Cosmological reionisation, HRI Allahabad, 16/02/10

Reionisation and the Ly- α forest

Jamie Bolton

The key evidence I: CMB polarisation data

In the limit of instantaneous reionisation:

$z_e = 0.088 \pm 0.015 \Longrightarrow z_r$	$=10.5 \pm 1.2 (68\%)$
---	------------------------

Parameter	7-year Fit	5-year Fit
Fit parameters		
$10^2\Omega_bh^2$	$2.258\substack{+0.057\\-0.056}$	2.273 ± 0.062
$\Omega_c h^2$	0.1109 ± 0.0056	0.1099 ± 0.0062
Ω_{Λ}	0.734 ± 0.029	0.742 ± 0.030
$\Delta^2_{\mathcal{R}}$	$(2.43 \pm 0.11) \times 10^{-9}$	$(2.41 \pm 0.11) \times 10^{-9}$
_ <i>n</i> 。	0.963 ± 0.014	$0.963^{+0.014}_{-0.015}$
au	0.088 ± 0.015	0.087 ± 0.017
Derived parameters		
t_0	$13.75\pm0.13~\mathrm{Gyr}$	$13.69\pm0.13~\mathrm{Gyr}$
H_0	$71.0 \pm 2.5 \text{ km/s/Mpc}$	$71.9^{+2.6}_{-2.7}$ km/s/Mpc
σ_8	0.801 ± 0.030	0.796 ± 0.036
Ω_b	0.0449 ± 0.0028	0.0441 ± 0.0030
Ω_c	0.222 ± 0.026	0.214 ± 0.027
Zea	3196^{+134}_{-122}	3176^{+151}_{-150}
$z_{ m reion}$	10.5 ± 1.2	11.0 ± 1.4

WMAP-7 analysis now includes helium reionisation

Dunkley *et al.* (2007), Larson *et al.* (2010)

The key evidence II: SDSS quasar absorption spectra

The Gunn-Peterson (1965) trough at z>6 implies f_{HI} is increasing towards higher redshift.

Fan et al. (2006)

• The Ly- α forest originates from, warm, photoionised underdense to moderately overdense hydrogen gas in the IGM which closely traces the dark matter.

• Absorption lines arise from the residual HI in the density field associated with the filaments and sheets of the 'cosmic web'.

Ly- α forest - simulations

Hydrodynamical simulation

The Fluctuating Gunn-Peterson Approximation

Assuming HI photo-ionisation equilibrium and a temperature-density relation for low density gas, $T=T_0(1+\delta)^{\gamma-1}$

$$\tau_{Ly\alpha} = \tau_0 \frac{(1+z)^6 (\Omega_b h^2)^2}{(T_0^{0.7}(z)H(z)\Gamma_{HI}(z))} (1+\delta)^{2-0.7(\gamma-1)}$$

The Ly- α forest opacity is closely linked to the IGM temperature, intensity of UV background...

I: The metagalactic ionising background

with Martin Haehnelt (IoA, Cambridge)

Ionising photons from sources

Comoving emissivity typically obtained from galaxy and quasar luminosity functions.

$$\dot{N}_{ion} = \int_{v_{HI}}^{\infty} \frac{\varepsilon_{v}}{hv} dv \quad [s^{-1}Mpc^{-3}]$$

Bouwens et al. (2007)

Ionising photons from sources

 $\frac{\varepsilon_L}{10^{25} erg \, s^{-1} Hz^{-1} Mpc^{-3}}$ α_{s} $\dot{N}_{ion} \approx 10^{49.7}$ Jesc s^{-} 3 0.1

Lyman limit emissivity: depends on magnitude limit of survey and the spectral shape at >912 Å (need stellar population models)

Source spectral shape below the Lyman limit. The fraction of ionising photons escaping from the ISM into the IGM - very uncertain.

Ionising photons in the IGM

Measuring Γ_{HI} at 2<z<6

Bolton *et al.* (2005, 2007), Faucher-Giguere *et al.* (2008, 2009) Match the observed Ly- α opacity to a suite of hydrodynamical sims, carefully consider systematics

• Quasars fall short of providing the requisite number of ionising photons, especially towards z=6

- A significant contribution from star forming galaxies required to maintain the photon budget at z~6 (consistent with Haardt & Madau 2001 UVB models)
- But the PI rate can also tell us something interesting about the reionisation history at z>6...

