln+—‘—;‘—"‘d/\
o lal+|B| <2k —oo
= 3 dglgas(zt) + gaslz, 1),
lal+18|<2k
where
oo
9o p(z,t) = zazﬁ/ ¢ T (2P —tit) y 2P tn gy
0
P i
= Cap T=l=18]
2_git) 2 Tl
(=57)
and

C’a,gzl‘(m—_—;‘ﬁ+n+l).

From the above expression for the kernel, it is easy to see that K(z,t) is homo-
geneous of degree —2n — 2 with respect to the Heisenberg dilation.
To show that

K(z,t)dz=0
(C’n
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in view of the above expression and the homogeneity of K, it is enough to show
that

/n [ga,,@(za 1) +ga,,3(z,“—1)] dz=0.

Let us consider [, ga,3(z, 1)dz. Changing variable z; = r;e'%, we have

/ guplz,1)dz =

01+ﬁ1 . p@ntBn 2

A r’an Tldrl o 'r’ndTn Hn ei(aj —3;)8; do -

Co 5 RN IRV TR =1 I
r1=0 rn =0 (7'1 cErn - 43) 2 " 6;=0

Consequently,

/ Gop(z,1)dz2 =0 ifa#p

and
/ ( 1)d2 C = = 7.?04 l Trzlan ridry - Tpdry
Gao = ULa T 5 2 -
Cn r1=0 =0 (Tl + -+ 7'" — 42)\a\+n+1
/°° < wlt e wd dwy - dws,
w

1:0.-- — (wl _I_,..+wn _4z)la|+ﬂ-+1.

Applying the calculus of residues to each variable separately shows that the above
integral is equal to

.. a'ﬂ dwl “s e dwn
1H"C, Yn .
( ) / -/oo (w1 + ct+ wn — 4’L')[°‘|+"+1

Now use the change of variable w; = —v; to see that the above integral is equal to

T vgndey - doy /
-C n _ o),
’ /vl /vn_.() (U1 + - vy, + 4i)lalHntl o Je ( )

It follows that

[9aa(2,1) + gaal2; ~1)]dz
cn

which proves the cancellation property. O
As observed in [9], the above series may not converge forall f € L?, p # 2. For
our purposes, it is enough to consider the Abel means of the above series, which
have much better behaviour.
For each r > 0 we define the Abel means of the above series by

At )= em 33 [T e

k=0 §=0
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The fact that the above series converges in L for each 0 < r < 1 and that the
operator norms of A, are uniformly bounded follows, in view of (3.3), from the
corresponding result for the case of U(n) proved in [9]. We state the following
results.

Theorem 4.4. For f € LP(H™), we have || A, fll, < C||fllp, 1 < p < o for
some constant C independent of r for 0 < r < 1.

As a corollary to this, we get the following convergence result.

Theorem 4.5. Let f € LP(H™),1 <p < 0. Then

oo Ji

’_ET_(2W)_’LZZTQI"+”4 f* eévj(z,t)!/\f “dA = f(z,1)

k=0j=1

where the {imit is in L? norm.

Remark. To prove Theorem 4.5, we have to prove the convergence on a dense
subset of L?. Because of (3.3), we can use the dense subset constructed in {9] for

the case of U(n) in our situation.

5 K-spherical means and injectivity results

[n this section, we prove the injectivity theorem for the case 1 < p < o0. In
fact, the results of this section hold for a wider class of K-invariant probability
measures on H". For simplicity, we prove the results for the K -spherical means
and indicate at the end of the section a wider class of K-invariant measures for

which the same proof works.
We start with an interesting property satisfied by the K -spherical functions.

Proposition 5.1. Let u,, ¢, be as above. Then
eﬁyj * Yoo ta = Ch.j e;’;\‘(zg,to) ei’j,
where Ci; = (ex ;(0)7" = {dim Py, ;)"
Proof. Sincee;, ; isa K-spherical function, by (3.1) (with ¢ = (dim Py, ; )"lex ;)
/K e,’z’j ((z,t) - k(w, s)) dk = (dim Pk.j)—l ei’j(z,t) eﬁ,j(w, s).
Let O denote the K-orbit of (zo,t9) € H™. Therefore,

6});‘3’ * #ZO,to(z>t) = /062,3‘ ((,z,t)(w,s)_l) duzo,to(was)

- / / e (2, )k(w, 8) )tz 1o (), 5)dlk.
KJ0
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Writing (w, s) = (kzo,s),k € K and using (kzo,s) ™! = k(z0,s)" !, we see that the
above is equal to

// ei’j ((z,t)k(zo,s)_l)dkd,uzO,to(w,s)
olJk

= @nPi) ™ [ &)l ((0rs) ™) dhg o 2)
= (dim ’Pk,j)_leﬁwj(z, t) e,;?(zo, to).

The last equality follows from the definition of du.,: and the fact that
Jo Qtzo,to(wy8) = 1. O

Now we are in a position to prove the injectivity theorem for K -spherical means.
The following observation is used in the proof of the theorem. Recall that ej
is the product of e~'3*?I° ¢*t and a polynomial in Az and Az. Consequently, the
zeros of e,;?(zo, to) as a function of A form a finite set.

