
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 355, Number 3, Pages 1167–1182
S 0002-9947(02)03095-7
Article electronically published on October 30, 2002

SPHERICAL MAXIMAL OPERATOR ON SYMMETRIC SPACES
OF CONSTANT CURVATURE

AMOS NEVO AND P. K. RATNAKUMAR

Abstract. We prove an endpoint weak-type maximal inequality for the spher-
ical maximal operator applied to radial funcions on symmetric spaces of con-
stant curvature and dimension n ≥ 2. More explicitly, in the Lorentz space
associated with the natural isometry-invariant measure, we show that, for ev-
ery radial function f ,

‖Mf‖n′,∞ ≤ Cn‖f‖n′ ,1, n′ =
n

n− 1
.

The proof uses only geometric arguments and volume estimates, and applies
uniformly in every dimension.

1. Introduction

Let σt denote the normalised surface measure on the sphere |x| = t in Rn.
The celebrated spherical maximal theorems of E. Stein ([S1]) (for n ≥ 3) and J.
Bourgain ([B1]) (for n = 2) assert that the spherical maximal operator Mf(x) =
supt>0 |f ∗ σt(x)| satisfies the strong Lp-maximal inequality on Lp(Rn), namely,

‖Mf‖p ≤ Cp(n)‖f‖p ,
whenever f ∈ Lp(Rn), p > n/(n− 1), n ≥ 2.

Similarly, consider the maximal operator associated with averaging on geodesic
spheres in hyperbolic n-space Hn. This operator satisfies the same strong maximal
inequalities as its Euclidean counterpart. The first proof of this result for n ≥ 3
was given by El Kohen ([K]; see [N2] and [NS] for an alternative proof), and very
recently the case n = 2 was settled by Ionescu [I].

The proofs of all the foregoing results rely on intricate spectral considerations
and detailed information regarding harmonic analysis on the underlying spaces.
They are optimal in the sense that for every p ≤ n

n−1 , there exists a function f in
Lp(X) for which the spherical maximal operator satisfies Mf(x) = ∞ for almost
every x ∈ X (see [SWe], [N2] and [I]).

A natural generalization of the foregoing set-up is obtained by considering the
geodesic sphere St (with its Riemannian measure) in symmetric spaces of compact
and non-compact type, and the associated averaging and maximal operators. An
even more challenging goal is that of establishing analogous maximal theorems for
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singular spherical averages on arbitrary Gelfand pairs. These include such impor-
tant examples as sphere averages on the Heisenberg group (see [C], [NT]), and,
more generally, spherical averages associated with Cartan motion groups.

However, the spectral theory available for general Gelfand pairs, and even for
higher-rank symmetric spaces, is far from sufficient to derive results analogous to
the one above. It therefore seems desirable, and necessary, to develop more direct
geometric methods to make some progress in this direction.

In the present paper, we will consider the basic case of symmetric spaces of
constant curvature. We establish an end-point weak-type maximal inequality for
the spherical maximal operator (at the point n

n−1 ) acting on radial functions. The
argument is based solely on geometric considerations and volume estimates. It does
not use spectral theory, and applies equally well to Euclidean spaces, hyperbolic
spaces and spheres of arbitrary dimension n ≥ 2.

To formulate the result precisely, let X be a symmetric space of constant curva-
ture and dimension n ≥ 2. Let Atf(x) denote the average of a function f ∈ C(X)
over the geodesic sphere of radius t, centered at x. Consider the maximal operator
(well-defined for f ∈ C(X))

Mf(x) = sup
t>0
|Atf(x)|.

We let ‖ · ‖p,q denote the norm in the Lorentz space Lp,q(X,µn), where µn is the
measure on X invariant under the isometry group of X (see §3 for more on Lorentz
spaces). Finally, let n′ = n/(n − 1) be the index conjugate to n. We can now
formulate our main result:

Theorem 1.1. Let X be a symmetric space of constant curvature, dimX = n ≥ 2.
Then the maximal operator M satisfies the inequality

‖Mf‖n′,∞;µn ≤ Cn‖f‖n′,1;µn

for some constant Cn independent of f , whenever f is a radial function on X.

In view of the obvious estimate

‖Mf‖∞ ≤ ‖f‖∞,
Theorem 1.1 yields, by interpolation, a proof of the norm boundedness of the spher-
ical maximal operator acting on radial functions in Lp(X), p > n

n−1 , when X is a
symmetric space of constant curvature.

We note that in the Euclidean case the end-point result was already established
by J. Bourgain [B2], for n ≥ 3 (and arbitrary functions), using spectral considera-
tions. For radial functions on Rn it was established for all n ≥ 2 by M. Leckband
[L]. Another proof of the latter result is due to [KR], and served as the starting
point of the discussion that follows. In the non-Euclidean case, namely for spherical
and hyperbolic geometry, the end-point result above is new.

