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Abstrac t .  We study the injectivity properties o f  the spherical mean value op- 
erators associated to the Gelfand pairs (H  n, K) ,  where K is a compact subgroup of  
U(n). We show that these spherical mean value operators are injective on LP(H n) 
for 1 < p < oc. For p = e~, these operators are not injective. Nevertheless, if 
the spherical means f �9 tzi over K-orbi ts  o f  sufficiently many points (zi, ti ) C H ~ 
vanish, we identify a necessary and sufficient condition on the points (zi, ti) which 
guarantees f = 0. For K = U(n) ,  this is equivalent to the condition for the 
two-radius theorem. 

I In troduc t ion  

Given a continuous function f on the Heisenberg group H *", the spherical mean 

is defined to be 

M , . f ( z )  = f f ( z  - w, t - s - 1 Im z .  ~ )  d#r(w) ,  
J ~  

where #,. is the normalised surface measure on the sphere {(z, 0) : z EC ~, Izl = r} 

in H'~. The study of  injectivity of  such mean value operators on LP(H ~) has been 

carried out by Thangavelu [12] for 1 _< p < oo and by Agranovsky et al~ [1] for 

the case p = oc. In [12], the basic tool used to prove the injectivity is the spectral 

decomposition of  a function in terms of  the joint eigenfunctions of  the operator 

T = iO/Ot and the sublaplacian s on the Heisenberg group, due to Strichartz (see 

[9]). 

The method employed in the case p < c~ does not work for p = oe. In [1], 

Agranovsky et al. studied the injectivity properties for U(n)  and T ( n )  spherical 

averages for the bounded continuous functions on H n. Their approach is to exploit 

the general theory of  commutative Banach �9 algebras for L ~ ( H ' ~ ) ,  the space o f  

�9 Research supported by N.B.H.M. Research Grant, Govt. o f  India. 
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K-invariant functions in L I ( H  '~) for K = U(n) or T(n) .  The basic tool they use is 

the Wiener-Tauberian theorem for these algebras. 

Crucial in the study of  injectivity problems for the spherical mean operator is 

the relation 

= t )  

where tt.,t is the normalised surface measure on the sphere {(z, t) : Izt -- r} in H '~ 

and 
( k + n -  1)! 

C k -  
k ! ( n -  1)! 

This relation follows from the functional equation 

/,~. (k + n - 1)1 
dp(xk .y)  d k = C k r 1 6 2  Ck- -  k ! ( n - 1 ) !  ' 

satisfied by the U(n)-spherical function r = e~ on H n. 

Since the functional equation is the characterizing property of  spherical func- 

tions associated to the Gelfand pairs, one is led to conjecture that these results are 

valid in the more general set-up of  Gelfand pairs. 

The aim of  this paper is to investigate the above problems in the set-up of  

Gelfand pairs and prove the injectivity results for more general K-orbital averages 

on H n . 

Observe that the sphere {(w, t) : lw[ = r} is the U(n) orbit o f  a point (w, t) c 

H '~ with [w I = r. In general, let (zo,to) be a point in H '~ and let K(zo, to)  = 

{(kz0, to) : k c K} denote the K-orbit of(z0, to). Since K is a compact subgroup of  

U(n), it is easy to see that (Kz0, t0) is a smooth compact manifold inC '~ x {to } c H '~ 

homeomorphic to K/ I ( zo ) ,  where I(zo) is the isotropic subgroup for (z0, to), i.e., 

I(zo) = {k E K : kzo = z0}. Let #zo,to denote the normalised surface measure on 

the K-orbit  o f  the point (zo,to) E H n. 

2 The Heisenberg  group and its representat ions  

Recall that the Heisenberg group H '~ is defined to be C n •  with the group 

law 

(z, t)(w, s) = (z + w, t + s + 1 Im (z.~)). 

Under this group law, H '~ becomes a nilpotent Lie group, with the Haar measure 

dz dt, the Lebesgue measure on C ~ • ~ .  The corresponding Lie algebra h .  is 
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generated by the (2n + 1) left invariant vector fields 

, j = 1 , 2 , . . .  , n ,  

0 
T = i - ~ .  

The operator s = - 2 j ~ 1  (Xj 2 + Yj 2) is called the sublaplacian on the Heisenberg 

group. 

Now we give a brief description of  the representations of  the Heisenberg group. 

