Observational Constraints on Reionization History

Tirthankar Roy Choudhury

Cosmological Reionization 19 February 2010

- Evidence for extended reionization from semi-analytical models
- Modelling ionization (21 cm) maps

Features of the semi-analytical model choudhury & Ferrara (2005,2006)

- Obtain the mass function of collapsed objects & assign the number of photons per collapsed mass.
- Follow ionization and thermal histories of neutral, HII and HeIII regions simultaneously. Treat the IGM as a multi-phase medium.
- Take into account the inhomogeneities in the IGM and also all the three stages of reionization

Miralda-Escude, Haehnelt & Rees (1999)

- Sources of ionizing radiation:
 - PopII stars: $\dot{n}_{\text{phot}} = N_{\text{ion}} \frac{\mathrm{d}f_{\text{coll}}}{\mathrm{d}t}$
 - Quasars: unimportant at $z \gtrsim 6$
- Radiative feedback suppressing star formation in low-mass haloes using a Jeans mass prescription.
- Uncertainties (free parameters):
 - **(**) Number of photons per unit collapsed mass N_{ion}
 - Minimum mass of star-forming haloes M_{min}

Tirthankar Roy Choudhury HRI, Allahabad (19-02-10)

- Good constraints using only Ly α forest and WMAP data.
- Do a likelihood analysis using Lyα forest and WMAP7. Then compare with other observations and see if the model is consistent.
- Understand the physics of reionization and make further predictions.

Statistical analysis: Atomic cooling

HRI, Allahabad (19-02-10)

Atomic cooling: best-fit model

Tirthankar Roy Choudhury

Molecular cooling: fit WMAP7 data

Tirthankar Roy Choudhury

HRI, Allahabad (19-02-10)

Statistical analysis: Molecular cooling

Molecular cooling: best-fit model

Tirthankar Roy Choudhury

- Simple "single-component models" (considering only atomic cooling and constant N_{ion}) are "in tension" with the data (ruled out by 1-σ confidence). Galaxies must emit comparatively more efficiently at higher redshifts ⇒ a "bump" in the emissivity.
- Caveats:
 - Need lower values of mean free path. Simulations with Lyman-limit systems?
 - Feedback? Need more "severe" feedback to match the data. Clustering of sources?
 - Mass-dependent N_{ion} : need high values for low mass haloes. Minihaloes?
 - Redshift-dependent N_{ion} : need high values at early times. Metal-free stars? Top-heavy IMF?
- Other unknown sources/physics?
- Consider a model with two types of stellar sources: PopII and PopIII (no molecular cooling).

- Use a merger-tree based "genetic" approach. If a given star-forming halo has a progenitor which formed PopIII stars, then the halo under consideration is "enriched" and cannot form PopIII stars.
- Possible to construct a analytic formula: the probability that a halo of mass M at z never had a progenitor in the mass-range $[M_{\min}(z), M + M_{\text{res}}]$:

$$f_{
m PopIII}(M,z) = rac{2}{\pi} an^{-1} \left[rac{\sigma(M+M_{
m res}) - \sigma(M)}{\sigma(M_{
m min}(z)) - \sigma(M+M_{
m res})}
ight]$$

(based on conditional probability of Press-Schechter mass function).

PopIII \rightarrow PopII transition: comparing with simulations

data points from Schneider et al. (2006) using PINOCCHIO

Tirthankar Roy Choudhury HRI, Allahabad (19-02-10)

Likelihood analysis: Ly α forest data only

Likelihood analysis: Ly α forest + WMAP7

Likelihood analysis: Best-fit model

Tirthankar Roy Choudhury

HRI, Allahabad (19-02-10)

Parameter	Best-fit value	95% (2- σ) limit		
$z_{\rm re} = z(Q_{\rm HI} = 0.99)$	6.47	5.84	—	6.75
$z(Q_{\mathrm{HI}}=0.90)$	7.06	6.20	_	8.14
$z(Q_{\mathrm{HI}}=0.50)$	9.95	7.70	_	12.05
$\Delta z = z(Q_{\rm HI} = 0.01) - z(Q_{\rm HI} = 0.99)$	10.60	8.30	_	11.98
$x_{\rm HI}(z=6)$	10 ⁻⁴	$8 imes10^{-5}$	_	0.05

- Reionization extended with $\Delta z > 8$; 90% complete by $z \approx 7$; should not be much earlier than $z \approx 8$.
- Extended reionization arising from combined action of radiative and chemical feedback. Rapid suppression of PopIII star formation. "Self-regulated" reionization.
- IGM is highly ionized (> 95%) at $z \approx 6$.

• Effect of radiative feedback can be independently tested with (possibly) PLANCK (and 21cm observations). Schneider, Salvaterra, Choudhury et al. (2008), Burigana et al. (2008)

Sources responsible for reionization

 $M > 10^9 M_{\odot}$

- What do these models imply for 21cm observations?
- Important to consider models which are consistent with the extended and "low-emissivity" scenario.
- Extended reionization \implies recombinations (distribution of photon sinks).
- Develop a reionization picture consistent with post-reionization scenario (large ionized regions with self-shielded "islands" in-between).
- Generating 21 cm maps require large simulation boxes with realistic source and density distribution => use a "semi-numeric" approach.

Mesinger & Furlanetto(2007), Geil & Wyithe (2008)

Global ionization maps choudhury, Haehnelt & Regan (2008)

Mean free path choudhury, Haehnelt & Regan (2008)

21 cm power spectrum choudhury, Haehnelt & Regan (2008)

21 cm power spectrum choudhury, Haehnelt & Regan (2008)

angular scale $\sim 10'$

- Strong constraints on the parameter-space. Reionization extended; 90% complete by z = 7. IGM highly ionized at $z \approx 6$.
- Effect of feedback important.
- Reionization driven by small-mass sources, currently too faint to be observed. Galaxies observed at $z \approx 7$ contribute only $\sim 1\%$ to the photon budget.
- Extended reionization \implies effect of local recombinations (sinks) important
- Reionization topology highly dependent on nature of recombinations and on the distribution of ionizing sources