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Abstract

In this paper we prove a restriction theorem for the class -1 rep-
resentations of the Heisenberg motion group. This is done using an
improvement of the restriction theorem for the special Hermite pro-
jection operators proved in [13]. We also prove a restriction theorem
for the Heisenberg group.
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1 Introduction

The inversion formula for the Fourier transform on IRn can be written
in the form

f(x) = Cn

∫ ∞

0
f ∗ ϕλ(x)λn−1dλ

where ϕλ is the Bessel function given by

ϕλ(x) = (λ|x|)−
n
2
+1Jn

2
−1(λ|x|).

Then for f ∈ Lp(IRn), 1 ≤ p ≤ 2(n+1)
n+3

there follows the inequality

‖f ∗ ϕλ‖p ≤ Cλ‖f‖p.

From this one gets the Stein-Tomas restriction theorem for the Fourier trans-
form [11]: ∫

|ξ|=1

|f̂(ξ)|2dσ ≤ C‖f‖2p,

for f ∈ Lp(IRn), 1 ≤ p ≤ 2(n+1)
n+3

. The restriction theorem finds applications
in the study of Bochner-Riesz means for the Laplacian.

Analogues of the above restriction theorem have been studied in various
set ups. As f ∗ϕλ are eigenfunctions of the Laplacian ∆ on IRn, it is natural
to study the Lp−L2 mapping properties of projection operators associated
to eigenfunction expansions. In the case of spherical harmonics and eigen-
function expansions on compact Riemannian manifolds such theorems have
been proved by Sogge in [9] and [10]. In the non-compact set up, restriction
theorems for Hermite and special Hermite projection operators have been
studied by Thangavelu in [13].

Restriction theorems have been studied in the case of Heisenberg group
also. If one considers the Heisenberg group H n and let

f =
∫ ∞

0
Pλf dλ

stand for the Strichartz’s decomposition [12] of f in terms of eigenfunctions
of the sublaplacian L on H n, then in [5] Muller has studied mapping proper-
ties of Pλ. Some extensions have been treated in the papers [14] and [15] and
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the restriction theorem has been found useful in the study of Bochner-Riesz
means for the sublaplacian [6].

Our aim in this note is to prove a restriction theorem for class-1 rep-
resentations of the Heisenberg motion group. The main theorem should
be compared with the corresponding theorem for the spherical harmonic
projections stated and proved in Sogge [9] in the language of representation
theory. To prove the main theorem we need a restriction theorem for special
Hermite projection operators proved in [13]. We take this opportunity to
present a simpler proof of a crucial estimate used in [13] and also to show
that the restriction theorem is valid in a slightly bigger range of p than
established in [13]. In the last section we also prove a restriction theorem
for the Heisenberg group by considering individual projections.

For many facts we use regarding the Heisenberg group and special Her-
mite expansions we refer to the monographs [1] and [16] and also the paper
of Strichartz [12].

2 A restriction theorem for the Heisenberg

motion group

Consider the Heisenberg group H n = IC n × IR equipped with the group
law

(z, t)(w, s) = (z + w, t+ s+
1

2
Im(z.w)).

The group U(n) of n × n complex unitary matrices acts on H n by the
automorphisms

σ(z, t) = (σz, t), σ ∈ U(n).

The Heisenberg motion group is then the semi-direct product G
= H n× U(n) which acts on H n in the following way :

(σ, z, t)(w, s) = (z + σw, t+ s+
1

2
Imσw.z).

Functions on H n can be viewed as right U(n)-invariant functions on the
Heisenberg motion group G. To formulate our restriction theorem for G we
need to recall a family of class -1 representions of G which have been studied
in [8] and [12].
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For each λ ∈ IR, λ 6= 0 we have an irreducible unitary representation πλ
of H n which is realised on L2(IRn) and acts by

πλ(z, t)ϕ(ξ) = eiλteiλ(x·ξ+ 1
2
x.y)ϕ(ξ + y),

for ϕ ∈ L2(IRn). Upto unitary equivalence these πλ give all the infinite
dimensional irreducible representations of H n. Let Φα, α ∈ IN n be the
normalised Hermite functions on IRn. (For the explicit definition of Φα refer

