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BENEDICKS’ THEOREM FOR THE HEISENBERG GROUP

E. K. NARAYANAN AND P. K. RATNAKUMAR

(Communicated by Michael T. Lacey)

Abstract. If an integrable function f on the Heisenberg group is supported
on the set B × R where B ⊂ Cn is compact and the group Fourier transform

f̂(λ) is a finite rank operator for all λ ∈ R \ {0}, then f ≡ 0.

1. Introduction

The uncertainty principle says that a nonzero function and its Fourier transform
cannot both be sharply localized. There are several manifestations of this principle.
We refer the reader to the excellent survey article by Folland and Sitaram [6] and
also the monograph by S. Thangavelu [10].

In this paper we are interested in a variant of Benedicks’ theorem on the Heisen-
berg group. Recall that Benedicks’ theorem [2] states the following. Let f ∈
L2(Rn), if both the sets {x ∈ Rn : f(x) �= 0} and {ξ ∈ Rn : f̂(ξ) �= 0} have finite
Lebesgue measure, then f ≡ 0. In the context of noncommutative Lie groups the
Fourier transform is an operator valued function. We measure the “smallness” of
the Fourier transform in terms of the rank of these operators.

To state our result, we need to recall briefly the representation theory of the
Heisenberg group. The Heisenberg group H

n is topologically C
n × R, with the

group law

(z, t) · (w, s) = (z + w, t+ s+
1

2
�(z · w̄)).

Under this group law, Hn becomes a two step nilpotent Lie group with center
Z = {0}×R. The infinite dimensional irreducible unitary representations of Hn are
parametrized by λ ∈ R \ {0}. Each such λ defines a representation πλ, realized on
L2(Rn) by

πλ(z, t)ϕ(ξ) = eiλt eiλ(x·ξ+
1
2x·y)ϕ(ξ + y),

where z = x + iy and ϕ ∈ L2(Rn). The representation πλ is clearly unitary and
it is well known that they are irreducible on L2(Rn). In fact, a famous theorem
of Stone and von Neumann says that any irreducible unitary representation of Hn

that is nontrivial at the center is (unitarily) equivalent to πλ for some λ (see [5]).
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If f ∈ L1(Hn), we can define the group Fourier transform by

f̂(λ) =

∫
Hn

f(z, t)πλ(z, t) dz dt.

Since πλ is an isometry, a simple norm estimate shows that f̂(λ) is a bounded

operator on L2(Rn). Moreover, if f ∈ L2(Hn), then f̂(λ) turns out to be a Hilbert-
Schmidt operator and the Plancherel theorem for the Heisenberg group reads as∫

Hn

|f(z, t)|2dz dt = (2π)−n−1

∫
‖f̂(λ)‖2HS|λ|ndλ.

Our main result is the following :

Theorem 1.1. Let f ∈ L1(Hn) be supported on a set of the form B × R, where
B ⊂ Cn.

1. If B is a compact set and f̂(λ) is a finite rank operator for all λ �= 0, then
f ≡ 0.

2. If B has finite Lebesgue measure and f̂(λ) is a rank one operator for all λ �= 0,
then f ≡ 0.

Remark 1. Note that our result is in sharp contrast with the situation on other Lie
groups. For example, in the Euclidean case, the Fourier transform of any nontrivial

f ∈ L1(Rn) gives rise to a rank one operator, via multiplication by f̂(ξ). Next, if
G is a noncompact connected semisimple Lie group and K is a maximal compact
subgroup of G, then it can be shown that a function in L1(G/K) has a Fourier
transform, which is a rank one operator. More generally, if f ∈ L1(G) transforms
according to a fixed unitary irreducible representation of the compact group K on
the right, then the group Fourier transform of f is a finite rank operator.

Remark 2. In [1] the authors study the “qualitative uncertainty principle” for uni-

modular groups. Let G be such a group and let Ĝ be its unitary dual. Let m denote
the Haar measure on G and let m̂ denote the Plancherel measure on Ĝ. One of the
results in [1] states that if {x ∈ G : f(x) �= 0} < m(G) and

∫
Ĝ
rank(π(f)) dm̂ < ∞,

then f ≡ 0. When G is the Heisenberg group, the above conditions will force the
Fourier transform to be supported on a set of finite (Plancherel) measure in addition
to the finite rank condition. Notice that Theorem 1.1 requires only the finite rank
condition. We thank Michael Lacey for pointing out this reference. We also refer
the reader to [7] and [8] for a Benedicks’ type theorem on the Heisenberg group.

