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Abstract

Regularity properties of Laguerre means are studied in terms of
certain Sobolev spaces defined using Laguerre functions. As an appli-
cation we prove a localisation theorem for Laguerre expansions.
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1 Introduction

The Laguerre polynomials Lαn(x), of type α > −1 are defined by the gener-
ating function identity

∞∑
0

Lαn(x)tn = (1− t)−α−1e−
x t
1−t , |t| < 1. (1.1)

The associated Laguerre functions are defined by

L̃αn(x) = Lαn(x)e−
x
2x

α
2 (1.2)

and they are the eigenfunctions of the Laguerre differential operator

− d

dx

{
x
d

dx
L̃αn(x)

}
+

{
x

4
+
α2

4x

}
L̃αn(x) = (n+

α + 1

2
)L̃αn(x) (1.3)

Moreover the normalised functions Lαn(x) =
(

n!
Γ(n+α+1)

) 1
2 L̃αn(x) form an

orthonormal basis for L2[(0,∞), dx] . Therefore for any f ∈ L2(0,∞) we
have the eigenfunction expansion

f =
∞∑
0

anLαn(x) (1.4)

with an =
∫ ∞
0 f(x)Lαn(x)dx

Three types of Laguerre expansions have been studied in the literature.
The first one is concerned with the Laguerre polynomials Lαn(x),
α > −1, which form an orthonormal basis for L2[(0,∞), e−xxαdx]. The
second type is concerned with the Laguerre functions (1.2) which form an
orthogonal family in L2[(0,∞), dx]. Considering the functions

lαn(x) =

(
Γ(n+ 1)

Γ(n+ α + 1)

) 1
2

Lαn(x) e−
x
2

as an orthonormal family in L2[(0,∞), xαdx], we get a third type of expan-
sion.

Several authors have studied norm convergence and almost everywhere
convergence of Riesz means of such expansions. Some references are Askey-
Wainger[2], Muckenhoupt[6], Gorlich-Markett[3], Markett[5], Stempak[7],
Thangavelu[10]. Various results can also be seen in [12].

Recently by invoking an equiconvergence theorem of Muckenhoupt for
Laguerre expansion, Stempak[8] has proved the following almost everywhere
convergence result for expansions with respect to Lαn(x) as well as lαn(x).
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(1)
∑N

0 (g,Lαk )L2(dx)Lαk (x)→ g(x) for almost every x ∈ IR+ as N →∞
for 4

3
< p < 4 if α ¿ −1

2
, and for p ∈

(
(1 + α

2
)−1, 4

)
otherwise.

(2)
∑N

0 (g, lαk )L2(xαdx) l
α
k (x) → g(x) for almost every x ∈ IR+ as N → ∞

for 4(α+1)
2α+3

< p < 4(α+1)
(2α+1)

if α > −1
2
, and for 1 < p <∞ otherwise.

In this paper we study the twisted spherical means associated with the
Laguerre expansions which we will call Laguerre means. We consider expan-

sions with respect to the system ϕαk (x) = Lαk (x2) e−
x2

2 . Then the normalised
functions

ψαk (x) =

(
2Γ(k + 1)

Γ(k + α + 1)

)1/2

ϕαk (x) (1.5)

form an orthonormal basis for L2[(0,∞), x2α+1dx]. We have the mapping
T : L2[x2α+1dx] → L2[xαdx] defined by Tf(x) = 1√

2
f(
√
x), which is a uni-

tary mapping which takes ψαk (x) to lαk (x). Therefore the expansion in ψαk is
equivalent to the expansion in lαk .

We prove a localisation theorem for Laguerre expansion with respect
to ψαk without appealing to the equiconvergence theorem. Clearly a lo-
calisation theorem follows from the almost everywhere convergence result
of Stempak given above, but this result only says that if f ≡ 0 in a
neighbourhood of a point z ∈ (0,∞), then SNf(w) → 0 for almost every w
in this neighbourhood. But using the method of Laguerre means we could
identify the set on which SNf(w)→ 0.