We are primarily interested in the Fock-Bargmann representation. For each A �9 

~* = ~ \ {0}, the Fock space ~'~ is defined to be the space of  all holomorphic or 

anti-holomorphic functions on C '~ (depending on whether A is positive or negative) 

which are square integrable with respect to the measure IAI" r dw. Then U~ 

is a Hilbert space with the inner product (f, g)~-~ = IAI  ~ f c  ~ f ( w )  g(w)'e -I'xll~i2 dw 

for f , g  �9 .T~. 
For each A E ~* ,  we define a representation p~ of  H "< on U~ by 

p ~ ( z , t ) f ( w )  = e *~t+-~w'z--~lzl f w +  forA > 0 

and 

p ~ ( z , t ) f ( w ) = e ~ * - ~  . +zl-I f w +  f o r A < 0  

for ( z , t )  E H a and f E 2-~. Then p;~ is an irreducible unitary representation 

of  H'~. It is well-known that up to unitary equivalence these are all the unitary 

representations that are non-trivial at the centre (see [ 10]). 
in addition to these p~, there is another family X~o of  one dimensional represen- 

tations of  H % parametrized by w E C n, given by 

X ~ ( z , t )  = e iRew'~ for (z,t) E H'<. 

This completes the description o f  the unitary representations of  H'<. 
Let us now consider the entry functions for the representation p~. Notice that 

the functions 
(i,Xli l  ,i2 iN '< 

form an orthonormal basis for ~-;~. From the definition of  the represcntation p~, we 

see that the entry functions are of  the form 
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The functions ~ z are called the special Hermite functions. 

are the eigenfunctions of  the special Hermite operator 

L = - A +  Izl2 - i x j - -  - 
j =0 Oyj 

The functions ~ 

with eigenvalue 21/31 + n. The normalised functions (2~r)-'~/2~.S, a,/3 E $V '~, 
form an orthonormal basis for L2(Cn). The special Hermite functions enjoy the 

orthogonality property 

(2.1) ~ ~ x ~5 u v = (27r) ,2 5~, q,~ v, 

where x denotes the twisted convolution. The twisted convolution of  functions f 

and g on C ~ is defined by 

/C  i Z'- f • g(Z) = ~ f ( z  -- w)  g (w)  e ~lm Wdw 

whenever the integral converges. For results concerning special Hermite functions, 

see I1 I]. Note that the functions ~ , ~  differ from the special Hermite functions 

considered in [11] by a multiple of  (2~r) -'~/2. This follows from the fact that the 

Bargmann transform (see [ 10]), which intertwines the Schr6dinger representation 

and the Fock-Bargmann representation, takes the Hermite functions h i into ~2. 

3 Gelfand pairs and K-spherical functions 

Let G be a nilpotent Lie group and K a compact subgroup of  Aut(G). There 

is a natural action of  K on LI(G)  defined by k .  f (g )  = f ( k  �9 9). We say the pair 
(G, K) is a Gelfand pair if the subalgebra L1K(G) of  K-invariant functions in L 1 (G) 

under this action is commutative with respect to the usual convolution. 

Associated to a Gelfand pair (G, K), we have a class of  K-invariant functions 

called the K-spherical functions. These can be described in many ways. A K- 

invariant complex valued function r on G is called K-spherical if r = 1 and r 

is a joint eigenfunction for all left G-invariant and right K-invariant differential 

operators on G. 

Alternatively, K-spherical functions can be characterised as the non-trivial 

continuous functions on G satisfying the functional equation 

f K  r k .  y) dk = r r (3.1) 

where dk denotes the normalized Haar measure on K. 
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Bounded spherical functions are important from the point of  view of  L~(G) 
as a commutative Banach �9 algebra. In fact, these functions determine all the 

multiplicative linear functionals on the algebra L~(G). In Section 6, we use this 

fact to study the injectivity of  K-spherical means in the L 0r case. For more details 

about sphericai functions, see [6]. 
The unitary group U(n) gives a subgroup of  Aut(H *) through the action 

k. (z, t) = (k. z, t). This gives a maximal compact subgroup of Aut(H'~), which 

we denote by U(n) again. Conjugating by an element, if necessary, we can assume 

that every compact subgroup of  Aut(H '~) is contained in U(n). It is well-known 

that (H "~ U(n)) is a Gelfand pair (see [7]) and there are many proper subgroups K 

of U(n) for which (H '~, K ) form a Gelfand pair. 
Benson, Jenkins and Ratcliff [2] have classified all the compact subgroups K of  

U(n) for which (H'~, K) form a Gelfand pair. They also studied the spherical func- 

tions associated to these Gelfand pairs and obtained expressions for the spherical 

functions in terms of  certain fundamental invariants. In a series of papers using 

the method developed in [2], they computed the spherical functions explicitly for 

some of the Gelfand pairs. But an explicit expression for the spherical function for 

all the Gelfand pairs (H ~, K) is not yet available. 
We prove our injectivity theorems by studying the qualititive properties of  

the spherical functions. As before, let (G, K) be a Getfand pair. Let 7r be a 

representation of  G on a Hilbert space H, Define 

K~ = {k E K : 7r ~ k unitarily equivalent to rr}, 

Let 7-1 = f~)j 7-r be the K,,-irreducible decomposition ofT-/. The following theorem 

was proved in [2]. 