In the rest of this section, we recall the necessary details about the Weyl trans-
form and the Fourier-Wigner transform. For a suitable function g defined on Cn,
the λ−Weyl transform is defined to be the operator

Wλ(g) =

∫
Cn

g(z) πλ(z) dz,

where πλ(z) = πλ(z, 0). Clearly Wλ(g) defines a bounded operator on L2(Rn), if
g ∈ L1(Cn). For g ∈ L2(Cn), Wλ(g) is a Hilbert-Schmidt operator, and we have
the Plancherel Theorem [9]:∫

Cn

|g(z)|2dz = (2π |λ|)−n ‖Wλ(g)‖2HS.



BENEDICKS’ THEOREM FOR THE HEISENBERG GROUP 2137

The λ−twisted convolution of two functions F and G on Cn is defined to be

F ×λ G(z) =

∫
Cn

F (z − w)G(w)e
iλ
2 �(z·w̄)dw.

It is known that Wλ(F ×λ G) = Wλ(F )Wλ(G). When λ = 1, we write F × G
instead of F ×1 G and call it the twisted convolution of F and G. Similarly W1(F )
will be denoted by W (F ) and called the Weyl transform of F.

Let φ1 and φ2 belong to L2(Rn). The Fourier-Wigner transform of φ1 and φ2 is
a function on Cn and is defined by

A(φ1, φ2)(z) = 〈π1(z)φ1, φ2〉.
The Fourier-Wigner transform satisfies the ‘orthogonality relation’,∫

Cn

A(φ1, φ2)(z) A(ψ1, ψ2)(z) dz = (2π)n 〈φ1, ψ1〉 〈ψ2, φ2〉.(1.1)

In fact, if {φi : i ∈ N} is an orthonormal basis for L2(Rn), then the collection
{A(φi, φj) : i, j ∈ N} forms an orthonormal basis for L2(Cn), see [9]. In particular,
if F ∈ L2(Cn) is orthogonal to A(φ, ψ) for all φ, ψ ∈ L2(Rn), then F ≡ 0.

We finish this section with the following theorem (see [3] or [4]), which will be
used later.

Theorem 1.2. Let F (z) = A(φ1, φ2)(z) where φ1, φ2 ∈ L2(Rn). If the set {z : F (z)
�= 0} has finite Lebesgue measure, then F ≡ 0.

2. Proof of the main result

We start with the following lemma:

Lemma 2.1. Let hj ∈ L2(Rn), j = 1, 2, ..., N , and set, for y ∈ Rn,

Ky(ζ) =
N∑
j=1

hj(ζ)hj(ζ + y).

If Ky(ζ) = 0 for almost all ζ ∈ Rn and |y| ≥ R, then each hj is compactly supported.

Proof. Since each hj ∈ L2(Rn), there exists a set A of Lebesgue measure zero such
that |hj(ζ)| < ∞ for every ζ ∈ R

n \A, for j = 1, 2 . . . , N.
We work with a fixed representative hj for each of the class [hj ] ∈ L2(Rn) for

which pointwise evaluation makes sense. Hence, for ζ ∈ Rn \A,

H(ζ) = (h1(ζ), h2(ζ), . . . hN (ζ)) ∈ C
N .

If hj are nonzero, choose ζ1 ∈ Rn \A so that H(ζ1) is a nonzero vector. Let BR(ζ1)
be the open ball of radius R centered at ζ1. If there is no ζ ∈ R

n \ (BR(ζ1) ∪ A)
such that H(ζ) is a nonzero vector, we are done. Otherwise, choose ζ2 ∈ Rn \
(BR(ζ1) ∪ A) so that H(ζ2) is nonzero. By the hypothesis, H(ζ1) and H(ζ2) are
orthogonal vectors in CN . We repeat this process. That is, if j ≤ N, choose

ζj ∈ R
n \ (

⋃j−1
l=1 BR(ζl) ∪A) such that H(ζj) is a nonzero vector in C

N (if there is
no such ζj we are done). By the hypothesis H(ζj) are orthogonal to each other for

j = 1, 2, · · ·N. Now, if ζ ∈ Rn\(
⋃N

j=1BR(ζj)∪A), then H(ζ) is orthogonal to H(ζj)

for all j = 1, 2, · · ·N. It follows that H(ζ) is zero for ζ ∈ Rn \ (
⋃N

j=1BR(ζj) ∪ A),
which finishes the proof. �
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Our next result is a Benedicks’ type theorem for the Weyl transform and is a
crucial step in the proof of the main theorem.

