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ABSTRACT 

We establish an endpoint weak-type maximal inequality for the spherical maximal operator applied 
to radial functions on real rank-l symmetric spaces of dimension n 2 2. More explicitly, we prove 
the Lorentz space estimate 

for every radial function in the Lorentz space Ln’.‘(X) associated with the natural isometry-in- 
variant measure on X. The proof uses only geometric arguments and volume estimates and applies 
uniformly in every dimension. 

1. INTRODUCTION 

Let X be a noncompact symmetric space of real rank 1. Then X can be realised 
as the homogeneous space G/K, where G is the group of isometries of X and K 
the subgroup that fixes a specified point 0 called the origin in X. Then K is a 
maximal compact subgroup of G. Let S,(x) denotes the geodesic sphere in X 
centered at x and of radius t. Let pLt denotes the normalised surface measure on 
the sphere S,(X) induced by the G-invariant measure on X. Then the spherical 
mean value operator on X is defined to be 

M-(x) = ~yEsr(xrf.(Y)dPr4Y), t > 0. 

Consider the maximal operator defined by 

63 



The LP mapping properties of M has been first studied by E.L. Kohen, in 1980, 
where he considered the case of hyperbolic spaces (see [Ko]). He showed that M 
is bounded on LP(X) for p > rz/(n - l), 12 > 3, where y1 is the dimension of the 
hyperbolic space X. This is the analogue of Stein’s spherical maximal theorem 
in [W*, 12 > 3, proved way back in 1976, see [Sl]. That the result also holds for the 
Euclidean plane is due to Bourgain [Bl] which was established a decade later. 

The above maximal operator is significant in various contexts. For instance, in 
connection with the study of pointwise ergodic properties of radial measures on 
symmetric spaces, Amos Nevo and E.M. Stein [NS], studied the LP mapping 
properties of M. They showed that the LP boundedness of M holds in the same 
range i.e. for p > n/(n - l), y1 > 3 for more general symmetric spaces X, of real 
rank one, where n is the dimension of the symmetric space X. Also the case of the 
circular maximal function on the two dimensional symmetric spaces has been 
settled by A.D. Ionescu [I]. In all these cases, the range of p, i.e. a < p 5 03 is 
optimal in the sense that for every 1 < p _< n/(n - l), there exist an f E LP(X) 
such that Mf(x) = cc for a.e. x E X, as shown by the counter example in [N2]. 

The above results however, do not say anything about the behavior of the 
maximal function M at the end point rz/(n - 1). As the counter example in [N2] 
shows, the operator fails to map even L’l(“- ‘) to weak L”l@- ‘1. 

In this paper we take up the question of end point estimate for the maximal 
operator M at the end point n/(n - 1). We show that M is restricted weak type 
(n/b - l),nl(n - 1)) on radial functions on the symmetric space X. The moti- 
vation for this is a previous work, see [KR], where the authors proved an end 
point estimate for the fractional maximal operator associated with the sphe- 
rical mean value operator on I%“. The present work also extends the end point 
estimate proved in [NR] for the constant curvature spaces, to the set up of 
general real rank one symmetric spaces of non compact type. 

To state the results more precisely, let us consider the Lorentz space 
LPlQ(X, dp) on the symmetric space X, with respect to the G-invariant measure 
p. Let 11 jlP,q denote the norm in LP>q(X, dp). See section 4 for the definition of 
LJ’lq spaces. Our main result is the following 

Theorem 1.1. Let X be a noncompact symmetric space of real rank-l and ofreal 
dimension n. Then for every n 2 2 there exist a constant C,, independent off such 
that the inequality 

holdsfor all radialfunctions in Ln’>’ (X, dp). Here n’ = n/(n - 1) is the index con- 
jugate to n. 

By interpolation with the obvious estimate IIMfll, 5 Ilfll, we get, as a cor- 
ollary, the LJ’ boundednes of M on radial functions in LP(X), p > n/(rz - l), 
for all n 2 2. 
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Our approach is to exploit the geometry of the symmetric spaces to estimate 
the maximal function directly. Here we depart from the traditional way of 
harmonic analysis using the spectral theory or spherical functions. The novelty 
of our method is the use of the convolution algebra structure of radial measures 
on the rank one symmetric spaces, which has been fruitfully employed in the 
case of constant curvature symmetric spaces, see [NR]. 