2. Symmetric spaces of constant curvature

Let X = X(κ, n) be a complete, simply connected n-dimensional Riemannian
manifold of constant curvature κ ∈ {0, 1,−1}. Then X is uniquely determined up
to isometric equivalence [Hi]. When κ = 0, one obtains X = Rn with the Euclidean
metric ds2 = dx2

1 + · · · + dx2
n. For κ 6= 0, these spaces can be visualised as the n-

dimensional quadratic surfaces in Rn+1 given by the equation Qκ(x, x) = 1, where
Qκ(x, x) = κ(x2

1 + · · ·+ x2
n) + x2

n+1. Thus when κ = 1, one obtains the unit sphere
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Sn1 in Rn+1. For κ = −1, one obtains the n-dimensional hyperboloid of two sheets
in Rn+1. We will use the notation Hn for the n-dimensional hyperbolic space,
which is identified with one of the sheets.

The metric d(x, y) on X(κ, n) when κ 6= 0 is given by the implicit equation
ψ(d(x, y)) = Qκ(x, y), where ψ is a function determined by the curvature. Explic-
itly, ψ(t) = cos t, 0 ≤ t ≤ π, for the sphere, and ψ(t) = cosh t for hyperbolic space.
We also define ψ(t) = t2/2 in the Euclidean case. Given three points x1, x2, x3 in
X(κ, n), κ 6= 0, we view them as vectors in the corresponding linear space (defined
above). Consider the determinant of the Gram matrix associated with Qκ :

δ(x1, x2, x3) = det(Qκ(xi, xj)) = detψ(d(xi, xj)).

Clearly δ depends only on the mutual distances d(xi, xj). Set r = d(x1, x2), s =
d(x2, x3), t = d(x3, x1), p = 1

2 (t + r + s), and ∆(r, t, s)2 = δ(x1, x2, x3). Then
a straightforward computation gives the following factorization (see, e.g., [Iv], pp.
71, 87):

∆(r, t, s)2 = 4ϕ(p)ϕ(p− r)ϕ(p− t)ϕ(p − s) ≥ 0.

Here ϕ(t) is given by sin t, sinh t and t, in spherical, hyperbolic and Euclidean
geometries, respectively.

We note that in Euclidean space, the kernel ∆(r, t, s) is simply twice the area of
a triangle with side lengths r, t and s.

The simply connected spaces of constant curvature are symmetric spaces. In
particular, these spaces can be realised as homogeneous spaces G/K, where G =
Isom0(X) is the connected component of the group of isometries of X , and K is the
subgroup of G that fixes a given point p0 ∈ X . As is well known, the pair (G,K)
is a Gelfand pair; namely, the convolution algebra of bi-K-invariant L1-functions
on G is commutative. The pairs (G,K) for constant curvature symmetric spaces
are given as follows.

When the curvature is positive, the corresponding space is Sn. The group
SO(n+ 1) = O0(n+ 1) of special orthogonal matrices acts isometrically and tran-
sitively on the n-dimensional sphere Sn ⊂ Rn+1. The subgroup of SO(n + 1)
that leaves the north pole e1 = (0, · · · , 1) invariant can be identified with SO(n).
The diffeomorphism g · SO(n) → g · e1 establishes the identification of Sn with
SO(n+ 1)/SO(n).

When the curvature is zero, the corresponding space is Euclidean n-space. The
isometry group is the Euclidean motion group M(n), the group generated by trans-
lations and rotations in Rn. Clearly M0(n) is the semidirect product of Rn and
SO(n), with the group law defined by (x1, k1) · (x2, k2) = (x1 + k1x2, k1k2). The
subgroup of M0(n) that leaves the origin in Rn invariant is clearly the group
SO(n), and as before we see that Rn can be identified with the homogeneous space
M0(n)/SO(n).

Finally, when the curvature is negative, the corresponding space is hyperbolic
n-space. The isometry group is the Lorentz group O(n, 1). It is the group of all
(n+ 1)× (n+ 1) matrices that leaves the bilinear form

Q(x, y) = −(x1y1 + · · ·+ xnyn) + xn+1yn+1

invariant. In other words, it is the subgroup of GL(n+ 1,R) given by

O(n, 1) = {g ∈ GL(n+ 1,R) : gtJg = J},
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where J denotes the matrix diag{−1, · · · ,−1,+1}.The group SO0(n, 1) acts transi-
tively on hyperbolic space Hn. The subgroup of SO0(n, 1) that leaves invariant the
point (1, · · · , 0, 0) on Hn in the hyperboloid model, can be identified with SO(n).
Again as in the previous cases, we can identify Hn with the homogeneous space
SO0(n, 1)/SO(n).

Notation. In this paper, X will denote the symmetric space, G = Isom0(X) the
connected component of the group of isometries of X , and K the stability group
of a given point. K is isomorphic to SO(n) in all three geometries of dimension n.
We call the point in the symmetric space G/K corresponding to the coset K the
origin in X , and denote it by o.

The main feature of the structure theory of G that is relevant to our discussion
is the existence of a Cartan decomposition. Here such a decomposition takes the
form G = KA+K, where K = StG(o) = SO(n) and A is a one-dimensional Abelian
subgroup of G. Parametrizing A by t ∈ R, we see that any element at ∈ A has a
matrix representation as follows.