T h e o r e m  3.1. I f  r is a bounded K-spherical function on G, then it is o f  the 

form 
I "  

4(9) = ~,~(g) = ./, (~r(kg)v, 

for some irreducible unitary representation 7r and a unit vector v in ~j .  Moreover., 

r = r i f  and only i f  it' is unitarily equivalent to 7r o k for some k E K and 

v, v' belong to the same ?-lj. 

When K~ = K, we have a simpler representation of the spherical functions 

(see [21). 

C o r o l l a r y  3.2. 

then 

I f  K,r = K and {vl, v2, . . . ,  vt } is an orthonormal basis for  7-@ 

1 
r -- dim;Oj ZQr(g)vj ,  v~), 

j = l  
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where r = r with v �9 7-tj, I[vll = 1. 

Now we use the above theorem and corollary to study the bounded K-spherical 

functions associated with the Gelfand pair (H n, K).  To begin with, we discuss the 

bounded spherical functions associated with the infinite dimensional representa- 

tions p~. Notice that when K is a compact subgroup of  U(n), Kp~ = K. 
For each m > 0, let T'm denote the span of  all monomials w ~, lc~l = m. Then 

each such Pm is irreducible under the U(n) action, and .7" = (~m T~m is the decom- 

position of  the Fock space ~" into U(n)-irreducible subspaces. Associated to this 

decomposition, in view of  Corollary 3.2, we have, for each ~ �9 IR* and for m �9 AT, 

a bounded U(n)-spherical function r  given by 

(3.2) •Am(Z,t) 1 d i m T )  E {pa(z,t)r ~ 
I~l=m 

dim Pm 
I~p=m 

1 ei~tqOm(V/-~lz) ' 
dim P,~ 

(11 12~ =~lzP is the Laguerre function of  order n 1. where ~m(z) = L~-l~5,z~ je 
When K is a proper compact subgroup ofU(n),  7~m need not be irreducible under 

the K-action. So it further decomposes into K-irreducibles. Let ~o m = ~J=m I "]2~m,j 
be the decomposition of  Pro into K-irreducible subspaces. Thus, for any compact 

subgroup K of  U(n), the Fock space decomposes into K-irreducible subspaces as 
oc J~ 7) .7- = (~m=0 t~s=l rod; and for each m, j  we get the K-spherical function r  

given by 
n(j) 

1 E<p~(z,t)v{,v{), 
%~n'J(z't)- dimPmd i=1 

where for each j, {v{, i = 1, ..., n(j)} is an orthonormal basis for :P,,,d. Since each 

J � 9  is a linear combination of  the monomials ~ ,  it follows that r t) is V i 

of  the form 

where qm,j is a polynomial in z and 2. 

Now we observe the following relation between the U(n)-spherical functions 

and the K-spherical functions. Let us choose a basis {v{ : i = 1, . . . ,n(j)} o f~m, j  

so that the collection {v{ : i = 1, ..., n(j); j = 1, ..., Jm} forms an orthonormal basis 

for 9,,,. Using this basis in (3.2) and grouping the terms for each j ,  we see that 

J ~  

A Z dim Pm era( , t) = E dim Pm,j r t). 
j = l  
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A Z With an abuse of  terminology, calling e~m,j(z, t) = d i m P m , j  e r a , j (  , t) spherical 

functions, we get the following relation between the U(n)-spherical function and 

the K-spherical functions era, j. :~ " 

J ~  

(3.3) e~(z,t) = ~ ~ 
j=l  

Again, in view of  Theorem 3.1, we see that the spherical functions associated 

with the representations X~ are given by 

K eiRe(kw.-i) dk. 

Integrating with respect to the surface measure d#~<~ on the orbit Kw and using 

the K-invariance o f  the surface measure, we see easily that the above integral is 

the same as 

K,w eiRe(w'-f) d[~Kw~ 

which is nothing but the Fourier transform of  the measure d#K~, evaluated at z. 

Thus the spherical functions associated with the representation X,~ are given by 

(3.4) O~ (z) = #-"~ (z). 

These spherical functions will be used in Section 6, when we discuss the injectivity 

result for the L ~ case. 