The convolution structure of radial functions on rank-l symmetric spaces 
has been studied extensively for a long time. For a detailed account of this see 
the survey article by Koornwinder [K] and the references therein. 

The convolution algebra structure of radial functions on the noncompact 
symmetric spaces of real rank-l has been explicitly computed in [K], see also 
[FJ-K]. In fact the convolution structure of radial measures is the same as the 
convolution structure of radial functions on the rank-l symmetric spaces. 
However the form of the structure constants derived in the above papers is not 
suitable for the purpose of our analysis. So we derive suitable explicit form of 
the structure constants, and that is precisely the kernel in the formula (3.2), for 
the spherical mean of a radial function on X. Moreover, the kernel we present is 
geometric in the sense that it is given in terms of three geodesic distances Y, t 
and U, (see the formulas (2.3) and (3.2)). 
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2. GEOMETRY OF THE NON COMPACT RANK-1 SYMMETRIC SPACES 

Recall that if X is a symmetric space of real rank 1, then X can be realised as 
the homogeneous space G/K, where G is the group of isometries of X and K, 
the maximal compact subgroup of G. In our situation G is a simple non com- 
pact group of finite centre. 

The structure theory of the noncompact (as well as compact) symmetric 
spaces is well known, see for instance [Hl]. The basic structure theory that we 
require involves the Cartan decomposition and the knowledge of the structural 
elements, namely the maximal compact subgroup K, the maximal abelian 
subgroup A and the centraliser of A in K, denoted by M. These have been ex- 
plicitly computed in the survey article by Koornwinder, [K]. We adopt these 
materials and the basic structure theory required for our analysis, from the 
above survey article. 

The non compact symmetric spaces of real rank-l have the following classi- 
fication. Let (G, K) be a symmetric pair associated with the symmetric space X. 
Then up to an equivariant (global) isometry, the noncompact symmetric spaces 
of real rank-l correspond to one of the following pairs (G, K) 

1. G = S&(l,n), K = SO(n) n E z+; n 2 2 
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2. G= SU(l,n), K = S(U(1) x U(n)) y1 E Z+,lt > 2 
3. G=SP(l,n), K=SP(~)XSP(~)~EZ+,~>~. 
4. G = Fd(-20), K = spin 9 

consisting of three series of classical one’s and an exceptional one. Here 
SO0 (1, PZ) denotes the connected component of SO( 1, n) containing the identity. 
The first three series of symmetric spaces can be studied uniformly by looking 
at them as hyperbolic spaces over suitable fields, see [K]. In this paper we only 
consider these symmetric spaces. However the arguments of this paper are also 
valid for the exceptional case once the kernel estimates (4.2) are established for 
this case, which corresponds to d = 8 and n = 2 in our analysis. 

Let F = R, C or W, the skew field of quarternians with real dimension 1,2, 
or 4. Let U(m, E) denote the unitary group on IF” and U( 1, n; [F) the Lie 
group of linear operators on [F1 +n which leave invariant the hermitian form 
xo~~-xl~~~~~-x,y;l,x,yE[F . ’ +’ Then U( 1, n; [F) is a non compact simple 
group of finite centre, see [K]. 

Consider the pair (G, K) where G = U(1, n; [F) and K = U( 1, IF) x U(n, IF) 
which is the subgroup of GL(n, IF) given by 

(2.1) K = ; “w 
cc > 

: v E U(1, lF), w E U(n, lF) 
1 

For [F = HI, the pair (G, K) matches the third series. For [F = R or C, the groups 
U( 1, n; E) are reductive groups bigger than X00( 1, n) and SU( 1, n) respectively. 
However they yield the same symmetric spaces as the pairs in (1) and (2), since 
these groups have the same simple part as U( 1, n; R) and U(1, n; C) respec- 
tively. We observe that the symmetric space U( 1, n; [F)/( U( 1,5) x U(n, IF)) is of 
dimension dn where d is the dimension of [F over R. 