[16].) For λ 6= 0 define Φλ
α(x) = |λ|n/4 Φα(|λ| 12x) and let

Eλ
α,β(z, t) = (πλ(z, t)Φ

λ
α,Φ

λ
β)

be the entry functions of the representation πλ. The functions Φα,β(z) =
(2π)−

n
2E1

α,β(z, 0) are called the special Hermite functions and it is well known
that {Φαβ : α, β ∈ IN n} forms an orthonormal basis for L2(IC n).

We recall some general facts about the class -1 representations. Let N
be a locally compact topological group and K0 be a compact subgroup of N .
Let π be an irreducible unitary representation of N on a Hilbert space H.
We say that π is a class-1 representation for the pair (N,K0) if the space H0,
of K0− fixed vectors in H i.e. H0 = {v ∈ H : π(k)v = v ∀k ∈ K0} 6= {0}.

In case (N,K0) is a Gelfand pair, i.e. if the algebra {f ∈ L1(N) :
f(k1xk2) = f(x) ∀k1, k2 ∈ K0, x ∈ N} is commutative with respect to the
usual convolution on N , it is known that, (see[2]), for π,H,H0 as above,
dimH0 = 1.

We now list a family of class -1 representations for the pair (G,U(n)).
For each λ 6= 0 and k ∈ IN , let Hλ

k be the Hilbert space for which an
orthonormal basis is given by

{Eλ
α,β(z, t) : α, β ∈ IN n, |β| = k}

and the inner product being

(f, g) = (2π)−n|λ|n
∫
IC n

f(z, 0)g(z, 0)dz.

The spaceHλ
k can be characterised as certain eigenspace of the sublaplacian,

see Strichartz [12]. On Hλ
k define a representation ρλk of G by

ρλk(σ, z, t)ϕ(w, s) = ϕ((σ, z, t)−1(w, s))
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for ϕ ∈ Hλ
k and (w, s) in H n. Then ρλk is an irreducible unitary representa-

tion of G. As noticed in [8], the vector

eλk(z, t) = (2π)−
n
2

∑
|µ|=k

(πλ(z, t)Φ
λ
µ,Φ

λ
µ)

is a U(n) fixed vector. As (G,U(n) is a Gelfand pair (see [3]), we conclude
that eλk is the unique (upto a scalar multiple) U(n) fixed vector in Hλ

k .
Let f ∈ L1(H n); identifying f as a right U(n)-invariant function on G

we can define the operator

ρλk(f ) =
∫
G

f(z, t)ρλk(σ, z, t)dσdzdt

which acts on the Hilbert space Hλ
k . It is easy to calculate the action of

ρλk(f ) on a function ϕ ∈ Hλ
k . In fact, letting

ϕ#(z) =
∫

U(n)

ϕ(σz, 0)dσ

be the radialisation of ϕ,

f λ(z) =
∫
eiλtf(z, t)dt

be the inverse Fourier transform of f in the t-variable and

g ∗λ h(z) =
∫
IC n

g(z − w)h(w)ei
λ
2
Imz.wdw

be the λ-twisted convolution of g and h we can show that

ρλk(f )ϕ(z, t) = eiλtf −λ ∗λ ϕ#(z).

It is easy to see that ρλk(f) is a bounded operator on Hλ
k . In fact since

ρλk is a unitary operator we have the following norm estimate

|| ρλk(f )||∞ ≤
∫
H n
|f(z, t)|dzdt (∗)

where we have used || · ||∞ to denote the operator norm.
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When f ∈ L1 ∩ L2(H n) we can say more about the operator ρλk(f ). Let
Ln−1
k be the kth Laguerre polynomial of type (n− 1) and let

ϕk(z) = Ln−1
k (

1

2
|z|2)e−

1
4
|z|2

be the Laguerre function. Let ϕλk(z) = ϕk(|λ|
1
2 z).