In the Euclidean case,

a(t) =
(
In te1

0 1

)
,

where e1 = (1, 0, · · · , 0)tr ∈ Rn.
For the sphere and the hyperbolic space, at has the matrix representation

a(t) =

 ψ(t) 0 ψ′(t)
0 In−1 0
ϕ(t) 0 ϕ′(t)

 ,

where In−1 is the (n− 1)× (n− 1) identity matrix.
Since X = G/K is a homogeneous space, we can consider functions on X as

right-K invariant functions on G. Therefore, we can write the spherical mean value
operator on X as a convolution operator on G, given by

Atf(gK) = f ∗ σ̃t(g) =
∫
G

f(gy−1)dσ̃t(y),

where σ̃t is the unique bi-K-invariant probability measure on G projecting to σt
under the canonical map G→ G/K (note that σ̃t is a symmetric measure).

We note that when f is radial we have f ∗ σ̃t = σ̃t ∗ f , so that in that case

Atf(gK) =
∫
G

f(y−1g)dσ̃t(y) = σ̃t ∗ f(g).

The starting point of our analysis of spherical averages of radial functions is a
formula which expresses the spherical average as a kernel operator. We will give a
simple geometric proof of the formula for completeness. We refer to [FJ-K, §4] or [K,
§7] for an analytic discussion of the kernel in the case of real rank-one groups. For
the case of plane geometries, see, e.g., [H2, p. 369] or [W]. A simple group-theoretic
proof for hyperbolic spaces can be found in [N1].

First, let f be a radial function on X or, equivalently, a bi-K-invariant function
on G. Then in view of the KA+K decomposition of G, f is a function of at alone.
In other words, there is a function F on R+ such that f(x) = f(at) = F (C(t)) if
x = katK ∈ X , where C(t) = |t|, cosh t, or cos t for X = Rn, Hn, or Sn respectively.
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With a slight abuse of notation we write f(t) for F (C(t)) whenever f is a K-
invariant function on X . Since σ̃t is a bi-K-invariant measure on G, it is easy to
see that Atf is bi-K-invariant whenever f is bi-K-invariant on G.

Proposition 2.1. Let f be a radial continuous function on X. Then Atf(x) is
given by the following formula, where r = d(x, o):

Atf(r) =
Γ(n/2)

Γ(1/2)Γ((n− 1)/2)
(ϕ(r)ϕ(t))2−n

∫ r+t

|r−t|
f(u) ∆n−3(r, t, u)ϕ(u) du.

(2.1)

Here ∆ is given by

∆(r, t, u) = 2

√
ϕ

(
r + t+ u

2

)
ϕ

(
r + t− u

2

)
ϕ

(
r − t+ u

2

)
ϕ

(
−r + t+ u

2

)
,

as above.

Proof. The proof of the formula depends on the cosine formula for the corresponding
constant curvature geometry. First define |w| = d(w, o) for w ∈ X , and |w| =
d(wK,K) for w ∈ G under the identification X = G/K.

If x and y are two points in Euclidean space, then the distance between x and y
is given by the formula

|x− y|2 = |x|2 + |y|2 − 2|x||y| cos θ,

where θ is the angle between the vectors x and y.
Similarly, the distances between the two points xK and yK on the sphere or

hyperbolic space are given by the respective cosine formulas. If r = |x| and t = |y|,
then

cos d(xK,yK) = cos |y−1x| = cos r cos t+ cos θ sin r sin t

for the spherical geometry, and

coshd(xK,yK) = cosh |y−1x| = cosh r cosh t− cos θ sinh r sinh t

for the hyperbolic geometry.
Given two points xK and yK), whose distances from the origin are given by

r = |xK| and t = |yK)|, the distance d(xK,yK) depends only on the angle θ ≤ π
between the geodesics from o to xK and yK. We write u = u(θ) = |y−1x| and
differentiate the foregoing expression for the distance with respect to θ. We obtain
ϕ(u)dudθ = sin θ ϕ(r)ϕ(t). We now use the following fact:

ϕ(r)ϕ(t) sin θ = ∆(r, t, u).

This equality is clear in the Euclidean case, since ∆ is twice the area of a triangle
with side lengths r, t, s, and rt sin θ is twice the area of a triangle with two sides
of lengths r and t and interior angle θ. For hyperbolic space, this fact is most
conveniently established using vector calculus in the model for the hyperbolic plane
given by the determinant-one surface in the Lie algebra of SL2(R). It follows, e.g.,
from the arguments in [Iv, pp. 89, 91, 107]. A similar proof can be given for
spherical geometry. We conclude that

du

dθ
=
ϕ(r)ϕ(t) sin θ

ϕ(u)
=

∆(r, t, u)
ϕ(u)

.(2.2)
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Now

Atf(x) =
∫
St(o)

f(y−1x)dσt(y),

which is an integral over an (n− 1)-dimensional sphere St(o) in X . By assumption
f is K bi-invariant, and K is transitive on St(o). It follows that f is constant on the
subset of yK ∈ St(o), where the value of |y−1x| = d(xK,yK) is a given constant
u(θ) (where θ ranges over 0 ≤ θ ≤ π). The set in question is an (n−2)-dimensional
sphere lying on St(o), corresponding to the angle θ. Now write the measure dσnt as
dσn−1

u (ω) sin θn−2dθ, where σn−1
u is is the normalized measure on an (n−2)-sphere

of radius u = u(θ). Then

Atf(x) =
ωn−2

ωn−1

∫ π

0

f(|y−1x(θ)|) sinn−2 θdθ =
ωn−2

ωn−1

∫ π

0

f(u(θ)) sinn−2 θdθ,

where ωn−1 = 2πn/2

Γ(n/2) . Now use the change of variable u = |y−1x|, the Jacobian of
which is given by (2.2). Finally, to determine the limits in the integral, note that
from the cosine formula, it is easy to see that |r−t| ≤ u < r+t whenever 0 ≤ θ < π.
This completes the proof of Proposition 2.1. �

As an immediate consequence, we get the following estimates for ∆.