Theorem 5.2. Let yu,, :, be as before. If f € LP(H™), 1 < p < oo, satisfies
f*pzgto =0, then f =0.

Proof. As in [12], we use the Strichartz decomposition to prove the theorem.
We present a proof that does not invoke the Hérmander—Mikhlin multiplier theo-
rem. First let us consider the case p > 1. Since f € LP(H™), 1 < p < oo, wWe

have
o0

o
flz,t) = limy - (27)"" Z 7 mi*"/ f* eid(z,t) [A]™ dA.
=0 oo
Since f * p, 1, = 0 and convolution with p, ¢, defines a bounded operator on
LP(H ™), we see in view of Proposition 5.1 that

lim (27)~" Zrsz“L”/ e,;;\.(z[),to) f* ei’j(z,t)|)\|"d)\ =0.

r—1—

Jj=0

Applying the projection operator Py ; : g — (2m)™" [ % g * e; ;(2,t) |\ d),
which is a bounded operator on LP, we get

/ &) (20, t0) £+ €52 £) A" dA = 0.

[o.9]

Since f € L?, this means by definition of the projection that there exists a sequence
of Schwartz class functions f,, converging to f in LP(H ™) such that

o9}

lim e,;;?(zo,tg)fn * e,)c‘,]-(z,t){/\|"d)\ =0,

—
n—oo f_
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where the convergence is in L?. In view of (4.2), the LHS of the above equation is
a Fourier integral operator; and the equation can be written as

=}
. - 5 i
Jim e (20,t0) Pr j fn(z, NeMdA =0,
— 00
where 7 denotes the Fourier transform in the t-variable.
Since the above sequence converges to 0 in L, the sequence of Fourier
transforms converges to 0 in the sense of distributions. That is,

—

lim e,;?(zo,to) Pri(fn) = 0.

—00

Also, since
e
dim Pejfn = Prsf

as distributions, it follows that e;’”J\.(zo, tO)P/k’j\f = 0. This means that the support
of P/kj\ f in the t-variable is contained in the zero set of e,:j?(zo, to), which is finite.
As Py ;f € LP, this is not possible unless Py ;f = 0. Since this holds for all &, j,
we see that f = 0. This settles the case 1 < p < oo.

To deal with the case p = 1, choose an approximate identity g, € C§g°(H ™).
Then g, * f € L? forall p > 1, and g, * f * p,,.1, = 0 for every n. As g, * f belongs
to L? for p > 1, by the above arguments we see that g, * f = 0 for all n. Also, since
gn * f — fin L*(H™), it follows that f = 0. This settles the case p = 1. O

We observe that the above theorem also holds for a wider class of K-invariant
probability measures on H ™. First of all, notice that if x is a probability measure
on H™, then f % u € LP(H™) whenever f € LP(H™).

Let ty € IR be fixed. Define an equivalence relation on €" x {tc} C H™
by setting (21,t0) ~ (22,%p) if there exists k € K such that z; = kz;. Then
the equivalence classes are precisely the K-orbits; and the set of equivalence
classes C™ x {tg}/ ~ = O can be identified with a subset, say A, of €. Clearly,
this is an unbounded set which contains R, = [0,00). Let M be a probability
measure on A such that f, s, +,)d@M(z0) converges weak * in (Co(C™))". Then
# = [ B(zo,t0)dM(20) defines a K-invariant probability measure on H . Note that
this construction is in the spirit of Choquet’s theorem [3]. In general, the supports
of these measures are non-compact. It is easy to see that Proposition 5.1 holds
for all such measures. Theorem 5.2 also holds for all such measures p provided
that the zeros of “(61?3) as a function of ) form a discrete set. In fact, multiplying
E,j\f by a compactly supported function of the form $(rt), one can proceed as in
the proof of Theorem 5.2 and show that ¢, x Py ; f = 0. Since ¢, is an approximate
identity, by letting r — 0 we get Py, ; f = 0.
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In special cases it is easy to give examples of such measures. For instance,
when K = U(n), we have O = [0,00). Let u,; denote the normalised surface
measure on the sphere {(z,t) : |z| = r} C H™. Let M be any probability measure
on [0,00) such that [, r2dM(r) < co. Then py = [, prs dM(r) is a U(n)-invariant
probability measure. In view of the integrability condition on the measure M, it 1s
easy to see that pt(e,;;\.) extends to the half planes {Re A > 0} and {Re A < 0} asa
holomorphic function of A\. Consequently, the zeros of ut(e;’;) form a discrete set.

6 The case of bounded continuous functions

In this section, we investigate the injectivity properties of the K-spherical means
for the case p = co. The crux of the matter is that the Wiener—Tauberian theorem
holds for the algebra Li (H™).