Proposition 2.1 : For f ∈ L1 ∩ L2(H n), ρλk(f ) is a Hilbert-Schmidt
operator on Hλ

k and

|| ρλk(f )|| 22 = (2π)−n|λ|n k!(n− 1)!

(k + n− 1)!

∫
IC n

|f −λ ∗λ ϕλk(z)|2dz.

Here || · || 2 denotes the Hilbert-Schmidt norm.
Proof : We calculate the norm of ρλk(f )ϕ when ϕ = Eλ

α,β, |β| = k. Since

eλk(z, t) = (2π)−
n
2

∑
|µ|=k

(πλ(z, t)Φ
λ
µ,Φ

λ
µ)

is the essentially unique U(n)-invariant function in Hλ
k , the radialisation

eiλtϕ#(z) =
∫

U(n)

Eλ
α,β(σz, t)dσ

should be a constant multiple of eλk(z, t). From the definition of Eλ
α,β we infer

that Eλ
α,β(0, t) = 0 for α 6= β and consequently

ρλk(f )Eλ
α,β = 0, α 6= β.

When α = β we have ∫
U(n)

Eλ
α,α(σz, 0)dσ = A eλk(z, 0)

where A is a constant. We evaluate the constant by taking z = 0.

A(2π)−
n
2 (
∑
|µ|=k

1) =
∫

U(n)

dσ = 1.
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This gives ∫
U(n)

Eλ
α,α(σz, 0)dσ = (2π)

n
2
k!(n− 1)!

(k + n− 1)!
eλk(z, 0).

It is well known that (see [8])

eλk(z, t) = (2π)−
n
2 eiλtϕλk(z)

and consequently

ρλk(f )Eλ
α,α(z, t) =

k!(n− 1)!

(k + n− 1)!
eiλtf −λ ∗λ ϕλk(z),

for |α| = k. Finally

|| ρλk(f )|| 22 =
∑
|α|=k
‖ρλk(f )Eλ

α,α‖2Hλ
k

and after simplification we obtain

|| ρλk(f )|| 22 =
k!(n− 1)!

(k + n− 1)!
|λ|n(2π)−n

∫
IC n

|f −λ ∗λ ϕλk(z)|2dz.

This proves the proposition.
For 0 < q ≤ ∞, let Sq stand for the Schatten-von Neumann class of

operators on Hλ
k whose singular numbers belong to `q. In particular, S2 will

denote the class of Hilbert-Schmidt operators. Let || · || q stand for the norm
in Sq. We are now ready to state the following restriction theorem for ρλk .
Let L(p,1)(H n) stand for the space of all functions on H n for which

‖f‖(p,1) =

∫
IC n

(∫ ∞

−∞
|f(z, t)|dt

)p
dz

1/p

<∞.

Theorem 2.1 : Let f ∈ L(p,1)(H n), 1 ≤ p < 2(3n+1)
3n+4

, and let q < 3n−2
n+1

p′.

Then ρλk(f ) ∈ Sq and

|| ρλk(f )|| q ≤ C |λ|
3n+4
3n+1

n
q k−

3n−2
3n+1

n
q ‖f‖(p,1).
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To prove the theorem we need the following restriction theorem for the
special Hermite projections. For functions f on IC n let

f × ϕk(z) =
∫
IC n

f(z − w)e
i
2
Imz·wϕk(w)dw

which is called the twisted convolution of f with ϕk. We need
Proposition 2.2. Let f ∈ Lp(IC n), 1 ≤ p < 2(3n+1)

3n+4
. Then we have

‖f × ϕk‖2 ≤ C kn( 1
p
− 1

2
)− 1

2 ‖f‖p.

We postpone the proof of this proposition to the next section. Assuming
it for a moment we will prove the theorem. From equation (∗) we have

|| ρλk(f )||∞ ≤ ‖f‖(1,1).

Assuming λ > 0 for definiteness we see that

f −λ ∗λ ϕλk(z) = λ−nf −λλ × ϕk(λ
1
2 z)

where
f −λλ (z) = f −λ(λ−

1
2 z).