4 A spectral decomposition in terms of K-spherical 
functions 

Strichartz has given a spectral decomposition of  an L 2 function on the Heisen- 

berg group in terms of  the joint eigenfunctions of  T = iO/Ot and the sublaplacian 

s on the Heisenberg group (see [9]). More precisely, if  f E L2(H~), we have 

(4.1) f(z,  t) = (27r) -~ f �9 e~(z, t)l) q ndA, 
k=0 oc 

where the series converges in the L 2-norm. Here e~(z, t) denotes the U(n)-spherical 

function on H n given by 

e (z, t) = 

and ~' n-~ 1  k(z) Izl 2) e-  �88 I ll=l' 1. = L k (71),1 is the Laguerre function of  order n - 

The functions e~(z, t) are joint eigenfunctions of  the operators s and T with the 

eigenvalues (2k + n)hA I and -)`, respectively. 
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The above series may not converge for all f E L p for p # 2. So one considers 

the Abel means 

Arf(z,t) = (2~r)-" ~ r k f*e)(z,t)lAl~<dA. 
k=O ~ 

Strichartz [9] has shown that for each 0 < v < 1 the Abel means converge in 

LP(H'<), 1 < p < ~ ,  and also A~f  ~ f in the L p norm as r ~ 1- ,  for 1 < p < oo. 

The Strichartz decomposition (4.1) is a spectral decomposition in terms of  

U(n) spherical functions e) ( z , t )  = e iX t~(z ) .  We are interested in studying a 

similar spectral decomposition of  f in terms o f  the spherical functions associated 

with compact subgroups o f  U(n). Getting a decomposition o f  this sort is an easy 

matter in view o f  the relation (3.3) between the U(n) spherical functions and the 

K spherical functions. In fact we have the following 

P r o p o s i t i o n  4.1. Let f E L2(H~'). Then we have the decomposition 

f(z, t) = (2rr)-" f �9 e~,~(z, t)l~l'~dA, 

where e~,,j are the K-spherical  functions. 

Now we prove the orthogonality of  K-spherical functions. 

L e m m a  4.2, Let ~o~j(z) = e~,j(z,0),z E C ~. Then we have ~ok,j • ~l,i = 

(2~r) '~ 5~,~ ai,j ~ok,5, where x denotes the twisted convolution on C'~. 

Proof .  Recall that qok,j is given by 

n ( j )  

= o)g, 4 ) ,  
p m l  

where {re : p = 1, ..., n(j)} is an orthonormal basis for 7)k,j . Since each element 

v3p e ~~ = Span{i~}lal=k, 

it is of  the form vr = ~(~l=k a~(a)r Since P m =  ~ j ~  "P.~j is an orthogonal 

-r is an orthonormal basis for T'kj, we have vJ_l_v~ decomposition and since ~tvpj~=~ 
for i # j or p #- q and N~II = 1. This translates in terms o f { a  j} to 

(4.2) Z a~ (c~)asq(a) = gp'q 6~,j. 
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Now, using the above expression for vr we see that 

n(j) 

qpk,j(z)= E E aJ((~)aJP(~)(Pl(Z'O)~a'~3) 
p=l I~l=k=131 

n(j) 

= Z E aJ(c~)aJP(/3)~a3(z)" 
p=l  lai=k=l~l 

When k r l, it follows in view of(2.1) that 

~k,i x ~t,j = O. 

When k = l, using (2.1), (3.4) and (4.1), we see that 

n(j) 

p,q=l ]a! =k=]/5'] 
I.b=k=lul 

n(j) 
= (27r) n Z Z a p ( a ) Z  aJP(t3)a; (t3) aJq(U) ~ "  

p,q=l I~l=k=lul Ifll=k 

n(j) 
= (27r)n5.,,3. (27r) n/2 E E ap (ct)a~(u) Oc~,u 

p=l  Ic~l=k=l~,l 

= (2~r) n & s  ~k, j .  [] 

When f is a Schwartz class function on H'~, an easy computation shows that 

A f t~  A A " (4.3)  f * ek,j(z , t) = e TM . f (w) qOk,j(Z -- W) e-'~Imz'wdw, 

where fa denotes the Fourier transform of f in the t-variable and x  k,s(w) = 
~k,j(v/~W). Now, as a consequence of  the above orthogonality, we see that the 

operators 

Pk,jf(z,t)  = (27r) -n f * e2 j(z t) lAIn dA 
(X)  

are projection operators. 

