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Overview

Introduction to Reionization

Metal Lines

Recent surveys for metal lines (C IV and O I)

Implications for star-formation at z > 6

IGM Temperatures

New Measurements over 2 < z < 5

Implications for He II reionization
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“Reionization”

A) A riddle inside a mystery, wrapped in an enigma.

B) A process whose properties can be predicted from first 
principles in numerical simulations, without need for 
observations.

C) An event for which interpretation of the existing data requires 
already knowing the "correct" answer.

D) A somewhat over-rated "landmark" event in the history of the 
universe whose importance is surprisingly difficult to justify 
to friends and family.

- Steve Furlanetto



Marcelo Alvarez
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Key Questions

When and how did the first stars and galaxies (and AGN) 
form during the first 1 Gyr after the Big Bang?

How did reionization affect affect subsequent galaxy and 
AGN formation?

What it the detailed structure of the galaxy-IGM network?  

How do ionizing photons escape from galaxies and 
propagate through a neutral / ionized medium?  

How do metals get mixed into the IGM and recycled into 
galaxies?  

How do BHs grow?  What determines QSO activity?

Understanding hydrogen and helium reionization 
will help us to answer:
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“Hydrogen” “Helium”

Species H I and He I He II

ΔE 13.6 eV
(24.6 eV for He I)

54.4 eV

Source Galaxies (?) QSOs (?)

zreion z > 6 z > 3

Reionization - Quick Facts
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Hydrogen Reionization - Two limits

Early
CMB   

Late
Transmission in the Lyα forest

IGM must be highly ionized at z < 6

Dunkley et al. (2008), Jarosik et al. (2010)

τe to Thomson scattering

but consistent with a range of reionization 
histories

WMAP7: zreion = 10.4± 1.2 (“instant”) τLyα ∼ 105 fH I
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Metal lines at high redshift

Lyα forest
- Traces bulk of the IGM
- Saturates at z ~ 6

Metal lines
- Trace dense regions
- still useful at z > 6
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Metals
Encode information about high-z galaxies 
and galaxy/IGM interactions 

star formation, winds, stellar 
populations...

Absorption lines can be markers for 
galaxies too faint to image

Reionization probe (Oh 2002)

O I, C II, Si II

O ↔ H charge exchange: 

Joint constraint on enrichment & 
ionization 

MUST MEASURE HIGH AND LOW-IONIZATION 
SPECIES

∆E(O I) ≈ ∆E(H I) fOI ≈ fH I

Oppenheimer+ 09 
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C IV at z~2-4

?

Mass Density

C IV in the IGM stays relatively constant 
over z~2-4.5

- Number density
- Mass density

Simcoe+ 2004
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Recent z~6 C IV observations

Ryan-Weber + (2009)
9 z > 5.7 QSOs
low resolution

Becker + (2009)
4 z > 5.7 QSOs
high resolution
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Recent z~6 C IV results

Number density Comoving mass density

(dominated by rare, strong 
systems)

Allowed

Ryan-Weber+09

≥ 4x

f(N) = B

�
N

N0

�−α

Number density and mass density of C IV 
both decline sharply at z > 5.4

GB+2009
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GB+ 2006

z=6.1312

Search for enriched gas in low-
ionization states

High-resolution spectra of 23 QSOs at 
z = 4.5-6.4

Keck/HIRES + Magellan/MIKE

Look for coincidences of O I, Si II, C II

O I Survey
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O I Survey results

11 O I systems

7 at z > 5.8

99% probability of a real 
increase in number 
density at z > 5.8

significant?

GB+ in prep
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O I vs. C IV

C II

C IV

Low-ionization (O I) systems are more numerous and contain 
more carbon than high-ionization (C IV) systems 

-- the opposite scenario from z~2-4
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Metal production
Can the metals we observe at z~6 be produced by 
the galaxies we observe at z > 6?

Stellar mass density at z~6

Mass-weighted mean carbon yield 
(Chieffi & Limongi 04 yields, Kroupa IMF)

Expected carbon production

Seen in absorption

�yC� ≈ 0.004

ρC,abs ∼ 2× 103 M⊙Mpc−3

Observed metals do not directly imply more SF at z > 6 
than what is observed.