Applying the proposition we get

‖f −λ ∗λ ϕλk‖2 ≤ C |λ|n( 1
p
− 1

2
) kn( 1

p
− 1

2
)− 1

2‖f λ‖p
≤ C |λ|n( 1

p
− 1

2
) kn( 1

p
− 1

2
)− 1

2‖f‖(p,1).

Using this estimate in proposition 2.1 we get

|| ρλk(f )|| 2 ≤ C |λ|
n
p k

n
p
−n‖f‖(p,1).

We pretend as if proposition 2.2 is true at the end point p0 = 2(3n+1)
(3n+4)

. (A

slight modification required is left to the reader.)

|| ρλk(f )|| 2 ≤ C |λ|
n(3n+4)
2(3n+1) k−

n(3n−2)
2(3n+1) ‖f‖(p0,1).

Appealing to the noncommutative interpolation theorem of Peetre-Sparr [7]

we obtain for 1 ≤ p ≤ 2(3n+1)
3n+4

|| ρλk(f )|| q ≤ C |λ|
n(3n+4)
2(3n+1)

θ k−
n(3n−2)
2(3n+1)

θ‖f‖(p,1)

where p, q and θ are related by 1
q

= θ
2
, θ = 2(3n+1)

3n−2
1
p′

. Simplifying we see that

q = 3n−2
3n+1

p′ thus completing the proof of the theorem.
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3 Special Hermite projection operators

In this section we prove proposition 2.2. By the term special Hermite
expansion we mean the series

f(z) = (2π)−n
∞∑
k=0

f × ϕk(z)

which converges in L2 norm for f ∈ L2(IC n). The above is the compact form
of the expansion in terms of the special Hermite functions, namely

f(z) =
∑
α

∑
β

(f,Φαβ)Φαβ.

Summability and multipliers for the above expansions have been studied in
[13]. A crucial ingredient for proving summability results is the Lp − L2

restriction theorem stated in proposition 2.2.
The proposition was proved in [13] for the slightly smaller range 1 ≤ p ≤

2n
n+1

. The main idea of the proof is to embed the operator f → f × ϕk into
an analytic family of operators, get estimates at the end points and then
appeal to Stein’s analytic interpolation theorem. The analytic family used
for this purpose is the one given by twisted convolution with the Laguerre
function

ψαk (z) =
Γ(k + 1)Γ(α + 1)

Γ(k + α + 1)
Lαk (

1

2
|z|2)e−

1
4
|z|2 .

Here these functions can be defined even for complex α with Re α > −1.
In [13] it was shown that ψαk (z) are bounded uniformly in k and z provided
Re α ≥ 0. In the following proposition we show that the same is true as
long as Re α > −1

3
.

Proposition 3.1 : Let α = σ+iτ with −1 < σ ≤ n. Then with a constant
C independent of k we have

sup
z
|ψαk (z)| ≤ C(1 + |τ |)

2
3

provided σ > −1
3
.

Proof : This proposition was proved in [13] for σ ≥ 0 by expressing Lαk
in terms of Hermite functions and then using estimates for the Hermite
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functions. Here we use the following formula which connects Laguerre poly-
nomials of different types :

Lµ+ν
k (t) =

Γ(k + µ+ ν + 1)

Γ(ν)Γ(k + µ+ 1)

∫ 1

0
sµ(1− s)ν−1Lµk(ts)ds.

From the above formula we have

ψαk (z) =
Γ(α + 1)

Γ(−1
3

)Γ(α + 1
3
)

∫ 1

0
s−

1
3 (1− s)α−

2
3ψ
− 1

3
k (
√
sz)e−

1
4
(1−s)|z|2ds

, for α > −1
3

and it is clear that the above can be defined even for complex
α provided Re α > −1

3
.

Using Stirling’s formula for the Gamma function we can show that∣∣∣∣∣Γ(α + 1)

Γ(α + 1
3
)

∣∣∣∣∣ ≤ C (1 + |τ |)
2
3 .