Again for Schwartz class functions, it is easy to see that 

Pk,ff(z,t)  = (21r)-n f *  e~,j(z,t) l~ln dA. 
0 0  

The kernel of  the above operator is K(z, t )  (2~r) -n ~ • = f_~  ek,j(z, t)I~l ~ d;~. The 
content of  the next proposition is that these are Calderon-Zygmund (C-Z) kernels. 

Consequently, these operators extend as principal-value singular integral operators 

bounded on LV(H~). 
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P r o p o s i t i o n  4.3. The operators Pk,j(z, t) are Calderon-Zygmund operators 
on the Heisenberg group. Consequently, there exists a constant Ck independent of  
f such that 

IIPkjf IlL. < Ck(p)tlf [[C,(H~) 

foral l  f ELP(Hn), l < p < o c .  

Proof .  The kernel of  the projection operator Pk,j is given by 

f oo K(z,t)  = (27r) -n e),j(z,t) [AI~ dA. 
oo 

We show that K(z, t) is a C-Z  kernel on the Heisenberg group. For this we have 

to show that K(z, t) is homogeneous of  degree - 2 n  - 2 and that it satisfies the 

cancellation property fc~ K(z, t)dz = 0. Since each ~k j  is a product o f  e - ~  izJ-~ 

with a polynomial in z and ~ of  degree 2k, we see that 

(4.4) 

Therefore 

e 3(z,t)lAlndA = 
oo 

E J z~-~zf_ ~176176 
ac~ ec 

laj+l~l_<2k 

a j t) + - t ) ] ,  

Ic~l+l~]_<2k 

where 

~0 o~ 9a,~(z,t) = za-2 ~ e@-(Jzl2-4it)A l~'+lol +n dA 

za-5~ 
= C~,~ ( ~ )  Ic'1+ b~[ -I-n+l 

and 

C~'~=I'([~x[+'fl------~+n+l) " 2  

From the above expression for the kernel, it is easy to see that K(z, t) is homo- 

geneous of  degree - 2 n  - 2 with respect to the Heisenberg dilation. 

To show that 

fc  K(z,t)dz = 0 
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in view of  the above expression and the homogeneity of K, it is enough to show 

that 

~ [ga,~(z, 1) + ga,~(z,-1)]dz = O. 
n 

Let us consider fr 9~,r 1)dz. Changing variable zi = rie i~ we have 

fc~ g ~ (  z, = 
1)dz 

Cct,fl . . . . .  "~., ~ a [ , ~ [ - -  lid=-1 ei(a3-fl~)~ d O j  
~=o ~=o (rl z +  + r ~ - 4 ~ )  ~ +n+l j=o 

Consequently, 

and 

fc~g~#( z ' l )dz=O i f a r  

g ~ ( z ,  1)dz = Ca . . .  

= Ca " "  w~' . . .  w ~  d w l . . ,  dw~ 

,=o n--0 (Wl + : - T u  _--~()i,i--~-~+l 

Applying the calculus of residues to each variable separately shows that the above 

integral is equal to 

i o  1 o  w~' . . .w:"  dwl...dw,~ 
( - 1 ) n c c ~  ~ " ' "  r ( / 1  + : ' ~ T w n  -~"4-i)[~'~ - ~ - + 1 '  

Now use the change of  variable wi = -v~ to see that the above integral is equal to 

iv - c ~  . . .  ( v - ; ; . : : ~ u  = - g o o ( z , - ~ ) .  
t=O n=O ~ 

It follows that 

fc  [gaa(z , 1) + 9ac~(z,-1)] dz = O, 
n 

which proves the cancellation property. [] 

As observed in [9], the above series may not converge for all f e LP, p r 2. For 

our purposes, it is enough to consider the Abel means of the above series, which 

have much better behaviour. 

For each r > 0 we define the Abel means of the above series by 

Ad(z,t) = (z~)-~ ~ ~+~ ~ [ f *e2,j(z,t)lAl'~dA. 
k=O j=O a - e c  
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The fact that the above series converges in L p for each 0 < r < 1 and that the 

operator norms o f  A,. are uniformly bounded follows, in view of  (3.3), f rom the 

corresponding result for the case o f  U(n) proved in [9], We state the following 

results. 

Theorem 4.4. For f 6 LP(H'~), we have IlATfrlp _< C]Ifl[p, 1 < p < o~for  

some constant C independent o f  r f o r  0 < r < 1. 

As a corollary to this, we get the following convergence result. 

Theorem 4.5. Let f E LP(HT~), 1 < p < oo. Then 

P 
lira (27r)-'* E Z r2 k + , ~ /  f ,  e2., j (z, t)/AI "dA = f ( z ,  t) 

r ~ l  - J/~z~ 
k--Oj--I  

where the limit is in L ~ norm. 