Now we note down some of the structural elements of U( 1, n; E). The general 
form of an element in the maximal compact subgroup of U( 1, n; E) is given by 
(2.1). The group U( 1, n; [F) is of (real)rank 1, i.e. the maximal abelian subgroup 
A of U( 1, n; [F) is one dimensional. In fact any element a, in A is given by 

( 

cosht 0 sinh t 
(2.2) a(t) = 0 m-1 0 

1 
) tg[W 

sinh t 0 cash t 
where I,- i is the (n - 1) x (n - 1) identity matrix. Let A+ denote the 
semigroup {at : t 2 0). Denote by M, the centraliser of A in K, i.e. 
A4 = {k E K : ka = ak, Qa E A}. Then A4 is given by 

v 0 0 
M= 

I ) 
ova :vE U(l,IF),VE U(n-l,[F) 
0 0 v 1 

With K and A+ as above, the group G = U( 1, n; iF) has the Cartan decomposi- 
tion G = KA+K. 

We use the above structure theory to derive a distance formula on the rank-l 
symmetric space X = G/K. First we observe that, since G has the KAK de- 
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composition, the symmetric space G/K has the geodesic polar decomposition 
KA,. The orbits of A in X are two sided unit speed geodesics and for any fixed t, 
the K orbit {kat.K : k E K} are spheres in X centered at the origin. It follows 
that the K- orbit of the point x = gK is the geodesic sphere centered at the ori- 
gin and radius t, if g = kla,kz. 

The geodesic distance of a point x = gK from the origin 0 = K, in X = G/K 
is given by d(K,gK) = t, if g has the Cartan decomposition kla,kz. More gen- 
erally define d(glK,gzK) = d(K,g;‘gzK). i.e. the geodesic distance between 
glK and g2K is given by the A- part of gr’g2 in its Cartan decomposition. 
Clearly d defines a G-invariant metric on X. Since K fixes the origin we also 
have d(0, x) = d(0, kx), ‘dk E K, x E X. Moreover since A4 commutes with A, 
the geodesic distance d depends only on the coset of k in K/M. 

Now we prove a distance formula for the geometry of the rank one sym- 
metric spaces. Recall that the distance between two points x1 and x2 in the Eu- 
clidean space is given by the cosine formula 

Ix - y12 = lx12 + jy12 - 2~x~~y~cos~ 

where 0 is the angle between the straight lines from the origin passing through x 
and y respectively. 

Proposition 2.1. Let X be a rank-l symmetric space of non compact type. Let 
x1 = kla,K, x2 = kza,K are two points in X ident@ed with G/K. Then the geo- 
desic distance u between x1 and x2 is given by 

(2.3) cash u = I cash r cash t - VW,,, sinh r sinh tl 

where v is the (0,O) th entry and w~,~ the (n,n) th entry in the matrix of k;‘$z as 
given in (2.1). Here 1 . 1 denotes the modulus in thejield [F given by lwl = (ww)? 

Remark 1. Notice that r = d(O,xl) and t = d(O,x2). Therefore this is the ana- 
logue of the cosine formula in OX”. The proof of the above geometric identity 
becomes very elementary using group theory. The case of the real hyperbolic 
spaces, i.e. the spaces of constant curvature, has already been dealt with in [Nl] 
and the proof follows along the same line of arguments. 

Proof. Recall that the geodesic distance between glK and gzK is given by the 
a-part of g;‘g2. Thus the geodesic distance between x1 and x2 is given by the 
a-part of g = a-,k;lk2at. First we observe that a-part of g is given by the 
(0,O)th entry of g E G = U( 1, n; [F). In fact the modulus of the (0,O)th entry of 
g E U(1, n; lP) is K bi-invariant and is cash t if g = katk’, k, h! E K. A direct 
matrix computation using the form of the structural elements k;‘k2, a, and a, 
given by (2.1) and (2.2) shows that the (0,O)th entry of a-,kr1k2at is 
v cash r cash t - w,,, sinhr sinh t if kc’k2 is as in (2.1). Since /VI = 1, we get (2.3) 
upon taking modulus in [F. Ll 
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Remark 2. Setting s = ]vw~,~] , we can write VW,,~ as SW with 0 5 s 5 1, 1 w( = 1. 
When [F = C, w = (co& + i sin Q) and for [F = E-U, 

(2.4) w= (cos8+sin8coscpi+sin0sincpcos$j+sin@sin$sin$k), 

where 0 5 0, ‘p < r, 0 5 ~JJ 5 27r, using the standard notation for basis in C and 
[HI. With these notations, the formula (2.3) can be rewritten as 