For the Laguerre functions ψαk (z) various Lp estimates are known (see Mar-
kett [4] ). From Lemma of [4] we can infer that

sup
z
|ψ−

1
3

k (z)| ≤ C

where C is independent of k. This completes the proof of the proposition.
Once we have the proposition we look at the analytic family of operators

Gα
kf = f × ψ−

1
3
+(n+ 1

3
)α

k .

Then by interpolating between the cases Re α > 0 and Re α = 1 we get the
desired result. For details we refer to [13].

As we have already mentioned the restriction theorems are useful in the
study of Bochner-Riesz means. Recall that

S δ
Rf = (2π)−n

∑
(1− 2k + n

R
)δ+f × ϕk

are called Bochner-Riesz means of order δ ≥ 0 associated to the special
Hermite expansions. Using proposition 2.2 we can prove
Theorem 3.1 : Let 1 ≤ p < 2(3n+1)

(3n+4)
and δ > δ(p) = 2n(1

p
− 1

2
)− 1

2
. Then

S δ
Rf are uniformly bounded on Lp(IC n).
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The theorem was proved in [13] for the smaller range 1 ≤ p ≤ 2n
n+1

. The
same proof yields the above theorem in view of proposition 2.2.

In the case of radial functions the estimate of the proposition remains
true in the bigger range 1 ≤ p < 4n

2n+1
. This has been observed in [13]. Based

on that it was conjectured that the same is true for all functions. In what
follows we show that the proposition is not true above a certain value of p.
More precisely we have the following theorem:
Theorem 3.2 : The estimates of the proposition 2.2 are not valid for
p > 2(n+1)

n+2
.

Proof : The proof of this theorem is by contradiction. Assume that the
estimate

‖f × ϕk‖2 ≤ C kn( 1
p
− 1

2
)− 1

2
)‖f‖p (∗∗)

is valid in the range 4
3
< p < 4n

2n+1
. Recall that when f is polyradial i.e.,

f(z) = f(|z1|, |z2|, · · · , |zn|)

f × ϕk(z) =
∑
|α|=k

(
∫
f(w)Φαα(w)dw)Φαα(z).

and Φαα(z) are expressible in terms of Laguerre functions of type 0:

Φαα(z) =
n∏
j=1

ψ0
αj

(zj)

By taking
f(z) = g(|z1|)e−

1
4
|z′|2 , z = (z1, z

′)

and using the orthogonality properties of the Laguerre functions we get

f × ϕk(z) = C
(∫ ∞

0
g(r)L0

k(
1

2
r2)e−

1
4
r2rdr

)
ψ0
k(z1)

− 1
4
|z′|2 .

The estimate (∗∗) now gives us∣∣∣∣∫ ∞

0
g(r)L0

k(
1

2
r2)e−

1
4
r2rdr

∣∣∣∣ ≤ C kn( 1
p
− 1

2
)− 1

2

(∫ ∞

0
|g(r)|prdr

) 1
p

.

Taking supremum over all g ∈ Lp(IC) with unit norm we get(∫ ∞

0
|L0

k(r)e
− r

2 |p′dr)
) 1
p′ ≤ C kn( 1

p
− 1

2
)− 1

2 .
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From Lemma of [4] already mentioned we infer that the left - hand side

of the above equation behaves like k
1
2
− 1
p and hence the estimate cannot be

valid unless p ≤ 2(n+1)
n+2

.

4 Heisenberg group revisited

In this last section we briefly recall Muller’s restriction theorem for the
Heisenberg group and then prove a slightly different restriction theorem for
individual projections. The spectral decomposition of a function on H n is
given by

f(z, t) = (2π)−n−1
∞∑
k=0

∫ ∞

−∞
f ∗ eλk(z, t)|λ|ndλ.

Defining
ẽλk(z, t) = e

λ/2k+n
k (z, t)

we can write the above as

f(z, t) = (2π)−n−1
∞∑
k=0

(2k + n)−n−1
∫ ∞

−∞
f ∗ ẽλk(z, t)|λ|ndλ

or in a more compact form

f(z, t) =
∫ ∞

−∞
Pλf(z, t)|λ|ndλ

where

Pλf(z, t) = (2π)−n−1
∞∑
k=0

(2k + n)−n−1f ∗ ẽλk(z, t).