The twisted spherical mean of a locally integrable function f on IC n is
defined to be

f × µr(z) =
∫
|w|=r

f(z − w) e
i
2
Im(z.w̄) dµr(w), (1.6)

where dµr(w) is the normalised surface measure on the sphere {|w| = r}
in IC n. Such spherical means have been considered by Thangavelu in [11],
where its regularity properties are used to prove a localisation theorem for
the special Hermite expansion of L2 functions on IC n. The special Hermite
expansion of a function f is given by

f(z) = (2π)−n
∞∑
k=0

f × ϕk(z), (1.7)

where ϕk(z) = Ln−1
k (1

2
|z|2) e−

1
4
|z|2 . Here Ln−1

k (r) stands for the Laguerre
polynomial of type n − 1. Measuring the regularity of f × µr(z) using a
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certain Sobolev space denoted by W s
R(IR+), he proved the following

localisation theorem:

Theorem 1 (S.Thangavelu) Let f be a compactly supported function van-
ishing in a neighbourhood of a point z ∈ IC n. Further assume that f ×
µr(z) ∈ W

n/2
R (IR+) as a function of r. Then SNf(z)→ 0 as N →∞.

By assuming certain regularity of f × µr(z) as a function of r he could
also establish an almost everywhere convergence result for special Hermite
expansion. In the study of f × µr(z) a crucial role is played by the following
series expansion:

f × µr(z) = (2π)−n
∞∑
k=0

k!(n− 1)!

(k + n− 1)!
ϕk(r) f × ϕk(z) (1.8)

for the twisted spherical means. Here f ×ϕk denotes the twisted convolution
of f and ϕk, where twisted convolution of two functions f and g on IC n is
defined by

f × g(z) =
∫
IC n f(z − w) g(w) e

i
2
Im(z.w̄) dw. (1.9)

For a radial function f we have

f × ϕk(z) = (2π)−nRk(f) ϕk(z), (1.10)

where

Rk(f) =
21−nk!

(k + n− 1)!

∫ ∞

0
f(s)Ln−1

k (
1

2
s2)e−

1
4
s2s2n−1ds.

Therefore from (1.8) it follows that for a radial function f the special
Hermite expansion becomes the Laguerre expansion with respect to the
family Ln−1

k (1
2
|z|2)e−

1
4
|z|2 . The above observation suggests that we can also

study the localisation problem for Laguerre expansion with respect to the
orthogonal family Lαk (r2)e−

1
2
r2 , α > −1. What we need is something similar

to twisted spherical means. Using the local co-ordinates on the sphere |z| = r
in ICn it is easy to see that

f × µr(z) = (1.11)

cn

∫ π

0
f [(r2 + |z|2 + 2r|z|cosθ)1/2]

Jn−3/2(r|z|sinθ)
(r|z|sinθ)n−3/2

sin2n−2θdθ.
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for a suitable constant cn.
We define the Laguerre means of order α to be

T α
r f(z) (1.12)

=
2αΓ(α + 1)√

2π

∫ π

0
f [(r2 + z2 + 2rzcosθ)1/2]

Jα−1/2(rzsinθ)

(rzsinθ)α−1/2
sin2αθdθ

Then T α
r is a bounded self adjoint operator on L2(IR+, x

2α+1dx).
We have the interesting formula, see [12]

T α
r ϕαk (z) =

Γ(k + 1)Γ(α + 1)

Γ(k + α + 1)
ϕαk (r)ϕαk (z), (1.13)

for α > −1
2
, r ≥ 0, z ≥ 0. From the series expansion for T α

r f(z) in terms
of ϕαk (z) and using the above formula it is easy to see that T α

r f(z) has the
series expansion

T α
r f(z) =

∞∑
0

(
Γ(k + 1)Γ(α + 1)

Γ(k + α + 1)

)2

(f , ϕαk )α ϕ
α
k (z) ϕαk (r), (1.14)

r ≥ 0, z ≥ 0, α > −1/2, where ϕαk (r) = Lαk (r2)e−
1
2
r2 . Here (, )α denotes

the inner product in the Hilbert space L2[R+, x
2α+1] . Using this notion

of Laguerre means we establish a localisation theorem for Laguerre series
expansion for f ∈ L2[IR+, x

2α+1dx] with respect to the orthogonal family
ϕαk (r). Our main result is the following :

Theorem 2 Let f ∈ L2[IR+, x
2α+1dx], α > −1/2 be a function vanishing in

a neighbourhood Bz of a point z ∈ IR+. If w ∈ Bz is such that T α
r f(w) ∈

W
α+1

2
α (IR+), as a function of r, then SNf(w)→ 0 as N →∞.