ρC ∼ 4× 104 M⊙Mpc−3

ρ∗ ∼ 1× 107 M⊙Mpc−3

Labbe+ 2010
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Metals hiding?
z~6 O I systems do not show C IV or Si IV, 
unlike lower-redshift DLAs

He II in the IGM may significantly soften 
the UVBG near 3.5 Ryd

Expect most C to be in C III ?  Would be 
lost in the forest (C II 977, Si III 1207)

z=6.1312

after He II 
reionization

before He II 
reionization

Without He II 
“sawtooth”

Madau & Haardt (2009)
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Abundances
What do the metals tell us about the stars that 
ended the dark ages?
Low-Metallicity Type II SNe

Z = 10−3Z⊙

Chieffi & Limongi 04 yields

13− 35 M⊙

Very Massive Stars

Z = 0
140− 260 M⊙

Heger & Woosley 02 yields

X
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Conclusions -- Metals

Metals allow us to probe enriched regions of the IGM -- even before the end 
of reionization

Much less C IV at z~6 than at z~3, but more low-ionization (O I) systems

Ionization change at the tail end of reionization?

O I systems represent the last stage of hydrogen reionization?

The observed star-formation at z > 6 more than accounts for the metals 
seen in absorption at z~6

Additional metals may be hiding in intermediate ionization states (C III), 
especially if He II has not been reionized by z~6 (which is likely)

Abundances are consistent with yields from “normal” Pop II stars, and NOT 
with Pop III stars
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Helium reionization: QSOs

 see also Jiang et al. (2008, 2009),
Willott et al. (2009)

Fan et al (2004)

2dF: Croom et al. (2004)

He II,  ΔE = 4 Ryd
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Coming soon: COS data!

He II opacity evolution

HS 1700+6416, z=2.72 (FUSE) Fechner+ (2006)

τeff = − ln �F �

He II Lya
λrest = 304 Å

Seeing a drop in opacity at the end 
of He II reionization?

Furlanetto & Dixon (2009)

τGP

He II
= 3.4

�xHeII

0.01

� �
1 + z

4

�3/2 �
∆b

0.1

�

xHe II, V > 0.03 at z~3  (McQuinn 09)
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Temperature Evolution for He II 
reionization

McQuinn+ (2009)

T (∆) = T0 ∆γ−1

0        0.5        1 10     17.5     253      1.5       0 17    15    13 0      12.5     25

xHeIII log(Trans) logT (kilo K) heating (kilo K)

z = 4.3

z = 3.5

z = 3.2

z = 3

186 Mpc

Photoionization heating ⇒ Temperature 

increase during He II reionization

∆T ≈ 5000− 30000 K
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Temperatures from 
the Lyα forest

Small-scale structure

Thermal Broadening

Jeans Smoothing

“Classic” Analysis Methods

Power spectrum / 
Wavelets

Line widths

=
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Curvature

Curvature =
F ��

[1 + (F �)2]3/2

Higher curvature = Colder
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Curvature in the data

B-spline fit

b-spline fits

64 high-resolution (R=22000-40000) QSO spectra

Keck/HIRES & Magellan/MIKE

2 < zQSO < 6.4



George Becker -- KICC

Temperature results - T(Δ)

Increase likely driven by 
sampling higher overdensities64 QSOs

2 < zQ < 6.4

optimal 
overdensity
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Temperature results - T0

γ ∼ 1.5
γ = 1.3

Maximum in photoionization equilibrium 

Minimum suggested by simulations of He II reionization 
(McQuinn et al. 09)

zH reion > ?
IGM cool at z~5 

(TBD)

Heating = Extended He 
II reionization

Post-reionization 
cooling 

(should return to 
γ~1.5)

T (∆) = T0 ∆γ−1
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Putting together 
τeff and T0

T0 increases during reionization

Following reionization, the He II Lyα 
forest becomes transparent
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Conclusions -- Temperatures

New IGM temperature measurements from the curvature of the Lyα forest 
over z~2-5

Measure temperature at the densities probed by the forest

Clear increase in T0 from z > 4 to z~3, consistent with an extended He II 
reionization process

Results are consistent with a cool-down at z < 3, as expected from He II 
opacity measurements

Future:

Fit the entire temperature-density relation

Separate Jeans smoothing from temperature changes using QSO pairs

Look for temperature fluctuations indicative of patchy reionization

Thermal proximity effect
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Temperature-density relation

log

Adiabatic heating/cooling 
creates a powerlaw T-Δ relation 
in the IGM:

T (∆) = T0 ∆γ−1

∆ ≡ ρ

�ρ�

T0 ≡ T (∆ = 1)

Overdensity:

Temperature at 
the mean density: γ ≈ 1.6

(Hui & Gnedin 1997)

γ ≈ 1.0

γ ≈ 1.6

best to normalize T(Δ) near the Δ that dominates your signal