Ionising photons in the IGM

Source and UVB spectral shape. Need stellar population and UVB models *e.g.* Leitherer *et al.* 1999, Faucher-Giguere *et al.* 2009) Ionising photon mean free path (Lyman limit systems, *e.g.* Prochaska *et al.* 2009)

- Independent of the escape fraction
- Not affected by missing sources
- Only possible at z<6

Bolton & Haehnelt (2007)

Bolton & Haehnelt (2007)

See also Bunker+09, McClure+09, Yan+09, Finkelstein+10...

 $f_{esc} = 0.2, \, \alpha_s = 3, M_{UV} = -18.3$

Bolton & Haehnelt (2007)

$$f_{esc} = 0.2, \, \alpha_s = 3, M_{UV} = -18.3$$

Bolton & Haehnelt (2007)

The filling factor of HII

Implications for ionising sources

Constraints range from $\sim 6 - 30\%$ of required emissivity at z > 6

 $f_{esc} = 0.2, \, \alpha_s = 3, M_{UV} = -18.3$

Bolton & Haehnelt (2007)

Missing faint sources?

Larger escape fraction?

What do we *currently* need if $C_{HII}=2?$

Reionisation and the $Ly\alpha$ forest

• The emissivity has to moderately increase at z>6 for reionisation to complete by z=6 for $C_{HII}=2$

• Unless the ionising emissivity rises very rapidly just above z=6, reionisation must be a rather photon starved and extended process – there are only 1-3 photons/hydrogen atom at z=6.

• It also suggests we are still missing most of the faint ionising sources at z>6 required to complete reionisation unless escape fraction is large and spectra are very hard.

(see also e.g. Miralda-Escude 2003, Meiksin 2005, Choudhury & Ferrara 2005, 2007).

$$\begin{bmatrix} A \text{ brief aside: constraining } C_{HII} = \frac{\langle \rho_b^2 \rangle_{HII}}{\langle \rho_b \rangle_{HII}} \end{bmatrix} \\ \dot{\rho}_{SFR}(z) \approx \frac{0.004 M_{sol} yr^{-1} Mpc^{-3}}{f_{esc}} \left(\frac{C_{HII}}{5} \right) \left(\frac{1+z}{7} \right)^3 \quad \text{Madau et al. (1999)} \\ \text{Express in terms of ionising photons} \\ \dot{N}_{rec}(z) = \frac{\overline{n}_H(z)}{\langle t_{rec}(z) \rangle} \approx 10^{50.7} s^{-1} Mpc^{-3} \left(\frac{C_{HII}}{5} \right) \left(\frac{1+z}{7} \right)^3 \\ \text{Photons required to keep IGM ionised} \\ \dot{N}_{rec}(z) = \dot{N}_{ion}(z) \implies C_{HII} \approx 13.2 \left(\frac{\Gamma_{HI}}{10^{-12} s^{-1}} \right) \left(\frac{\lambda_{mfp}}{40 Mpc} \right)^{-1} \left(\frac{1+z}{7} \right)^{-5} \\ \text{Photons already present in ionised IGM} \\ \dot{N}_{ion}(z) \approx 10^{51.2} s^{-1} Mpc^{-3} \left(\frac{\Gamma_{HI}}{10^{-12} s^{-1}} \right) \left(\frac{\lambda_{mfp}}{40 Mpc} \right)^{-1} \left(\frac{1+z}{7} \right)^{-2} \\ \end{bmatrix}$$

[A brief aside: constraining $C_{HII} = \frac{\langle \rho_b^2 \rangle_{HII}}{\langle \rho_b \rangle_{HII}^2}$]

Bolton & Haehnelt (2007)

Numerically derived

 $C_b \approx 5$

Pawlik et al. (2009)

II: The IGM temperature at z=6

with George Becker (KICC, Cambridge)

Stuart Wyithe (Melbourne) Martin Haehnelt (IoA, Cambridge) Wal Sargent (Caltech)

Photo-heating

Photons not only ionise – if they have $E>E_{th}$ (H I=13.6eV, He II=54.4eV) then they also heat the IGM.