Remark.  To prove Theorem 4.5, we have to prove the convergence on a dense 

subset of  L p. Because of  (3.3), we can use the dense subset constructed in [9] for 

the case o f  U(n) in our situation. 

5 K-spherical  means  and injeetivity results 

[n this section, we prove the injectivity theorem for the case 1 <_ p < o~. In 

fact, the results o f  this section hold for a wider class o f  K-invariant probabili ty 

measures on H'~. For simplicity, we prove the results for the K-spherical  means 

and indicate at the end of  the section a wider class o f  K-invariant measures  for 

which the same proof  works. 
We start with an interesting property satisfied by  the K-spherical  functions. 

Proposition 5.1. Let #~o,to be as above. Then 

- A  ~ A 
e~,j  * lz~o,to = Ck , j  %j(-o,to) %,~, 

-1 (dim -pk,j)- 1 where Ck,j = (%d(0)) = 

P r o o f .  Since e),j is a K-spherical  function, by (3.1) (with ~ = (dim T'k,j ) -  1 e2,j) 

f~: = ek,~(w, s). e2, j ( ( z , t ) .  k ( w , s ) ) d k  (dim 79k,j) -1 e2,j(z,t)  ~ 

Let 0 denote the K-orbi t  o f  (zo, to) E H '~. Therefore,  

= Ck, g ( ( Z , t ) ( W , 8 )  - 1 )  dlgzo, to(w,  8) 
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Writ ing (w, s) = (kzo, s), k E K and using (kzo, s) -1 = k(zo, s) -1, we see that the 

above is equal to 

((z, t) k (zo, 8)-1) dk duzo,to 8) 

= (dim ~k,j) - 1 / o  e~,j (z, t) e),j((zo, s)-l)d#zo,to (~, 8) 

= (dimT~k j ) - l e ~ j ( z  t) -~ , %,j (zo, to). 

The last equali ty follows f rom the definition o f  dpzo,t o and the fact that 

fod#~o,to(W,s)= 1. [] 
N o w  we are in a position to prove the injectivity theorem for K-spherical  means.  

The following observat ion is used in the p roof  of  the theorem. Recall that e),3 
Vq 2 

is the product  o f  e--Z- ~ e TM and a polynomial  in Az and )~ ~. Consequently, the 

zeros o f  e[,)(zo, to) as a function o f  ~ form a finite set. 

T h e o r e m  5.2. Let #zo,to be as before. I f  f C LP(H~), 1 < p < oc, satisfies 

f*Pzo,to = 0 ,  t h e n f - 0 .  

P r o o f .  As in [12], we use the Strichartz decomposi t ion to prove the theorem. 

We present a p roo f  that does not invoke the H6rmander -Mikhl in  multiplier theo- 

rem. First let us consider the c a s e p  > 1. S i n c e f  E LP(Hn), 1 < p  < ec, we 

have 

f (z ,  t) = lim~__.t_ (21r) -n  r 2mj+n f �9 e),j(z, t)IAI n d,k. 
o o  j = 0  

Since f * #zo,to = 0 and convolution with #zo,to defines a bounded operator on 

LP(H ~), we see in view o f  Proposit ion 5.1 that 

lim (2re) -n  E r  2rnj+n e-~,~(zo,to) f * e~y(z,t)lAlndA = O. 
" r  - -  O 0  

j = 0  

oc ,k 
Applying  the project ion operator Pk,j : g ~ (27r) -n  f _ ~  g * %,j(z,t)IAI n d,~, 

which is a bounded operator  on L p, we get 

/ oo --)~ 

%,j (zo, to) f * e2,j (z, t) I;q ~ dA = O. 
o o  

Since f E L p, this means  by  definition o f  the projection that there exists a sequence 

of  Schwartz class functions fn converging to f in LP(H n) such that 

f_ c~ - X  t ,X lirn %,j(zo, o)f,~ * e~,j(z,t)t;~l ndA = O, 
o o  
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where the convergence is in L p. In view o f  (4.2), the LHS o f  the above equation is 

a Fourier integral operator;  and the equation can be written as 

OO 

lim f e;~(zo,to)P~,jf,~(z,A)ei*XtdA=O, 
n --+ ~  J - o o  ~ 

where ~ denotes the Fourier t ransform in the t-variable. 

Since the above sequence converges to 0 in L p, the sequence o f  Fourier 

t ransforms converges to 0 in the sense of  distributions. That is, 

lim - a  ,,-,oo %,j(zo,to) Pkj(f ,)  = O. 