Proposition 2.2. Let ∆ be as before. Then

∆(r, t, u) ≤ ϕ(r)ϕ(t),
∆(r, t, u)
ϕ(u)

≤ ϕ(r) ∧ ϕ(t),

where ∧ denotes the minimum.

Proof. As noted in the proof of Proposition 2.1, ∆ = ϕ(r)ϕ(t) sin θ, and since
0 ≤ θ ≤ π, the first estimate follows.

Now observe that ∆(r, t, u) is symmetric in r, t and u. This follows from the
expression for ∆ in Proposition 2.1. Consequently, if ∆(r, t, u) ≤ ϕ(r)ϕ(t), by
symmetry we also have

∆(r, t, u) ≤ ϕ(u)ϕ(t),
∆(r, t, u) ≤ ϕ(u)ϕ(r).

The second inequality clearly follows from these two relations. �

3. The Lorentz space Lp,q(X)

In this section, we recall the definition of Lorentz space and discuss some auxil-
iary results that are needed in the proof of the main theorem. Let (X,B, µ) be a
sigma-finite measure space. Given 1 ≤ p < ∞, 1 ≤ q < ∞, we say that a function
f belongs to Lp,q(X, dµ) if

‖f‖p,q =
(
q

p

∫ ∞
0

(t
1
p f∗(t))q

dt

t

)1/q

<∞ .

Given 1 ≤ p ≤ ∞, we say that f ∈ Lp,∞ if

‖f‖p,∞ = sup
t>0

t
1
p f∗(t) = sup

α>0
αλf (α)1/p <∞.
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Here f∗ denotes the nonincreasing rearrangement of f ; namely,

f∗(t) = inf{s : λf (s) < t},
where

λf (α) = µ{x ∈ X : |f(x)| > α}
denotes the distribution function of f .

We recall that ‖.‖p,q is not a norm, since it fails to satisfy the triangle inequality,
but ‖.‖p,q is equivalent to a norm satisfying the triangle inequality (see [SWe],
Theorem 3.21, page 204). Besides this remark, we need two facts from Lorentz
space theory. The first one concerns the norm of the characteristic function; namely,
‖χE‖p,q = µ(E)

1
p , whenever E is a measurable subset of X with finite measure.

The second one is Hölder’s inequality for Lorentz spaces:∣∣∣∣∫
X

fg dµ

∣∣∣∣ ≤ ‖f‖p,q,µ ‖g‖p′,q′,µ
whenever f ∈ Lp,q(X, dµ) and g ∈ Lp′,q′(X, dµ), 1

p + 1
p′ = 1 = 1

q + 1
q′ (see [BS]).

Since the group G has a decomposition of the form G = KA+K, the symmet-
ric space has associated geodesic polar coordinates KA+. Consequently, the G-
invariant measure on X decomposes as dµ = ϕn−1(t)dt dk. Moreover, since we are
dealing with K-invariant functions on X , the Lorentz space that we are concerned
with is equivalent to the weighted Lorentz space on R+, namely

Lp,q(R+, ϕ
n−1(t)dt),

with weight ϕ(t) = sin t χ[0,π], t or sinh t depending on the symmetric space. Let
µ = µn be the measure on (0,∞) given by µn(E) =

∫
E ϕ

n−1(u)du.
Before formulating the proposition which is the key step in the proof of the main

theorem, we define an auxiliary maximal operator, as follows:

Mf(r) = sup
0<t<r

‖f χ(|r−t|,r+t)‖n′,1;µn

‖χ(|r−t|,r+t)‖n′,1;µn

.

Proposition 3.1. Let f be a continuous function with compact support on R+.
Then

Mf(r) ≤ Cn[Mf(r) + ‖f‖n′,1;µn h(r)].
The function is given by

h(r) =
1

ϕ(n−1)(r)
in all cases, except hyperbolic space of dimension n ≥ 3, where

h(r) =

[
1

ϕn−1(r)
+

1

ϕ
(n−1)2
n (r)

]
.

The proof of Proposition 3.1 is particularly transparent in the case n = 2 of the
plane geometries. The volume estimates that it requires in the higher-dimensional
case are somewhat more involved. We devote the next section to a proof of Proposi-
tion 3.1 in the 2-dimensional case, together with a proof of the main theorem based
on Proposition 3.1.

Note. Henceforth we will always assume, in the case of radial averages on the
sphere, that 0 ≤ r, t ≤ π

4 . This assumption is justified at the end of §5.
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Constant convention. Constants below will usually be denoted by C or Cn, and
depend only on the dimension of the space. Their value may change from line to
line.

4. The case n = 2, and proof of the main theorem

When n = 2, the formula (2.1) for the spherical mean value operator becomes

Atf(r) =
1
π

∫ r+t

|r−t|
f(u)

χ(|r−t|,r+t)
∆(r, t, u)

ϕ(u) du.