We use the following notation: L2
α(IR+) stands for the space

L2[IR+, x
2α+1dx], and the norm and the inner product in this space are de-

noted by ‖.‖α and (., .)α respectively.

2 The Sobolev space W s
α (IR+)

The usual Sobolev space Hs(IR n), for s ≥ 0 is defined to be

H s(IR n) =
{
f ∈ L2(IR n) : (−∆ + 1)sf ∈ L2(IRn)

}
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using the operator ∆ = ∂ 2

∂ x1
2 + · · · + ∂ 2

∂ xn2 . Since we are interested in
studying the regularity of the function r → T α

r f(z), motivated by the
expansion (1.14) we define the Sobolev space W s

α(IR+) using the operator
Lα = −[ d

2

dx2 + 2α+1
x

d
dx
− x2], which is a positive definite symmetric operator

and the ϕαk ’s form the family of eigenfunctions with corresponding eigenval-
ues 4(k + α+1

2
). Also we have the normalised functions ψαk (z) forming an

orthonormal basis for L2
α(IR+). We define for s ≥ 0

W s
α (IR+) =

{
f ∈ L2

α(IR+) : Lsαf ∈ L2
α(IR+)

}
, (2.1)

where Lsα is defined using the spectral theorem. In other words

f =
∞∑
k=0

(f, ψαk )α ψ
α
k

belongs to W s
α if and only if,

∞∑
k=0

|4s(k +
α + 1

2
)s(f , ψαk )α |2 <∞.

We now prove the following useful proposition which is needed for the
proof of the main theorem.

Proposition 3 Let α > −1 and let ϕ be a smooth function on IR+ which
satisfies the following conditions
(i) ϕ ≡ 0 near the origin in IR+

(ii) |( d
dr

)jϕ(r)| = O( 1
r2+j

) as r →∞ for j = 0, 1, 2, 3 . . . 2m.
Then the operator Mϕ : W s

α → W s
α+1 defined by Mϕ f = ϕ.f is a bounded

operator ∀s such that s ≤ m.

The proof of this proposition needs the following lemmas. Before stating
the first lemma we introduce, for each nonnegative integer k, the class Ck,
consisting of all smooth functions on IR+, vanishing near 0 and which also
satisfying the decay condition,( d

dr
)jϕ = O( 1

r2+k+j
) as r → ∞. The class Ck

satisfies the following properties: (i) Ck+1 ⊂ Ck, (ii) If ϕ ∈ Ck ,1
r
ϕ ∈ Ck+1 ,

rϕ ∈ Ck−1 , for k¿1, (iii) If ϕ ∈ Ck, ϕ(j) ∈ Ck+j.

Lemma 4 Under the above assumptions on m, ϕ and α we have
Lmα+1 ◦Mϕ ◦ L−mα =

∑
t+k≤mMϕk,t(

d
dr

)kLt−mα with ϕk,t ∈ Ck.

Proof: We claim that Lmα+1 ◦Mϕ can be written as a linear combination of
the form

Lmα+1 ◦Mϕ =
∑

t+k≤m
Mϕk,t(

d

dr
)kLtα with ϕk,t ∈ Ck. (2.2)
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First we note the following relations

LαMϕ = MϕLα − 2Mϕ′
d

dr
−Mϕ′′+ 2α+1

r
ϕ′ (2.3)

Lα+1 = Lα −
2

r

d

dr
(2.4)

Using this relation in the above we get

Lα+1Mϕ = MϕLα

− 2M(ϕ′+ϕ
r

)

d

dr
−M(ϕ′′+ 2α+1

r
ϕ′). (2.5)

We also use the relation,

Lα(
d

dr
)
k

= (
d

dr
)
k

Lα +
k−1∑
j=0

bj(
1

r
)j(

d

dr
)k−j

+ c1r(
d

dr
)k−1 + c2(

d

dr
)k−2 (2.6)

where bj, c1, c2, are constants.This can be easily proved by induction on k.
We prove (2.2) by induction on m. (2.2) is clear for m = 1 Assume (2.2) for
m = j. Now,

Lj+1
α+1 ◦Mϕ = (Lα −

2

r

d

dr
)(Ljα+1Mϕ)

= (Lα −
2

r

d

dr
)(
∑
t+k≤j

Mϕk,t(
d

dr
)kLtα)

=
∑
t+k≤j

Lα(Mϕk,t(
d

dr
)kLtα)− 2

∑
t+k≤j

1

r

d

dr
Mϕk,t(

d

dr
)kLtα

=
∑
t+k≤j

[
Mϕk,tLα − 2Mϕ′

k,t

d

dr
−M(ϕ′′

k,t
+ 2α+1

r
ϕ′
k,t

)

]
(
d

dr
)kLtα

− 2

r

∑
t+k≤j

d

dr
Mϕk,t(

d

dr
)kLtα.