Also, since 
A A 

lira Pk,j fn = Pk,j f 
n ~ o o  

as distributions, it follows that -~  %,j(zo, to)Pk,sf = O. This means  that the support  

o f  Pkj-"-f in the t-variable is contained in the zero set o f  e;,~(zo, to), which is finite. 

As Pk,jf E L p, this is not possible unless P<jf  = O. Since this holds for all k, j ,  
we see that f = O. This settles the case 1 < p < oc. 

To deal with the case p = 1, choose an approximate  identity 9n E C~(H'~). 
Then g,~ * f E L p for all p _> 1, and 9~ * f * #zo,to = 0 for every n. As gn * f belongs 

to L p for p > 1, by the above arguments we see that gn * f = 0 for all n. Also, since 

9~ �9 f ---+ f in LI(Hn),  it follows that f ~ 0. This settles the case p = 1. [] 

We observe that the above theorem also holds for a wider class o f  K-invar iant  

probabil i ty measures  on H'~. First o f  all, notice that i f  # is a probabil i ty  measure  

on H n, then f �9 # E LP(H n) whenever  f E LP(Hn). 
Let to E N be fixed. Define an equivalence relation on C "  x {to} C H '~ 

by  setting (zl , t0)  ~ (z2,t0) i f  there exists k E K such that zl = kz2. Then 

the equivalence classes are precisely the K-orbi ts ;  and the set o f  equivalence 

classes C "~ x {to}/~-, = O can be identified with a subset, say A, o f C  n. Clearly, 

this is an unbounded set which contains N +  = [0, oo). Let  M be a probabi l i ty  

measure on A such that fA #(zo.to)dM(zo) converges weak  �9 in (Co(C n)), .  Then 

# = fzx #(zo,to)dM(zo) defines a K-invariant  probabil i ty measure  on H ~. Note  that 

this construction is in the spirit o f  Choquet ' s  theorem [3]. In general, the supports 

o f  these measures  are non-compact .  It is easy to see that Proposit ion 5.1 holds 

for all such measures.  Theorem 5.2 also holds for all such measures  # provided 

that the zeros of/~(e~,~) as a function o f  ,~ form a discrete set. In fact, mult iplying 

Pkd~'--] by  a compact ly  supported function o f  the fo rm ~(rt), one can proceed as in 

the p roof  o f  Theorem 5.2 and show that ~o~, Pk,jf = 0. Since ~,~ is an approximate  

identity, by  letting r ~ 0 we get Pk,jf = O. 
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In special cases it is easy to give examples of  such measures. For instance, 

when K = U(n), we have O = [0, ~ ) .  Let t~,t denote the normalised surface 

measure on the sphere {(z,t) : [z[ = r} C H n. Let M be any probability measure 

on [0, oc) such that fo ~ r 2 dM(r) < oo. Then ~t = f:~ tz~,~ dM(r) is a U(n)-invariant 

probability measure. In view of  the integrability condition on the measure M, it is 

easy to see that/~(e~-,~) extends to the half  planes {Re A > 0} and {Re A < 0} as a 

holomorphic function of  A. Consequently, the zeros of  #t (e~-~) form a discrete set. 

6 T h e  case  o f  b o u n d e d  c o n t i n u o u s  func t ions  

In this section, we investigate the injectivity properties of  the K-spherical means 

for the case p = oo. The crux of  the matter is that the Wiener-Tauberian theorem 

holds for the algebra L~(H") .  
As in the case of  U(n) or T(n) (see [1]), the vanishing of  the average of  a 

bounded continuous function f over a single orbit does not guarantee that the 

function is zero. This is a consequence of  the functional equation (3.1) satisfied 

by a bounded K-spherical function. More precisely, let (z0, to) E H n be a zero of  

a bounded K-spherical function 49. Then by Proposition 5.1 we have 

49 * mo,~0 (2, t) = 49(zo, t0)49(z, t) - :  0. 

As in [ 1 ], we prove that i f  the average of  f over sufficiently many K-orbits vanishes, 

then f =- 0. To prove this, we need to show that the algebra L~(G)  has the Wiener-  

Tauberian property. In fact, the proof given in [5], [7] for the subalgebra of  radial 

functions in L 1 (H n) holds for the algebra L ~ ( H  n) as well. We state the theorem 

without proof. 

T h e o r e m  6.1. Let J be a proper closed ideal in L ~ ( H 'L ). Then there exists 49 

in the maximal ideal space o f  L k ( H  '~) such that f (~)  = O for  every f E J, where ~ 

stands for  the Getfand transform. 

R e m a r k .  Since every element in the maximal ideal space is given by a bounded 

K-spherical function, this amounts to saying that f n ,  f ( z ,  t)49(z, t)dz dt = 0 for 

every f E d. 