The basic estimate needed in this case is given by

Lemma 4.1. Let ∆(r, t, u) be as in Proposition 2.1. Then∥∥∥χ(|r−t|,r+t)
∆

∥∥∥
2,∞;µ2

≤ 2[µ2(|r − t|, r + t)]−
1
2 .

Proof. Without loss of generality, we assume 0 < t ≤ r. We write

∆(r, t, u) =
√

[ψ(r + t)− ψ(u)][ψ(u)− ψ(r − t)],
where ψ(u) = u2/2, cosh u or cos u as the case may be. We compute the distribu-
tion function λ of χ(r−t,r+t)/∆.

For each α > 0, let

E(α) =
{
u ∈ (r − t, r + t) :

1
∆
> α

}
.

Then E(α) is given by

E(α) =

{
(r − t, r + t) for α < 1

B−A ,

{u ∈ (r − t, r + t) : 1√
[B−S][S−A]

> α} for α ≥ 1
B−A ,

where A = ψ(r − t), B = ψ(r + t) and S = ψ(u). Now observe that µ2(x, y) =
|(ψ(x), ψ(y))|, the Euclidean measure of the interval (ψ(x), ψ(y)). Consequently,

µ2(E(α)) = B −A for α ≤ 1
B −A.

For α > 1
B−A we split the interval (A,B) into (A, A+B

2 ) and (A+B
2 , B). In the

first interval B − S ≥ B−A
2 , and in the second interval S − A ≥ B−A

2 . Using
these estimates and the foregoing observation regarding µ2, it is easy to see that
µ2(E(α)) ≤ 4

α2(B−A) for α > 1
B−A . Consequently,

λ(α)
{

= B −A for α ≤ 1
B−A ,

≤ 4
α2(B−A) for α > 1

B−A .

It follows that

sup
α>0

α (λ(α))
1
2 ≤ 2√

B −A
=

2
µ2(r − t, r + t)1/2

.

That is, ∥∥∥χ(r−t,r+t)
∆

∥∥∥
2,∞;µ2

≤ 2
‖χ(r−t,r+t)‖2,∞;µ2

=
2

µ2(r − t, r + t)1/2
.

�



SPHERICAL MAXIMAL OPERATOR ON SYMMETRIC SPACES 1175

Proof of Proposition 3.1, for n = 2. Clearly

sup
t>0
Atf(r) ≤ sup

t<r
Atf(r) + sup

t>r
Atf(r).

We estimate each of these terms separately. Using the formula of Proposition 2.1
for Atf(r) and Hölder’s inequality, we obtain

|Atf(r)| ≤ 1
π

∥∥∥∥χ(|r−t|,r+t)
∆(r, t, ·)

∥∥∥∥
2,∞;µ2

∥∥f χ(r−t,r+t)
∥∥

2,1;µ2
.

When t < r, in view of Lemma 4.1, we see that the above is less than or equal to

2
π

∥∥f χ(r−t,r+t)
∥∥

2,1;µ2

‖χ(r−t,r+t)‖2,∞;µ2

.

Since ‖χ(r−t,r+t)‖2,∞;µ2 = ‖χ(r−t,r+t)‖2,1;µ2 (see §3), it follows that (by definition
of M)

sup
t<r
|Atf(r)| ≤ 2

π
Mf(r).

To deal with the case t > r, note first that∫ t+r

t−r
ϕ(u) du = µ2((t− r, t+ r)) = 2ϕ(r)ϕ(t).

Using Hölder’s inequality as before, together with Lemma 4.1 and the foregoing
fact, we get

Atf(r) ≤ 2
π

‖f‖2,1;µ2

(2ϕ(r)ϕ(t))1/2
.

Using the fact that ϕ(u) is increasing (recall that in the sphere case we assume
0 ≤ r, t,≤ π/4), we conclude that

sup
t>r
|Atf(r)| ≤

√
2
π

‖f‖2,1;µ2

ϕ(r)
.

This completes the proof of Proposition 3.1 for the case n = 2.

We proceed to prove the main theorem, assuming Proposition 3.1 (in all dimen-
sions).

Proof Theorem 1.1. A simple computation shows that the function χ(0,∞)

ϕ(r)n−1 is in the

space Ln
′,∞(R+, dµn), n ≥ 2, whenever ϕ has polynomial growth, and also for ϕ of

exponential growth when n = 2. When n ≥ 3 and ϕ has exponential growth, it can
be shown similarly that χ(0,∞)

ϕ(r)p ∈ Ln
′,∞(R+, dµn) if and only if (n−1)2

n ≤ p ≤ n− 1.

Consequently h(r) ∈ Ln′,∞(R+, dµn). So it is enough to show that the operator M
satisfies the inequality

‖Mf‖n′,∞;µn ≤ Cn‖f‖n′,1;µn .

Since ‖ · ‖n′,1;µn is monotone, and since every nonnegative measurable function
can be approximated by an increasing sequence of finite linear combinations of
characteristic functions of sets of finite measure, it is enough to prove the theorem
for functions of the form f = χE for any set E ⊂ R+ of finite µn-measure (see
[SWe], Thm. 3.13, p. 195).
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Now

MχE(r) = sup
0<t<r

[
µn(E ∩ (r − t, r + t))

µn(r − t, r + t)

]1/n′

.