=
∑
t+k≤j

Mϕk,tLα(
d

dr
)kLtα − 2

∑
t+k≤j

Mϕ′
k,t

(
d

dr
)k+1Ltα

−
∑
t+k≤j

M(ϕ′′
k,t

+ 2α+1
r

ϕ′
k,t

)(
d

dr
)kLtα −

2

r

∑
t+k≤j

Mϕ′
k,t

(
d

dr
)kLtα

− 2

r

∑
t+k≤j

Mϕk,t(
d

dr
)k+1Ltα (2.7)
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In the above computation we have used (2.3). In view of (2.6), the first term
of the above is

=
∑
t+k≤j

Mϕk,t(
d

dr
)kLt+1

α +
k−1∑
i=0

bi(
1

r
)i
∑
t+k≤j

Mϕk,t(
d

dr
)k−iLtα

+
∑
t+k≤j

c1rMϕk,t(
d

dr
)k−1Ltα +

∑
t+k≤j

c2(
d

dr
)k−2

=
∑

t+k≤j+1

Mϕk,t(
d

dr
)kLtα +

k−1∑
i=0

bi
∑
t+k≤j

(
1

r
)iMϕk,t(

d

dr
)k−iLtα

+
∑
t+k≤j

c1rMϕk,t(
d

dr
)k−1Ltα +

∑
t+k≤j

c2(
d

dr
)k−2Ltα (2.8)

Now by induction hypothesis we have ϕk,t ∈ Ck. Note that in the sec-
ond term of the above the coefficient of ( d

dr
)k−iLtα is (1/r)iϕk,t. We have

(1/r)iϕk,t ∈ Ck+i ⊂ Ck ⊂ Ck−i for i ≥ 0 and also rϕk,t ∈ Ck−1. Hence
the first term in (2.7) is of the required form. The second term of (2.7)
can be written as −2

∑
t+k≤j+1 Mϕ′k−1,t

( d
dr

)kLtα, and ϕk,t ∈ Ck by induction
hypothesis. Therefore ϕ′k−1,t ∈ Ck in view of (iii). Hence the second term
of (2.7) is also of the required form. In the third term the coefficient of
( d
dr

)kLtα is Mϕ′′
k,t

+ 2α+1
r

ϕ′
k,t

and ϕ′′k,t + 2α+1
r
ϕ′k,t ∈ Ck+2 ⊂ Ck by induction hy-

pothesis and in view of (i),(ii) and (iii). Similarly 1
r
ϕ′k,t occuring in the

fourth term belongs to Ck+2 ⊂ Ck. Also 1
r
ϕk,t occuring in the fifth term

∈ Ck+1 ⊂ Ck. Therefore (2.2) holds for m = j + 1 also. Thus we have
T mf = Lmα+1 ◦Mϕ ◦ L−mα f =

∑
t+k≤mMϕk,t(

d
dr

)kLt−mα f . Which proves the
first lemma.

Lemma 5 ( d
dr

)iLtα : L2
α(IR+) → L2

α(IR+) is a bounded operator whenever i
is a non negative integer and i+ t ≤ 0

Proof: We prove that d
dr

L t
α is a bounded operator on L2

α(IR+) for
1 + t ≤ 0. We first note that

d

dr
ψαk = −r

[
k

1
2ψα+1

k−1 + (k + α + 1)1/2ψα+1
k

]
(2.9)