Now we prove the following injectivity result. 

T h e o r e m  6.2. Let ~ be a family o f  K-invariant compactly supported Radon 

measures on H "~ such that for  any bounded K-spherical function 49 there exists a 

~z E ~ such that f 49dlz 7 ~ O. I f f is a bounded continuous function on H n such that 

f �9 # = O for  # E ~, then f - O. On the other hand, i f  the above condition fails to 
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hold, there exists a bounded continuous function f not identically zero such that 
f , p = 0 .  

P r o o f .  In the proof  o f  the theorem we closely follow [1]. Let I be the closed 

ideal generated by the set 

{ # * 7 :  # E 7~,r/E Lk-(H'~)}, 

which is clearly contained in L~  (H "~), as both/ ,  and r/are K-invariant. As f �9 # : 0 

for every # E ~ ,  it follows that f �9 I = 0. 

Now to prove that f = 0, it is enough to show that I : LI(HT~). In view o f  

Theorem 6.1, it suffices to show that for any bounded K-spherical  function r there 

exists rl E ,SK(H *~) C LIK(H '~) such that 

= f r # 0. (6.1) 
J H  n 

Here SK( H n) denotes the space o f  K-invariant SChwartz class functions on H r~. 

We consider the cases in which r is given by an infinite-dimensional represen- 

tation and by the one-dimensional representation o f  H "~ separately, 

In the former case, r is o f  the form 

~(z , t )  e~ j ( z  t) ~ '  ~ ~ ~* .  = = ~k,j(~), where A E 

In this case, we choose r/~ = g(A) ~o~,j(z) so that 

where r/A(z) denotes the Fourier transform o f t /  in the t variable at A and g is a 

smooth non-negative K-invariant function in L ~ (U ~'). 

On the other hand, i f 0  is given by the one-dimensional representation Xzo, then 

by (3.4) r is o f  the form r where 

r = ~=o(~),  

the Fourier transform of  the K-invariant normalised surface measure on the K 

orbit Kzo o f  z0. In this case, choose r/ E ,SK(H '~) such that rl _> 0 and h(zo) = 

f ~(zo, t) dt # O. Then 

/H ~Kzo(Z)'q(z,t)dzdt= ~r h(z)~K~odz= ~c, "h(z)d#K~o" 

Since h is K-invariant, h is also K-invariant. Hence h is constant on the orbit Kzo. 
So 

H" ~g~~ ~(z, t) dz dt = "h(zo) r O. 
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On the other hand, if (6.1) fails, then there exists a bounded K-spherical function 

0 on H '~ such that f Cd# = 0 for # E ~. Then, in view of the functional equation 

satisfied by r it is easy to see that r �9 d# = ( f  Cd#) r = 0, but r is not identically 

equal to zero. 
Now we prove the injectivity in the L ~ case, which is an "N radius theorem" 

for the K-spherical means. 

Theorem 6.3. Let f be a bounded continuous function on H n satisfying the 

condition f * #zj,tj = O for  the N points (Zl, tl), ...., (zu,  t x )  in H ~. Let H and G 

be the functions given by 
N N 

H(A,p) = Z [r and G(~) = Z [~K~(zJ)l" 
j : 0  j=0 

Then f - 0 i f  and only i f  neither H nor G vanish. 

R e m a r k .  Note that H and G can be interpreted as functions on the maximal 

ideal space of the Banach algebra L ) ( H n ) .  Also, the function G corresponds to 

the case )~ = 0. 

Proof .  In view of the previous theorem, it is enough to prove that given any 

bounded spherical function r there exists a measure #z~,t~ for some i E {1, 2, ..., N} 

such that f r d~, t~  ~ O. Now observe that a bounded spherical function is either 

of the form e~,j(z, t) or ~K ~(z). Since both e~,j(z, t) and ~g ~ are K -invariant, 

the above condition becomes e~ ~(zi, tO r 0 and ~ r 0, which obviously holds 

whenever the functions H and G are non-vanishing. 

Conversely, i f H  vanishes at some point (A0, p0), then %0~~ t) is a non-trivial 

function such that f @~ t) d#~,,t, = e~~ ti) = O. 
Also, i f G  vanishes at some point ~ EC n c H a, then ~ge is a non-trivial 

function and ~Kr * #gz~ -- O, for i = 1, 2, ...,N. 

R e m a r k .  It is interesting to observe that this condition is the same as saying 

that z~/zj are not the quotients (with suitable interpretation) of  zeros of  K-spherical 

functions. This is analogous to the condition for the two-radius theorem in [ 1 ]. 
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