Thus it follows that

{r > 0 : MχE(r) > α} = {r > 0 : sup
0<t<r

MnχE(r) > αn
′},

where

Mnf(r) = sup
0<t<r

1
µn(r − t, r + t)

∫ r+t

r−t
f(u)dµn(u)

is the Hardy-Littlewood maximal operator on R+ with measure

dµn(u) = ϕn−1(u)du.

It is well known that µn is of weak type (1, 1). A proof of this fact for measures
µn satisfying the doubling condition, and hence for measures of polynomial growth,
can be seen, e.g., in [T], page 225. Of course, in the Euclidean case, it is also a
consequence of Wiener’s maximal inequality for ball averages on Rn, when applied
to radial functions. Similarly, for the measures µn of exponential growth, the
desired inequality follows from Stromberg’s weak-type (1, 1) maximal inequality for
ball averages on hyperbolic spaces (see [S]), applied to radial functions.

Thus we have

µn{r > 0 : M(χE)(r) > α} ≤ C

αn′
µn(E).

Consequently,

sup
α>0

α (µn{r > 0 : MχE(r) > α})
1
n′ = ‖MχE‖n′,∞;µn ≤ Cµn(E)1/n′ .

This completes the proof of the main theorem, since µn(E)
1
n′ = ‖χE‖n′,1,µn .

5. The case n ≥ 3

To prove Proposition 3.1 in the case n ≥ 3, we need the following volume esti-
mates. Let η(t) stand for the function ϕ(t)

ϕ′(t) .

Lemma 5.1. Let 0 < t ≤ r.

(i)
∥∥∥∥χ(r−t,r+t)

ϕn−2

∥∥∥∥
n,∞;µn

≤ 2n−2 µ(r − t, r + t)1/n

ϕ(n−2)(r + t)
if η(t) ≤ 1

3
η(r).

(ii)
∥∥∥∥χ(r−t,r+t)

ϕ

∥∥∥∥
n,∞;µn

≤
{
C if ϕ has polynomial growth

C
[1+ϕ(r−t)]1/n if ϕ has exponential growth.

We postpone the proof of Lemma 5.1 to the end of this section, and show first
how to prove Proposition 3.1 for dimensions n ≥ 3 from it.

Proof of Proposition 3.1, n ≥ 3. We have

sup
t>0
Atf(r) ≤ sup

η(t)≤ 1
3η(r)

Atf(r) + sup
η(t)≤ 1

3η(r)

Atf(r).(5.1)

First let us consider the case η(t) ≤ 1
3 η(r), so that in particular t ≤ r. Rewriting

(2.1) as

Atf(r) = Cn [ϕ(t)ϕ(r)]2−n
∫ r+t

r−t
f(u)χ(r−t,r+t)

∆n−3(r, t, u)
ϕn−2(u)

ϕn−1(u)du
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and using Hölder’s inequality for Lorentz spaces, we get

|Atf(r)| ≤ Cn [ϕ(r)ϕ(t)]2−n
∥∥∥∥χ(r−t,r+t)

ϕn−2
∆n−3(r, t, ·)

∥∥∥∥
n,∞;µn

∥∥f χ(r−t,r+t)
∥∥
n′,1;µn

≤ Cn C(r, t)Mf(r),

where

C(r, t) = [ϕ(r)ϕ(t)]2−n
∥∥∥∥χ(r−t,r+t)

ϕn−2
∆n−3(r, t, ·)

∥∥∥∥
n,∞;µn

∥∥χ(r−t,r+t)
∥∥
n′,1;µn

.

It now suffices to prove that C(r, t) is uniformly bounded in r and t whenever
η(t) ≤ 1

3η(r), in order to obtain the desired conclusion, namely

sup
η(t)≤ 1

3η(r)

Atf(r) ≤ CnMf(r).

To prove uniform boundedness of C(r, t), we use the first estimate for ∆ in
Proposition 2.2 and (i) of Lemma 5.1, and obtain

C(r, t) ≤ 1
ϕ(r)ϕ(t)

µ(r − t, r + t)1/nµ(r − t, r + t)1/n′

ϕn−2(r + t)
.

Since n′ is the index conjugate to n, using ϕ(u) ≤ ϕ(r + t) for u ≤ r+ t (recall the
restriction on r, t in the sphere case) we get

C(r, t) ≤ µn(r − t, r + t)
ϕ(r)ϕ(t)ϕn−2(r + t)

≤ 1
ϕ(r)ϕ(t)

∫ r+t

r−t
ϕ(u)du.

The boundedness of C(r, t) follows from the observation that∫ r+t

r−t
ϕ(u)du = 2ϕ(r)ϕ(t).

Now let us consider the case η(t) ≥ 1
3η(r). Again, using Hölder’s inequality,

|Atf(r)| ≤ Cn [ϕ(r)ϕ(t)]2−n ‖f‖n′,1;µn

∥∥∥∥∆n−3(r, t, ·)χ(|r−t|,r+t)
ϕn−2

∥∥∥∥
n,∞;µn

.

We first estimate

[ϕ(r)ϕ(t)]2−n
∥∥∥∥∆n−3(r, t, ·)

ϕn−3

χ(|r−t|,r+t)
ϕ

∥∥∥∥
n,∞;µn

.