As in the case of U{n) or T(n) (see [1]), the vanishing of the average of a
bounded continuous function f over a single orbit does not guarantee that the
function is zero. This is a consequence of the functional equation (3.1) satisfied
by a bounded K -spherical function. More precisely, let (zo,to) € H™ be a zero of
a bounded K -spherical function ¢. Then by Proposition 5.1 we have

¢ * l“"zo,to(z’ t) = ¢(Zo,t0)¢(2,t) =0

Asin[1], we prove thatif the average of f over sufficiently many K -orbits vanishes,
then f = 0. To prove this, we need to show that the algebra Lj (G) has the Wiener—
Tauberian property. In fact, the proof given in [5], [7] for the subalgebra of radial
functions in L' (H ™) holds for the algebra L} (H ™) as well. We state the theorem
without proof.

Theorem 6.1. Let J be a proper closed ideal in LY, (H™). Then there exists ¢
in the maximal ideal space of L (H ™) such that Flp) = 0 for every f € J, where™
stands for the Gelfand transform.

Remark. Since every element in the maximal ideal space is given by a bounded
K-spherical function, this amounts to saying that [, f(z,t)¢(2,t)dzdt = 0 for
every f € J.

Now we prove the following injectivity result.

Theorem 6.2. Let R be a family of K-invariant compactly supported Radon
measures on H™ such that for any bounded K-spherical function ¢ there exists a
u € R such that [ ¢du # 0. If f is a bounded continuous function on H™ such that
f*p=0foru€R, then f = 0. On the other hand, if the above condition fails to
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hold, there exists a bounded continuous function f not identically zero such that
fxupu=0.

Proof. In the proof of the theorem we closely follow [1]. Let I be the closed
ideal generated by the set

{pxn:peR,ne Lix(H™)},

which is clearly contained in L}, (H ™), as both p and 7y are K -invariant. As fu =0
for every u € R, it follows that f x [ = 0.

Now to prove that f = 0, it is enough to show that 7/ = L} (H ™). In view of
Theorem 6.1, it suffices to show that for any bounded X -spherical function ¢ there
exists n € S (H™) C L} (H™) such that

(6.1) ite)= [ ento

Here Sk ( H™) denotes the space of K -invariant Schwartz class functions on H™.
We consider the cases in which ¢ is given by an infinite-dimensional represen-
tation and by the one-dimensional representation of H™ separately.
In the former case, ¢ is of the form

d(z,t) = ep ;(2,t) = ™ ¢p ;(z), where ) e R™.

In this case, we choose 7* = g(A) @}, ;(z) so that

sndzde= [ @) dz = [ o)1) dz 20

o
where 7*(z) denotes the Fourier transform of 5 in the ¢ variable at A and g is a
smooth non-negative K -invariant function in L*(C™).

On the other hand, if ¢ is given by the one-dimensional representation x, , then
by (3.4) ¢ is of the form ¢,,,, where

d)zo(é) = aKZO(E)a

the Fourier transform of the K -invariant normalised surface measure on the K
orbit Kzo of zo. In this case, choose 7 € Sk (H ™) such that > 0 and h(zo) =
[ 71 (20,t) dt # 0. Then

o~

[ o 0dzdi= [ h@xeds= [ ) i,
n Cﬂ.

(C‘n.

Since h is K-invariant, % is also K -invariant. Hence % is constant on the orbit K zq.
So
[ Ae(e)nte Dz de = hzo) #0.
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On the other hand, if (6.1) fails, then there exists a bounded K -spherical function
¢ on H™ such that [ ¢dp = 0 for 4 € R. Then, in view of the functional equation
satisfied by &, it is easy to see that ¢ x du = ([ ¢dp) ¢ = 0, but ¢ is not identically
equal to zero.

Now we prove the injectivity in the L case, which is an “N radius theorem”
for the K -spherical means.

Theorem 6.3. Let f be a bounded continuous function on H™ satisfying the
condition f * p., ., = 0 for the N points (21,%1), ., (2w, tn) in H". Let H and G
be the functions given by

N N
Hp) =Y Ip(VINz)| and G =) lixe(z)l.
j=0 =0

Then f = 0 if and only if neither H nor G vanish.

Remark. Note that H and G can be interpreted as functions on the maximal
ideal space of the Banach algebra Ly (H™). Also, the function G corresponds to

the case A = 0.

Proof. In view of the previous theorem, it is enough to prove that given any
bounded spherical function ¢ there exists a measure y., ¢, for some s € {1,2,...,N}
such that [ ¢du.. .. # 0. Now observe that a bounded spherical function is either
of the form e’k\.!j(z,t) Or fix ¢(z). Since both eﬁ’j(z,t) and Jig ¢ are K -invariant,
the above condition becomes eiyj(zi, t;) # 0 and figez; # 0, which obviously holds
whenever the functions H and G are non-vanishing.

Conversely, if H vanishes at some point (Ag, po), then e:g’j(z, t) is a non-trivial

. A A
function such that [ e;° ;(2,t) du.. 1. = €p9 (23, i) = 0.
Also, if G vanishes at some point £ €C™ C H", then [ik¢ is a non-trivial

function and [ig¢ * px,, =0, fori=1,2,...,N.
Remark. It is interesting to observe that this condition is the same as saying

that z,/z; are not the quotients (with suitable interpretation) of zeros of K -spherical
functions. This is analogous to the condition for the two-radius theorem in [1].
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