(2.5) 
cosh2 u = (cash r cash t)2 + s2(sinh r sinh t)2 

- 2s sinh r sinh t cash r cash t cos 0 

where cos B = Re(Vw,,+). Thus for fixed r and t, the distance u depends only on 
s = ]vw~,+] and the angle 8. When IF = [w, v = 1 and w,,, = co&, 0 5 0 < QT and 
VW,, in (2.3) becomes just cos 0, see [Nl], [NR] . Thus in the case of the constant 
curvature spaces, the distance between the points kla,.O and kza,.O depends 
only on the angle between the geodesics n(t) = {a,.0},20 and 72(t) = {ar.O}r>O 
at the origin see [NR]. However in the case of non constant curvature the d&- 
tance between x1 = kla,K and x2 = kza,K also depends on the sectional cur- 
vature at the origin determined by the infinitesimal generators of a, and at. This 
explains the presence of two variables s and 0 in the distance formula. 

3. SPHERICAL MEANS OF RADIAL FUNCTIONS 

The spherical mean value operator on the symmetric space is obtained by 
averaging over geodesic spheres centered at x. Since geodesic spheres centered 
at origin are K-orbits, the spherical mean value operator is also given by the 
orbital average 

&f(x) = lk E Kf(xkK)dk, x E X = G/K, 

where dk is the haar measure on K. It follows immediately from the above for- 
mula that AS is K-invariant wheneverf is. Consequently for a radial function 
f, we have the formula 

(3.1) &f(x) = &f(r) = /kEKf(a,ka,K)dk if x = kla,k2 

r = 1x1 := d(O,x). 
Notice that iff is a K-invariant function on X = G/K, then f is a function 

that depends only on d(a,K, K). Thus there exists a function F on 1w+ such that 
F(cosht) =f(atK). With an abuse of notation, here and elsewhere, we writef(t) 
for F(cosh t). First we prove the following formula for the spherical mean of a 
radial function on X. 

Proposition 3.1. Let f be a radialfunction on X. Then Aatf is given by 

(3.2) AJ(r) = 1”’ &(r, t, u)f(u) du 
IT-4 

where &(r, t, u) is given by 

68 



(3.3) J’ 
I 

ICd(r, t, U) = C(d, IZ) sinh u cash u 
[A,(r, t, u)] d-3(1 - s2)V-’ sds 

IYI abd-2 

where CC4 n) = $ I.c+f$!i,+ and 
2 2 

(34 As(r, t, u) = d [(bs)2 - (a - c)2][(a + c)~ - (bs)2] 
2a 

with a = cash r cash t, b = sinh r sinh t and c = coshu, for d = 2 or 4. Here d de- 
notes the dimension of thejield [F. When d = 1 

2”-3T(5) AI (r; t, u) 
~l(r’ t’ ‘) = r(~)r(~) (sinhr sinh t)~ 

Proof. Since f is radial, as observed before, f (a,ka,K) depends only on the 
distance of a,ka,K from the origin. Rewriting (3.1) as 

Atf (I’) = lk,,f (auK)dk 

where u is given by the cosine formula (2.3) for the geometry of X. 
Since a,K = a,ka,K depends only on K/M, the above integral reduces to an 

integral over the quotient space K/M which can be identified with S(F*), the 
unit sphere in F”. Therefore writingf(a,K) as F(coshu), we have in view of 

(2.3) 

(3.5) F( / cash r cash t - yn sinh r sinh tl)dp”*- ’ (y) 

where y = (yt,y2,. . . ,yn) E S(Fn), d = 1,2 or 4 and yn = VW,,~ as in (2.3). No- 
tice that S(F”) is the U(n, F) orbit of a unit vector in F”, which is a sphere in 
[F” = [wdn. 

