

What We're Learning about Reionization from Metal Absorption Lines

AND

IGM Temperatures

George Becker (KICC)

Feb 16, 2010 Allahabad

Overview

- Introduction to Reionization
- Metal Lines
 - * Recent surveys for metal lines (C IV and O I)
 - Implications for star-formation at z > 6
- # IGM Temperatures
 - * New Measurements over 2 < z < 5</p>
 - Implications for He II reionization

"Reionization"

A) A riddle inside a mystery, wrapped in an enigma.

- B) A process whose properties can be predicted from first principles in numerical simulations, without need for observations.
- C) An event for which interpretation of the existing data requires already knowing the "correct" answer.
- D) A somewhat over-rated "landmark" event in the history of the universe whose importance is surprisingly difficult to justify to friends and family.

- Steve Furlanetto

z=14.6

Marcelo Alvarez

Key Questions

Understanding hydrogen and helium reionization will help us to answer:

- When and how did the first stars and galaxies (and AGN) form during the first 1 Gyr after the Big Bang?
- * How did reionization affect affect subsequent galaxy and AGN formation?
- What it the detailed structure of the galaxy-IGM network?
- How do ionizing photons escape from galaxies and propagate through a neutral / ionized medium?
- * How do metals get mixed into the IGM and recycled into galaxies?
- * How do BHs grow? What determines QSO activity?

Reionization - Quick Facts

	"Hydrogen"	"Helium"
Species	H I and He I	He II
ΔΕ	I 3.6 eV (24.6 eV for He I)	54.4 eV
Source	Galaxies (?)	QSOs (?)
Zreion	z > 6	z > 3

Metal lines at high redshift

Metals

Oppenheimer+ 09

- * Encode information about high-z galaxies and galaxy/IGM interactions
 - * star formation, winds, stellar populations...
- Absorption lines can be markers for galaxies too faint to image
- Reionization probe (Oh 2002)
 - * OI, CII, SiII
 - * $O \leftrightarrow H$ charge exchange:

 $\Delta E(\text{OI}) \approx \Delta E(\text{HI}) \longrightarrow f_{\text{OI}} \approx f_{\text{HI}}$

- Joint constraint on enrichment & ionization
- MUST MEASURE HIGH AND LOW-IONIZATION SPECIES

C IV at z~2-4

C IV in the IGM stays relatively constant over z~2-4.5

- Number density
- Mass density

Recent z~6 C IV results

Number density and mass density of C IV both decline sharply at z > 5.4

O I Survey

- Search for enriched gas in lowionization states
- # High-resolution spectra of 23 QSOs at z = 4.5-6.4
- * Keck/HIRES + Magellan/MIKE
- * Look for coincidences of O I, Si II, C II

O I Survey results

11 O I systems

- 99% probability of a real increase in number density at z > 5.8

GB+ in prep

OIvs. CIV

Low-ionization (O I) systems are more numerous and contain more carbon than high-ionization (C IV) systems

-- the opposite scenario from z~2-4

Metal production

Can the metals we observe at $z \sim 6$ be produced by the galaxies we observe at z > 6?

- * Stellar mass density at z~6 $\rho_* \sim 1 \times 10^7 \text{ M}_{\odot} \text{ Mpc}^{-3}$
- Mass-weighted mean carbon yield (Chieffi & Limongi 04 yields, Kroupa IMF)

 $\langle y_{\rm C} \rangle \approx 0.004$

- * Expected carbon production $ho_{\rm C} \sim 4 \times 10^4 \ {\rm M}_{\odot} \ {\rm Mpc}^{-3}$
- * Seen in absorption $ho_{\rm C,abs} \sim 2 \times 10^3 \ {\rm M_{\odot} \, Mpc^{-3}}$

Observed metals do not directly imply more SF at z > 6 than what is observed.

Metals hiding?

- # z~6 O I systems do not show C IV or Si IV, unlike lower-redshift DLAs
- He II in the IGM may significantly soften the UVBG near 3.5 Ryd
- Expect most C to be in C III ? Would be lost in the forest (C II 977, Si III 1207)

Madau & Haardt (2009)

Abundances

What do the metals tell us about the stars that ended the dark ages?

Low-Metallicity Type II SNe

Very Massive Stars

Conclusions -- Metals

- Metals allow us to probe enriched regions of the IGM -- even before the end of reionization
- Much less C IV at z~6 than at z~3, but more low-ionization (O I) systems
 - Ionization change at the tail end of reionization?
 - * O I systems represent the last stage of hydrogen reionization?
- The observed star-formation at z > 6 more than accounts for the metals seen in absorption at z~6
- * Additional metals may be hiding in intermediate ionization states (C III), especially if He II has not been reionized by z~6 (which is likely)
- * Abundances are consistent with yields from "normal" Pop II stars, and NOT with Pop III stars

Helium reionization: QSOs

He II, $\Delta E = 4$ Ryd

George Becker -- KICC

George Becker -- KICC

Temperature Evolution for He II reionization

186 Mpc

Photoionization heating \Rightarrow Temperature increase during He II reionization $\Delta T \approx 5000 - 30000 \text{ K}$

Curvature

Higher curvature = Colder

Curvature in the data

b-spline fits

- # 64 high-resolution (R=22000-40000) QSO spectra
 - * Keck/HIRES & Magellan/MIKE
 - ₩ 2 < zqso < 6.4</p>

Temperature results - T₀ $T(\Delta) = T_0 \Delta^{\gamma-1}$

 $\gamma \sim 1.5$ Maximum in photoionization equilibrium

 $\gamma = 1.3$ Minimum suggested by simulations of He II reionization (McQuinn et al. 09)

Putting together Teff and T₀

T₀ increases during reionization

Following reionization, the He II Lyα forest becomes transparent

Conclusions -- Temperatures

- New IGM temperature measurements from the curvature of the Lyα forest over z~2-5
- * Measure temperature at the densities probed by the forest
- Clear increase in T₀ from z > 4 to z~3, consistent with an extended He II reionization process
- Results are consistent with a cool-down at z < 3, as expected from He II opacity measurements</p>

* Future:

- Fit the entire temperature-density relation
- Separate Jeans smoothing from temperature changes using QSO pairs
- Look for temperature fluctuations indicative of patchy reionization
- * Thermal proximity effect

George Becker -- KICC