Electrons share their energy with the baryons via Coulomb scattering.

The IGM temperature

• Higher temperatures broaden absorption features through thermal broadening and Jeans (pressure) smoothing.

• Long cooling timescale enables use as an indirect probe of the H I and He II reionisation epochs (e.g. Theuns *et al.* 2002, Hui & Haiman 2003)

The high-z thermal history

• There are no constraints on the IGM temperature at z>4.5.

• In order to probe the thermal memory of HI reionisation, we want to push to higher redshift (see also talk by G. Becker)

McQuinn et al. (2009)

Measuring T in the high-z forest

• Line fitting in the forest becomes very difficult at z>4 due to the disappearing transmission.

• High resolution spectra which resolve the thermal broadening kernel are required.

The temperature at *z*=6?

Simulating the IGM

• 18 GADGET-3 hydrodynamical simulations of the IGM,

• M_{gas} = 9x10⁴ M_{sol}/h , 268 million particles each (2x512³)

• Wide variety of thermal histories,

• Line-of-sight, multi-frequency radiative transfer to model QSO emission.

Image of Darwin cluster, Cambridge, http://www.hpc.cam.ac.uk/

Simulation vs Observation

Measuring the temperature

• Simulated Doppler parameter CPDF is sensitive to the temperature in the proximity zone

• Use detailed numerical simulations (mutiple hydro+RT sight-lines) to calibrate the CPDF and obtain constraints from data.

Bolton et al. (2010)

Constraint from J0818+1712

Temperature at mean density within 33 comoving Mpc of SDSS J0818+1712 at z=6

$$T_0 = 23600 \pm_{6900}^{5000} K(\pm_{9300}^{9200} K)$$

at 68 % (95 %)

Thermal history at z>6

The temperature of the low density IGM provides an indirect probe of the reionisation history.

It retains a memory of the initial photo-heating during reionisation due to the long adiabatic cooling timescale (Theuns+02, Hui & Haiman 2003).

The temperature of the IGM thus depends on:

- 1) When the IGM was reionised (how much time available to cool?)
- The spectra of the ionising sources responsible for reionisation (harder spectra = more heating).

Thermal history at z>6

Bolton *et al.* (2010)

Very hard spectrum, reionises HI and HeII simultaneously

Thermal history at z>6

Bolton *et al.* (2010)

Softer spectrum, reionises HI, HeII by the quasar itself.

Reionisation around J0818+1722

Caveats

• Source modelling uncertain: higher temperatures will weaken the upper limits.

• Assumes instantaneous, homogeneous reionisation. This is incorrect globally, but more reasonable (but not ideal) for a single quasar proximity zone.

• Applies to reionisation around J0818+1722 only. But the biased regions around quasars could be amongst the first patches of the IGM to be ionised.

Summary I

The Lyman- α forest provides an invaluable probe of the ionisation history of the IGM, beyond just the well known GP trough constraint.

• The metagalactic ionising emissivity at z=6 corresponds to $\sim 1-3$ ionising photons emitted per hydrogen atom over a time interval corresponding to the age of the Universe at z=6. The IGM at z=6 is photon-starved.

• The ionising emissivity must rise at z>6 for consistency with the observed Lyman- α forest opacity at z<6. Unless the emissivity rises (unusually) rapidly just above z=6, reionisation is likely to have been an extended process.

• The emissivity requirements imply significant star formation activity (many faint, as yet undetected galaxies) at z>6.

Summary II

- The clumping factor of baryons in the ionised IGM is C_{HII} <5. This is expected from the observed Ly α forest opacity as well as theoretical grounds;
- The thermal history of the IGM provides a valuable, indirect probe of the HI and HeII reionisation history of the IGM. We present the first direct IGM temperature measurements around a quasar at *z*=6;
- The data enables us to place constraints on the redshift of hydrogen reionisation *around J0818+1722* under the assumption of two different source spectra. We find $z_{\rm H}$ <9.4 for population III and $z_{\rm H}$ <11.0 for population II sources in the limit of instantaneous, homogeneous reionisation;
- These results are consistent with an epoch of HI reionisation extending from well above z=6.