Since F depends only on the last variable, it is constant on the dn - d di- 
mensional spheres SC, _ lyn,2)1,2 (IF”) = {y E S(P) : C~m71’(yi12 = 1 - ]yn12} of ra- 
dius (1 - lynl ) 2 1’2 for each fixed lynj, 0 5 lyn I 5 1. Hence the integral reduces 
to an integral over the unit disc lynl < 1 in IF with a Jacobian factor 
(1 - lyn12)V’: 

(3.6) .(d;‘$; j- 7-)7r+ lb451 F( 1 cash r cash t - yn sinh r sinh tl) (1 - Iyn I’)*dy, 

When d = 1 as we know, y,, = cos 0 and the above becomes a one dimensional 
integral. When d = 2 or 4, set yn = SW where w is given by (2.4). Since 

/ cash r cash t - SW sinh r sinh tl 

depends only on s and cos 0 = Re w as observed before, using polar co ordinates 
in F = [Wd the above integral can be reduced to an integral of the form 
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I;( ] cash r cash t - SW sinh r sinh tl) J,,(s, e)ds d0 

for d = 2 or 4, where 

27rg 
J&, e) = q$yl) (1-s) 2 ~sd-1(Sin~)d-2. 

Now we take s and u given by (2.5) as the new variables. The Jacobian of this 
change of variable is given by 

d8ds = 
sinh u cash u 

abs sin B 
duds 

for d = 2 or 4. When d = 1 we take u given by (2.5) (with s = 1 ) as the new 
variable and the Jacobian of the change of variable in this case is given by 
de = sinhudu 

b 
Set A = A, = bs sin 9 for d = 2,4 and A = b sin 8 for d = 1. Eliminate 6 using 

(2.5) we get (3.4). It follows from (2.5) that u E (Ir - tl, r + t) as 0 varies between 
0 and K. Also since A: = (bssinQ2 2 0, from (3.4) we see that s 2 17 I. Thus 
we get (3.2). 0 

Remark 3. When d = 1, by eliminating 6’ using the cosine formula (2.3), we get 
the following ‘symmetric’ formula for A (see [NR]): 

A(r,t,u) = [sinh(l+i+’ ) sinh(‘+l-“) sinh(r-i+U) 

sinh ( 
-r+t+u l/2 >I 2 . 

4. THE LORENTZ SPACE Lpaq(x) AND THE KERNEL ESTIMATES 

In this section we recall the definition of Lorentz space and discuss some aux- 
iliary results that are needed in the proof of the main theorem. Let (X, 23, b) be a 
sigma finite measure space. Given 1 < p < q 1 5 q < 00, we say that a func- 
tionf belongs to LPsq(X, dp) if 

Ilfll,,, = (gy(t$yt))qyq< cc . 

And given 1 < p I co, we say that f E LP>m if 

Ilf llp,cc = sup+(t) < a. 
t>o 

Heref* denotes the non increasing rearrangement off, namely 

f*(t) = inf{s : Af(S) < t} 

where 

70 



denotes the distribution function off. 
We recall that I] . ]lp,4 is not a norm, as it fails to satisfy the triangle inequality, 

but Il.llp,q is equivalent to a norm satisfying the triangle inequality, (see SW 
Theorem 3.21, page 204). We need to recall two more facts from Lorentz space 
theory. The first one concerns the norm of the characteristic function; namely 
IIXEllp,g = PPT, h j w enever E is a measurable subset of X with finite measure. 
The second one is the Holder’s inequality for Lorentz spaces: 

wheneverf E Dq(X, dp) and g E Lfi)d(X, dp),; + $ = 1 = f + $, (see [BS]). 
Another fundamental result that we use is the following theorem from Stein 
and Weiss’ book [SW, Theorem 3.13, p. 1951. 

Theorem 4.1. Let (X, M, ,n) b e a a-finite measure space. Suppose T is a linear 
operator which maps the finite linear combinations of characteristic functions XE 
of sets E c X of$nite measure into a vector space V, that is endowed with an order 
preserving norm II . II. If 

IITxdI 5 cIIxEllp,l 

where C is independent of E, then there exists a constant A such that 

IlT’f II i Allf Ilp,l 
for allf in the domain, D(T), of T. 

The measure space (X, p) that we are concerned with, consists of a rank one 
symmetric space X and the G- invariant measure on X. Since the group G has a 
decomposition of the form G = KA+K, the symmetric space has the associated 
geodesic polar coordinates KA,. Consequently the G-invariant measure on X 
decomposes as dp = sinhd*- ’ t coshd- ’ t dt dk, (see [K]). Moreover since we 
are dealing with K invariant functions on X, the Lorentz space that we are 
dealing with is equivalent to the weighted Lorentz space on R+, namely 
LPl4(Iw+; w(t)dt), with weight w(t) = sinhd”- ’ t coshd- ’ t. In the rest of this pa- 
per dp( t) refers to the measure on R+ with the weight sinhdn- ’ t coshd- ’ t. 