The restriction theorem of Muller states that

‖Pλf‖(p′,∞) ≤ cλ‖f‖(p,1), 1 ≤ p < 2.

Instead of considering all f ∗ eλk together we would like to consider them
separately. So we define

Pk,af(z, t) =

a∫
−a

f ∗ eλk(z, t)|λ|ndλ
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and would see what Lp − L2 mapping properties these projections possess.
Following is our result:
Theorem 4.1: Let f ∈ Lp(H n), 1 ≤ p < 2(3n+1)

3n+4
. Then we have

‖Pk,af‖2 ≤ C kn( 1
p
− 1

2
)− 1

2 a(n+1)( 1
p
− 1

2
) ‖f‖p.

For the proof we need the following simple lemma :
Lemma 4.1 : For f ∈ Lp(IR), 1 ≤ p < 2 one has

 a∫
−a

|f̂(λ)|2dλ

 1
2

≤ C a
1
p
− 1

2‖f‖p.

Proof : Let χa be the characteristic function of the interval −a ≤ t ≤ a so
that χ̂a(λ) = λ−1 sin aλ. By Plancherel and Young

 a∫
−a

|f̂(λ)|2dλ

 1
2

= C
(∫
|f ∗ χ̂a(t)|2dt

) 1
2

≤ C‖f‖p‖χ̂a‖q

where 1
p

+ 1
q
− 1 = 1

2
. But

(∫
|χ̂a(t)|qdt

) 1
q

= a

(∫ ∣∣∣∣sin atat

∣∣∣∣q dt
) 1
q

which equals a constant times a1− 1
q . Since 1

q
− 1 = 1

2
− 1

p
the lemma follows.

Coming to the proof of the theorem we have, by a simple calculation,

a∫
−a

f ∗ eλk(z, t)|λ|ndλ =

a∫
−a

eiλtf λ ∗λ ϕλk(z) |λ|ndλ.

Therefore,

‖
a∫

−a

f ∗ eλk |λ|ndλ‖22 = C
∫
IC n

a∫
−a

|f λ ∗λ ϕλk(z)|2|λ|2ndλdz.
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In view of proposition 2.2 a simple calculation shows that

∫
IC n
|f λ ∗λ ϕλk(z)|2dz ≤ C k2n( 1

p
− 1

2
)−1 λ−3n+ 2n

p

(∫
|f λ(z)|pdz

) 2
p

.

Thus

‖
a∫

−a

f ∗ eλk |λ|ndλ‖22 ≤ C k2n( 1
p
− 1

2
)−1

a∫
−a

|λ|−n+ 2n
p

(∫
|f λ(z)|pdz

) 2
p

dλ.

Now applying Minkowski’s integral inequality we get(
a∫
−a
|λ|−n+ 2n

p

(∫
|f λ(z)|pdz

) 2
p dλ

) p
2

≤
∫
dz

(
a∫
−a
|λ|−n+ 2n

p |f λ(z)|2dλ
) p

2

≤ an−np/2
∫
dz

(
a∫
−a
|f λ(z)|2dλ

) p
2

≤ C an−
np
2 a1− p

2
∫ ∫
|f(z, t)|pdzdt

where we have used the lemma. Finally,

‖
a∫

−a

f ∗ eλk |λ|ndλ‖2 ≤ C kn( 1
p
− 1

2
)− 1

2 a(n+1)( 1
p
− 1

2
)‖f‖p

follows. Corollary : Let Q = 2n+2 be the homogeneous dimension of H n.
Then for f ∈ Lp(Hn), 1 ≤ p < 2(3n+1)

(3n+4)
we have

‖
k2/Q∫

−k2/Q

f ∗ eλk |λ|ndλ‖2 ≤ k
Q
2

( 1
p
− 1

2
)− 1

2‖f‖p.
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