This can be seen as follows. We have

d

dr
Lαk (r)e−

1
2
r2 =

d

dr
Lαk (r2)e−

r2

2 − rLαk (r2)e−
r2

2

= −2rLα+1
k−1(r2)e−

r2

2 − rLαk (r2)e−
r2

2
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= (−r)
[
Lα+1
k−1(r2) + Lα+1

k−1(r2) + Lαk (r2)
]
e−

r2

2

= (−r)
[
Lα+1
k−1(r2) + Lα+1

k (r2)
]
e−

r2

2

Here we have used the relations

(i)
d

dr
Lαk (r) = −Lα+1

k−1

and,
(ii) Lα+1

k − Lα+1
k−1 = Lαk

Now (2.9) follows from the definition of ψαk . Let f ∈ L2
α(IR+). By definition

Ltαf = 4t
∞∑
k=0

(k +
α + 1

2
)t(f, ψαk )α ψ

α
k

d

dr
Ltαf(r) = 4t

∞∑
k=0

(k +
α + 1

2
)t(f, ψαk )α

d

dr
ψαk (r),

and using(2.9) we get

d

dr
Ltαf(r) = 4t

∞∑
k=1

(k +
α + 1

2
)tk

1
2 (f, ψαk )α (−r) ψα+1

k−1 (r)

+ 4t
∞∑
k=0

(k +
α + 1

2
)t(k + α + 1)1/2(f, ψαk )α (−r) ψα+1

k (r)

= −rTf(r)− rSf(r) (2.10)

where

Tf(r) = 4t
∞∑
k=1

(k +
α + 1

2
)tk

1
2 (f, ψαk )α ψ

α+1
k−1 (r) (2.11)

and

Sf(r) = 4t
∞∑
k=0

(k +
α + 1

2
)t(k + α + 1)1/2(f, ψαk )α ψ

α+1
k . (2.12)

Therefore,

‖ d
dr
Ltαf(r)‖2

α ≤ (‖rTf(r)‖α + ‖rSf(r)‖α)2

≤ 2
(
‖rTf(r)‖2

α + ‖rSf(r)‖2
α

)
. (2.13)
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Now using the expansion (2.11) we calculate,

‖rTf(r)‖2
α =

∫ ∞

0
r2|Tf(r)|2r2α+1dr

=
∫ ∞

0
|Tf(r)|2r2α+3dr

= 42t
∞∑
k=1

(k +
α + 1

2
)2tk|(f, ψαk )α|2

≤
∞∑
k=1

42t(k +
α + 1

2
)2t+1|(f, ψαk )α|2

≤
∞∑
k=1

|(f, ψαk )α|2

= ‖f‖2
α (2.14)

since 1 + t ≤ 0. Similarly one can see that

‖rSf(r)‖2
α ≤ ‖f‖2

α (2.15)

Using (2.14) and (2.15) in (2.13) we see that ‖ d
dr
Ltαf‖α ≤ 2‖f‖α for 1 + t ≤

0. Similarly one can show that ‖( d
dr

)jLtαf‖α ≤ c‖f‖α for some constant c,
whenever j + t ≤ 0, which proves the second lemma.

Proof of proposition 3: We have by definition W s
α = L−sα (L2

α(IR+)).
Therefore it is enough to prove that

L s
α+1 ◦Mϕ ◦ L−sα : L2

α(IR+)→ L2
α+1(IR+) (2.16)

is a bounded operator. Put

T tf = Ltα+1 ◦Mϕ ◦ L−tα f (2.17)

Where Ltα+1 and L−tα are defined using spectral theorem. Then clearly,

‖T 0f‖α+1 = ‖ϕf‖α+1

≤ c0‖f‖α, (2.18)

for some constant c0 independent of f . We will also prove that, for any
positive integer m

‖T mf‖α+1 ≤ c1‖f‖α, (2.19)

for some constant c1 independent of f .
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Assuming (2.19) for a moment choose f1 ∈ L2
α(IR+) and g1 ∈ L2

α+1(IR+)
to be finite linear combinations of ψαk ’s and ψα+1

k ’s, respectively. Consider the
function h which is holomorphic in the region 0 < Re(z) < m and continuous
in 0 ≤ Re(z) ≤ m, defined by:

h(z) = (T zf1 , g1)α+1 = (Lzα+1 ◦Mϕ ◦ L−zα f1 , g1)α+1 (2.20)