It is easy to see that the above theorem also holds for sub linear operators. We 
need to use only a special case of this theorem with V = LP~O”(R+, dp(t)). 

Now we prove the following kernel estimate. Set Kd(r, t, u) = si~+$(~‘~+,(,j 
where &(r, t, U) be as in Proposition 3.1. 

Proposition 4.2. Let Kd(Y, t, u) be as above with d = 1,2 or 4. Then we have the 
following estimate. 

(4.1) 

- 
sinh r sinh t sinh u(cosh r cash t cash u)‘:’ (sinh:)dn-3 A (sinhi)“’ 
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for d = 1,2 or 4. Here A denotes the minimum. 

Proof. The case d = 1 has already been dealt with in [NR]. However for the 
sake of completeness and to highlight the uniformity of the kernel estimates in 
all the cases d = 1,2 and 4 we brief this case as well. When d = 1, 

l&r, t, 41’ - 3 
K1(r’ t’Y) = [sinhr sinht sinhulnM2’ 

Since A = sinhr sinh t sin 0 as seen in the proof of Proposition 3.1, we have the 
inequality 

A 5 sinh Y sinh t. 

More over, by the symmetry of A in Y, t and u, as seen in Remark 3, we also have 

A 5 sinh r sinh u and A 5 sinh t sinh u 

which yields the inequality 

A 
< sinh r A sinh t. 

sinh u - 

The required estimate, for the case d = 1 follows immediately from these two 
inequalities. 

Now consider the cases d = 2 and 4. For simplicity we use the notations 
a = cash r cash t, b = sinh r sinh t and c = cash u. Equation (3.4) can be written 
as 

2aA,(r, t, u) = b2 ([g - (5-q [(32-s2])“2 

Since (y)2 5 s2 5 1, v+)” - s2 = $, it follows from (3.3) and (3.4), that 

Kd(r, 4 u) 

1 (b,/Z)d-3 ’ 

M (sinhu)d’2-2(cosh u) d-2 (ab) d-2 
[ 

1~1 
(1 _ ,2)--l [$2 _ r$)2]yj& 

By a change of variable the above integral can be reduced to a gamma integral, 
i.e. 

s l (1 -@Ll 2 

IFy 

[s - (?!!)2]‘s& 

Consequently, 

(4.4 Kd(r, t, u) = dn- 1 UT) b(ac)v (sinh u)dn-2 
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Since [ 1 - (y)‘] V~ 1, it follows from (4.2), that 

We also claim that 

In view of this inequality, from (4.2), we also get the estimate 

< r(+g)r(y) 1 1 1 -__ - dn- 1 r(T) b (4 
‘?sinh~sinh~“-~(~)’ 

This proves the estimate (4.1). 
To complete the proof of the Proposition we need to prove the claim (4.3). 

Since b = sinh Y sinh t, (4.3) is equivalent to showing 

(4.4) (1 + sinh2 t)c2 - 2ac + a2 - b2 - sinh2 t > 0. 

A direct verification shows that a2 - b2 - sinh2 t = cash’ r. Since 1 + sinh2 t = 
cosh2 t the LHS of (4.4) is (c cash t + cash Y)~ which is clearly non negative. This 
proves the claim. q 

Now we prove the following lemma which contains the essential volume esti- 
mates involved in the proof of the Proposition 5.1. 

Lemma 4.3. 

II 
X(IY-&r+t) 

sinh u II dww 
5 [cosh(r + t)]v for d = 2,4 

< [cosh( Ir - tl)]$ for d = 1. 