Theorem 2.2. Let F ∈ L1(Cn) be compactly supported. If the Weyl transform
W (F ) of F is a finite rank operator, then F ≡ 0.

Proof. Let G(z) = F ∗ × F (z), where F ∗(z) = F (−z). Then Ḡ is compactly sup-
ported and Ḡ = 0 if and only if F ≡ 0, by the Plancherel theorem for the Weyl
transform. Now W (Ḡ) = W (F )∗W (F ) is a finite rank, positive, Hilbert-Schmidt
operator, and hence by the spectral theorem, we have

W (Ḡ)φ =

N∑
j=1

λj〈φ, φj〉φj ,(2.1)

where {φ1, ..., φN} is an orthonormal basis for the range of W (Ḡ), with W (Ḡ)φj =
λjφj and λj ≥ 0. Hence

〈W (Ḡ)φ, ψ〉 =
N∑
j=1

λj〈φ, φj〉〈φj , ψ〉.(2.2)

By (1.1), the above equals

(2π)−n
N∑
j=1

λj

∫
Cn

A(φ, ψ)(z) A(φj , φj)(z) dz.(2.3)

Also by the definition of the Weyl transform,

〈W (Ḡ)φ, ψ〉 =
∫
Cn

Ḡ(z)A(φ, ψ)(z) dz.(2.4)

From (2.3) and (2.4) it follows that

G(z) =
N∑
j=1

A(hj , hj)(z),

where hj(z) = (2π)−
n
2

√
λj φj(z). Writing Gy(x) = G(z) for z = (x+ iy), the above

identity reads as

Gy(x) =

∫
Rn

ei(x·ζ+
1
2x·y)

⎛
⎝ N∑

j=1

hj(ζ + y)hj(ζ)

⎞
⎠ dζ.(2.5)

Since G is compactly supported, there exists R > 0 such that Gy ≡ 0 if |y| ≥ R.

Then (2.5) implies that
∑N

j=1 hj(ζ+y)hj(ζ) = 0 for almost every ζ ∈ Rn, provided

|y| ≥ R.
Lemma 2.1 now implies that each hj is compactly supported and hence that∑N
j=1 hj(ζ + y)hj(ζ) is also compactly supported in ζ for each y ∈ Rn. In view of

(2.5), we conclude that Gy ≡ 0 for each y ∈ R
n, hence the proof. �

Now we are in a position to complete the proof of the main theorem.
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Proof of Theorem 1.1. Let fλ(z) denote the partial Fourier transform of f in the
t−variable. That is,

fλ(z) =

∫
R

f(z, t) eiλt dt.

Then a simple computation shows that f̂(λ) = Wλ(f
λ).

We start with the proof of (II) in Theorem 1.1. By the hypothesis we have
that fλ(z) is supported in the set B (which has finite Lebesgue measure) and

f̂(λ) = Wλ(f
λ) is a rank one operator for all λ. We will assume that λ = 1 and

prove that fλ ≡ 0. The general case is no different.
It suffices to show that if F ∈ L1(Cn) is supported on a set of finite measure

and W (F ) is a rank one operator, then F ≡ 0. This immediately follows from
Theorem 1.2 once we show that F is the Fourier-Wigner transform of two functions
in L2(Rn). For this, let Ḡ = F . Since W (Ḡ) is a rank one operator, we have
ψ1, ψ2 ∈ L2(Rn) such that

W (Ḡ)ϕ = 〈ϕ, ψ1〉 ψ2, ∀ϕ ∈ L2(Rn).

Hence, if ψ ∈ L2(Rn) we have

〈W (Ḡ)ϕ, ψ〉 =

∫
Cn

Ḡ(z) 〈π1(z)ϕ, ψ〉 dz

= 〈ϕ, ψ1〉 〈ψ2, ψ〉

= (2π)−n

∫
Cn

A(ϕ, ψ)(z) A(ψ1, ψ2)(z) dz,

where the last step follows from (1.1). It follows that G(z) = A(ψ1, ψ2)(z).
To prove (1), we proceed as above. Taking the Fourier transform in the t−

variable reduces the problem to Cn. As above we assume that λ = 1. It suffices
to show that if F ∈ L1(Cn) is compactly supported and W (F ) is of finite rank,
then F ≡ 0. But this is precisely the content of Theorem 2.2, hence finishing the
proof. �
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