Using the estimate in (ii) of Proposition 2.2, namely ∆(r,t,u)
ϕ(u) ≤ ϕ(t), we get

[ϕ(r)ϕ(t)]2−n
∥∥∥∥∆n−3(r, t, ·)χ(|r−t|,r+t)

ϕn−3ϕ

∥∥∥∥
n,∞;µn

≤ 1
ϕn−2(r)ϕ(t)

∥∥∥∥χ(|r−t|,r+t)
ϕ

∥∥∥∥
n,∞;µn

≤ 1
ϕn−2(r)

3
ϕ′(t)η(r)

∥∥∥∥χ(|r−t|,r+t)
ϕ

∥∥∥∥
n,∞;µn

.
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The last step follows by writing ϕ(t) = ϕ′(t)η(t) and using the inequality η(t) ≥
1
3η(r). Now, writing η(r) as ϕ(r)

ϕ′(r) , we see that the RHS of the above equation
becomes

3
ϕn−1(r)

ϕ′(r)
ϕ′(t)

∥∥∥∥χ(|r−t|,r+t)
ϕ

∥∥∥∥
n,∞;µn

.

It follows from (ii) of Lemma 5.1 that ‖χ(|r−t|,r+t)
ϕ ‖n,∞;µn is bounded uniformly in

r and t. Now observe that ϕ′(r)
ϕ′(t) is bounded whenever ϕ(u) = u, or sinu (again

since we are assuming in the sphere case that 0 < r, t ≤ π/4). The expression is
also bounded for sinhu whenever r − t ≤ 1. Therefore, in these cases,

sup
η(t)> 1

3 η(r)

Atf(r) ≤ C ‖f‖n
′,1;µn

ϕn−1(r)
.

Now it remains to settle the case r − t > 1 for ϕ(u) = sinhu. In this case, we
use the estimate

‖
χ(|r−t|,r+t)

ϕ
‖n,∞;µn ≤

1
[1 + ϕ(r − t)]1/n

of Lemma 5.1.
Using the fact that ϕ′(u) ≈ eu and ϕ(u) ≈ eu for u > 1, we see that

1
ϕn−2(r)

3
ϕ′(t)η(r)

∥∥∥∥χ(|r−t|,r+t)
ϕ

∥∥∥∥
n,∞;µn

≤ 1
ϕn−2(r)

3
ϕ′(t)η(r)

1
ϕ1/n(r − t)

≈ 1
ϕn−1(r)

er−t

e(r−t)/n

≈ [ϕ(r − t)]n−1
n

ϕn−1(r)

≤ ϕ(r)(n−1)/n

ϕn−1(r)
=

1

ϕ(r)
(n−1)2
n

.

This completes the proof of Proposition 3.1 for the case n ≥ 3.

Proof of Lemma 5.1. Consider the Lorentz norm of ‖χ(r−t,r+t)
ϕn−2(u) ‖n,∞;µn , given by

supα>0 α(λ(α))1/n, where λ is now the distribution function for χ(r−t,r+t)
ϕn−2 . An easy

computation shows that

λ(α) =

µn(r − t, r + t) if α < 1
ϕn−2(r+t) ,

µn

(
r − t, ϕ−1(α

−1
n−2 )

)
if 1
ϕn−2(r+t) < α < 1

ϕn−2(r−t) .

Therefore,

sup
α>0

α(λ(α))
1
n

= max

µn(r − t, r + t)1/n

ϕn−2(r + t)
, sup

1
ϕn−2(r+t)

<α< 1
ϕn−2(r−t)

α [µn(r − t, ϕ−1(α
−1
n−2 ))]1/n

 .

Now, observing that η(t) ≤ 1
3η(r) is equivalent to ϕ(r+ t) ≤ 2ϕ(r− t), we take the

obvious estimate of both α and the size of the interval, and conclude that

α
[
µ(r − t, ϕ−1(α

−1
n−2 ))

]1/n

≤ 2n−2 µn(r − t, r + t)1/n

ϕn−2(r + t)
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whenever 1
ϕn−2(r+t) < α < 1

ϕn−2(r−t) . This proves (i).
To prove (ii), first we consider the case when ϕ has polynomial growth. This is

the case with the sphere as well as the Euclidean space. As before, we have∥∥∥∥χr−t,r+tϕ(u)

∥∥∥∥
n,∞,µ

= max

µn(r − t, r + t)1/n

ϕ(r + t)
, sup

1
ϕ(r+t)<α<

1
ϕ(r−t)

α

[
µn(r − t, ϕ−1

(
1
α

)
)
]1/n

 .

We estimate each of these terms separately. Clearly,

µn(r − t, r + t)
ϕn(r + t)

=

∫ r+t
r−t ϕ

n−1(u)du
ϕn(r + t)

≤
∫ r+t
r−t u

n−1 du

ϕn(r + t)
.

The above expression behaves like

rn−1t

ϕn(r + t)
=
t

r

[
r

ϕ(r + t)

]n
,

which is uniformly bounded since t < r and since ϕ(r + t) > C (r + t) (recall that
for the sphere we are assuming that both r and t are less than π/4). Similarly,

αn
[
µn

(
r − t, ϕ−1

(
1
α

))]
≤ Cnα

n

∫ ϕ−1( 1
α )

r−t
un−1du.