Proof. Recall that 

II 

where X is the distribution function of Xi’rs.nt:f’) given by 

if O<a<. 
1 

smh(r + t) 
if sinh(t + t) < Q < 1 

sinh( Ir - tl) 

if ~2. 
1 

smh(lr - tl) 
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It is easy to see, after a change of variable that 

(4.5) 

which is a decreasing function of (I: for d = 2 and 4. Therefore for 6 _< 

CY < sin& ti) 

It follows that 

x(r - t, r + t) 
II 

= cL(lr - 4, r + t)& 
sinh u dvw sinh(r + t) ’ 

Now 

,4Ir - tl,r + 4 = 
f 

+’ sinhd”-’ u coshd-’ udu 
[sinh(r + t)ldn lb--f1 sinhd”(r + t) 

1 
s 

r+t 
I 

sinh2(r + t) 
sinh u coshd - ’ udu 

Ir- tl 

L coshd-2(r-t t, 
sinh2(r + t) f 

r’t sinhu coshudu 
lr- tl 

I 
coshd-2(r + t) cosh[2(r + t)] - cosh[2(r - t)] 

2 sinh2(r + t) 2 

5 coshdP2(r + t). 

This proves the Lemma 4.2 for the case d = 2 and 4. The case d = 1 is slightly 
more complicated. In fact when d = 1, (4.5) does not define a decreasing func- 
tion of CX. However using the fact that ----$m M 1 

for s > 1, we can directly estimate (4.5 5 
lforO<sI land*=- 

‘&l&h gives the required estimates. (se: 
NW- 0 

5. THE PROOF OF THE MAIN THEOREM 

In this section we prove some auxiliary results and then prove Theorem 1.1. Let 
It4 be an auxiliary maximal function on R+ defined by 

Mf (4 = 
sup IlfXCk tl,r+ t) Il~,I,p 

tanh t < f tanh I IIX~lr-fl~~+f~ll~,*,~ . 

Recall that p is the measure on Iw+ with density sinhd”- ’ u coshd- ’ U. The main 
step in the proof of Theorem 4.1 is the following control of the spherical max- 
imal operator. 
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Proposition 5.1. Let M be as in Theorem 1.1 and let f be a radialfunction. Then 
we have the following inequality 

Mf(r) 5 Mf6-J + h(r) llfll~,~,, 

where M is the maximal function de&zed above and 

(5.1) h(r) = XW) + X(1&=) 
(sinhr)dn-l (sinhr)$&dn’d-2) 

ford = 1,2or4. 

Proof. Clearly 

sup I"bf(r)I 5 sup I.&f(r)1 + SUP lJbf(4l. 
t>o tanh t < 4 tanh r tanh t >ftanhr 

Let us consider each of these terms separately. Rewrite the formula (3.2) as 

(5.2) .&f(r) = S~i’,~~(r,t,u)f(u)dji(u) I t 

where &(r, t, M) is as given in Proposition 4.2. Using HGlders inequality, we get 

where 
I C(r, Wtf(4 

C(r, t) = IIX(lr-tl,r+t)w? t> ~)Ildn,m,~lIX(lr-tl,r+t) II&,*+. 

When tanh t < 5 tanh r, using the estimate 

&(r, 4 4 I 
4y 

b(ac)y sinhd”-*(u) 

of Proposition 4.2, and that c = coshu 2 cosh(lr - tl), we see that C(r, t) is at 
most 

4v 

b[a cosh(lr - tl)]v 
IIXW tl,r+t) ll---““-,l,p 

dn,m,k 

4y 1 
< 

b[a cosh(jr - tj)]? sinhd”-*(lr - tl) 
IIX(lr-tl,r+t)Ildn,m,~ IIX(lr-tl,r+t)ll~,1,~~ 

Now observe that tanh t < itanhr if and only if sinh(r + t) < 2 sinh(r - t) if 
and only if cosh(r + t) < 2cosh(r - t). Using this and the fact that Ij~Ell~,~,+ = 
p(E);, we see that the RHS of the above is at most 
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2dn-2~((jr - tl,r + t)) 2V+d-3 

sinhdnm2(r + t) cosh”sl(r + t)k# ’ 

Since both sinh and cash are increasing functions, we see that 

P((lr - 47 r + t>) < coshd-‘(r + t) [‘I’, sinhudu 
sinhd*-‘(r + t) - I t 

- 2 coshd- ’ (r + t) sinh r sinh t. - 

It follows that C(r, t) 5 2dn+d-4+v, whenever tanh t < 3 tanh r. Consequently 

sup I&f(r)I 5 2dn+d-4+~Mf(r). 
tanh t < 4 tanh I 

Now let us consider the case tanh t > 3 tanh r. Again in this case, using Holders 
inequality in (5.2), we see that 