Then by (2.18) we have,

|h(iy)| = |(Liyα+1 ◦Mϕ ◦ L−iyα f1 , g1)α+1|
= |(ϕ(r)f̃1 , g̃1)α+1|

where f̃1 = L−iyα f1, and g̃1 = L−iyα+1g1. Therefore,

|h(iy)| ≤ ‖T 0f̃1‖α+1‖g̃1‖α+1

≤ c0‖f̃1‖α‖g̃1‖α+1

and since both L−iyα and L−iyα+1 are unitary operators,we get

|h(iy)| ≤ c0‖f1‖α‖g1‖α+1

Similarly by using (2.19) we get

|h(m+ iy)| = |(Lm+iy
α+1 ◦Mϕ ◦ L−m−iyα f1 , g1)α+1|

= |(Lmα+1 ◦Mϕ ◦ L−mα f̃1 , g̃1)α+1|
≤ ‖T mf̃1‖α+1‖g̃1‖α+1

≤ c1‖f1‖α‖g1‖α+1

Thus we have

|h(iy)| ≤ c0‖f1‖α‖g1‖α+1 (2.21)

|h(m+ iy)| ≤ c1‖f1‖α‖g1‖α+1. (2.22)

Since h is a bounded function we have by three lines theorem

| h(t+ iy) |≤ c
1−t/m
0 c

t/m
1 ‖f1‖α‖g1‖α+1

for 0 ¡ t ¡ m. In particular,

|h(t)| ≤ c
1−t/m
0 c

t/m
1 ‖f1‖α‖g1‖α+1,

that is,

|(T tf1 , g1)| ≤ c
1−t/m
0 c

t/m
1 ‖f1‖α‖g1‖α+1. (2.23)
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Now taking supremum over all such g1 ∈ L2
α+1 with ‖g1‖α+1 ≤ 1 we get

‖T tf1‖α+1 ≤ c
1−t/m
0 c

t/m
1 ‖f1‖α. Therefore T t is a bounded operator on a

dense subset of L2
α. Therefore it has a norm preserving extension to L2

α.
Thus we have

‖T tf‖α+1 ≤ ct‖f‖α ∀f ∈ L2
α(IR+), for 0 < t < m (2.24)

which proves (2.16).
To prove (2.19) we proceed as follows. By Lemma (4) we have

Tmf =
∑
t+k≤mMϕk,t(

d
dr

)kLt−mα . And by Lemma (5) ( d
dr

)kLt−mα is a bounded
operator on L2

α(IR+), whenever k + (t − m) ≤ 0. Also note that since ϕk,t
satisfies the conditions(1) and (2) of the proposition 3 for j = 0, Mϕk,t maps
L2
α(IR+) → L2

α+1(IR+) boundedly. Thus we get ‖Tmf‖α+1 ≤ c1‖f‖α. This
completes the proof of the proposition.

3 Regularity of T α
r f (z)

In this section we prove that the Laguerre means T α
r f(z) are slightly more

regular than f , for z 6= 0. To prove this fact we use the series expansion
(1.14) for T α

r f(z). Let f ∈ W s
α .Then

4s
∞∑
0

(k +
α + 1

2
)s

Γ(k + 1)

Γ(k + α + 1)
(f, ϕαk )α ϕ

α
k (r) (3.1)

converges in L2
α(IR+). We also use the following asymptotic estimates, (see[4])

Γ(k + 1)

Γ(k + α + 1)
≈ k−α (3.2)

ψαk (z) ≈ k−1/4|z|−α−
1
2 cos(2

√
kz − απ

2
− π

4
), z 6= 0 (3.3)

ψαk (0) ≈ kα/2 as k →∞ (3.4)

From (1.14) we have∫ ∞

0
|Tαr f(z)|2r2α+1dr = Γ(α + 1)4

∞∑
k=0

Γ(k + 1)

Γ(k + α + 1)
|(f, ψαk )α|2|ψαk (z)|2

≤ c(z)
∞∑
k=0

(1 + k)−α(1 + k)−
1
2 |(f, ψαk )α|2 (3.5)

for z 6= 0, in view of (3.2) and (3.3). Also∫ ∞

0
|Tαr f(z)|2r2α+1dr ≈

∞∑
k=0

|(f, ψαk )α|2 for z = 0 (3.6)
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in view of (3.2) and (3.4). Comparing (3.1) and (3.5) we see that

f ∈ W s
α ⇒ r → T α

r f(z) ∈ W
s+α

2
+ 1

4
α . Comparing (3.1) and (3.6) we see

that f ∈ W s
α if and only if T α

r f(z) ∈ W s
α . Thus we have proved the follow-

ing :

Lemma 6 (i) f ∈ W s
α ⇒ r → T α

r f(z) ∈ W s+α
2

+ 1
4

α , z 6= 0.
(ii) f ∈ W s

α if and only if r → T α
r f(0) ∈ W s

α.