The above expression is also bounded, since ϕ−1( 1
α ) < c

α for some constant c.
Now let us consider the case when ϕ has exponential growth. This is the case

with hyperbolic space, where ϕ(u) = sinhu. We assume r + t > 2, since ϕ(u)
behaves like a polynomial for 0 ≤ u ≤ 2; so the previous arguments apply. Then

µn(r − t, r + t)
ϕn(r + t)

≤
∫ r+t
r−t e

(n−1)u

ϕn(r + t)

≤ e(n−1)(r+t)

(n− 1)(er+t − e−(r+t))n

≤ e(n−1)(r+t)

(n− 1)(1
2e
r+t)n

since (r + t) > 2

≤ Cn
er+t

≤ Cn
1 + ϕ(r − t) since both r, t > 0.

Also, using a simple change of variable, we see that

αn
[
µn

(
r − t, ϕ−1

(
1
α

))]
= Cnα

n

∫ 1
α

ϕ(r−t)

sn−1

√
1 + s2

ds.(5.2)

Using the inequality s√
1+s2

≤ 1, we get the estimate

αn
[
µn

(
r − t, ϕ−1

(
1
α

))]
≤ α− αnϕn−1(r − t)

n− 1
.
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A derivative computation shows that this, as a function of α, is maximum when

α = n
− 1
n−1

ϕ(r−t) . Consequently,

α

[
µn

(
r − t, ϕ−1

(
1
α

))] 1
n

≤ n
−1

n(n−1)

ϕ
1
n (r − t)

.

Using the inequality
√

1 + s2 > 1 in (5.2), we also see that

α

[
µn

(
r − t, ϕ−1

(
1
α

))] 1
n

≤ Cn.

It follows that

α

[
µn

(
r − t, ϕ−1

(
1
α

))] 1
n

≤ Cn

[1 + ϕ(r − t)] 1
n

.

This proves (ii), and concludes the proof of Lemma 5.1. �
Radial averages on the spheres. We now explain the reduction regarding the
spherical mean value operator on the sphere. As noted in the argument above, it was
useful to work in the range where the density function ϕ(t) = sin t is monotonic,
namely [0, π/2]. The symmetry of the sphere, as well as of the integral kernel
of Proposition 2.1, allows us to reduce the analysis to this case, and show that
the spherical maximal operator sup0<t<π |At f(r)| on the sphere is controlled by
supt>0 |At f(r)| for 0 ≤ r, t ≤ π

4 , as follows.
First, if f is a K-invariant function on the sphere, then, as we observed before,

f can be identified with a function on [0, π]. Letting f(x) = F (cos r), where
r = d(0, x) is the geodesic distance of x from the north pole, and setting f̌(x) =
F (cos(π − r)), we see that the function g(x) = f(x) + f̌(x) is symmetric about the
equator, i.e., g(x) = ǧ(x). Moreover, if f is nonnegative, we have f(x) ≤ g(x). So
when dealing with the spherical maximal operator we can assume, without loss of
generality, that f is nonnegative and symmetric about the equator.

Since ∆(r, t, u) = ∆(π − r, t, π − u), an easy computation shows that Atf(x) =
(Atf )̌(x) whenever f̌(x) = f(x). Consequently, if f = f̌ , the function Atf(r)
is completely determined by its values on 0 ≤ r ≤ π

2 , 0 ≤ t ≤ π. Now note
that we can assume, in addition, that 0 ≤ t ≤ π

2 . This follows from the relation
Atf(r) = Arf(t), which is a consequence of the symmetry of ∆ in r and t.

Now we go one step further. We claim that Atf(r) is controlled by the values it
assumes when both r and t are less than π/4. This follows from the inequality

sup
0<t<π/2

Atf(r)χ(0,π/2)(r) ≤ C sup
0<t<π/4

Atf2

(r
2

)
χ(0,π/2)(r),

where f2(u) = f(2u). To establish this fact, note that, assuming r, t ≤ π/2, we
have

sup
0<t<π/2

Atf(r) = sup
0<τ<π/4

A2τf(r).

Writing ρ = r
2 , we see that

A2τf(r)χ(0,π/2)(r) = A2τf(2ρ)χ(0,π/4)(ρ).

Now

A2τf(2ρ) = (sin(2ρ) sin(2τ))2−n
∫ 2τ+2ρ

|2τ−2ρ|
f(u) ∆n−3(2ρ, 2τ, u) sinu du.
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Using a change of variable and the fact that sin(2v) ≤ 2 sin v for 0 ≤ v ≤ π
2 , we

conclude that ∆(2r, 2t, 2v) ≤ 24∆(r, t, v). Since sin 2t ∼ 2 sin t for 0 < t < π/4, we
see that

A2τf(2ρ) ≤ CAτf2(ρ) for 0 < ρ < π/4.
This proves the inequality.

Finally, since the Lorentz spaces Lp,q(X, dµ) are defined in terms of distribution
functions, they are dilation-invariant as long as the measure µ is of polynomial
growth. Since this is the case with the sphere, the foregoing inequality allows us to
assume that the function ϕ(u) = sinu is increasing in the region (|r − t|, r + t).
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