As before using the estimate 

Kd(r, t, u) < 

4y 

gsinh”-‘fr) sinh(u) 

of Proposition 4.2, and the fact that c = coshu > cosh(lr - tl), we see that 

IIKdr, t, u)x(lr- tl,r+ t) idn,cqp 

4&y 1 
I 

II 
x(lr - 4, r + t) 

b(~, cosh( Ir - tl))? sinhdnp3 r sinh u II dvw 

5 
3 2v 4y x(lr - tl, r + t) 

sinhdnL1 r @(‘+t)[Co&(lr - tl)]? /I sinh u /I . dww 

Here we have used the fact that a M eY+t and bcosh(lr - tl) = bcosh(r - t) > 
1 . 3 sin h2 r whenever tanh t > 3 tanh r. When d = 2 or 4, using the estimates of 
Lemma 4.3 we see that the above is at most 

49 (je$$‘+“) 
sinhd”- 1 r ,?(I+ t)evlY- tl 

4dg 2ey(’ + 4 
I 

sinhd” - ’ r e(d - 2) rvtetAr 

49 2 1 
5 sinhd”-’ r ,[d-2-%](rvt) e(t/\r)(l-$& ’ 

We also observe that 

1 for r<l 
1 

Jd -2)9(r) = 
1 
(d -Z)(dn I) for r> 1 

(sinh r) dn 
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It follows from these observations that 

XUP) 
(da-l)(dntd-2) 

(sinhr) dn 

This completes the proof of the proposition, for d = 2 and 4. Similarly using the 
estimate of Lemma 4.3 for d = 1, one can get (5.1) for d = 1 as well. (See 
tNRI1. IJ 

Now we prove the main theorem. 

Proof. (of Theorem 1.1) To prove that M defines a bounded operator from 
,?I#i~‘(R+, dF) to D+(R+, dp), in view of Proposition 5.1, we need only to 
show that 

(5.3) ll~fll&+rp 5 cllfll~,l,, 
(5.4) llw&,co;IL 5 CQ. 

First we show (5.4), i.e. the function h(r) E I~*;~(lR+,dp). In fact we show 
that the functions 

if and only if p < dn - 1 and 

‘(‘F) h2(r) = ___ 
sinhq(r) 

E &T,~ (R+ , dp) 

if and only if q 2 (“~1)(~‘d-2). 
Let Xi denotes the distribution function of hi, i.e. 

Xi(a) = P({U > 0 : hi(u) > a}), i = 1,2. 

We have 

1 
I-L@> 1) if O<a!<- 

x1 = 
smhP( 1) 

p(O, sinh-’ (o-j)) if & I cr < 00. 

By a simple change of variable we see that 

Therefore for Q! 2 & and 0 I y < 1, 

~(0, sinh-‘(o-i)) x cx-$. 
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Consequently 

if and only if p 5 dn - 1. 
-- Similarly one can show that AZ(Q) M ok dn+qd-2, for cx near 0. Hence 

p211qco.p = sup *[A+!)]~ < cc > 1 
n>&ij 

if and only if 4 2 (dn-1)(~+dP2). 
To prove (5.3), in view of Theorem 1.2, it suffices to consider only 

F=xE,ECR+, with p(E) < oo. For notational convenience, we assume 
Y > t, so that ]Y - tl = r - t. Now, 

WXE) (r) = SUP, < t < r 
p(E n (Y - t, r + t)) %+ 

PcL((r - t, r + t>> 1 
it follows that 

{I” > 0 : ktXE (?‘) > Cl!} = {r > 0 : kfd,+XE (r) > Cl’“} 

where 

s 

r+t 
Md,nF(r) = SuPo<,<,(~(r-t,r+t))-’ IF (4 I444 r-t 

which is the “truncated” Hardy Littlewood maximal operator on R+ with 
measure &(u) = sinhd” - ’ (u) coshd- ’ (u) du. Observe that the measure p does 
not satisfy the doubling condition as it has exponential growth. However Md,n 
is still weak type (1, l), as proved by Stromberg, see [S]. It follows that 

p({r > 0: Md,nXE(r) > a}> 5 __ 
giFi 

Therefore 

This proves (5.3) and completes the proof of Theorem 1.1. 0 
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