Now we prove some properties of Laguerre means Tαr f .

Lemma 7 (i) If f is supported in z ≤ b ,then T α
r f(z) as a function of r is

supported in r ≤ b+ z.
(ii) If f vanishes in a neighbourhood of z then T α

r f(z) as a function of r
vanishes in a neighbourhood of origin in IR+.

Proof: (i) If f is supported in z ≤ b then the integral (1.12) vanishes unless
(r2 + z2 + 2rzcosθ)1/2 ≤ b .This implies (r− z)2 ≤ b2. Therefore the integral
(1.12) vanishes unless |r − z| ≤ b or r ≤ b+ z
(ii) Again if f vanishes in a neighbourhood {|y − z| < a}, a > 0 of z, the
above integral (1.12) is zero if |(r2 + z2 + 2rzcosθ)1/2 − z| ≤ a. Since z is
fixed this says that the above inequality holds for r in a neighbourhood of 0.
Now consider the continuous function

g(r) = |(r2 + z2 + 2rzcosθ)1/2 − z| − a,
defined on IR+. We have g(0) = −a < 0 Therefore g < 0 in a neighbourhood
of 0 as well. This means that for r in some neighbourhood of 0 we have
|(r2 + z2 + 2rzcosθ)1/2 − z| < a. Thus T α

r f(z) ≡ 0 in that neighbourhood.

4 A localisation Theorem for Laguerre ex-

pansions

Now we are in a position to prove Theorem (2) stated in the introduction,
From (1.14) using the orthogonality of ψαk we get∫ ∞

0
T α
r f(z) ϕαk (r) r2α+1dr = Γ(α + 1)2(f, ψαk )α ψ

α
k (z). (4.1)

Again from (1.14) we get,

SαNf(z) =
N∑
k=0

(f, ψαk )αψ
α
k (z)
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= (Γ(α + 1))−2
∫ ∞

0
T α
r f(z)

N∑
k=0

ϕαk (r)r2α+1dr

= (Γ(α + 1))−2
∫ ∞

0
T α
r f(z)ϕα+1

N (r)r2α+1dr. (4.2)

Here we have used the relation
∑N

0 L
α
k (x) = Lα+1

N (x). We use the above
representation for SαNf(z) to prove Theorem (2). The proof uses the following
fact: If g ∈ L2

α(IR+), then the Fourier-Laguerre coefficients (g, ψαk )α → 0 as
k →∞. Recalling the definition of ψαk this means that∫ ∞

0
g(r)ϕαk (r)r2α+1dr = ◦(k

α
2 ) as k →∞. (4.3)

Also if g ∈ W s
α (IR+) then,

∫ ∞

0
g(r)ϕαk (r)r2α+1dr = ◦(k−s+

α
2 ) as k →∞. (4.4)

From (4.2) we get

SαNf(z) = (Γ(α + 1))−2
∫ ∞

0

T α
r f(z)

r2
ϕα+1
N (r)r2α+3dr. (4.5)

Let h̃ be a smooth function on (IR+) such that h̃(r) ≡ 1 on the support
of T α

r f(z) and h̃(r) ≡ 0 in a neighbourhood of the origin in IR+. Put

h(r) = h̃(r)
r2
. Thus we get

SαNf(z) = (Γ(α + 1))−2
∫ ∞

0
h(r) T α

r f(z) ϕα+1
N (r)r2α+3dr (4.6)

Now if T α
r f(z) ∈ W

α+1
2

α , we have by Proposition 3 h(r)T α
r f(z) ∈ W

α+1
2
α+1

Therefore by (4.3),

SαNf(z) = ◦(N (−α+1
2

+α+1
2

)) = ◦(1),

as N →∞. Therefore SαNf(z)→ 0 as N →∞, which proves the theorem.

In view of Lemma 6, if f ∈ W 1/2
α , then T α

r f(z) ∈ W
α+1

2
α , for z 6= 0. Thus

we have the following corollary to the above theorem.

Corollary 8 If f ∈ W 1/2
α then the conclusion of Theorem 2 holds at points

z 6= 0.
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